
-~~~~~- -- - -L ,-y - ,,,---

SE. Nis PAGE

REPORT DOCUMENTATION PAGE
%-. . 1& 11IPOAT SECURITY CLAMPICATIO4 lb. RESTRICTIVE MARKINGS

2&. SECURITY CLASSIFICATION AUTH4ORITY 3. OISTRISUTION/AVAILAGOLITY OF REPORT
UNCLSSIIEDAnpro',ed for Public rele-ise,

AD-A196 942__ A___ __ _ __0_

College Park, MD 20742 BLDGutd #410PMNIO~OOOA Z

Balg AFB, DC 20332-6448
14AM 00PUNONG/pONORIN Sb OFICE YMBL 9 PROUREENTINSTRUMENT 10ENTIFICATION NuMBER _

AORNM AFOSR- 82-0303

ft~ AOCRESS (City, State mid ZIP Code) 10. SOURCE Of FUNOING NOS.

PROGRAM PROJECT TASK WOAK I.NiT
BLDG #410 E LEMENT NO. NO. NO. No

Boiling AFB, DC 20332-6448 61102F 2304 A
11. TI TLE 11ie) ade SeernI C1ZEf.lI'caoai A

12. PERSONAL A6TH6113 IIS
Jack Minker, MKark Weiser

13& TYPE OF REPORT 13b. TIME COvEREO 147 ATE OF EPOAT t?,.Ma.,Day) is. PAGE COUNT

Final PRmoM 6/30/82 0.2/13/88 88/04/26 C
16. SUPPLEMENTARY NOTATION

TC
1I, COSATI COOES 18 S~jSjECT TERMS ?Conitinue on reverseIf necesen,- and identfl

111210 I GROUP SUB. OR' U

This report summarizes research performed under a grant to investigate arlle

j problem solving. A parallel problem sovling system based on logic (PRISM) was

designed and implemented on the McMOB parallel processor and ported to a BBN Butterfly

parallel processor. This report summarizes the results which were published in nine-

teen separate reports and papers.

* 20. OISTRISUTIONAVAILASILITY OF ASSTOa- 21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIPIEO/UNLIMIT11O ZXSAME AS P1 a NCLASSIFFIED
22&. NAME OF A&SPONSISLS1 INOIVIOUAL 22b TELIPs4ONE NUMBER

Abraham Waksman ,include.A'911 CoIe I'M

A 02-767-_ 5025
* 0 FORM 1473,83 APR E011 A- 3 IS 0SSOETE

SECURITY IIIses ~

'~------*'t - - - -

FINAL REPORT

AFOSR GRANT 82-0303

NOVEMBER, 1986 - FEBRUARY, 1988

PRINCIPAL INVESTIGATOR:

PROFESSOR JACK MINKER

UNIVERSITY OF MARYLAND

Abstract

This final report presents a summary of research accomplishedjfor the AFOSR under
grant number AFOSR 82-0303 for the period November 1986 - February 1988.*to investigate
parallel problem solving. Under the current grant a parallel problem solving system, PRISM
(Parallel Inference System), that was implemented on the VAX/II-780, the PYRAMID and
SUN machines, was ported successfully to McMOB and then to the BBN Butterfly parallel
architecture. The McMOB architecture is essentially the ZMOB architecture with 16 Motorola
68000 processors, upgrading the Z8OA microprocessors, interconnected in a ring structure.

Experimental testing of PRISM on McMOB was undertaken in the current year. In addi-
tion, several enhancements were made to PRISM to permit experimental analyses to be made,
and to incoroate additional features to take full advantage of parallelism in a problem solving
environment. The tracing and statistical gathering packages were extended. An ability to
display AND-parallelism was added to the u-ace program which displays the execution of a
program on the parallel machines.

