Unclassified tf@ ﬁ& el

SECUNITY CLASSIEICATION OF THIS PAGE (When Dara Entered) s

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE AEFORE COMPLETING FORM
1 REPCRT NUMBER 2. GOVY ACCESSION NO.[3. RECIPIENT'S CATALOG NUMBER
4 TITLC. rand Subdtitle) $. TYPE OF REPCRT & PERIOD CCVERED
Parallel Programming Paradiams Dissertation-Technical Repont

6. PERFORMING ORG. REPORT NUMBER

[
P
D)
+
?,
)
¥,
D)

>
Y
."l
\
)
\
o

7. AUTHOR(S, 8. ZONTRACT OR GRANT NUMBER(s)

:100014-86-K-0264

Philip Arne Nelson

' AD-A196 931

Cd
a

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. :
University of Washington
Department of Computer Science
Seattle, Washington 98195

OGRAM ELEMENT. PROJECT, TASK
CAG W UNIT NUMBERS

LR

g
P TR R
S -

g 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
n .
ol Office of MNaval Research July 1987
" Information Systems Program T3, NUMBER OF PAGES
Arlington, VA 22217 132
.:: 14. MONITORING AGENCY NAME & ADDRESS(!f different from Contro!ling Oftice; 1S. SECURITY CLASS. (of this report)
l Unclassified
o
Pll Redacted 5S¢, DECLASSIFICATION, DOWNGRADING
) SCHEDULE
b
1 16. DISTRIBUTION STATEMENT (ol this Report)
'J“
(. Distribution of this report is unlimited.
..\'.'5!‘
i
¥
: 5y 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If diiterent from Report) R
DTIC
N
y A

,‘_I‘.
~
::: 18, SUPPLEMENTARY NOTES
‘$aY
~
| Yt]
®
'\-‘
| ::: 19. KEY WORODS (Continue on reverse aide il necessary and identily by block number)
O . .
::. M;Mp machines; parallel algorithms; compute-aggregate-broadcast;
o divide and conquer; pipe-1ining; reduction; contraction problem;
:, matrix multiplication; topological sort
iz l:) J
‘S 20 __ABSTRAZT (Coptin everse side if necessary and Identity by block number) ..
' Paradiams for “the devefopment of sequential algorithms, such as divide-and~ 1
~'t¢ conquer and the areedy method, are well known. Paradigms for the development
2{{ of parallel algorithms, especially algorithms for non-shared memory MIMD |
> Y machines, are not well known. These paradiams are important, not only as tool4
gb for the development of new algorithms, but also because algorithms using the
) same paradigm often have common properties that can be exploited by operations
"y such as contraction.
'»ﬁ This dissertation identifies four primary paradiams used by non-shared memory
WY DD 505", 1473 €01-0n OF 1 NOWY 65 1S OBSOLETE
,-r’ THELETeren SECURITY CLASSIFICATION OF This PAGE When Data fniere .
-)'n
A
"}-"'7) /%) R T L T e e D O N O
DAl % A"‘I‘. PUA MR M N N M :'.‘1'.‘-'.,‘:\'nlt'n'.'t‘."‘!'n'.'uk NSO q‘!‘uhﬁ?d!'o" ci'.’:l'.‘ﬂ‘,'a'!‘d. O 1 S .‘;\.':!":\'.'A..‘:O'

"yt SEZUT Ty _LASS T AT LN OF T T A Lf Bre

. . clinin Fanteren ﬂ"'
L
o

gty MIMD alaorithms. They are compute-agaregate-broadcast, divide-and-conquer
i pipelining, and reduction. Compute-aagregate-broadcast is used, for example,
kq’ in numerical aporoximation alaorithms like the conjucate aradient iterations.
T Three variations of the comoute-aagregate-broadcast paradiom are studied.
§*¢. Divide-and-conquer is shown to be aoplicable to parallel algorithms. The
l\ﬁ relationship between divide-and-conquer alaorithms and the n-cube is

o studied. Systolic technigues are known to be broadly applicable for the

00 development of MIMD algorithms. Systolic algorithms are shown to.be

A members of the more ageneral pipelinina paradiam. Finally, the reduction

) paradiam is briefly studied.

s

O
!
!
i
[}
i
'y

-
ol

-
-

LhEet e
b8
(2]
<
T
)]
1

P

]

)
_:{
-
~Y
[S)

r R R A
S R
PG

G
<
'
]
:
1
I
i
I
e
1
|
i
}
]
4

3 e AN
[

o
P
P
]

;
.
}
)
t
t

223
|

o SECURIT Y CLASSIFICATION OF“THIS PAGFE/When Date Fntered!

o A CANTIToo ¢, TR ¥, RN T ORI AW DSOS BN
OO00N0 OO0 ol a it et e ! ! O I R SO N IR OB UGN LN
ot ".l"'l".l .":‘""l'b..'l?"l' l!|.l..':..'0...'0‘.‘%!‘!02.?:..‘, ..!::‘._IQ"Q,‘"?!‘f"_‘.‘J:‘!'g".'n"‘n"'\'“’;'A‘!h‘"n‘..lu‘?‘-‘!'n‘!’n‘.'t"'l‘.'n°.,‘c. R % O CECO S el RO RN

i

2 PP

=

-

-

-
-

.NE;::- P o.a: ".-
- o

vﬂ’

."1‘

'n.-‘ l; ":N ' f!’ l,/
sﬂ' M v"':' A . "‘lﬁ.",‘i,‘l}

._; ,,...

=z

"

-
-

Vol

el ¢
(_ﬁ?-'.- o

Yy

MO
d
]’tl’.’l‘l'l'.'l‘. W

Parallel Programming Paradigms

Philip Arne Nelson
Department of Computer Science, FR-35
University of Washington
Seattle, Washington 98195

TR 87-07-02
July 1987

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor
of Philosophy, University of Washington.

This research was supported in part by National Science Foundation grant DCR-8416878
and by the Office of Naval Research Contracts No. N00014-86-K-0264 and No. N00014-85-
K-0328.

8¢ 7 ¢35 149

"

' O ASOOOR0 O OO () G0N
L8080 00 e s, ahtcteablat el RO R NN "’r'i'ml’:!"&"-"’t‘l"i’!?!'af“a’_.l DOOGEAOAN i':!:‘!':‘?l’?‘l‘t‘:'!‘l"‘."

R

wt, ' .

s / ‘
'

Y

o
4 Parallel Programming Paradigms

Philip Arne Nelson
University of Washington
Abstract

Paradigms for the development of sequendal algorithms, such as divide-and-
conquer and the greedy method, are well known. Paradigms for the development of
parallel algorithms, especially algorithms for non-shared memory MIMD machines, are
not well known. These paradigms are important, not only .as tools for the development
of new algorithms, but also because algorithms using the same paradigm often have
common properties that can be exploited by operations such as contraction.

This dissertation identifies four primary paradigms used by non-shared memory
MIMD algorithms. They are compute-aggregate-broadcast, divide-and-conquer, pipe-
lining, and reduction. Compute-aggregate-broadcast is used, for example, in numerical
approximation algorithms like the conjugate gradient iterations. Three variations of the
compute-aggregate-broadcast paradigm are studied. Divide-and-conquer is shown to be
applicable to parallel algorithms. The relationship between divide-and-conquer algo-
rithms and the n-cube is studied. Systolic techniques are known to be broadly applicable
for the development of MIMD algorithms. Systolic algorithms are shown to be
members of the more general pipelining paradigm. Finally, the reduction paradigm is
briefly studied.

The contraction problem, the problem arising when an algorithm requires more
processors than are available on the execution machine, is studied. Special attention is
given to common solutions to the contraction problem in each paradigm.An optimal
contraction is given for algorithms using the tree interconnection smctmw

contractions, a method for comparing them is given. (/ ke)

/_,

e This dissertation also presents two new parallel algorithms. The first algorithm is a }
i::j divide-and-conquer matrix multiplication algorithm with time complexity of O(n) using ;
oy O(n? processors and O(log n) using O(n*) processors. The second algorithm is a compute-

vy aggregate-broadcast topological sort with time complexity of O(n log n) using O(? pro-

?7 cessors and O(log? n) using O(n®) processors.

o

; ':n)‘:

‘N

.t

v

®

‘l'

1..

::.l ¥

:.v

L&:

°

it L) ") <73 SN | QAT (D) O WML X UWOOINY) OO0 BIOCOOG DAOOOSHNO0ESROADN)
B T R T . ¢ e e R R R R K R R R R R e R RN

0 A .

.." T TS R R W T W W W W UU I WY R U W R T N WP W N WY A W TP R W T S W U U VW T W R veur

B
Mt
L
N
AN
LA
:},\
T, Table of Contents
KO
;
Y Page
b
Y CHAPTER 1: Paralle] PIOGTAIMIMINGccovcvvecoeeeeerreseeresersessesessessecesessrescrre 1
¥
s 1.1. Parallel Machines and the Type Architecturecccooeccvevrerenimneercreenenennn. 2
j;lﬁ 1.2. Programming Paradigmsccccoeverrnrirnmirersinnsenceesssesesssessnsssssssssssnssesssesessens 4
L 1.3, CONMTACUONcocvevueeereeeisesssenseeieissrssssssessensesssssssssesssnssssssessssesetssssassnssnsanns 6
t y 1.4. Parallel AIZOTtRIMSccccoveieneecranriierereenesesesseseseserassesssesseessnsasaseacneseans 13
-h: CHAPTER 2: The Compute-Aggregate-Broadcast Paradigmcccoooceevnevencnennn. 17
Vg
‘ E": 2.1. CAB paradigm and Jacobi Iterationsuverercescennessersecssessnssnessccnans 17
W 2.2. NUMETICAL CABoooeeeeeeettieececeereeccssrassasnssessanassssessssssssassassnsasenssssasassorans 20
® 2210 SOR ..ttt sttt e st s et e e s ensasa R aee 20
ke 222, INMEETAUON ..ottt b s ssss s s s s st sneas 22
o2 2.3. Non-numerical CABccoceiviiiriii et essiessscass s ss s sesesesssesesesssasesane 23
o 2.3.1. TOPOLOGICAL SOTE +...vvvernrireeemmecsveeeseeeememssssmeessssssemssesesasesssssssssemsesssssesnsens 24
s 2.3.2. HItECh CRESS ...t scnsecscss s s s snsssssssnsssssstesans 30
¢ 2.3.3. Production Based EXPErt SYSIEMScueuucrumemesmsemseenssssssnessessssnsssaes 32
A 2.4. A Method for Improving Speedcccoevevrinniriiiereirenineeneseeteesesessenenna 34
\ 2.5. Contraction of CAB AIOMthInSccocceeveeevniiiiriececineesstseee s 35
}s:. 2.5.1. Tree CONMACHONcceeveiiereerirtiieresiesessaneaserssesssssasseesssncssssansnentessenns 35
:;,o' 2.5.2. Multi-phase CONraCtioncoceveeeerertsrenneneniressesneseseessesssenesensssssesne 40
CHAPTER 3: The Divide-and-Conquer Paradigmcccoovvvirevenenvennnencencrecnnens 42
¥ \-f
-\‘; 3.1. BatCher’s BItONIC SOTTecveveueeereeeieeeeeeeeteeeeeeeseeseesseessesessesesessesessessseseens 43
s 3.2. MatTiX MUIHPHCAON ..voovvervveeeeesssrerenseessssssennssssssssssssessssssesmessssssssssenesssssens 44
o 3.3. The Fast Fourier Transformcccooeeeieereeienmeivsrnrrsseseresesesesesesssssesesssesans 49
L 3.4. Divide-and-conquer and the N-CUDE ..., 52
X i 3.5, CONNECIEA OMNES ...noneieeeeeeteie ettt tettee it eeereesssteeeeeseststeeaseesenntesessanseeessrraneen 55
<o 3.6. Contraction of Divide-and-Conquer AlgOTthmSccocuiveunineecnenisnnnne. 56
e
\ ;-;-i CHAPTER 4: The Pipelining and Systolic Paradigmsccccoecevivnniinncncinni 61
o
N 4.1. Pipeline and Systolic Definitionscocviiiiiiiiiiniiiicccen st 61
-s.;::. 4.2 FIOW TESE ..oeeiiieeeceeerie e et e sreesbs st aeecssbe s e st saae bt e seta e s ae e beasseaesenesasesbnees 62
il 4.3, Systolic AIZOMIRMScccevievniiiiiiei et 63
i 4.3.1. Band Matrix MUIPLYooovvvveereirmsesserenssessseeesesessesssssnssenessessnsssssenns 63
o 4.3.2. WAP Matrix MUltiplycccocerniivcnimimmnnininnieeneese e sscsssesssnns 65
T 4.3.3. Dynamic Programmingc.coceevmvinenniniiennniecnesiesenesssssssssenss 66
‘ol
oy
o
-
. -
R
i NS

o e T o P o WML WA W AN A R o ¥ LT T O R0 Al A MR R AN x,
L ; AT e n ‘ ST LN ! gy N . ey
:'.m. H o LU G IR I I A B S A LR L N) , A A A c.A‘..t"oiu".’.A'u ARG Jc!o?o M

A A
P :" P4

[}
)
[}
i
Y
o) 4.3.4. Lower Triangular Linear SyStemm SOIVEToouecerereeerecrsereecssnnecre 67
{ 4.4. Other AIGOTIRAMSccccceceminerennnerscnsonsesmssessmrsssesessssssssssnstsstnseeniisseissssiens 68
by 4.4.1. VECIOr SUM AIZOTIRIMoucoouenriusersseesseeesssssssscsseesssssssssssssssssssssisssnnes 68
4.4.2. Hough TransfOormc.ccccovveriuncernensissesessesnnnssssssssesesassssnnssiinssses o 69
L 4.43. FUNNELEd PIDENES ororvorsessos s sessssesrsssssessessssossers o ssossossns 7
o 4.5. Contraction of Pipeling AIGOMMAINSccosrsrmsmssssessssssssssssssssssssssirsnnsinssss 73
t
'.f'; CHAPTER 5: Other Paradigmscuueecsussemssssssssssssssssssssssmsnsssssusssssassssssssscssess 7
Ak
e 5.1 REGUCHON .ovvereeermaasesessmsmemsmsessessesssssssesssssssss sttt 77
:::.: 5.2. Arbitrary Communication AIZOTItISeceueeuerrsessessensecssecsrinsensssssssesssesanes 79
g CHAPTER 6: Summary and Further Researchcccooveinniininnconiiincisinienee, 81
N ‘;;C
D "a
§ "P-: REFERENGCES: ...eotiortieieeeieeesretstesssesssessssessssesessssssssssnsssstssssssssassssnsasassssssssstsssssssees 85
°
oo APPENDIX A: Implementations of Selected AIGOTtRMSooossssssesssesessssessssssss 94
?-f-; A.1. The Poker Programming EnVironmentcceceeeususesiinssssinsssssesssssssuensnns 94
k- A.2. JACCDE ILETAONS ...cceccvivrecririerresensssesaessissessnsssessessesonssssssssssassnasssosssssssessseaese 100
r A.3. BAICRETI™S SOTT w..ovoverieieecerinsensscsmssesssesssssssssesssassesssstsasamssssssnssssassasssstsensasasse 106
4 A4, Matfix MUIIPLY oot ietniccncseniainatessmassses s ssssssasasssssssssasissasisssessaes 109
it A.S. WAP MALTIX MUILPLY .oovvveromeeeemeeemmmmsamssssssmmsssssecseossssssssmsssssssssssssssssssssssese 111
R * A.6. CONITACHONS ..evevirrirrerreerrireessersersessesseneessessssssesstessassasanestsssessassnssnssnassasssncess 116
ket A.6.1. Folded Tree ALGOTItNINcomummssesseeessersssssnssssssssssssssssssssssssssssessesss 116
N A.6.2. Leiserson Layout Tree AIZOMIAMo.cviicrrierismanssesissisismnsinsissnassnnses 120
A.6.3. Coalesced Mesh AIZOTIthIMcccocvviiiiniininien it 124
e A.6.8. FOIAEd MESh AIZOFAIM +..vrrreerreeevsssessrssssssssssssseesesseessessssssssssenss 130
‘.u'&;
°
2
%
¥,
) (]
-
oty
0o
p i
o
s
°
e
K |

. . . - - B . . g Y] - C 0}
AW o O TN WY, Wt R R s L e A AN G R R X AT AN
RUCERO AN ..t'.fn!.’.l‘f?n'..t':fn'.ft'!.'n".?c'.h!.f":!s'-,n:!,?t':',l, RO ORE :'.fa'.ft'q.u‘!%"h‘!&&.‘t‘fﬁ':%‘.M'.!:'. o ‘!91’!‘1*'“.":'e‘l'r'a'e‘n's‘t'ﬁn"'a‘,‘u.'