In addition to the above, work continued in the area of informative answers to be
presented to a user. Heuristic techniques were developed to determine which information to ,,

w'.sThe m software for TMAB/McMOB is ndw robust aicosdered ompleted.; This
. has allowed us to reemphasize our studies on parallel software. A new formalism for

slicing/splicing was developed which eliminates much of the run-time overhead of the tech-
.. nique, allowing for the development of a splicing compiler. Work has also focused on the
.W "development of debugging tools for parallel software and the integration of artificial intelli-

* gence techniques into debugging software.

08 7

87 05 p'

1. Introduction

Under the current grant, a detailed design and implementation of a parallel problem solv-

ing system based on logic, PRISM (PaRallel Inference SysteM), was implemented on the

McMOB parallel processor and ported, successfully to the BBN Butterfly parallel processor.

The McMOB machine has the identical architecture as ZMOB. It differs in that McMOB has

only 16 microprocessors attached to the belt and that these are Motorola 68000 micoproces-

sors. PRISM was previously implemented using a simulated ZMOB belt on VAX, PYRAMID

and SUN machines, before it was ported to McMOB. PRISM underwent experimental testing,

was enhanced in a number of ways, and a large set of problems was tested using the system.

McMOB was also made operational on the software level. The operating system

software for McMOB is now fully functional and no further work is deemed necessary in that

area. Further research was performed in the development of program slicers and splicers for

automatic parallelization.

In section 2 we provide a description of the accomplishments under the current grant. In

the area of parallel problem solving, the initial PRISM has been fully implemented and tested

in a parallel environment. Extensive experimentation was begun on evaluating PRISM on a

prallel architecture. An approach has been developed to utilize heuristics to obtain informative

answers for queries to deductive databases and problem solving systems. In the area of paral-

lel systems hardware and software, the McMOB architecture has been completed, and focus DTIC

has shifted to the software issues involved. A new formalism has been developed allowing us C"

to exploit regularities in the structures of splicing, drastically reducing the run-time overhead

on splicing programs. Further, a prototype for a practical automatic debugging aid, using

Artificial Intelligence techniques, has been designed and implemented. Aacees sion For

NTIS GRA&I
As a consequence of this work we have published 1 journal article, 1 book chapter, 8 DTIC TAB L3

Unaruio,zkced [
conference papers, 2 technical reports, 1 newsletter article, 2 Master of Science scholarly Justif'ittion

papers, and 2 Ph.D. theses during the present grant period. The list of papers and reports is By_ _
c Distribution/

contine in he ectin ttled Reerenes.Availability Codes

Dist SpecialII

2. Accomplishments on Effort During Period November, 1986. February, 1988

This section is subdivided into two major parts. The first section, 2.1, describes the

accomplished research with respect to PRISM - the parallel problem solving system. The

second section, 2.2, describes the efforts for the development of parallel systems software and

hardware for experimentation with parallel algorithms.

2.1. PRISM and Parallel Problem Solving on McMOB and Butterfly

There were seven major tasks in parallel problem solving undertaken under the current

grant. These are:

(a) Implement PRISM on McMOB
(b) Application Studies
(c) Alternative Machine Configurations - Design of Combined PSM/IDB Machine
(d) Develop New Features for PRISM
(e) Alternative Architectures
(f) Analyze Parallel Algorithms
(g) Informative Answers
(h) Control Structure Investigation

2.1.1. Implement PRISM on McMOB

We have successfully implemented PRISM on the McMOB parallel machine. The work

involved implementing a communications package that allows PRISM programs to communi-

*cate over the McMOB belt. All other programs that had been running on the VAX, SUN. and

PYRAMID machines were compiled for the McMOB machines and ran successfully. This work

is complete, including the implementation of the EDB and Host processors. A paper has been

published in the Sigarch Newsletter that describes the system. [Giuliano, Kohli and Minker]

2.1.2. Application Studies

A series of application studies have been performed using PRISM on McMOB. Two

problem sets were developed. One was a set of problems known in the literature, and the

second was a set of p-ngrams generated from ahstract tve . The folluwing results have been

obtained speed ups are generally obtainable when more processors are allocated to solve a

problem. Splitting the intensional database component and the problem solving component of

the system into separate machines does not appear to be useful. Preliminary indications are

that simple heuristics can be used to allocate problems to processors to achieve runtime speed

up. Additional experimental work is required before final conclusions can be made on this

latter observation. A report has been written that describes results obtained on the PRISM

experiments using the McMOB and Butterfly processors (Experiments with Parallel Logic Pro-

gramming in PRISM [Giuliano, et al.])