e
g
hg
O
S
2
! .
©, List of Figures
i [¥al]
e Number
: .\-g. Page
L) 1L ALSNOGE TIEE ..oooococvuvnsrnnsnsssscsssessssisnssssssss s e senes 8
Ao 1-2. A 5 Processor CONMACHONcovmuueererernecssessssscsssssessscssmssssssennssnnns 9
:: 3 1-3. A 4 Processor CORITACHONueeuecucvnercuensesssssssssssssensessessssssesonsessees 9
sy 1-4. An 8 Processor Contraction of a 31 Node Treeccoeuveeeunnvecinniecnences 10
A 1-5. An Algorithm with Sequential Dependencieso.cocuceeruruereeceesernenees 11
1-6. Maximum AIZOTIIMovveeeeeeeeeoeeenesseeesesessesesseemsesnseseeeeessssesssseeseen 15
o 2-1. Electric Field Problemccccvniinrninrinreneeneeienesscnsesssnnnesssrcsnessene 18
s 2-2. 16 PIOCESS JACODIcuvvereecireeciesrnnenranisesnessensssssssssssssssssssssssssssensennee 19
ot 2-3. Red/BIAack SORcoceerreerererenenniseenaesesesesssesasensssesessssssesssssessnsasnes 21
i 2-4. UpdateLevel Algorithm, NON-T0Ot PROCESSccccrerurrsmssmsmmmnnsssessennens 25
-'- - 2-5. UpdateLevel Algorithm, ROOt PIOCESScovveremnucerancrseruescesaresnsnnes 26
s 2-6. The Mesh of Trees with Roots on the Diagonalccccoccceeetvercccnrnccnnnne 27
o 2-7. Topological SOrt AIZOMthIMc.cccoeevieersrireensaeresesesesnssesessseraesesssansesssens 29
e 2-8. CAB in HIteCh CRESSvcuumiiimriiincnenecmsnesssrssssssssssessssssmessecsssssssnees 31
o 2-9. DADO Processor SIUCIUIEccouemmiencmimscssesssssrsesssssessssssnssssssssssssens 33
‘N 2-10. Tree CONMACONSccoeceereireerermererieeseaserssesesessessonesessssssssssssenensesasssseses 36
Z_ = 2-11. Leiserson Tree CONSIUCHON ...cccvcvierierernnnencreressesiosssescnssessensacsessensansens 36
5 2-12. Berman and Snyder Tree CONtractioncocevesecsssnencseensnsssnencennns 37
s 3-1. Bitonic Sort Data EXChanEescceceereeereneerniencecseecsneneensnsmsesensnnennans 43
3 + 3-2. 2x2 Product and Communication StruCtUrecevevveininircriviesineennans 45
= 3-3. 4X4 CONNECHONS ococreericnmerecmesnsssemsecerasassssnesssssssssssssssesssssasssssesssssessess 46
3-4. 8x8 Connections for O (log n) Matrix Productc..ccevevmvevvvevnerennnne, 47
o 3-5. Sequential FFT AlgOrithm ..o e 50
-y 3-6. Parallel FFT data MOVEMENEc.cocovurrureenruneaseeesessesessessessnssssssnsassnns 51
;3} 3-7. Single Process, Parallel FFT AIZOMtNMovoueverreeoneeeeeeeeesesesseeneeseennne 53
Wy 3-8. DAC Integrate CONNECHONScc.ccorreiureerreeernireeeeseanresrereessenseseneseesenssnns 54
o 3-9. Connected Ones COMMUNICALONcoouevvereererereesessesesseneesessnesenees 56
S 3-10. An Order 4 N-CUDEcccouviiimiriiiiiciiiiiieec st ceee e 57
Lo 3-11. Batcher’s Bitonic Merge SOccccovivieverineiieiirererieee s crnseenesseesaseneanas 59
b 4-1. Band Matrix MUItPLYoveioeoiveniieeeceeeeeeeeeseesesevess s seses e sessesee e essens 64
N 4-2. Data Staging for the WAP Matrix Multiplyccoocoovveeouermeeereenrenrenens 65
et 4-3. Dynamic Programming Process STUCIUTEccccoureeeurmemrennesnnsnsesens 66
@ 4-4. Systolic Linear SyStem SOIVELovvvrmverirvnsreseresnnresesssessiaensssessssensees 68
s 4-5. Vector SUm PIPEHNEooviuceemrnieecerirreirecreinn et st ssesenes 69
e 4-6. Hough Transform on 7 xn PICIUIEccccceueevrirrrereeeeeeneeeesecseseeseneens 69
[4-7. Band Numbers for 8 = 67.5°%c.cccoivienriciniinnrenienine e eee e ens 71
A 4-8. A Contraction of 16 Processes to 4 Processorsccccveveveeeieenvesnnnns 74
o 4-9. Another Contraction of 16 Processes to 4 Processorscccccecevnveennee 75
R A-1. A 15N0de T1Ee in POKETcocoumimimnmmnensrnnnnscscssssssssssnsssssessssse s 95
o
:'. iv
§
[
LY «
:e : oy oy W Tw”™ 8" 4P Pi (A . LN y 3 o - 1 { ; X', - N N W
R QA sk X ‘v‘-’c’t e ! ‘) . N 09.\90."2: A "'.5':&‘;,!"ﬁ!".:f‘!:’,@:h’.u‘-.-‘.h‘!) :‘:‘::!‘u‘!‘t:! 3'& *\ W

o
.l-:.f
b
L A-2. Code Names View for MAXIMUMccummeesesmmmemosssnssserresssessrenenen 96
e A-3. ALLAf PIOCESScoouuccrmmmnenrssnnsssanensssessssssanessasseessssessesssnnsssenesnesnees 97
2y A-4. An INEINAL PIOCESSccvuveeeceecrreeeeemeeeerenteesecssssesseesseeeeeesssesssssessss s 97
‘}" % A-5. ThE ROOL PIOCESScvvecenrierrrecsssssesissssnesssssssts s seessssssssemsessscanssenns 98
.{.' >, A-6. Port Names View for MaxXimumooooeeoveeeveemeeeereceenreesessssseresseen, 99
+Uaety A-7. Jacobi Phase 1 SWitch SEItNGScc.covvemmerreerrernesesessesesseneeeseessessennen. 100
) A-8. Jacobi Phase 2 SWitch SEItNgSccccuoruremersessssssnssmmssssssissssinmnnsnsecrenes 101
el A-9. Jacobi Phase 1 Code NameSuenriensssrssssssssssssmssassssesenessnsassanens 101
o A-10. Jacobi Phase 2 Code NAMESovccccsvesssmssmmmmsssmmmssssssssssssssessessenseseseees 102
L A-11. Jacobi Phase 1 Port Namesccocerumrveneecnsessersenssssissensscmnssssssnsannene 102
L A-12. Jacobi Phase 2 POTt NAMESooocemuveersersesssssssssssssssserssssssoseemmeenes 102
(A-13. 6-Cube INtEICONNECHONccoceeeirerrrrrerereeesensssnessenarsssssesensssessennsnsaessnns 107
o A-14. Batcher’s Sort Port Name cocvoieierenneennnrasnsnnneesssssesssssnssssssensnnenens 108
o A-15. DAC Matrix Multiply PO= "aMmIeScoeeeveeenecssnieensscnsnsessenenseesssesannne 109
i A-16. WAP Matrix Multiply Inte: oNNECHONccoveereseveresesssnnencennsnnsasessessanens 112
;f‘(:; A-17. WAP Matrix Multiply Code NAMEScccoersrnsrersersessusesesnsassssssnasssens 112
L~ A-18. WAP Matrix Multiply Port Namesccccecererareerencesereennssasessressssesssenee 113
b A-19. Tree Folding INETCONNECHON ..oocecevvovessesseserrssssssssssessssssssssssseessssssseeen 117
*:J:‘ A-20. Tree Folding Code NAMESc.ccccmevrreeneneeenensssesssssensssnsessesessssssnnes 117
" A-21. Tree Folding POrt Namesc.ccoviviveenicrerensseennnssnensssessssssesssssssssessans 118
ot A-22. Leiserson Layout INterCONNECHONccovvuuvvumrermnencesemnmsnnnenssesnssssensnens 120
Ry A-23. Leiserson Layout Code Namesccccoerererereieesernseserssnssasnnssasssssesssnnes 120
£ A-24. Leiserson Layout POrt NAMESc.cccvveevererireessssssessessessesssssssssssssssanns 121
e;" A-25. Coalesced Mesh INEICONNECHONcccveerenreerrtersaeresssnsanssnsssssesesnssnnns 124
,’;;: A-26. Coalesced Mesh COAE NAMESurrvveermmreersssceeresnmssessssssssssssnsssssssneneens 125
0 A-27. Coalesced Mesh Port Namesccocccervevcvecietsteennsssssessssssesiesssssensesens 125
s
®)
" 5_‘1}
R
A
o

VO M L A 2 y) Nt

V' { 0
? he TN .ﬂﬁnﬁ' . .' (A 0 .u’.'n I. S '6‘" LA 1N ; Y, ‘ ' " ".O‘n cl' .:'rﬁ ‘.".6'0.! \.l*“'o‘g.‘h') h"’"‘

b te B

| WM Y

T T

List of Tables

Number

2-1. Timings of the Maximum Algorithm
4-1. Contraction Timings for the WAP Matrix Multiply Algorithm

vi

.......................................

S

2

)

[X

{

™)

e Acknowledgements

b

k<3

%

\ \\

et I wish to thank Larry Snyder for his guidance, understanding, helpfulness,
E :'. encouragement, and the many hours of discussion. [also thank Larry Ruzzo for many
. §.\j discussions and his careful reading of this dissertation, Jean-Loup Baer for his com-

-A.

SR

ments on this dissertation, the many people involved in the BLUE CHIP project, A. Nico
Habermann for noticing that Hitech Chess exhibits the CAB paradigm, Carl Ebeling for
helping me understand Hitech Chess and Robert Cypher for explaining his Hough

: f*' Transform algorithm to me.

2?; Parts of this dissertation have appeared before in The Characteristics of Parallel
::ED' Algorithms, MIT Press [66] and in Proceedings of the 1986 International Conference on
o Parallel Processing [65). This research was supported in part by National Science

:_ Foundation grant DCR-8416878 and by the Office of Navel Research Contracts No.

N00014-86-K-0264 and No. N00014-85-K-0328.

e
LDl W N

P
:'.l J- ‘l'Al
e

£B0)
N o D) ‘s

e

PRSI AP

s - -
» s (]

=P 1o

vii

-

-
-

-

't:f-

A A T A A AL ALt o 0 P U A NS AN e = e SO b OO A AR L A LA AU AT RERLELE!
Q! Al ! O E .\.‘1',‘!.‘ ” (4 :, "?s tro" « gﬁt‘?hfn?l., *‘ A [\ ‘.'ls -.‘Ou .l,‘ ofl'n. .é‘ 0!' . 0!‘.09..'! D,l‘ﬁ"o l‘LG‘a ORI WO Wl NG R T

5 \{éé.ﬂ’

. -

.........

A A A A A Ry &

Y
, CHAPTER 1
v
- Parallel Programming
v \
4 |
"‘ In recent years there has been a great increase in both the interest and availability ;
t of parallel computation. Advances in hardware have made it possible to build mult- ;
3 processor computing assemblages. As parallel computers become more widespread in
:: research and commercial communities, more programmers will be writing parallel pro- :
¢ ,
- Many programmers do not have experience in the design of parallel algorithms.
Their experience in sequential computation, while valuable, may not provide the tools
_'.‘- needed for efficient algorithm design and implementation for a parallel environment. X
_ This raises the obvious question: What are the techniques and tools for developing ’
".‘: efficient parallel algorithms?)
:: In serial computation there are several recognized programming paradigms, such as]
S the divide-and-conquer, the greedy and the dynamic programming techniques [3].)
: These computational methods are not algorithms per se, but rather they are problem
f: solving strategies that are frequently used in structuring efficient algorithms. Thus,
2 paradigms are the high level methodologies we recognize as common to many of our .
: effective algorithms.
:: : In parallel computation we expect to find similar high level methodologies com-
N mon to many of the effective parallel algorithms. These parallel programming para-
! digms, if identified early enough, may help the programmer understand parallel compu- '
_3: tation and the unfamiliar process of developing parallel algorithms.
E This process of parallel programming is further complicated by the diversity in the
& field of parallel computation. Parallel programming could be writing a program in a
data flow language like VAL [61], writing a program for the Cosmic Cube in Cosmic d
0
b ‘
R R R R D R R B B R

e RE e AR NEL AR AR VL ad TAl vak taf ok Aol ¢ b Goh 2.0 8 $. 4R s 8l A'E 2 g A-E i o'k gog o

Ladh A .

2
Cube C (78], writing a program in FORTRAN that is compiled with a parallelizing
compiler [6, 51], designing an algorithm for a PRAM [32], or one of many other possi-
biliies. Each of these makes assumptions about how parallelism should be expressed
and about the underlying model of parallel computation.

While we expect the parallel programming paradigms to give information about
commonalities found in parallel algorithms, we do not expect a single paradigm to be
applicable to all models of parallel computation. Thus, for example, the "to do list" para-
digm -- keep a queue data structure of task descriptors and have server processes at the
completion of a task select 2 new task from the head of the list -- requires all processors
to fetch from the same memory cell (list head) and thus seems to favor a shared memory

implementation [37].

In this dissertation, we will limit ourselves to a single model of computation and
consider parallel programming paradigms that are useful for that model. In the
remainder of Chapter 1, we choose a model of parallel computation and look more into
the advantages of studying programming paradigms. In Chapters 2 through 5, we swdy
several paradigms by examining algorithms exhibiting them. In Chapter 6 we conclude

with a look at future work available in the area of parallel programming paradigms.

1.1. Parallel Machines and the Type Architecture

There is a plethora of parallel computation models and architectures. Unlike the
models of sequential computation, none of the parallel models has emerged as the quin-
tessential model. In the theory community, the paracomputer [76] or PRAM has
become preferred over other models such as circuits {17], aggregates [17], and hardware
modification machines [27]. There are even variations in the paracomputer type modes.
such as Goldschlager’s SIMDAG (36], Dekel and Sahni’s shared memory machine
(SMM) [24] and the multiple variations of the PRAM (29, 32].

Actual hardware designs are just as varied, ranging from the small parallelism
shared memory designs such as the Sequent [30] and Lawrence Livermore National

Laboratory’s S-1 [93] to the non-shared memory message passing machines such as the

..........

.P'.-'-_,.‘-,(.:-,.'-,.‘- -‘."v:‘-f"‘ e A A e N AT N AL N L AR LA T A A T e Wy) " A
N e e A A e A AR R e Rt

}\-‘->-n-pn!--
ARG RN NS e

3
CHiP architecture [80], the cube connected cycles [74], the Ultracomputer [76], and the
Cosmic Cube (78]. There are also the so-called dance hall architectures [50] where
memory is shared by way of a combining network. Examples of the dance hall architec-
ture include the NYU Ultracomputer (37], the PASM Computer [43], the Cedar Com-
puter [33], the Butterfly [19], and the RP3 [70].

With all the architectural diversity, the programmer is required to know exact
details about a machine before designing an algorithm. An alternative to this diversity is
found in Snyder’s Type Architecture concept [82]. A type architecture is an idealized
machine that describes salient features and ignores unimportant ones. This is not a rigid
specification to which all architectures must conform. In fact, it is not expected that one
type architecture will be sufficient for parallel computation.

In reviewing the previous architectures we see that two main styles of architectures
arise, shared memory and non-shared memory. The paracomputer is a reasonable type
architecture for the shared memory machines. The paracomputer {76] is a machine with
N identcal processors which share a common memory. All processors can access the
memory simultaneously in a single time unit. The most general model allows both

simultaneous reads and simultaneous writes to a single memory cell.

While the paracomputer is a reasonable type architecture for shared memory
machines, none of the non-shared memory machines is abstract enough to be a good
type architecture. For this reason, we accept Snyder’s Candidate Type Architecture
(CTA) [82] as a reasonable type architecture for non-shared meinory machines. The
CTA is defined as:

"A finite set of sequential computers connected in a fixed, bounded degree graph

with a global controller.”

This CTA speaks to realizable parallel architectures in several areas. A real
machine will have a finite set of processors. This can be viewed as a resource similar to
memory in a sequential machine. These processors are sequential computers that are

operating asynchronously. This does not exclude limited parallelism at the processor

PPN L) WSRO L igsg! “u"/""/;wH R ol
el A AL A Sl e 1 4 s ['

{)

- .
('

W)

"-" .

5 s
PNOCIERNY RALES
LT A T A)

2 A AR
'1_'-_1'

-'o'~<*¢'&‘
P, o
ﬁxh&w¢ 7

Tyey 'r'r ()
i f_‘/.': ‘.t’.'- R

]
A

--.,,---
FA A4

OO A
R AR I ATy

‘4o

Lo

o
e

G

- i‘ ~-
L) A -
A ®
A

h ‘ <
DX

¥
1
R

"~
o)
g

e

._'O!C, A

.......

4
like pipeliging or /O co-processors. The communication is through a fixed, bounded
degree graph, where messages are passed between processors through some communica-
tion channel instead of through common memory. And, finally, there is some kind of a
global controller of the processors.

The previously mentioned non-shared memory machines, with the exception of the
Cosmic Cube, fit into this type Architecture. The Cosmic Cube fails only in that it is not
a bounded degree graph, with O (log n) connections per node. Even with this deviation,
the Cosmic Cube or more generally, the n-cube is still realizable in current technology
[78]. As machine sizes grow, this may not be the case.