2.1.3. Alternative Machine Configurations. Design of Combined PSM/IDB Machine

A design for a combined PSM/IDB machine was developed and the design was imple-

mented on McMOB. Due to the studies described above, we believe that there is no need to

have separate PSM and IDB machines. Because of this, we have not implemented the EDB

communication protocol for the IDB.

2.1.4. Develop New Features for PRISM

The PRISM trace programs were modified to incorporate new features of the system. The

trace programs have now been modified so as to display AND-parallel execution and the capa-

bilities of the Constraint Solving Machine (CSM). The trace can run either off-line or on-line

with the McMOB system. The user can scc the program executing in alternative machines at

the same time and can observe both OR-parllclism and AND-parallelism as it is executing on

the McMOB. The addition of these featurc,, allows us to use the trace to debug programs exe-

cuting on a parallel machine.

In addition, a list notation and ii 1 u h mdk were added to the PRISM system. The

AND-parallel and OR-parallel PSMs hac Nn wnmbined into one system so that AND/OR-

parallelism can be executed simultancotrI, ln I V I S M.

'I-

2.1.5. Alternative Architectures

We have investigated the BBN Butterfly architecture to determine if it is possible to

transfer PRISM to that machine. In contrast to McMOB, the Butterfly machine is a shared

memory parallel architecture. We effected a transfer to the Butterfly by simulating the McMob

belt. As noted above, this system is operational on the Butterfly and experimental results have

been obtained using the system. We have also developed a plan to utilize the shared memory

system of the Butterfly and expect to have such a system implemented in the coming grant.

2.1.6. Analyze Parallel Algorithms

-?I % A new divide-and-conquer algorithm, called Formula Dissection was developed for pro-

positional satisfiability. The dissection step of the algorithm is implemented by bisecting the
0

underlying graph representation of the formula. The running time of Formula Dissection pro-

vides a constructive proof that Planar-3SAT, an NP-Complete class of SAT can be solved in

time exp(sqrt(n)) as opposed to exp(n). The Formula Dissection paradigm can also be applied

to solve other NP-Complete problems such as finding a Hamiltonian Cycle in a planar graph

and the Trihedral Scene Recognition problem in computer vision. A paper on this work was

submitted for publication in a journal. [Kasif, Reif and Sherlekar]

2.1.7. Informative Answers

Detailed heuristics have been developed to control the natural language output from

deductive databases to provide informative answers to queries posed by a user. A paper has

been published that describes some of the heuristics that have been developed. [Gal and
Minker]

Implementation of part of this effort has been accomplished. A technical report, [Lobo

and Minker], has been written and accepted for publication that describes a meta-program that

integrates integrity constraints into a deductive database to semantically constrain the search

for answers. The meta-program also has the ability to interface with a relational database.

This basic capability had to be developed prior to obtaining the full capability incorporating

the viork in the previous paragraph.

2.1.8. Control Structure Investgaton

A Ph.D. thesis has been written by Madhur Kohli [Kohli] that describes a compiler that

permits a user to develop an interpreter with a control capability specified for a particular

application. The compiler has been written and experiments have been conducted with the

compiler output. An interpreter with the PROLOG control strategy was implemented and com-

pared with PROLOG. Tests run on the VAX machine indicate that the compiled control

A..' operates approximately half as fast as PROLOG. However, for control structures that have to

be implemented with a meta-interpreter on PROLOG, the compiled interpreter operates approx-

imately ten times as fast as the meta-interpreter. Hence, the approach is both significant and

viable for obtaining interpreters with control strategies different than that incorporated in PRO-

LOG. The results obtained are described in Kohli's thesis and in [Kohli and Minker].

2.2. Parallel Hardware and Software

There were four major tasks in parallel hardware and software undertaken under the

-current grant. These were:

(a) Theoretical Slicing and Splicing
(b) Practical Slicing and Splicing

* (c) Automatic Debugging Methods
(d) New Architectures

#.4.
2.2.1. Theoretical Slicing and Splicing

A major advance in slicing/splicing was made this year in the form of a new methodol-

ogy for performing the splicing process. The previous method of preventing jumbled outputs,

due to processor asynchrony, required resequencing the outputs of different slices and thus each

slice was required to continually broadcast certain information to a central location. This

.VV 0
=

f%
.

M %M
L

M 7W ..

continuous transmission caused a prohibitive expense in terms of overhead for run-time execu-

tion, and made the rapid splicing of large programs practically impossible.

The new methodology is based on a formalization of the splicing problem utilizing graph

theory. It can be demonstrated from this formalization that certain constraints between outputs

are guaranteed to hold and thus, instead of having each splice continually broadcast synchroni-

Nzation information we need send only a small amount of information to a central processor

when outputs occur. Tags are attached to the output string which can be deciphered by the

coordinating processor and outputs can be guaranteea to be correctly sequenced. These tags

are a list of integers bounded by the number of output statements in a slice. We have designed

an algorithm which efficiently generates and decodes these tags at run-time. Using the graph

theoretic basis of this technique we have been able to provide a proof of the minimality of the

average lengths of tags.

The method does not require that the total behavior of a program be represented in its

slices. Nor does it require that the slices of a program be generated in any particular manner

or be implemented in any particular language. It only requires that each slice of a program

faithfully reproduce some portion of that program's original behavior. The major advantage of

the new method is that it radically reduces the overhead associated with reconstruction of the

output [Badger].

9., 2.2.2. Practical slicing and splicing

A major bottle neck in the development of practical slicing/splicing systems has been the

run-time overhead associated with providing the synchronization information for the resequenc-

ing of output. Our efforts to produce a production quality compiler were stymied by this

bottleneck, and work shifted to the theoretical aspects of splicing. As reported above, the new

formalization of splicing has broken through that problem, and work is now proceeding on the

development of the slicing/splicing compiler for large programs.

C0 N

22.3. Automatic Debugging Methods

Under the current grant, techniques have been explored for applying diagnostic reasoning

to program debugging. The difficulty of debugging parallel systems software motivates getting

as much automatic aid as possible. Under the current grant we have focused on design and

implementation of a prototype system which uses Al techniques to examine control flow infor-

mation and the values of a variable as the program runs. We have completed a prototype

implementation which examines several pieces of LISP code and have shown that the tech-

nique will generalize to other interesting classes of bugs. We have also formalized our tech-

nique and have demonstrated its validity on a wider variety of bug cases.

..e, Our technique examines various "aspects" of the program as it executes good cases, and

compares those aspects with the same program running bad cases. As computation progresses

machine learning techniques are used to induce "expectations" of these aspects. An expecta-

tion is simply some predicate that satisfies the observed behavior. We then attempt to match

the expectation derived frum the good cases with the aspect from the anomalous case. If they

fail to match, examining this failure provides some insight into the nature of the bug, particu-

, larly into identifying where the error has occurred. [Mazurek]

An important aspect of this work has been an effort to make the debugging techniques as

language independent as possible. While the learning and diagnostic techniques require AI

inferencing capabilities, and are thus best implemented in an Al language such as LISP, the

program control-flow analysis does not require that the data be a LISP program. To demon-

strate this we have used the multiple language capabilities of the Texas Instruments Explorer

machine. These capabilities permit shared memory communications between UNIX and LISP

processor boards. We have implemented a version of our prototype which runs on this architec-

ture permitting the LISP processor to monitor the function of programs running on the UNIX

board. Using this technique the LISP-based debugger can work on code written in C or other

procedural languages. A demonstration of this system will be presented at this year's Ameri-

can Association of Artificial Intelligence Conference in Seattle.