We now have two type architectures from which to choose. The paracomputer has
several drawbacks, of which the most serious is the unit cost assumption [82]. Also,
while it is easy to "simulate” a CTA on a paracomputer, it is not easy to "simulate" a
paracomputer on a CTA. The methods used to simulate a paracomputer on a CTA are
discussed in Chapter 5. All of these methods require at least O (log n) processing for
each "shared memory” reference. Some methods also require synchronous processors

and require all processors to cooperate to access the shared memory.

Because algorithms for a CTA are directly applicable to the paracomputer and it is
difficult to fit paracomputer algorithms on a CTA, we choose the CTA as our model of
parallel computation. Qur algorithms and discussion assume a machine conforming to
the CTA. Because the CTA does not enforce any particular interconnection structure,
we do not assume any particular interconnection structure for algorithms, but let the
natural communication needs of the algorithm define the interconnection structure. We
deviate in one place from the CTA in that we will consider graphs with log n degree,

specifically the n-cube interconnection structure.

1.2. Programming Paradigms
Having chosen the CTA as our model of parallel computation, we now return to
program..ling paradigms. Remember that programming paradigms are not algorithms

per se, but are problem solving strategies frequently used in structuring efficient

oy

,,,,,,,,

e 5

* algorithms. The benefit in identifying paradigms, besides the pleasant and perhaps
i :;_ scientifically important insight that apparently dissimilar problems can be solved by
.. . similar means, is the fact that the set of recognized programming paradigms becomes
I‘ . the programmers "tool kit." It is a set of known-to-be-useful strategies that he can use to
.\'-; structure the development of new or improved algorithms. Thus, the programmer not
:ﬂ' only has a place to begin when developing a new algorithm, but more importantly,
-' experience and knowledge from earlier problem solutions can be directly transferred to a
o problem by means of the paradigm. As we have noticed, both benefits are important in
E the parallel computation arena, since to date programmers have generally had little
‘ :.'::_ direct experience with parallelism. But for parallel computation in general, and the
\ .-q CTA model specifically, there is an even more compelling reason to concentrate on pro-
E: gramming paradigms.

E\ Programming paradigms generally encapsulate information about useful patterns of
(data reference, which in the case of paralle]l computation simply says that paradigms
-E;‘ generally encapsulate information about useful communication patterns. Since provid-
és ing efficient and effective communication is the problem in parallel computer arc.itec-
' ture, the paradigms serve as a specification of which communication patterns are most
:‘_E useful and hence should be supported well.

' E" There is a cautionary remark to be made on precision: it is difficult to define para-
‘:f% digms precisely. We know of no adequate and convenient formulation that can be used.
.-u_, Since paradigms are not algorithms, one does not present them in a programming
ii.. language, nor are there algorithmic schemata that could be presented in some
i _4 metalanguage. They can be illustrated by example (which we will do), but this is an
d inadequate definitional means since it is rarely clear which properties are special and
% 3 which are general. Still, paradigms are a phenomenon that programmers understand,
E: and in sequential computation, we have learned them by some means. Our approach
; s will be to describe them verbally and augment the description with examples.

-:E Our discussion will center around three paradigms. Chapter 2 introduces the
%i.;:. compute-aggregate-broadcast paradigm, focusing on the various ways in which this
.

\:::':“ et 00

; 0N OGO000] W v Ve (¥ T]
Do))) MO 3 1 UnaV gV T 1 1Y \ 3 A0 RO 3 g
pelXX .'-.‘!':‘!ro!.::\.eﬁ?a.‘!n S O N AN o O R DR MR R R R Y S K DR TR TSI A

s
i
!
!
]
i
i
i
L
!
s
|
:
[
p

L s SN

2 o

-

o 3

6
paradigm is exhibited. Chapter 3 focuses on how the divide-and-conquer paradigm is

- -a

2l

:E used for CTA model. Chapter 4 considers the systolic and pipelining paradigms. In
js Chapter 5 we briefly look at a fourth paradigm, reduction, and consider the methods for
:.‘l "sharing memory" on a CTA architecture.

E o~ 1.3. Contraction

~ There is yet another benefit from studying paradigms. Because the paradigms iden-
(- tify common features of algorithms, it may be possible that these common features can
' ﬁ be exploited by general techniques or alc hm transformations, such as techniques for
1:.‘ increasing performance. These technique. .nat exploit common features then are appli-
cable to every algorithm of the paradigm using that common feature. This is the case for
[;.Z'- the contraction of parallel algorithms.
; '"3 Most parallel algorithms are designed assuming that processors are an unlimited
N A resource. This assumption manifests itself by the algorithm utilizing a problem size
‘5:.' dependent number of processors. The algorithm contraction problem arises when an
Q: Y algorithm that is designed for use on n processors must be implemented on a physical
': parallel computer with only p <n processors. In order to make the algorithm conform to
the real machine, several of the algorithm’s "processors”, now considered processes, are
:-: grouped together and executed on a single physical processor. This activity is called
N'.; contraction(11].
K
o How contraction is performed can have a significant effect on performance. Con-
_E' sider two examples based on an nxn grid of processes, i.e. the processes communicate
i with their four nearest neighbors:

(1) There is much process-to-process communication and approximately equal com-

/}'.’5 putation required of each process.
,: (2) There is little process-to-process communication and the amount of computation
;[per process is proportional to its j index, e.g. process i,/ iterates j times.

!‘j Suppose we have only one fourth the required number of processors and now compare
;: two ways of forming contractions of four processes per processor{11]: Coalescing
o

=L/

[}
]

Par ' P RN 4 Ly AR 0 -
" () ..Q'. By OO () ARSI WA WA Y RIS A D SOOODDOOOOENEOANIO Of) ofid
A R e e AR LK O T DA AT [s'f'..\f‘uf‘.:'.‘.0!‘:!5‘:'!‘::'.‘:!3':»,":'3‘:\?':" 1t

At CoF SoW. %

......

AR JilAS J

N

I

[2t

{ 7

vy .

EE ‘ groups of adjacent 2x2 subarrays; folding groups as if the grid is folded in half and then

f:.;: in half again, ie. i,/ (ls:',js-;-) is associated with i,n—j+1, n=i+l,j and !
y ‘
D>

' n=i+l,n—=j+l1. Clearly, algorithm (1) should be contracted by coalescing because the

&

’: process-to-process communication for the processes sharing the same processor will

)

become intraprocessor communications (i.e. fast memory references) rather than slow

interprocessor communication; folding would not be as attractive because no communi-

cation is saved by locality. Alternatively, algorithm (2) should be contracted by folding {

e ”,".

ALV

because the work is balanced since each processor will perform a matching amount of

T long and short computations; coalescing would not be as attractive because the proces-

' sors receiving processes with large indexes will become a bottleneck.

‘ There are two methods available for performing contraction. Using the results of _

Q Berman and her colleagues[12], an algorithm can be automatically contracted, and this :

{ seems to be the best approach when nothing is known about the algorithm. At the other '

EE end of the spectrum, the programmer has "complete” knowledge about the algorithm and

g' can perform the contraction manually [65] by deciding which logical processes are to be

ﬂ mapped to the physical processors. f

::‘i: How should the programmer be guided when performing his own contraction? We

w consider this an important question because contraction is a nontrivial problem for paral-

R lel programmers [82]. This nontrivial nature makes the idea of a general contraction :
: technique for a paradigm more attractive. In the remaining part of this section we make
2 a first step toward answering this question by developing tools for reasoning about the)

i ;;' merits of different contractions.

; Consider an instance of the algorithm contraction problem. We are given an algo-

| E rithm A that requires n processes. We assume that A conforms to the CTA model. As
-' we saw in the previous examples of contraction, variable amounts of computation for

. each process can effect how contraction is performed. To remove this factor and due to

o the fact that many of the algorithms we will study have balanced computation require-

:: ments, we assume that the processes of A require equal amounts of computation.

w

o ol U A A | MWW W JOMM R I) A A P LA AN MO o NN
IO IS ISR LIRS S S h’l”’&'ﬁ".‘_m .1".4:'\'0‘,’:'.\‘:. M 3' BRSSO RN

P

2l
D 33

v
,‘

]
i S e

-}_...

LS

.

A

-
- -

-

fﬁ(l®

hh

-
-

2

&

Sy - ‘
Y

T o

8

Assume that the physical parallel computer has p processors. We would like the

physical processors to have balanced utilization. Since the processes of A have bal-

anced computation requirements, this is done by mapping the same number of processes

to each physical processor. The number of processes assigned to two arbitrary physical

processors should differ by at most an additive constant ¢. For most contractions, we
would like to have ¢ =1.

The contraction induces a communication graph for the p physical processors.
This new graph is defined by processes needing to communicate with other processes
not mapped to the same physical processor. We assume that if a process in processor i
needs to communicate with a process in processor j, there is a physical edge connecting
the two processors. We say there is a logical edge between the processes using the phy-
sical edge. The contraction may map many of these logical edges to one physical edge
in the new graph. That is, we are allowing only one edge between physical processors.
Logical edges share a physical edge by multiplexing. Because we are using the CTA
model, we require that the new graph to be a bounded degree graph.

As an example of contraction, let us assume we have an algorithm with a tree graph

as in Figure 1-1. Consider the contraction to 5 processors shown in Figure 1-2. This

contraction is produced by mapping sub-trees of size % to each physical processor.

This caused an increase in the degree, e.g. the new root vertex has four descendants.

Using this kind of a contraction, mapping sub-trees to processors, it can be shown that

Figure 1-1: A 15 Node Tree

O 0, W g 170 1V 0 8% 1Y) 0% o p 0Ty 480 480 A% 0Tty oty Vet RN N e W 0 eV A OO R RO O IR CSON
: ":“"."nf"u"'«fl'otl':?l‘:h‘.fl e T e e e R S e e e

3. 4% 4% 3

Bl J

o b e b
-

PR O
P

- -

R

)

i P . ~

F
T A O R SRS

-

¥
!
()
3
5
Y
"
l‘

-

-

4|
N ’.l"‘l '.n ‘,0' bg,: “‘n o ,Q. .o' ,0.‘.

Figure 1-2: A 5 Processor Contraction

given p processors, contracting an algorithm with at least p2 processes requires degree
p-1.
Next, consider a contraction of the tree to 4 processors as shown in Figure 1-3.

This contraction is performed by placing —;— processes from the same level of the tree

into the same processor. An extension of this method yields a binary tree in the p pro-
cessors where the root processor has only one descendant. Figure 1-4 shows a 31 node
tree contracted into 8 processors using this technique. Of these two contractions, only

the second contraction conforms to the CTA.

We will be considering the contribution of the communication time to the perfor-
mance of the contracted algorithm. Unless otherwise stated, we assume that a communi-
cation between processing elements costs a fixed time ¢.. During this time, no other

communication in the same direction may take place. We are specifically allowing all

Figure 1-3: A 4 Processor Contraction

00 O 0 [-
O .'3' R 't'u’b RN ;", olisbitiantalilit !"1"’40 g RRAAN e PR \‘ ey,

l.l

Pl e)

e

2

O

e
3
s - t
0 :
: {
’ ;
A 10]
W
K :
f":. '
R ‘
n f
’:!l .
5
)
W
N
t”'-' Figure 1-4: An 8 Processor Contraction of a 31 Node Tree
e
_\. edges to have simultaneous communication. mmunication internal to a processor
3 costs the fixed time ¢;. We also assume thatz, = ;. !
ol §
o As mentioned before, we would like to develop tools for reasoning about the rela- :
;@.“ tive merits of different contractions. This includes their communication costs and their .
k) g
::. execution times. To aid in this objective we give the following definitions.)
D)
;3‘ Let A=(V,E) be an algorithm where V, sometimes referred to as V,,, is a set of
‘;: processes (vertices and associated programs) with |Vi=n and E is a set of edges ‘
;E: (v1,vq), wherev,,v,eV.
) a
q') L]
A Let M(A,p) =B be a contraction of algorithm A into algorithm B where B uses p =
.i, processors and p < 1V, |. The contraction M maps elements of V, onto Vp such that ,
'y t
W the number of elements of V, mapped to an arbitrary element of Vj differs by no more
l' H
';: one from the number of elements of V, mapped to any other element of V.)
L] "
) Let w(e), the weight of e, fore = (v, v,), be the larger of the number of messages ‘

from v, to v, and the number of messages from v, tov,.

A AN,
| ol it T hs ¢
o

Let K(A)=MAX w(e), for ee E, be the communication "cost” of A. This cost is
e

.i an estimate of the minimum communication time required for the algorithm. Due to 1
z dependencies, the actual communication cost may be more.

:. Let T (A) be the execution time for algorithm A . .
's:: We would like to be able to say: For a given A, p, M, and M,, and ¢, > ¢;, if '
5, KM (A,p)<KMyA,p)) then T(M(A,p)) ST(My(A,p)). This is based on the

OOLB000 0 OO OO MW M 33 MM AN IEICINN XN POV I 0 0
o ."".0"!!’!‘,5"5‘.""9* 9?!"?\!ﬁt“'.“»l"’l"?l'l‘,."!‘,"’l.. Al’g’!’ﬂl‘.g‘.’»‘}&'ﬁt ' ' . ,Qi#"gfﬁ‘.ﬁt:.‘lt;!hf:’b::‘)“.!l::tl:q‘

L)

Vthy) () SOOOOGO000 g ONOCOGOCOBOGON0 ¥,
Ve St Ret S tttn et atlnda Gttt tats slitlntlatle

RO 11

{ .

g:. ! notion that the bottleneck edge will be a lower bound on the time required for the execu-

O 5" . .

t e tion of the mapped algorithm. However, due to communication dependencies, this may
',

2 not be the case.

_. To see that the communication dependencies have an effect on contraction, con-

ahes

| "": sider the algorithm and its contractions shown in Figure 1-5. The algorithm performs

~’l-'\- . . .

o the following operations: the center two columns of processes send a single message to

()

_ the two directly connected columns and then the processor labelled "S" starts a message
:"-;2 around the ring of processes and waits for that message ‘o be returned. Each edge has
‘al :

- exactly one message sent across it, yielding a cost for the algorithm of K (A) = 1.
:.g". ‘
:‘) Consider the contraction in Figure 1-5a. This is performed by mapping all edges
ot used in the first communication to internal edges. There is at most one edge between any
B~ -
tﬁ two processors in this contracdon. Therefore the cost of contraction a is
j;} K(M,(A,p)}=1. Now consider the contraction in Figure 1-5b. This is performed by
(1; ‘ mapping all edges used in the first communication to external edges such that these
K
;. 3 edges are connected to two processors. This maps 3"; communication edges into a
o
W
9 | e
Y S S
IS
ey
o
.
0 O
'. .
:l 5 a3
|: 5\
[
s
& e o
) '.ﬁ b
o (a) (b)
o
o , Figure 1-5: An Algorithm with Sequential Dependencies
2{
™
' ::v
SO
o !
40g
D
. W

s e e

.,-(p . NIRRT A - O Mo R \'-)‘*.\\'\, A% V) N N y 't
G) R K \
R Do DM A P R h!! l‘!h e Y, .?h. l!' ,ﬁ"‘t‘. XA !‘n i M I!.‘ .h‘!’o"'l X -?'A‘. :‘!

:\‘ single physical edge. The cost of contraction b is K (M, (A p)) = %

p ".) By our previous statement comparing two contractions, we expect M, to be the
S
.'j‘ better contraction and take less time. The time for contraction g is
;
! n n
Ry T(M,(ADp))=——1; +pt, + [— -er.--
e 2 2
™ wh
‘-\'s:
4 The time for contraction b is
G
-2 TM,Ap)=1 +2¢ + |22},
.\,! b 2° 2° [272|*
A
° We would like to know if T (M,(A p)) > T (M, (A p)). That gives
\f_
e A+ [Beples iy 42y 4 (B2
2 p P T \QTP Tt T e T (2T R
{.’ _ Simplifying gives
o P, _p n
\ . — P .
:: ztc- 2[,->2—tc— 2pt"
%
S 2
D) Pt 1) >n(, ~1,),
bt
13y and finally
E;:: pi>n.
* > This can be satisfied for most values of n. That means that the contraction with the
el
;E' f‘ larger communication cost runs in less time.
LA
ﬁ Our communication cost K (M (A,p)) is then a lower bound, but not an upper
bound on the execution time of the algorithm. The longer running time of contraction a
)
f::l::: is a direct result of the sequential dependence of the messages. If the algorithm was
¥)
:"'l' modified so that all processors in the ring sent their one message in parallel, then con-
,'N traction @ would be the best. It is obvious that this modified algorithm makes much
g
':‘ < better use of parallelism.
s
r‘\':
)

13

We assume good parallel algorithms do not have this sequential communication

dependence. That is, we expect that these contracted algorithms are able to run in time

proportional to their communication cost K (M (A p)). The communication costs are

then a good indication of execution times. Therefore, it we expect the contraction with

the smallest communication cost to be the better contraction. That motivates us to map
the busiest edges of an algorithm to internal edges.

In the next three chapters, we apply these tools to the contraction of specific algo-
rithms. For the compute-aggregate-broadcast paradiga, we look at the contraction of
tree algorithms. For the divide-and-conquer paradigm we consider the contraction of the
n-cube. And finally, for the pipelining and systolic paradigms we consider the contrac-
tion of mesh based algorithms. Where applicable, we include the results of comparing
the contractions by programming them using the Poker parallel programming environ-
ment [81].

1.4. Parallel Algorithms

Because our method of presenting these parallel programming paradigms is largely
through example, we need a method of expressing parallel algorithms. Often, an infor-
mal description of the algorithm is all that is needed. But some algorithms need a more
explicit description. This description is via a parallel programming language. As with
sequential languages, parallel languages describe a virtual machine. We would like this
virtual machine to match our chosen computation model. Not only do we want a
method of communicating the algorithms to the reader, but we want a language having

an efficient implementation on the same model.

There are several programming languages used for parallel programming from
which we could choose. Some compilers for FORTRAN extract the inherent parallelism
available in sequential programs. Examples of these systems include Parafrase [51] and
PFC [6]. However, there is much convincing evidence that parallel algorithms are dif-
ferent from sequential algorithms. For example, Snyder [82] displays a sequential algo-
rithm which has a high degree of data dependencies and does not admit a high degree of

3
cN
i
o
!.-.!. 14
ﬁ_‘-‘,' parallelism, yet he shows that the problem can be solved with a high degree of parallel-
} -:;3; ism if approached from a parallel viewpoint. This leads us to believe that any sequential
0 language can not be sufficient to express the parallelism we would like to see in our
,‘ algorithms.
ﬁ:; Some sequential languages have been extended to include some form of parallel-
é": ism. Examples of these include FORTRAN 8X [92] and Path Pascal [15]. These
e languages assume a shared memory parallel environment and implementations of these
; :;.; languages will encounter the problems mentioned in simulating shared memory on a
-:"_:;I CTA. Although some systems, e.g. Linc. (4], restrict the use of shared memory, there
! :‘ is still the problem of one processor needing to access data in any of the other proces-
,:tf sors. Even the data flow languages such as VAL [61] treat memory as a global resource.
E Communicating sequential processes (CSP) as defined by Hoare (42] provide
25?:3 another class of languages available for parallel programming. These do not provide
{; shared memory, but require sequential processes to communicate by message passing.
‘_‘;-: They do not bound the number of processes with which one process may communicate,
) 3 which provides the problem of arbitrary communication on a CTA (see Chapter 5).
j Occam (48] is an example of this class of languages.
'$:::‘ What we want is a language that conforms to the CTA. Snyder refers to these
,‘,’-‘:E languages as CTA-type languages [82]. The CSP languages and Cosmic Cube C [87]
"-’ are in principle CTA-type languages. Cosmic Cube C also has the problem of
.('3 unbounded degree communication, even greater than the log n Cosmic Cube. This is
! E:' solved by having message forwarding. If one restricted themselves to communication
hdai with a bounded number of other processes, it would conform to all points of the CTA. !
._.fi: A better example of a CTA-type language is Poker [81]. A program consists of a |
,’:. :: bounded degree graph where the vertices are processors and the edges are communica-
E} 2 tion channels, a set of processes, and an assignment of processes to processors. A com-
o plete algorithm is broken into phases, each with its own graph, set of processes and pro-
'.“,3-2 cess assignment. A global controller runs the phases in the proper order to complete the

20 -s.m \;.;‘ \}; \ T}\a m

hd
o |
o |
) 1
) |
{ 15 \
o computation. Each process is programmed in a sequential programming language with
<
,‘,-; special constructs for communicating with the processes at adjacent processors and for
\ -
:::: communicating between phases at the same processor.
:;- e We choose a Poker-like pseudo language for presenting our algorithms. We define
EE a graph, a set of processes and some implicit assignment of processes to nodes of the
y 2 graph. In some cases, we define multiple graphs used at different points in the same pro-
(cess. This is usually done to avoid the extra notation to actually show graphs, processes
178,
: : and process assignments for multiple phases. Each unique type of process will be
-‘ described in a sequential pseudo language.
)
"* For communication purposes, a process identifies a directly connected process by a
4-; symbolic name called a port. The port names are usually descriptive in terms of the
rr-
o))
2
(
i
¥l
N
. Code leaf;
o Ports Parent;
Y Parent « Value;
-.-,"'_.‘ End;
xrl
L] Code internal;
- Ports Left, Right, Parent:
A Parent « max(Value, Left, Right);
v End;
“a
PY Code root;
o Ports Left, Right;
-~ Maximum := max(Value, Left, Right);
S End;
\i
, »

Figure 1-6: Maximum Algorithm

7L JLeue AR 1s

.’..,o

XN]) e .
RrieRelhios B R AR o R ,c' ! .o.u?b.".i. .,.l."!n i R .'o"'n' .

»

16

interconnection graph. The cons.uct name_list « expression sends the expression as a

)
s, K
Yy & 5 A

message to each process identified in the name_list. Any time a port name appears in an

" 'f.'}
'.' ’& l"

expression, the process waits for the "next" message to be received from the associated

U3

process. When the message has arrived, it is used in the expression as the value of the

{2’ port name. We avoid making a rigid definition to allow flexibility in describing algo-
g0 rithms. As an example, Figure 1-6 shows the description of a maximum algorithm.
o Each process contains a variable Value for which we want the maximum over all
:" processes. This maximum is four.d in the root process at the completion.

E:f Throughout this dissertation, we are interested in the algorithms, not how to fit an
j; algorithm on a specific machine. Due to this, we present the algorithms in terms of
o processes not processors. Also, we let the algorithm define the communication graph,
\ instead of making an algorithm use a specific communication graph. The problem of
1_.\ mapping an algorithm to a particular interconnection structure is treated clsewhere by
e Berman and Snyder [11] and Bokhari [13].

=

e

o

)

,ﬂ’k <

L JCAEA
5 's %o
RN «’g’ P("n.’-_’«

e
Y ."ﬂ"“{ ,

Y,
.‘
L)

o
w
% ".‘"""*" :.,'-r_".'& ,--;' MATOICIS TR TR X AT ChY ‘hﬂ " LERE

OO0 N0 ¥
¥ ‘!of'f::'?::‘!l..‘!:,'!::"o"f

2 i :) At e gV NI, Dt Al Wy ity
L TR AT o/ i L AR AN IR DS e M i N DR T A AR R R !

e CHAPTER 2

5
P

‘ The Compute-Aggregate-Broadcast Paradigm

.'_:’:E;
-~

1S5

by In this chapter we present the compute-aggregate-broadcast (CAB) paradigm and
., its variations. There are many algorithms included in the CAB paradigm, coming from
;E’ both numerical computation and non-numerical computation. We first start with a
',':E_. definition of the CAB paradigm and give a simple example illustrating the basic con-
:?) cepts. We then explore the variations of the paradigm shown in both numerical and
:~ non-numerical computation. Finally, we look at a speed-up technique and contraction,
E\-_, both of which have relevance to a subset of the CAB algorithms.

LY
\{ . -‘ 2.1. CAB paradigm and Jacobi Iterations
SE Compute-aggregate-broadcast (CAB) algorithms are composed of three basic
J' phases: a compute phase which performs a computation, an aggregate phase which com-
®) bines local data into a few global values, and a broadcast phase which sends global
":E'; information to each process. The compute phase and its interconnection structure differ
-Ef: widely from algorithm to algorithm. It may be a complete algorithm, like matrix multi-
:s'.:f: plication, or it may be a single primitive operation performeu by each process. The
.:?".‘: aggregate phase is usually a tree-based computation that combines data from the
;E processes, producing a single global value or a small number of values. Minimum and
-f:'.:: maximum trees are examples of an aggregate phase. The broadcast phase sends global
e information or a directive based upon it to all processes. This may be a "keep going”
y f:': message for iterative algorithms or a value necessary for the following compute phase.
’:j A simple example of a CAB algorithm is a parallel implementation of the classical
04 Jacobi iterative method for solving Laplace’s equation on a rectangle. An instance of
:’:':" ' this kind of problem, the electric field problem, is shown in Figure 2-1. The rectangle is
'é: 3 represented by n discrete values, V;;, the voltage at the point. The boundary and the
1

o

W

g

3\l GO0 O
------ ity

R o R S TN &% ‘ ' TN N ' O
L e e e e .'l.:'\:‘:‘;- RSO !':‘:'A':(‘?-"',:‘»‘::b.!'r’&l:‘!‘e‘h:‘!':'.::'!::"':‘:. \ .::':t"'

LA LN M M NN A

o

iy

.

o

o::'

¥

S 18
v\;

P’;f:

T 2

3 ¥ 100 v iz%+il’- =0

' ox ay 2

K

e V{jﬂ —"'(V —1]+Vl+lj+v 1+V;+1)
K
.('. -100v 0 v on boundary

KR

1
- Figure 2-1: Electric Field Problem
4

!\ voltage sources are kept at a constant value. An initial guess is computed for each point.
{- 3

o Iteratively, a new value, the average of a point’s 4 neighbors, is computed for each of
b~

;:‘ . the n points. The iteration is terminated when the difference between the new value and
e o
{ the old value at every point is less than some tolerance.

.'.‘

3:: Using n processes, each V;; is assigned to a process. Figure 2-2 shows a 16 pro-
a0

;: \ cess version of the algorithm with the code for an internal node in the aggregate and
‘) broadcast trees. The compute phase calculates the new V;’s and the difference
::: between the old and new value. Using a 4-neighbor mesh interconnection structure
E (Figure 2-2a), each process exchanges its V;; with its 4 neighbors. It then takes the aver-
age of the values received and calculates the difference with the old value. The aggrega-

tion phase connects the processes in a binary tree (Figure 2-2b) and computes the max-

g o
2 sy

imum of the differences between old and new values. Each process contains a differ-

()
LIPS D AN

ence value. The leaf processes send their value to their parents. The internal processes

-
o

take the maximum of their value and their children’s, sending the result to their parents.
The root process retains the final global maximum. The broadcast phase sends a stop or

continue message to all processes depending on whether the global maximum is less

than the given tolerance. This broadcast also uses the binary tree.

i@ A AL Ll A ®

This algorithm shows the "standard" features of a CAB algorithm. The first phase

p oy b g

is the compute phase, using O (1) time to compute a new value and the difference. The

-

o

\Vpdl

\'.

\ . |

l. D "))
AN ;0,..!) ' ,‘l!.’ lg.l’::l':. N n..c ,‘z'::l '.n,.." l’..i"' ..i 'u .5 o... .‘.. XN |', '..‘..‘l..il,. .'t'"k .,. m | tf. |' Y .. .' . '.' “,‘“ .“\

A

- . -

L J
0. .
2
}
s
20
l.n
(. 19
o
:‘,': Code Jacobi;
! *-J:: Ports(mesh) North, East, South, West;
») Ports(tree) Parent, Left, Right;
‘:;1.;: V =initial guess;
8 REPEAT
{ Compute (mesh) }
.. . | North, East, South, West « V;
N NewV = (North+East+South+West) / 4;
AN Dif = abs(NewV-V);
®
o { Aggregate (tree) }
| j‘:‘ Dif = max(Dif Left,Right);
-E:‘- Parent « Dif;
% .f‘.
! { Broadcast (tree) }
ﬁ; done = Parent;
o Left, Right « done;
*
e UNTIL done;
. END Jacobi;
.‘ (b) Tree (c) Code
’.;‘»"- ' Figure 2-2: 16 Process Jacobi
-
o
"‘E; interconnection is the 4-neighbor mesh. The second phase is the aggregate phase, using
&: O (log n) time to compute a single maximum. The interconnection is an n node tree.
:’ The third phase is the broadcast phase, using O (log n) time to send a stop or continue
K- message. The interconnection is also an n node tree. The three phases are repeated
L~
. until the global termination condition is met. The total time for the algorithm is
-
?‘_1;I O (k log n) where k is the number of iterations. The Jacobi iterative algorithm could be
. described as a (CAB)* algorithm.
S
~
o._
3

La"v. 4
MG > ¥V AN

A 00 W0 ' e ORI AT ML TR ‘ R
'!,'l'\.ﬂ '.'a’-'n':‘:‘:‘: rv'l:,al A -'!’::. k.‘:"‘:‘! AN .:f'af‘:": AL l N A' A . '!'t::'ﬂ. ::\ HQOET .&.: W ' 'A u'u' 'a’t' W .‘t':’:’

W It
l'!’l’:..l'n .

s Vg L W% 8 ‘I

-
-
<

P~ e e
"ary, b X 3'-
2’ S, ‘ff

x

NN
. P?’. " ,

P TR
> K

ok

3

XA
hﬁ ;

S
Tl 38

A

I:'l"‘(\l'\o [)

y
UL
.._A'x KRR

PRI

AP P

o
oy
3

TN e

)

P ™,
T)
\LE

9

S,

-

BEAII

!x J Sur oy S Wy S O

Ty

<5

AJ

c'_';'\'..':

e
.w 5 'y

l\).

IX)
et
”\'n'i’l)

20

Not all the CAB algorithms are (CAB)* algorithms. Some algorithms start with
aggregate or broadcast phases, although the sequence of phases is generally the same
with aggregate following compute, broadcast following aggregate, and compute follow-
ing broadcast. Some algorithms, like the Jacobi, iterate on the phases until some termi-
nation condition, like convergence, is reached, while others iterate a fixed number of
times. The execution time for a CAB algorithm is O (k(c+a+b)), where k is the
number of iterations and c, a, and b are the times for the phases. When the aggregate
and broadcast phases use trees, the times for @ and b are O (log p) for a p process sys-

tem.

2.2. Numerical CAB

Having started with the Jacobi algorithm as our first example of a CAB algorithm,
we continue looking at numerical CAB algorithms. The SOR algorithm builds upon the
simple CAB structure of the Jacobi, showing a more complex compute phase, and the
numerical integration algorithm provides the first variation of the CAB paradigm.

2.2.1. SOR

The SOR (successive overrelaxation) iterative method is used to solve linear sys-
tems of equations [95]. Adams [1] provides a good discussion about using the SOR on
parallel computers. Although we do not discuss the merits of this method or provide the
mathematical basis for the algorithm, it is nevertheless a method that yields numerical
CAB algorithms. It is very similar to the Jacobi method that we have seen.

We are particularly interested in the multi-color SOR. The common SOR has
sequential data dependencies, but the multi-color SOR provides for easier parallel solu-
tions by having different data dependencies [82). The algorithms follow the same basic
outline as the Jacobi. The major differences are found in the actual computation and in

the test for convergence.

As an example of the multd-color SOR algorithms, consider the Red/Black SOR
using the "five point stencil” [1,2,94]. This algorithm can be viewed as having the data

"

SO ISONOSOAONMONG T 2N 0 0508 1 T e Ve, 2504 OAOGOAAONIAA0IGN]
togttn ettt et e, ettt e ot Nl RN KRKOOONN "h‘!’u""~"'”.":"'\‘\:‘"e‘\‘:"t:":"‘:»'"0:‘30. OIS

hY, NG KO K YO)

21

(.' - points being computed on a checker board. (See Figure 2-3.) For the compute phase, all
1 :5 points on the red squares are computed using the current values of the black neighbors.
o Then, all the points on the black squares are computed using the new values for the red
_\ points. After all points have been computed, a convergence test is applied to each point.
v The aggregation is a simple boolean AND tree computing TRUE if all points have con-
.":E verged. The broadcast is a stop or continue message.

If we put a single data point in each process, all the processes containing black

L VoSN

y ,,:: points will be idle while the red points are being computed and similarly the red

%:, processes will wait while the black points are being conpputed. By assigning one red

" and one black point to a process, all processes will be busy all the ime. The compute

\: phase now becomes "compute the red point and then compute the black point”. The
o

communication structure remains the 4 neighbor mesh. In general, for the multi-color

>
LA, 7,

SOR, one data element of each color is mapped into a single process [1]. This may

- Py

>~ - e
LA AR

require an 8 neighbor mesh to meet the communication demands. The compute then
becomes a sequence of computing different colored points. The aggregate phase now

becomes a check to see if all points in a single process have converged and then the

:)} standard binary tree to detect complete convergence. The broadcast remains the same.
P
-]
!.
e Black | Red |Black| Red
W k k+1 k k+1
. Red |Black | Red |Black
- k+1 k k+1 k
*\
o Black{ Red |Black| Red
N k | k+1 | k | k+1
Red |Black| Red [Black
k+1 k k+1 k

Figure 2-3: Red/Black SOR

SN @ AL @
S A A AP A

)
s
b
‘BN
{
'!3"_95,
v.. ‘
LY
B m AT A A AW I R o »n R » el A N0 ; ” AR
) EF AP EE RS : b $) 8% " .
A S o A O A R R T IR SRR L Al sl e i ey ih'tg'.'fo"!'.'A:',"o,'ﬁ!fo, o ‘!‘?ﬂ'ﬂf’t’!‘.’! XY

(]
PN
N '
el
-"\",' 22
e 2.2.2. Integration
;':: "
b Our next algorithm, numerical integration [66}, exhibits a variation of the CAB
x' . . » . . * -
f:;,:!l- paradigm. For numerical integration, we are given the function f (x) and we would like
! 'J to integrate between @ and b using n processes. An easy solution would be to divide up
[} "
:' ,: the integration into n separate problems and let each process integrate a small section of
et
j-_% the curve. The problem with this technique is that some sections of the curve may need
‘:‘. - more processing than other sections to get a satisfactory approximation. This provides
::tf an unequal load for the processes.
N
’, E? A Dbetter solution gives one process control of the work the other processes are per-
« ": ; formi~g. Consider the following algorithm.
22
e Integrate f (x) between a and b.
b E-’:
f - While “not done" do
: o Control process: decide which section to integrate.
e
9 Broadcast: Broadcast the section
’?ﬂ' Z

Compute: Each process integrates its 1/n section of the curve.