4

21.4. New architectures

Te major accomplishment of this grant period was the completion of the McMOB sys-

tem. The system has now been tested and debugged and the operating system is completely

functional. The system is now in use by departmental personnel and support of the machine is

being handled by tedepartment.

'ik=

3. References

1. Badger, L Splicing Programns, Scholarly Paper, Department of Computer Science,

University of Maryland, Jan. 1987.

2. Badger L. and Weiser, M. "Minimizing Communication for Synchronizing Parallel

Dataflow Programs," Proceedings of the International Conference on Parallel Process-

ing, (to appear) July 1988.

3. Callahan, J. and WeiserM., "Norman Mailer~ A Multiple Protocol Mail

Reading/Composing Program," IFIP WG 6.5 International Working Conference on

MESSAGE HANDLING SYSTEMS (State of the Art and Future Directions), March

V, 1987

*4. Gal, A. and Miker, J. "Greater C,,operation between Database and User Integrity Con-
straints Provide an Answer," P--oceedings First Anual ConfrneoNaul Languag

r.and Logic Programmig Vancouver. Canada

5. *Giulo M., Kobl M. & Minker, J. "An Overview of the PRISM Project. Comtputer

Architecture News, Volume 15(l), March 1987, 35-42.

% 6. *Giuliano, M.. KhiM., MnrJ., Rajasekar, A., & Sherlekar, D. Experimnts with

Parallel Logic Programmin in PRISM Technical Report Number 1887, Computer Sci-

S ence Department. University of Maryland, July, 1987.

7. Karinthi, R. and WeiserM. "Techniques of Incremental Execution," Proceedings, ACM

* Sigplan Symposium on Interpreters and Interpretive Techniques, SIGPLAN NOTICES 22,

7, June 1967, 38-44.

8. *Kohli, M. Controling the Execution of Logic Programs, Ph.D. T'hesis, Department of

* Computer Science, University of Maryland, 1987.

9. *Kohli, M. and Minker, J. Spec#fying Control for Logic Programs Technical Report

Number 1935, Computer Science Department, University of Maryland, October, 1987.

10. *Lobo, J. and Minkr, J. A Metainterpreter to Semantically Optimize Queries in Deduc-

tive Databases, Technical Report CS-1861, Computer Science Department, University of

Maryland, June, 1987 (Accepted for Publication in the Conference on Expert Database

Systems, April, 1988).

11. Lyle, J. and Weiser, M., "Automatic Program Bug Location by Program Slicing,"
'",

Conference on Computers and Applications, Peking, Peoples Republic of China, July

"'"'. 1987.

% 12. Mazurek, M. Expectation Formation and Its Use in Debugging, Proposed PhD Thesis,

Computer Science Department, University of Maryland, 1987.

13. Mazurek, M. Towards the Automatic Parallelization of Sequential Programs,, Scholarly

0 Paper, Computer Science Department. University of Maryland, 1987.

14. Minker, J. "Perspectives in Deductive Databases," Proceedings of the 6th ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, (Abstract of

Invited Talk) San Diego, Cal., March 1987.

15. *Minker, J. "Perspectives in Deductive Databases," Journal of Logic Programming,

1988.5, 33-60.

16. *Sherlekar, D. Graph Separator-Based Techniques in VLSI and Algorithms, Ph.D. Thesis,

Department of Computer Science, University of Maryland, 1987.

'4. Weiser, M and Badger, L., "Automatic Detection and Use of Process Parallelism," (in

preparation).

18. Weiser, M. "Source Code!," IEEE Computer, November 1987, 66-74.

19. Weiser, M. and Shneiderman, B., "Human Factors of Software Design and Develop-

ment," in Handbook of Human Factors, ed. Gavriel Salvendy, John Wiley & Sons,

1987.

VC