-.Q‘

Aggregate: Sum the n areas. Re:_::: area of section to control process.
End while

e
S

s
e

The broadcast uses a binary tree. An internal node receives the end points that its sub-

tree is to integrate. It then divides the interval into 3 pieces, a section for the left sub-

-',,’T%}; °

ree, a secton for the right sub tree, and a section for itself, making sure that each pro-

)

6; cess will have the same sized section. The compute uses no communication. Each node
:: integrates its piece of the total section and decides if its value is a sufficiently accurate
; approximation. The integration can be done by various methods, such as the trapezoid
oo method or Simpson’s rule. The aggregation uses the tree to sum the areas computed in

the compute phase. If the computed value for a subsection is not sufficiently accurate,

the area is not added into the sum and the control process is sent a message identifying

- e
XY
e
X

W »
N
T
h() . , 5 .
-:i'::l it 2 R My D O OO "
o8.9:8.348 0 8.5,8. QOOOCDODODOOD R IOUDOBOOMOG0) e m

m LOS A M S TSN V0w L PPN Dl A L AL A ASOVSOLACUNOUNII AR RTINS NIRRT NN

the subsection.

The control process is responsible for choosing the sections to integrate and col-
lecting the final value for the area. The initial step is to broadcast the entire interval to
be integrated. The results are a sum of the accurate subsection areas and a list of the
subsections needing more processing. This list is assumed to be small. The control pro-
cess then recursively integrates all of the subsections. This keeps all the processes busy

and never recomputes any subsection that has been integrated with sufficient accuracy.

We make two observations about this algorithm. First, this algorithm is a member
of the CAB paradigm, but the first phase executed is the broadcast, not the compute
phase as in the "standard" CAB. This kind of an algorithm could be called a BCA algo-
rithm. Also, the compute phase did not need any communication and therefore the algo-
rithm needs only a single communication interconnection structure. This variant of the
CAB paradigm can be observed in other algorithms, e.g. Dekel, Nassimi and Sahni’s
O (log n) matrix multiplication algorithm for the binary n-cubef23].

2.3. Non-numerical CAB

AN
(g
1Y
L
15
[}

15

We now turn our attention to the non-numerical CAB algorithms. We separate the
numerical and non-numerical CAB algorithms for two reasons. First, we find it interest-
ing and somewhat surprising that this paradigm covers both kinds of computation. The
CAB paradigm was first found in the numerical algorithms and later discovered in the
non-numerical algorithms. The second reason is the diversity of usage of the CAB para-
digm in the non-numerical algorithms. The topological sort algorithm uses aggregate
and broadcast phases that are not global. It also starts the algorithm with the aggregate
phase. Hitech Chess [28] is a hardware implementation of two related CAB subalgo-
rithms, used by a sequential controller. And finally, the CAB paradigm is useful in

parallel expert systems based on production systems.

o A L O SR A L AL L 2 L o] ‘
: ,

A 5 . i
X ALK ‘.& ,10‘ NN -0'.. ?.- X o) o ,.. N .‘~.o ‘. s'l .'l "."

2.3.1. Topological Sort

We first look at the topological sort algorithm. For the topological sort, we are
given a directed, acyclic graph G=(V, E). The sort orders the members of V such that if
vertex V; is before vertex V; in the ordering, there is no path from vertex V; to vertex V;
inG.

Dekel, Nassimi and Sahni [23] sketch a parallel solution for topological sort using
an all-pairs longest paths algorithm. The vertices are sorted using the length of the long-
est path to the vertex as the sort key. Their algorithm runs in O (lc>g2 n) time using n>
processes. Ruzzo [18] uses the transitive closure of the original graph, sorting the ver-
tices by the number of predecessors in the transitive closure. This also takes O (log?)
time using n3 processes.

Our parallel solution is achieved in two steps [66]). The first step is to compute a
level number, Level;, for every vertex V;. All vertices with no incoming edges are
assigned a level of 0. All other vertices are assigned a level number that is the length of
the longest path from any level O vertex. Because G is acyclic, the maximum value for
a level number is n—1. The last step sorts the vertices into an increasing level number
order. It is the first step, the computing of level numbers, that can be solved using a

CAB algorithm. The sorting step can be done by a suitable sorter.

LEMMA 1: Sorting {(Level;, V;)} using the Level;’s as the sort key produces a

correct topological ordering of the V,’s.

PROOF: Assume that given a correct assignment of the Leve!; s, the final ordering
of the V;’s is not a topological ordering. Therefore, there must be two vertices, V, and
V|, such that there is a path from V, to V; and V, is ordered before V,. Since V, is
ordered before V|, then Level, < Level;. But Level; is the length of the longest path
from a vertex with ihdegree of zero to V,. Since, as we assumed, there is a path of
length at least one from V, to V,, then the longest path from a vertex with indegree of
zero to V, must be at least as long as Level,+1. But Level, < Level, for V, to be ordered

before V,, therefore the level assignment is incorrect. O

Y
&
EE e L

-
wEa

"\‘. .,..‘."‘;.‘ .
L:';';'J".:'I X Q

2

:-
Y 5

- - -
Y -,
AL

55

25
Let us now look at the details of the algorithm to assign these level numbers. We

assume there are n? processes, P;;, where 1<i, j<n and n = 1V |. Each P;; contains the

ijo
corresponding entry, G;;, from the adjacency matrix for graph G. G;; has the value 1 if
there is a directed edge from vertex i to vertex j in the graph to be sorted and a O other-
wise. The state information for each process P;; is contained in three variables, G k. the
current entry in the adjacency matrix, k, the "length” of edges in the adjacency matrix,
and Level, the local copy of Level;. Throughout the algorithm, the G*’s define the
graph where edges are paths of length exactly k in the original graph.

Let us first consider a useful subalgorithm, UpdateLevel. (See Figures 2-4 and 2-
5.) In process P;;, UpdateLevel takes the state variables G*, Level, and k, and pro-
duces a new value for Level. The starting value of Level is the length of the longest

Code UpdateLevel(G*, Level, k);

/* for processes P, i#j. */
Ports RowLeft, RowRight, Row Parent,
ColLeft, ColRight, ColParent;

/* aggregate on column trees */
if Column_Leaf then
ifG*=1
then ColParent « k + Level
else ColParent « 0
else /* internal node */
ifG, =1
then ColParent « max(k+Level,ColLeft,ColRight)
else ColParent « max(ColLeft,ColRight);

/* broadcast */
Level = RowParent;

if Not Row_Leaf then
Roweft, RowRight ¢ Level;

End UpdateLevel;

Figure 2-4: UpdateLevel Algorithm, Non-root Process

A L T N Py A yh oy By fat Y ; >
B R e R A A o R e R AR R AR et ATt R

\ DO
AR

26
Code UpdateLevel_Root(G ¥, Level, k);

/* for processes P;; */
Ports RowLeft, RowRight, ColLeft, ColRight;

/* aggregate */
Level = max(Level,ColLeft,ColRight);

/* broadcast */
RowLeft, RowRight « Level;

End UpdateLevel_Root;

Figure 2-5: UpdateLevel Algorithm, Root Process

path terminating at vertex V; of length less than k. The final value of Level is the length

of the longest path terminating at vertex V; of length less than 2k.

The n? processes are connected in a variant of the mesh of trees [57]. Each row
and each column is connected into a tree with the root located at the process on the diag-
onal. (See Figure 2-6.) The computation of the new levels is based on the fact that if
there is an edge from V; to V; in the graph G* then Level ; must be k greater than the
Level; because there is a path of length exactly k from V; to V; in the original graph. At
process Py, if G k = 1, than there is a path of length exactly & from V; to V; and the new
level of V; is at least Level + k. By taking a maximum of these new level numbers
across column j, we now have the new level for V;. This is done for all columns at the
same time. The trees in the columns are used for this aggregation step. To set up for the
next UpdateLevel, we must make sure that Level in each P;; is updated to the current
level of V;. Because the roots of the trees are on the diagonal, the correct value for the
level of V; is in process P;. A simple broadcast over the row provides the correct value

of Level to all processes in row i. This is done using the trees in the rows.

LEMMA 2: Code UpdateLevel, given correct input, correctly computes new level

numbers.

T - - -
g W W W TWIW T T YT TP T TN TR TR R W P UT 7 N PR U O 3 W R W W OW U O T W VR T T ST T

27

N
/]\

AN

R L1

AN
S
DA
;

e \K

V8 === S\

R

Figure 2-6: The Mesh of Trees with Roots on the Diagonal

PROOQF: At every process P;;, Level = Level,, the length of the longest path ter-
minating at vertex V; of length less than k. Therefore, each column j contains the
correct level numbers for all vertices. Consider the values received by the root process
P;; from the column sub-trees computing the maximum function. There are 2 cases to

consider.

Case 1 is where there are no paths of length exactly £ terminating at vertex V;. In
this case, G* = 0 for all processes in column j. The leaves all return the value 0 and the
internal processes do not use local values in the maximum. Therefore, both sub-trees

return the value of O to the root process. The value of Level then remains the same.

(Note: The leaves must return 0, not Level. If they did return Level the value of the

maximum would be max Leve/;.)

by A0

) (] USSP (] Yy AKX (NEK MU L] Y
2 DRI OBIN O s ONOGOEOBINDND D y D
..'A‘.’c‘,'-"h"l-‘2'4‘!'1‘2'A‘!‘Q‘?’t’!‘a‘!‘." -‘\‘!lt‘!h‘. y , 'n‘t'g“'-‘:'a‘:'a‘:la‘b:':’n‘:':.!|='!h‘!°.':‘.‘-'.’:_'!'o?’ <vf':'f':".':‘30:!‘!':‘,3'.93':".'

\
Yy
T
@
[} N
Y
3
4§ !
f\ o]
;!.. " 28
fw; Case 2 is where there is at leas. cne path of length exactly k terminating at vertex
1% Y
:§: V;. In this case, at least onc G* = 1. Assume process P;; has G* = 1. There is then a
:"-\\ path of length k from V; to Vj. The level of Vj must then be k + Level;. Since at P, is
.3 Level = Level;, the value k + Level is used in the maximum computation. The max-
DE imum function computes the largest such value in the column j and assigns it to Level ;e
LS
_ :-,'," This new value is between k and 2k and therefore must be the length of the longest path
T
(- terminating at vertex V; of length less than 2k.
:% The final broadcast sends the new level number to all processes so that at process
St
ﬁl‘;} Py, Level = Level;. O
e
o Now that we have the UpdateLevel subalgorithm, we can look at the complete

topological sort algorithm. (See Figure 2-7.) The initial state, Gt = G;j, Level =0 and
k=1, sets up the state variables for the first call to UpdateLevel. That is, G* is the initial
graph, all edges are paths of exactly length 1 and Level<l. After the first call to

CuLLis g
LA, I

z.- ’ UpdateLevel, only vertices with no inedges still have a level of zero. All other vertices
:‘::;2 have level of one because a path of length 1 terminates at them. The ‘ﬁrst part of the
! ::, loop prepares the state variables for the next call to UpdateLevel by squaring G* and
g doubling k. The call to UpdateLevel then adds in paths of length exactly k into Leve!.
g-;é After log n — 1 squarings of G* and calls to UpdateLevel, each Level; has been set to
) 'Zj: the correct value. The final step of the algorithm sorts the vertices by their level
.-: numbers.

\3 LEMMA 3: Code Topological_Sort computes correct level numbers. 1
:t.:é PROOF: The original state has the original graph in G* and all level numbers at 0 |
“:“i and k = 1. This is correct input for UpdateLevel. By Lemma 2, UpdateLevel correctly
'% computes level numbers less than 2k. Therefore, after the call to UpdateLevel, all level
E::: numbers are less than 2. By squaring G* and doubling k, we now have correct input for
}:::: UpdateLevel. Again, by Lemma 2, the level numbers are computed correctly. After
.'\, each call to UpdateLevel, we must again square G* and double k. After the last call to
:Sf UpdateLevel, k£ = 12'- and all level numbers are less than 2k or n. Since the longest path
L
|
s

oAcAAY ' N A AN YA 0T 20 S o) e '
K N W)) AT 00 1) ST OOV WU
R 100 S G el e, ,»?“a.nf"l?"m‘ah'ifl‘». AN ’v"?m#&"mﬂv"’hl'o!l.':!‘!n’..l. .'h‘,'0.‘.'t:‘.‘:2190:"u:l?::0’:5.':,09:"?:!0'#'.'M. el ..D!m’

..........

5

b 4

ey
«
-

'-,"-T:ﬂ ‘
l‘l"f‘l "). [’,}J -

‘b;}.‘

29

e

S
}f [
G o SV N RS

Code Topological_Sort;

/* for process P;; */

L) G* = G;; in original graph;

5 Level =0;

s, k=1;

p UpdateLevel(G* Level k);

R For index = 1 tolog n -1 do

(G * = BooleanMatrixMultiplication(G .G *);

L k =2k;

Loy UpdateLevel(G* Level k);

Wy End for;

:* 1]

" Sort({V;}, Level, is the key for V;);

"t

\ ::E End Topological_Sort;
T

'::j Figure 2-7: Topological Sort Algorithm

-

Eh' in G is n—-1 and Level; is the length of the longest paths terminating at vertex V; of
:'.' length less than n, Leve!; is the length of the longest path from a level O vertex to vertex

$

iy v,. O

. The topological sort algorithm takes O (n log n) time with n 2 processes. This is
?_'.;- because the boolean matrix multiply takes O (n) time with n2 processes and there are
o
E_’, log n iterations. Due to the trees in the UpdateLevel, the AB phases run in O (logn)
>

time and this is not the dominant factor. This is not the best algorithm for n 2 processors.
Ruzzo’s algorithm takes O (n) by using the O (n) transitive closure algorithm given by
Guibas, Kung and Thompson [38]. If n> processes are used, the matrix multiply time is

reduced to O (log n) (23, 64, 74], yielding O (log? n + 5) time for the algorithm, where s

ARG,
O PIANAAN®

N is the time for sort algorithm. Notice that the matrix multiply and sorting algorithms
:':‘.: may require a different ¢ - .amunication structures than the UpdateLevel algorithm uses.
)

:, A It is possible to use an n-cube to compute UpdateLevel in time O (log), making it pos-
., sible to use a single interconnection structure for the complete algorithm by using the
U

ES?‘ matrix multiplication algorithm presented in Chapter 3 and Batcher’s sort [10].

i

W

)

s
-

T Tan"a
-

-

atnahaiag Wy ety T G T S R R MO N O X W OO 00 Tt ;
B e e e R e K RN N S KRR RIS

A0 0

P

]

L] - ,-'

N,

e

N\

2 ”':'
(o , 30
N We make a few observations about this algorithm. First, as we said before, the
_I:E:Z aggregation and broadcast are not global, but localized to the rows and columns. Also, i
L:::_ notice that the aggregate and broadcast phases are done first, before any computing. If
v) we include the sort as the final compute phase, this algorithm is really an ABC
\f\ (aggregate-broadcast-compute) algorithm. Finally, the compute phase is a complex
Syl
y i",; phase that may be solved using a different paradigm, e.g. pipelining or divide and con-
o quer

E-j}. 2.3.2. Hitech Chess

3.‘" Our second example of non-num.. - CAB is Ebeling’s Hitech Chess machine [28].
o Hitech Chess is a specially designed machine for playing chess. It is an architecture
x E:"‘ using parallelism for move generation and position evaluation which has been imple-
ol mented using custom VLSL. By March 1986, it had the USCF rating of 2352, 150 better
-‘.": than the previous best computer chess system.

%’\ The machine can be viewed as a global controller, a parallel move generator and a
tj: parallel position evaluator. For each move of the game, the controller performs an a—~f3
2;:; search, using special purpose hardware to increase the performance of the search. The
:‘ machine searches 200,000 positions per second. It is the parallel move generator and
E‘f_} parallel position evaluator that exhibit the CAB behavior.

E fg‘é Figure 2-8 shows the logical diagram of the Hitech Chess machine. The compute
!_::: phase is the same for the move generation and the position evaluation. Given the state
"E._ of the chess board, they compute every legal move from that state. This is done by hav-
'\-.EEZ ing a processor for every possible move that could be made on the chess board. There
." > are about 4000 "ever-possible” moves for each side, giving about 8000 moves to check
fff:f for legality. The aggregate phases take the legal moves as input and produce a single
‘I ".: output.

. The aggregate phase for the move generator produces a single move. Given a
.“: board position, there is a set of legal moves. These moves are ranked for order of
3:“ inspection for the a~p search. The controller asks the move generator for the i * move
i

o

[

eyl

20

Iy AN T WP W NI W 5 N v OGO :
') a ¥ (] B ! ! Ml { Oe e A
S0t AT MVt T e e s e e et e 0 e s Wb e e l‘f't‘!'.‘!'-‘.!':‘!::ﬂ o‘!::‘:::‘-':‘.h Tty Ju'!h?‘.'t‘a':'a l.!'l‘!::.-.:.:'l'!‘:". X ey

e
5

31
Compute
Aggregate
Broadcast
Move Generator
Controller
Broadcast Position Evaluator
Aggregate
Compute

Figure 2-8: CAB in Hitech Chess

in the ranking. For example, the first time the search sees a board position, it wants to

search down the most promising subtree. The controller would then ask for the best or

"o

-': first move from the move generator. When the controller has backed up to that board

'.; ' position, it has already evaluated the first move and it now wants the second best move.

.~3 Since the moves from that position were not saved, the move generator recomputes all

E:E: the legal moves (compute phase) and selects the second best move as the output of the

KL "

o

W _' : .‘- .t‘.. »« .'n W R '..t"'l‘. A%t ':'l'. '!' .‘l"‘ Ye! lol . n'. :‘ e A'. AR OIS i) ‘n‘. R "’o"‘o’. 5 tho

Sab AT RAt LAt fRT Sy dav Sav £at Gav BeU Mab Mav 2.8 $28 2.8 At 6 5 Ak 2.8k 88 0 424 8242 4'8 'a 8°2 Bta A

32
aggregation phase.

The aggregate phase for the position evaluator produces a number that estimates
the worth of that position. The controller then takes the next move from the move gen-
erator and the value of the current position and decides whether to search the subtree
produced by the given move or to back up the search tree. This decision is broadcast to

both the move generator and the position evaluator. They update their copies of the

state and then start the compute phase for the new board position.

i. :’_\E‘ There several points of interest in Hitech Chess in relation to the CAB paradigm.

X :: First is that while the aggregation interconnection is not a true tree, it is still logarithmic

P in depth. Also, the actual aggregation step is modified in operation by both the position

j: in the search tree and, specifically for the position evaluation, by the place in the game.
’: And finally, two CAB algorithms are used to produce a single broadcast.

oy

('. 2.3.3. Production Based Expert Systems

ﬁp':;. As our last example of non-numerical CAB we look at expert systems, more

.""'E specifically, rule based production systems. It is believed that parallel processing is

"' needed to achieve the goals set for these systems [25]. While it is not within the scope

:: of this dissertation to discuss in detail the use of parallelism in expert systems, we want
'j.:-:.';j to show that current algorithms employ the CAB techniques.

f-;::: In general, production systems {31, 40, 67] are composed of a set of rules, called
._:,.: production memory (PM) and a set of assertions, called working memory (WM). Each
E rule of the PM is composed of a left hand side, used to match assertions in the WM, and

: j a right hand side, used to specify operations to be applied to the WM. The operation of
o

the production system is a three step process. The first step is a match phase, where left

%

hand side of the rules in the PM are compared to assertions in the WM. Each rule that

)
[} Y
S:E
‘ .

s matches is added to a conflict set. The second step is to select one rule in the conflict set !

5y :

gk . . .

'.’“ for execution by the the third step. The action of the third step changes the WM. These

X -iﬁ : three steps are repeated until some goal condition is met. |
"o

s ‘
%

i X A

o

o ‘

0 O 000K O AN) ; " : X ,
P (ol) O 0 AR 1N K MM) DD 40 0 0 !
N e A i e b R TR M ...\,o“e" R KA R KR l..!'ofo'B‘:"A'l,:‘!f-'n:‘ﬂ:‘m‘a',!'oft‘t‘.!‘n"}'t‘!’o?!':':':“'l e "m:':’--‘:‘!'s“'p‘

A WU TY WL LT PV LA LT P UL W W W W W WO O VO O P T SRR O W WINPT B BT Y W TR T W DWW WY YY TR TYCOLW 1 WU] e L Ly v 3

‘
)

33

DADO is a parallel processor designed to execute production systems [84]. The
processors are connected in a tree. Figure 2-9 shows the structure of the DADO
machine. Each rule in the PM is assigned to a separate subtree. The subtree contains
copies of relevant parts of the WM for the subtree’s rule. The DADO algorithm, in its
simplest form, operates in the following way:

1. Each PM node and its subtree determine if the rule associated with the subtree is

part of the conflict set.)

2. The tree above the PM level takes the conflict set from the PM nodes and

reduces it down to a single rule to be applied to the WM. '
3. The selected rule is broadcast to all PM subtrees. The PM subtrees update their ,
copy of WM.
It is easy to see that step 1 is a compute step, step 2 is an aggregate step and step 3 2

is a broadcast step. The three steps are repeated until the goal condition is met, giving
rise to a standard (CAB)* algorithm. The tree structure of CAB algorithms is the inter-
connection structure of the entire machine. With fixed size subtrees for each rule, the
depth of the tree is logarithmic in the number of rules, the expected bound for CAB

algorithms.

Select and Act

PM Level

WM Subtrees

Figure 2-9: DADO Processor Structure v

Yy l:lAL.. .

AR

LR T S LA -*" AT RANGER "'}.' - L N T R Ty L - - iy .
o . SIS AT s S T Tl
RIS, e e o L T O L R S R G K A A

s W% Uy Wy A%, o 7§ LAl L)

VT U YT e Ty

34

Gupta describes implementing the OPSS5 production system on the DADO [39]
with three different algorithms. All of them have the same (CAB)* basic structure. The
differences are found in the compute step and in the information used in the aggregate

and broadcast steps.

2.4. A Method for Improving Speed

One of the reasons for studying paradigms is the applicability of a technique to
several algorithms using the same paradigm. One such technique for CAB algorithms is
a m2" d for improving speed. The CAB algorithms which can "::2 this method have

the - >wing characteristics:

1) run time is dominated by the aggregate and broadcast pha compute times
less than O (log n), often times O (1)),

b) consecutive compute phases do not require information from the aggregate and

4 b broadcast phases between the compute phases, and

1 5 ¢) extra computation phases will not result in invalid results.

:ﬁ The speedup method changes the algorithm to balance the time in the compute phases
= with the time in the aggregate and broadcast phases. This is accomplished by repeating

:';; the compute phase several times before a single aggregate-broadcast phase. An algo-

%’E rithm originally described as (CAB)* now becomes (C'AB)", where m = H—]
. ;, Assuming that the time for C ! is less than or equal to log n, the time for an aggregate-
A *‘3 broadcast phase, the total time for the algorithm is O (mlog n) instead of the original

3{,}; time of O (klog n).

.\“ For the Jacobi iteration algorithm, the compute time is O (1), allowing [=log n,
$ yielding total time of O (log n) if k is smaller than O (log n) or O (k) if k is larger than
§$ O (log n). This method also works for the SOR algorithms. The numerical integration
:;::: algorithm can make use of this by spending O (log n) time integrating its own section

:.: before reporting on the area or the lack of sufficient accuracy.

i

)

O

[

el

'||' (1
ant .~ . ; .
ey et iy el

‘.""-‘-'.l"" '.D A0 l.’l.vgl a,l'! Vo'aly l’:‘:‘! W o.i.:.l's.

3 R A e RO RN) OO AN) O OO NI AMOCOND
B O T T X R N L R D e S

.

-
-
- -

ld-'rvi

o
X
Ry
0
:fl 35
! There are CAB algorithms for which this technique will not work. The conjugate
".‘ gradient algorithm (34] computes an inner product during the aggregate phase and the
5:‘ result of the inner product is required for the next compute phase. It cannot use this
A’:L technique to decrease execution time. All of the non-numerical algorithms we have seen
;‘. '5 had either long compute phases, like the topological sort, or they needed the results of
:: the aggregate and broadcast phases before the following compute phase and thus do not
é - benefit from this technique. '
W 2.5. Contraction of CAB Algorithms
:,' Another technique that has applicability to CAB algorithms is contraction. Due to
:’ the fact that most CAB algorithms have a tree interconnection structure as part of their
_,,: aggregate and broadcast phases, we look at how to contract trees, specifically binary
23 trees. These results are applicable not only to the CAB algorithms but to all algorithms
. '3 that employ the binary tree interconnection structure. Also, since some CAB algorithms
{ - have compute phases using other than tree interconnection structures, we look at the
:'- problem of multi-phase contraction.
i
A 2.5.1. Tree Contraction
j As representative of the binary tree algorithms, we choose to study the contraction
; of the maximum algorithm. Each process in the tree contains a value. Leaf processes
,"f send their value to their parents. Internal processes take the maximum of their own
' value and their children’s values and then send the result to their parents. The global
. maximum will be computed at the root process in O (log n) time. As stated before, we
. are focusing on the communication for evaluating contractions. The communication in
the maximum algorithm requires one message over each edge. Therefore {
E K (maximum) = 1, the communication "cost" of the maximum algorithm.
: E We are going to compare the contractions shown in Figure 2-10. In Section 1.3 we !
i E saw that we need contractions that yield bounded degree graphs and that the contraction }
" in Figure 2-10a, when extended to p processors, yields a binary tree.
&
,5 1
°
B B T 0 oL N A IR e

wewww e ——— e n vy

U-------'--.“"-m"-‘-r-_j

|
|
I
i

36

Figure 2-10: Tree Contractions

The contraction in Figure 2-10b yields another bounded degree graph. This con-
traction is derived by the recursive tree construction given by Leiserson[S8].

Leiserson’s method of tree construction is shown in Figure 2-11. Given two instances

2 nodes

4 nodes

F 8 nodes

Figure 2-11: Leiserson Tree Construction

P! -

-

RS 0N
,l'gi\'a‘.l':',i! ’

Rt v"'-\q'.,

04 s e by 0 0
AR R T)

RO SO

ARSI S many 0 A
¢ 8,000, U 0, 0% g My VI 0 e e it Mg B 0 0 b OOOIOOOND OUOU0
R T R R N R ST IR Bt RN KRR RO RS N

ju' if:ﬁ‘

e

gk
® »

i)

':::'.

e

e

n

{I .\ 37
:;s.. of a tree each with an associated free node, shown by the label "F" in Figure 2-11, we
U .

E: a:' can build a new tree and an associated free node. The new edges are shown by dotted
W . .

.;:!u": lines. This produces a linear area layout in the plane with several desirable pronerties.
') The contraction is performed by placing a sub-tree and its associated free node in a sin-
1

:" ~ gle processor. This contraction produces a new graph where nodes have degree of at
':.E' most 3. The new graph is not a tree.

1.5%0.8

{ Consider the contraction in Figure 2-10a. Let us call this contraction
;_133? M (maximum p), the contraction of the maximwm algorithm to p processors. Each
::'.:{ edge in the original algorithm requires one message. Each edge in the smaller graph
B N

':'- contains 4 edges from the original graph. Since we have only one connection between
oo the physical processors, we have 4 messages for each edge. For an arbitrary n (size of

original algorithm) and p (the number of processors) we have

h %

halrs

“rhl
Y&

“{L'..'.“ . .

K (M (maximum p)) = ﬁ

Sy,

A similar contraction to Figure 2-10a is touched on by Berman and Snyder[11].

Ry

Figure 2-12 shows this contraction. This is achieved by "folding" the tree. As Berman

- {'4

and Snyder notice, this contraction, M ,, has K (M y(maximum ,p)) = ;';- This is also the

same contraction shown by Bailey and Cuny as the result of folding their graph embed-
V5 dings [9].

ot

LA AN

Figure 2-12: Berman and Snyder Tree Contraction

il i s e

%
N -.
'b
“

LR

|.'...':.‘|"‘I...|' |"'

' (nidntinitieitietiitiinbuiaheiahdshdnisiahinisinkinknbitiinh At etk il T T W W i O o P W T T W T O RITRITRTTe
b

RNTA

ot

e

\ oY

N 38
::,'s \ Consider the contraction in Figure 2-10b. Let us call this contraction
$J'2 M 3(maximum p). We note that each edge in the smaller graph has at most one edge
e, from the original graph in each direction. For an arbitrary n and p we have
) K (M y(maximum p)) = 1.

&g Our experience from Chapter 1 tells us that since M5 has a smaller X, it is the
:d preferable contraction. Both M, and M ; depend on n and p for their cost. But, M 3 has

a constant cost, regardless of n and p. In fact, this contraction is optimum for all tree

; :ﬁ algorithms that have identical edge weights and unidirectional communication (all
: ' ~ toward the root or all toward the leaves).

':’ LEMMA 4: For complete binary tree algorithms with equal edge weights, and uni-
‘.“j.z' directional communication, algorithm contraction based on Leiserson’s binary tree lay-
t;z out technique yields an optimum communication cost measure.
ﬁ' PROOF: We first look for a lower bound. Since the tree is connected, the physical
o0, processors must be connected. This requires at least one incident edge for each physical
:‘ processor. The smallest cost K (M (A p)) would be where a maximum of one logical
edge was mapped to a physical edge. Therefore, K(M (A p)) 2 K(A), the cost of the
3) original algorithm.
? % For the mapping M;(A ,p), each processor contains a complete subtree and an
2?5'2 "extra” node. The extra nodes are used in the tree above the subtrees contained in the
.“ processors. Therefore, there at most 4 external connections. Of these four, two edges
i ﬁ‘: are used to receive(send) data from(to) the children of the extra node, and two edges are
:.:: used to send(receive) data to(from) the subtree’s and the extra node’s parents. Since the
. root of the subtree and the extra node are not at the same level in the tree, edges with

iy

data flowing in the same direction can not be connected to the same physical processor.

(It is possible to have two of these edges over the same physical edge, but the data

P

LS

X

moves in opposite directions.) This gives the same weight to the physical edges as the
® original edges. Therefore, K (M3(A p)) = K(A), which is the lower bound. O

e R R e

~ - XS

T

s

-
"

o Y

)
)
)
'
¥
)
{
L)
c

l.'l

tln.

|.‘.". ." ‘.

e

39

Notice that this layout technique will place two logical edges in the same physical

edge for some physical edge. For tree algorithms with bidirectional communication, we
then get K(M4(A.p))=2K(A).

To demonstrate these results, the maximum algorithm was programmed using the
Poker paralle] programming environment [81]. Both M, and M; were programmed.
(The program for 64 data elements on 16 processors is included in Appendix A.) Each
contraction was timed using 4 and 16 data items per processor with 4 and 16 processors.
The results of these timings are given in Table 2-1. The first two entries for each map-
ping are the timings for 4 data items per processor. The last two entries are the timings
for 16 data items per processors. These numbers are the average time of S runs, each
run on different data. Both mappings were given identical data for each of the S runs.
Each "tick" represents a microsecond on the 64 processor Pringle. Integer assignment on
the pringle takes about 25 ticks and sending an integer to an adjacent processor takes
about 300 ticks assuming both processors are ready at the same time to complete the

communication.

This data shows clear superiority for M 4. With 4 data items per processor it was
2.6 times faster for both machine sizes. With 16 data items per processor it was at least
5.2 times faster. Although these few number of data points do not establish constants of

proportionality there are a few points of interest. First, consider the increase in time by

Table 2-1: Timings of the Maximum Algorithm

Maximum: ticks for n (items) on p (processors)
Contraction 16 on 4 64 on 16 64 on4 256 0n 16
M, 11484 19945 53341 63536
M, 4307 7627 8838 12186

"M" ";:"-. ‘f"‘:h'. ot !':“2 "’- X :‘. o .".."h"'o" 31 ..' 'u"" 'ﬂa’ " .'0' O :'n'- """i"‘o""‘""' "' et

N

'
... A\l !. ".

Sl SWVMMN MV SN g m sl oo o b, A 20

¥ AR

0
Q’. 0!

40
changing the data size and machine size by a factor of 4. The increase in time for M 3 is
3320 for 4 data items per processor and 3348 for 16 data items per processor. The
difference between these increases is a small 28 ticks. But for M these increase is 8461
and 12195 respectively, with a difference of 3734 ticks. Also, consider the time for 64
data elements on two different machine sizes. The time for M 5 increases by a factor of
only 1.2 on the smaller machine while M , increases by a factor of 2.7. And finally, it is
interesting the effect of increasing the data by a factor of 4 and using the same machine
size. For M, the times increased by the factors 2.1 and 1.6 for 4 and 16 processors
respectively. For M | the times increased by the factors of 4.6 and 3.1 respectively.

2.5.2. Multi-phase Contraction

The previous results on tree contraction are useful when an algorithm has only the
tree interconnection structure, for example, the CAB numerical integration algorithm.
Many of the CAB algorithms, for example, the Jacobi iterations, have compute phases
using a different interconnection structure. It is not obvious how to contract multiple
phases. For CAB algorithms, we usually have only two phases, a tree interconnection
structure and some other interconnection structure. More generally, it is difficult to con-
tract algorithms consisting of multiple phases where each phase has a different intercon-

nection structure,

There are several approaches that can be taken for multi-phase contraction. Each
of them assumes that different things are important and may be useful in different algo-

rithms.

In the first approach, each phase of the algorithm is contracted separately, yielding
the best results for each phase. Each phase may then have a different mapping from log-
ical processes to physical processors. Therefore, data may need to be moved between
processors due to different mappings. This adds data movement phases between the ori-
ginal phases. Because of these data movement phases, this is reasonable only for algo-

rithms which save more by the individual contractions than it costs for the added phases.

. L
L A A LA
4% 3% WPy W%, ?’.v.

A w aAag -‘q - .-) DA -‘- ‘-‘.‘4 - VALY ,- " AN . BN . > SO
by a8, Ql';!l’o.o.l'n!lﬁ!I'&l%.l!‘,l'_v'.!!-!l‘ B A I |!i'_:&‘n’0°lfl AR, ‘:!‘!:'.“n"!c.ﬂ’n"?h‘ h‘!o.i!o- !l.‘!o!‘m.!:?"

e i g g g R s
-
A NREE FAAA

'

ok 2%aF

i T
p]

= gV A% B

SLASA N e

. K PR LYY Lo Y
IR)i,

@O NANANSANG

- s g e e .
.. A N

RS

ll‘;’{

o
Ry
A - ~ oga (
-"t.\ b, I'n'l.c.l.- ‘ I'l.‘\'u'

‘ @ - I
'::!'!:'- X ottt Q::‘.:'i:o XK

41

In the second approach, the entire algorithm is considered a single phase. The cost

of the algorithm is calculated using the union of all phases’ interconnection structures
and weighted for the number of times a phase is executed. The resulting contraction
makes a single assignment of logical processes to physical processes. No extra data
movement phases are required. It is possible that every phase is not contracted
optimally. It still may be less costly this way than adding the extra phases as in the first

approach.

In the third approach, one phase is chosen as the "primary” phase. Contraction is
performed for the best results of the "primary" phase. The other phases must use the
same process to processor assign—ent as the "primary" phase. No extra data movement
phases are required. Sometimes, the secondary phases are allowed to change their algo-

rithm to match the process to processor assignments.

Because CAB algorithms usually have commutative operations in the aggregate
and broadcast phases, the third approach is better. The algorithm is contracted to give
the best results for the compute phase. For the aggregate and broadcast phases, the pro-
cessors are connected up into a tree. Each processor then computes . *ally yielding a
single value from each processor to be used in the aggregate phase. The broadcast needs
only to send each processor the broadcast information, not each logical process. This is
the method used in published algorithms for the Jacobi and SOR algorithms [1].

. . - -

00 ORI LD
A O R A A AT AR WM N l".'n"'a"'a"“:') O"g"f'. I':\.,'...o"l

I 0 b0 L0 LSS LEM LA I\ 2 L) S

KO OQGQOROOND
.!?0.0'9,:?',tf‘.\',i'o?lfo!':v‘t.-‘ﬁ.-’0’

B % ’
I

e e e

s - .y WA TR EW Lol Al gt & 0l 0 & s o W R W RO Uy ST T T W WU W WO W W R VT

CHAPTER 3

L e am i

ey
x'f

L.

LR G g

The Divide-and-Conquer Paradigm

F 4

i

Y

Divide-and-conquer is a well known paradigm in sequential algorithm develop-

"

:*: ment [3,46,77]. A problem is divided up into two or more smaller problems, called
'.:E; sub-problems. Each of these sub-problems are solved independently and their results
4‘3.: are combined to give the final result. These sub-problems are just smaller instances of
.J the original problem, giving rise to a recursive solution. Processing may be required to
‘.::1": divide the original problem or to combine the results of the sub-problems.

*};':' In sequential computation, the sub-problems are solved serially. After dividing up

-~ ' the original problem, each sub-problem is completely solved before starting to solve the
%;:' X next sub-problem. After all the sub-problems have been solved, the results are com-
:: :'k bined to yield the final solution. A tree structure is often a result of sequential divide-
2 and-conquer. For example, the quicksort algorithm [41] produces a tree of sub-

?) problems.

'.; In parallel divide-and-conquer, the sub-problems can be solved at the same time,
g given sufficient parallelism. The splitting and recombining process also makes use of
[] parallelism. Because the data is distributed in the processes, these splitting and recom-
gg?:' bining operations may require process to process communication. Because the sub-
'\: :’ problems are independent, no communication is necessary between processes working
'. on different sub-problems.

?: E In this chapter we look at several divide-and-conquer algorithms, showing how this
::, : paradigm is used in parallel algorithms. We also investigate the relationship between
_ i parallel divide-and-conquer and the binary n-cube. And finally, we consider contraction
, 7 of divide-and-conquer algorithms.

)

ot

>

% |

L)
l.' U
3

.“l?"i o

O, e SXERI SN T A PO MM PN X RN M ORI X)
) Tt ity X TR TV Py T i% T 1Y 2
Wt ,n."h‘,'.h‘"-‘f:-"h"s‘ﬂ'.'t.‘..tf‘?Of‘?lf‘ftt‘!'t‘?oz'?i,‘fcg‘ft‘."0:"3:‘!«:‘?"'!:‘&.' Sl it RIS i!c.'!:'.lfu.'!o,

Ll MONLIFAL N MO SO I

CrOOGO00] OO0
RN

«

LY

.:.‘.;‘;l‘ o '

Pl
Ll Sy
P A A VL]

=

Rpapirie
.‘."It'-‘:.
[a & &

@'~
4 >

A A s s

B

= m

Ihe X2

-
-

Wl TSR 3
o'l.:‘I!Q lm‘t. w '*'3. L ", :,

.................

3.1. Batcher’s Bitonic Sort

As the first example of this paradigm we look at Batcher’s bitonic merge sort [10].
The problem is that of sorting n data items using n processes. We assume that n = 2%
for some &, and that each process initially contains one data item. The sort should leave
the smallest data item in the process labelled 1, the next smallest data item in the process
labelled 2, and so forth.

This algorithm contains two instances of divide-and-conquer. Figure 3-1 shows the
data exchanges required by the algorithm. The horizontal lines represent a single pro-
cess and the arrows point to the process which keeps the larger data element. The first
application of divide-and-conquer is shown by the box labelled g in Figure 3-1. The
data (processes) is divided in half. The first half is sorted increasing and the second half
is sorted decreasing. When this is completed, the data is in a bitonic sequence. Notice

that no processing is required to divide the data.

To combine the results of the sub-problems, the algorithm must tum a bitonic

sequence into a completely sorted sequence. The solution to this problem is the second

@ (b)

ol o e e

5~ooo\la\uu>ww.—

Fod o o bs{ s s =

L]
y
X3
-
)
y
2

== =S R . .

M HH

Figure 3-1: Bitonic Sort Data Exchanges

.................

[/ "_' v
W
X"
::
-
o2 44
{ o .
application of divide-and-conquer. To "sort" the bitonic sequence, the algorithm divides
h ,E the original bitonic sequence into two bitonic sequences such that the first bitonic
o sequence contains the data for the first half of the sorted sequence and the second bitonic
| sequence contains the data for the last half. The same process is then used to sort the
Y smaller bitonic sequences as shown by the box labelled b in Figure 3-1. Notice that for
this application of divide-and-conquer, the splitting required a comparison between
‘l

corresponding elements of each half. Also, this comparison is the only communication

,-:‘, between the halves in the entire sort algorithm.

.-'.;' The full communication structure for this algorithm is the binary n-cube. This can
? . be easily seen by projecting the horizontal lines in Figure 3-1 to a point and retaining the
;; vertical edges. It is also easily seen that the bitonic merge sort takes O (log? n) time.
§_§ This is due to the second application of divide-and-conquer taking O (log n) time and
' E: being used in each of the log n sorts.

(" Notice that this algorithm is not a parallelization of an optimal sequential divide-
X

:: and-conquer sorting algorithm. If this parallel algorithm were to be run on a single pro-
:: cessor, the run time would be O (n log? n). In fact, it is not an optimal parallel sorting
algorithm because there are O (log n) parallel sorts [5]. However, the O (log n) parallel
'- sorts have very large constants making Batcher’s sort the best practical algorithm for
:- reasonable size sorting problems.

3.2. Matrix Multiplication

Our next divide-and-conquer algorithm is the multiplication of two dense nxn

matrices,

AB =C

L@ NNNSNENNO

"
a s

using n? processes, and assuming n = 2* for some constant & [64]. (A version of this

-

'\' algorithm for shared memory machines was sketched by Horowitz and Zorat [45].) The
-~

o processes are viewed as an nxn array where the processes are labelled PF;; for
o 1<i,j<n. The matrices A and B are initially distributed in the n 2 processes such that a; i
¢
e

"

[

l'

¢

A A TR A O O ML N) DO OO MO MO M A DAL OB OL AN OO OIS
Ju G n'.‘-:!'c'! ':.:'!':".‘u-.‘u"'&‘!‘d‘:“."'.'nﬁ.‘:t W XA !C‘,‘t:',’.!":l'...:, -:\c"!w'lfc'l“p l!:':'.s' -y !.,«‘l‘.q'l'.\'l..:'b‘;'t,étft'\f.'a’_;'t‘..%,.'t’,.'t.“\‘_.'a',&'._‘

@ 2N

Wy s

.
e @

G
s

45
and b;; are contained in PE; j- After the product we have ¢;; contained in PE; -

To begin with, consider the 2x2 case. PE |, contains @, and b ;. To compute ¢ 1,
the values a,, and b, are needed. Similarly, all other processes need only 2 elements
not already stored at that process. To provide for direct communication, a grid intercon-
nection structure is used. The processes then send their a;; value to the other process in
the same row, and their b;; value to the other process in the same column as shown in
Figure 3-2. After this communication, each process, PE;;, has all the data required to
compute ¢;;.

Now consider the nxn case. The algorithm uses Strassen’s [86] matrix decompo-

" . . . n . n -
sition where two nxn matrices can be viewed as two 2x2 matrices of -i-x-z— matrices.
. . g R n n

The 2x2 matrices are then multiplied using matrix product and matrix addition on EXE

matrices.

Let A ;; be the upper left %x% submatrix of A. Similarly define the other 3 sub-

ay ap| by bia| _ | ciz| _ |anbutanba anbutanby
a an| |ba b2 €y €22 anbytanby anbirtanbx

Figure 3-2: 2x2 Product and Communication Structure

L)

" SOy “--.‘,'. “‘ .‘~‘- NS l“I‘I w . .‘:- ¥ .'- M e S I > . N o
B RS (SO e AR M ARt A AU A T G AT AT

T T TR T U W W WU Y W R W R T N W O R A TR TR Y O R W T O DR T U R W W VO W T O TS IR TS Y U R W Y

N e B

R

& SRR LT T ST RV I T T U PO YR TR Y YV R RV PO AT VR IR RO T TR T TR Y O R S Y T AR Y PO T T W R TR TR VR YR TR T T N R Y T wirwtww

\q‘.
N ,
.
o
!'.h-'\
SN
1¥l.f1
.‘:‘:‘
{4 *
: matrices, A 13, A 1, and A »,, the submatrices of B, the submatrices of C, and the subar-
i . . .
- rays of the processes, P. Then A;; and B;; are contained in P;;, 1Si,j<2. As in the 2x2
;‘.'L case, A |; and B ,; are required to compute C ;,. If the corresponding processes in P |,
‘7" and P |, are directly connected (see Figure 3-3), A, can be sent to Py, in parallel with
‘ Cn,
o one communication step. B) can be sent to P ;; using a similar connection scheme in
b \’
o one communication step. The full connection structure connects PE; with both

(PE , and PE_,. With A,,, By}, A}y, and B3 in Py;, C; can be computed by
R zt-z-j ut-z-

K’ n

SRS doing two ZxZ matrix products and one matrix addition. Analogous products can be
e 2 2

[t . : . n_n . . .

‘ .A done using this same algorithm on the other -Z—XE matrices. The recursion will stop

bl

L

[
-

- . - ® 0-.,_
» : w8 et

™ S h5 N .'.ll L
v -":‘.:‘.;‘1 LN {\'

oAy

..:..
g

-
[
r
L)

RN

_l.
AR

-
&

st

Figure 3-3: 4x4 Connections

]

a e R K

B A A T AT o AT AT AT 4 TN A A LA A ST) AN AL TN AN
B R e i e I TR D ol el

' ‘h .y ‘%’N' "". i} f ./ Y’};:»v‘}u‘

47

after k-1 levels when a 2x2 matrix product is done, The matrix addition is performed

element by element.

Each recursion level requires it’s own interconnection structure for dividing up the
problem. The complete interconnection structure, supplying an edge for every commun-

ication in the algorithm on every level of recursion, is the n-cube.

The time required for this algorithm is O (n). Consider the time required by a sin-
gle process. The time for the 2x2 case is #(2) = 2¢, +1,+21,,, Where 1, is the time for a
communication step, £, is the time for a scalar addition, and t,, is the time for a scalar

multiplication. For the nxn case, the recurrence relation for the time is
n
t(n) =28+t +1,+2t (5)

where ¢, is the overhead time for each recursion level. The closed form is
t(n) = Q2n=-2)t.+n-1)t,Hn=2)t,+nt,,.
Therefore the time for this matrix multiply algorithm using n 2 processes is O (n).
A simple modification and the addition of more processes, produces an algorithm
which runs in O (log n) time. This is achieved by evaluating all 8 %x% matrix pro-

ducts at the same time, instead of 4 at a ime. Figure 3-4 shows the connections needed

for an 8x8 matrix product. Each box represents a 8x8 plane of processes. The

0 1 2 3

Figure 3-4: 8x8 Connections for O (log n) Matrix Product

)’ o I‘ "\\4
HCA ARt 2 A IR L R R R A L

ARG

»,

e
(e
.‘.\:
7
' 48
‘?:: % algorithm starts with 12 processes active, represented by plane 0. These processes con-
P
_ tain the original matrices, A and B. The processes communicate as in the O (n) algo-
Mgl : L
,q.% rithm. At this point, each %x% block of processes has two matrix products to compute.
)
E) One of the products is sent to a set of previously inactive processes, represented by plane
W 2. The connection shown between plane 0 and plane 2 has a communication channel for
. -
L each of the processes, connecting corresponding processes in each plane. This doubles
;(. the number of active processes. The same algorithm is used to compute the "new" pro-
13§ ' '
p :: ducts. After the %x% products have been computed, the processes that were sent the
L) N
:f o second product, send back their result. The results of the two products are added element
[
T by element to form the result of the nxn matrix product. The recursion for this algo-
9
?‘3{ rithm stops when a 2x2 product is to be computed. Each process does both multiplica-
b tions and the one addition.
!‘,!‘? To see that the execution time is O (log n), consider the time of a single process in
(A7
:"'s plane 0. The 2x2 case has the same time of r(2)=2t.+t,+2t,. For the nxn case, the
)
:.:'?' recurrence relation is
Y,
* t(n)= 5tc+!a+to+t(§-)
A
[
?;% where constants measure the same quantities as before. This recurrence relation is for
b
HLh the original n ? active processes. The 5. comes from two ¢, s for the original communi-
o
; j(f-’ cation, two r.’s from sending one subproblem to a "new" process and a ¢, for getting the
21: result back from the "new" process. The closed form is
oo t(n)=(5(logn —1)+2)t.+ogn t,+(logn =1)t,+21,.
[J
1 ":;':C n3 ..
ol This algorithm uses > processes. It starts with n? active processes. After the ini-
J. :'.'
R
A.'-':.'I tial communication, the n? processes are divided up into 4, %x—;— sections, each having
i
' N two matrix products to compute. Every process sends two values, its part of one matrix
2%,
product, to an inactive process, thus activating it. This doubles the number of processes.
‘\
s
,i'i
'd

o Wy il o L
e N
--Q. uh- 'l 'u-lu.;

\'-(W, J"‘ [' ,.’i‘.’ g- ,\ \v“id’.‘ LS ,&"f -}'. Y ‘-(1 v, * 1‘1‘\’* -~ '\ 1A
Lo XA .a.l"p'm.-t. 'ﬁ ..&‘ v -Atlolnto ; l‘t. S0 ,h“a‘- Yy ,. (A ru""

.uﬂto!lal

i "A 4
4 0

v

-
(AN oy
[2 A
:'}-“‘-

b 4
o

o

o

.r;.
b i}ﬁ.r

A A e R R R

49
n
2
computed by a "recursive call". This is one recursion level. At each successive recur-

We now have 8, %x problems using 2n2 processes. Each matrix product is then

sive level the number of active processes is doubled. There are logn -1 levels of

3
. o - n® . :
recursion. This gives 26" ~1n2 or =~ active processes at the evaluation of the 2x2

products.

3
What we really have is a single algorithm for mawmix multiply that uses "7

processes and takes O (log n) time. The O (n) version was just a result of reduced paral-
lelism. Again, this algorithm is not a parallelized version of a standard sequential algo-
rithm.

3.3. The Fast Fourier Transform

There are some sequential divide-and-conquer algorithms that parallelize very
easily and produce good results. One of these is the fast Fourier transform (FFT). One
use for the FFT is multipoint evaluation of a polynomial over a field F [60]. Given a
degree N polynomial,

A T
a(x)= Y a;x’,
i=0
multipoint evaluation computes the value of a(;)=A; for each of m points
{o;, 0<i<m}.

By choosingm =N = 2k and o; = @;, where is a primitive N th root of unity in
F, the FFT algorithm computes all A;, 0<i <N in sequential time of O (Wlog N). (Fig-
ure 3-5 shows the sequential algorithm [60].) This is based on the decomposition of

N-1
a(x)= Y a;x'

i=0

into

............

3
A

0]

\)

ot

O

:::::':

g

’..‘n. 50
e .

?:'.0:' Algonthm m(Nva (x)’m’A)

:.:::\. if N =1 then

::::::‘: e Ag:=ag;

et e

» /* spie

;.:'h. n:=N/2;

f:::';: b(x):= n-la i

;:l:"l x): E %t

;‘:v:‘ D‘IE? .
¢ ¢y = Tagxt
J i=0

" sj /* recursive calls */

ol FFT(n,b (x),0?,B);

e FFT(n,c (x),0*C);

N /* combine */

° fork:=0ton-1do

% Ap =By + 0*Cy;

99 Agen =B =" Cy;
g endfor

o endif

Figure 3-5: Sequental FFT Algorithm

ax)=b@)+xc(@)

Sal'eiei'y

where

.

. [

f‘* 5 n-1) n-1)

KX N=2ny=x%b@y)=Yayy', and c(y)= T az, '

) i=0

[

e It also relies on two properties of {®', 0<i <N}. The first is that {@%, 0<i <N} has
W ¥aCY . . ,

;‘\ 3 exactly n distinct elements, {w¥, 0<i<n}. The second is that &/ *® =-w/. This
; o second property yields Aj=a(@)=b(0¥ o/ c(0¥) and
Frf: Ajn=a(@*™)=b(@)-a/c(@¥). The problem is then divided up into two
o .

1 ' instances of multipoint evaluation, for b(y) and c(y) at {0¥, 0<i<n }. Since w?is a
::: n th root of unity, these subproblems can be solved using the FFT algorithm.

e

. ,3 To parallelize this algorithm, the split, the sub-problem solution, and the combine
: are each done in parallel. We are assuming that we have N processes, that g; is initially
e in process i, and that the result, A;, is to be in process i after the algorithm is completed.

)
R)
%

et B 000G ‘i \ AN
LM 9 000 ‘ A0 [T TINRE ' ’
R) l'!’:‘m'l‘t"‘ ORI 0:’-'.-‘:':‘1' RN ’!'t‘?‘.‘.%‘ﬁt“h‘?f;‘0.6!:!.0_. O c.'.:n%?%o\!?u!'é;"‘:v"«'.!". '.':“9"' RCRARRRTRITRARRR l'

..........

Al

51
The split takes a(x) and produces b(y) and c(y). To allow the sub-problems to be
solved in parallel, b(y) and ¢ (y) must be placed in "separate” process groups conform-
ing to the initial conditions. We divide the processes in half and put b (y) in the first half

ekl 2 -

N

" -

and ¢ (y) in the second half. This split is shown at the top of Figure 3-6. In the figure,

,!-?._
FAY

-

each row of processes is the original processes at a different time in the algorithm. The

first row is the original configuration and the last row is the final result. The lines

P

ao aj a, as ay as asg a, (0]

i

‘ﬂA 1.
AL

L

_

",Ar

25 a, as dsg a, as as aq w

2

P T ey

R]
e
A,

[

BZ Bg Co CI Cz C3

-
3
Sl

[+ +]
o
>
—

]

W @ o

A, [a,] [aa] [As| [Ad [As] [Ae] (A7

1
a4y
’Jw‘ A A

Figure 3-6: Parallel FFT data movement

o

Rt P

FL PP IS LA

-
o ¢
-

=

h)
i

ettt

T Y et T TEwrenr T PO
g O T TR YT I Y VORI W WY L2an fag o o4 £o2 W T T WU W O T YT WIrrewor WY Y haud ath a2l ot |
|

52
between rows shows data movement between time frames. To accomplish the split, the
a; values are unshuffled in one communication step. After this data movement, the split

is complete and each half of the processes has an independent problem and therefore can
be solved in parallel.

After both subproblems are solved, the first half of the processes contain the B;s
and the last half contain the C;s. Corresponding processes in the halves exchange their
values as shown at the bottom of Figure 3-6, retaining a copy of their own value. Pro-
cess i in the first half computes A; = B; + 'C; and process i in the last half computes
A,.;=B; - &'C,.

Figure 3-7 shows the algorithm for a single process involved in the parallel FFT
algorithm. The parameter N is the current problem size and i is the processes’ position
in that group of N processes. Figure 3-6 shows the complete algorithm in terms of
communications for a FFT of size 8. Notice that the bottom half shows the n-cube con-
nections. The upper half is the unshuffle connections on blocks with 2k processes, for
l<k<log n. This parallel version of the FFT takes O (log n) time. This comes from the
fact that one communication was needed for both the split and combine steps and that

the recursion goes log n levels deep.

3.4. Divide-and-conquer and the n-cube

As we noticed earlier, sequential divide-and-conquer often is related to the tree
structure. This tree structure is the method in which the data is referenced. Since data
reference in sequential paradigms is related to communication structures in parallel
paradigms, we might expect a single interconnection structure related to parallel divide-
and-conquer. At first glance we might assume that this structure will also be a tree,
which has a communication bottleneck at the root. But, as we have seen in the divide-
and-conquer algorithms studied so far, the n-cube interconnection structure has been

part of or the complete interconnection structure.

$

..
"R
M
T
~

The obvious question at this point is "What is the common feature of these algo-

A

rithms that produce the n-cube interconnection structure?” Is it the divide-and-conquer

&

R

B T T S e Y L N VA A S A S A A0 5
A ot o 1 X i & *‘ $TATI :'ﬁ !.'2.. !'i) »‘!‘» 4)“‘ !'l Y, .'o Al .'Qn .'!‘.“n‘. DN !.!.c 'l A [| X !’0 “,’l- .‘.- N2 J,'!',.." h "" .0-'..|!

s

@

I

K

7"::)

B

ja.l'h 53
)

wa Algorithm FFT(N,i ,a,0,A)

P if N=1then

bt A :=a;

o else

n sl

4 PE unshugte vy < @
e @ ¢ PEunshugne vy

i:%' /* sub problem */

W4y n:=N/2;
{ FFT(n,i mod n.a,0%.B)
ol /* combine */

;::.‘%. ifi <nthen

Syl C <-PEs,,;

PY A :=B +w'C;
- else
",‘ C :=B;

{ ,": P E . -n (_ C;

0') B « PE‘-RE_
v A =B -o'"C;
?"‘i’ endif
A endif
R
::::" Figure 3-7: Single Process, Parallel FFT Algorithm
G
i T paradigm or a combination of the paradigm and the specific algorithms? As we have
o
A ::r_i seen, the interconnections for divide-and-conquer algorithms come from the divide and
3 ‘ »
[::;j combine steps. The complete interconnection is defined by the all divide and combine
-F steps in the entire algorithm. In looking at the three previous divide-and-conquer algo-
¥ ~ 3
:'_\.3 rithms, we notice that the divide step in the matrix multiply and the second occurrence
v :zg: of divide-and-conquer in Batcher’s sort and that the combine step in the FFT require
; ‘ communication between corresponding processes in each of the sub-problems. It is easy
k 3‘:.:3 to see that the main problem’s divide or combine requires the high order edges of the
7. "‘E n-cube. Because of the recursive nature of divide-and-conquer, each sub-problem will
"' require a similar sub-structure, yielding the binary n-cube.

L J
i The other feature that is needed to yield the binary n-cube is that the original prob-
'.,':7 lem starts with all processes "active.” In each of the previous algorithms, the problem is
'
’:: >y

o

:c;'..

)

D) . . .
oyt DR D LA DED ey) N L gty ey ' g .
"ﬁ"-'-'!:-'!h'.h 'l"’o"'o'!h'ﬂ".'t'.h':'f'!:o'.'l.!'l‘-':':.t‘-'l 500 l.‘.'l'qﬂo.:':'.:'l :‘(!!’:’:’l‘!':‘a'l!u'l.?0"9:’&:"::’#:"’:”!:‘. ‘.0'.’:'?'0"'4'!’ 2 .' } n.é 4% :."l\ W

54
distributed in n or n2 processes. All n or n? processes communicate in the divide or the
combine step. As an example of an algorithm that does not start with all processes
active, consider the numerical integration algorithm discussed in Chapter 2. We change
that algorithm to a divide-and-conquer algorithm.

A single process has the interval that needs to be integrated. The process divides
the interval into two intervals and sends one of the two sub-problems to a previously
inactive process. Each active process now integrates its interval using the same algo-
rithm. The recursion is stopr ' ! after the first process has recursed log n times, yielding
n active processes. After th :cursion has stopped, each process integrates its interval
using standard methods. Tt.. combine steps are then adding the areas of the two sub-
intervals or recording that they are not accurately integrated and added to the list of

sub-intervals needing more processing.

Figure 3-8 shows the communication links for n = 16. The initially active process
is numbered 0. Processes activated by the ith level of recursion are numbered {. Notice
that this is not the binary tree one might expect, but a "tree” constructed from edges of
the binary n-cube. Processes labelled i have all binary n-cube connections of order
logn =i and less. Notice that this is also the same interconnection structure found in

the "3rd"” dimension of the O (log n) matrix multiply.

2 \2\

4 4 4 4 4 4 4 4

Figure 3-8: DAC Integrate Connections

55

‘év}:. 3.5. Connected Ones

D%

"- Not all divide-and-conquer algorithms require the binary n-cube interconnection
!% structure. Stout discusses several divide-and-conquer algorithms for image processing
t

N [85]. One of these is the algorithm for connected components for image data, some-
0l .,"

fij times called connected ones [62,72]. The divide-and-conquer strategy used to solve this
i

} ;:: problem produces the 4-neighbor mesh.

(Given an nxn black and white pixel image, each connected set of black (or white)

i\

pixels are to be assigned a unique number. Two pixels are connected if they are neigh-

PUNAQLN

o e e e

:,':‘ bors using either the 4-neighbor or 8-neighbor methods. The divide-and-conquer solu-

:’\" tion takes the image and divides it into 4 quadrants, solving the connected ones problem
“ for each quadrant independently. Once they are solved, only the boundaries with other
‘ -j* quadrants need to be examined to find components that cross the boundary. The results
' 7’.‘7.:: of this border examination is a graph connected components problem where the vertices
{ o of the graph are components in each of the four quadrents and the edges are defined by
' ;ﬁ: having the components adjacent on the boundary. The solution to the graph connected
; 'E:a components provides the final labelling.
, For a parallel implementation, we use a nxn process array where each process
::‘_-J contains one pixel. The division into quadrants provides four independent problems to

E;:;. be solved in each %x% sub-arrays of the processes. After the four sub-problems have
.,v_ been solved, the boundaries need to be examined to find components that lie in two or
R -E% more quadrants. Adjacent processes on the boundaries exchange information as shown
: ﬁ::f in Figure 3-9. It shows the connections required for the final boundary exchange for an
:‘ 8x8 image. These boundary processes now know which components in each quadrant
:’.'\i are adjacent. This information is a graph with O (n) edges and O (n) nodes. The nxa

E-‘: processes then solve the graph connected components problem. Using the solution to

- the graph connected components, each quadrant corrects its label. The complete graph
‘g for all boundary exchanges is the 4-neighbor mesh. The algorithm used for solving the
SS 5 graph connected components adds other edges.

3

®

DR R O T IR ﬁmmmmm

e e o

k'llll)‘«,_

b

AT (@ D

-W.MJ—JJ

56

Figure 3-9: Connected Ones Communication

Nassimi and Sahni [62] provide a complete algorithm using only the 4-neighbor
mesh that runs in O (n) time. Prasana Kumar and Eshaghian [72] give a sketch of the

algorithm for a mesh of trees that runs in O (log* n) time.

3.6. Contraction of Divide-and-Conquer Algorithms

We would also like to apply contraction to the divide-and-conquer paradigm.
Since we have been applying contraction to specific interconnection structures, a natural

interconnection structure to study for the divide-and-conquer paradigm is the n-cube.

The first algorithm we will consider for contraction is the O (n) matrix multiply
algorithm. To be able to talk about the contraction we need to be able to talk about the
n-cube. An order k n-cube has 2% processes. (See Figure 3-10.) We assume that the
processes are numbered in a row major order. Each process is an order 0 cube, each
pair of processes, 2i and 2i+1 is an order 1 cube, and similarly for each block of 2
processes for 1Sj<k. An edge is an order k edge if it connects corresponding
processes in order k-1 cubes and therefore connects processes whose numuv: Jiffer by

2k-1,

’ 817200, 08, Co s
Nyt By -';"-"i‘#'-’!‘!‘#g‘ﬁ.‘f’l' !

57

0 1 2 3
4 5 6 7
8 9 10 11
NS
13 14 15

A S

Figure 3-10: An Order 4 N-cube

The O (n) time matrix multiply algorithm runs in an order 2 log n cube. Since the
processes are numbered in row major order, the matrices are stored in the processes in
row major order. The longest edge connecting processes containing the same row of
data is an order log n edge. To identify this edge easily, we call it the order k edge.
That makes the longest edge connecting processes in the same column an order 2k edge,

the longest edge in the order 2 log n or order 2k cube.
To find the cost of the matrix multiply algorithm, K (CMM), we need to find the

edge with the most messages. At the first level of recursion, the order k and 2k edges
were used to send a message each way. This is the only use of these edges in the algo-
rithm. Therefore, w(e) =1, where e is a order k or 2k edge. At the second level of
recursion, two matrix products are computed using the order k-1 and 2k -1 edges. Each
matix product sends one message each way on each edge giving w(e) =2, where e is a
order k-1 or 2k—-1 edge. At level / of the recursion, w(e) =2'"! messages over the

order k—(/-1) and 2k—(/-1) edges. The recursion stops when we have order 2 cubes.

This is at the log n level of recursion. There are % matrix multiplies done by order 2

cubes. These order 2 cubes use the order 1 and k+1 edges. Each matrix multiply sends

%S9

L

WS
J.\

T
- ’\
.~\
N

A

.
\
[N
-,

L

Tl A
[N

R
[

v
<

A} &4) ~x, [
VAN ;". AR AN
A A AL

L

v
o
Y

770 @ Ak
L

-
o

v
[d

P

[
i
A0S
o

o', NP
AL
?I..,Q q"!:’l,

W Pt

D D A I M N LTI P i TR o, e, Tt
C"‘:"‘l O ;';\':'.o'l.q'l’t'l\".q‘l,!'.f;‘l..o .1'..:'0?.':,«"‘.,‘3!:‘.‘:'.’:'.’. .Y:C._.O.‘:.‘.‘:I:‘_-.d. ~':9:'0‘.:'n‘:'09!':‘:'=?:% ’qe_a’:‘l.’.'.\. ’.:]l'..!::g'.’q.'.i

58

1 message each way giving w(e) = -’23-, where e is a order 1 or k+1 edge. Since this is

the largest value, K (CMM) = -g-

Consider any contraction, M(CMM p) where p =2™ for some m <2k.

2
M (CMM ,p) will map %— logical processes to every processor. This allows us to put a

2
cube of order log [ﬂp_] =2k~m into each processor. The processor-to-processor con-

nection graph is also a cube and is of order m. Each processor-to-processor connection

2
supports "7- communication paths in the original graph. The real question is which

sub-cube do we map to each processor. The cost of the contraction, K (M (CMM ,p))

2
will be "7 times the maximum w (e), where e is mapped to a physical edge. If e is
3
crder ! or 2k +1 from the original cube, K (M (CMM p)) = %p—.

Consider the contraction that maps the edges of order 1 through [}_/cz;m_l and

2

order k+1 through k+ lz il J into internal edges. (This coalesces square blocks of

processors when the cube is laid out in a row major order as in Figure 3-10.) This makes

the edge of order k+ {Zk —n J+1 the edge with the most messages. This edge is used by
2k-m .

level k- — of the recursion. From before we know that
2%k-m

2

k—l J—l e nNp
wie)=2 =—2&. Therefore K (M (CMM p)) = —2—p-’3-. Clearly, this con-

traction is better in terms of the number of messages over the busiest physical edge than

any contraction that does not keep the high traffic logical edges internal to a processor.

o

0 4% ¢
it

U0 W)
PO

59
By contrast, let us consider the Batcher bitonic merge sort. This sort runs on an
order k cube to sort n = 2* elements. The final sorting will have the smallest element in
the first process and the largest element in the last process. Figure 3-11 shows a graphi-
cal representation of the algorithm. (This is the same as Figure 3-1.) The arrows
represent a data exchange and a compare, leaving the larger number at the end with the
arrow and the smaller at the other end. It is obvious from the figure that the order 1 edge
has the most messages. Therefore, K (SORT) =log n.

Again, to contract this algorithm, we see that we want to assign a sub-cube into a
processor. Consider the contraction M (SORT p) where the edges of order 1 through
order log p are mapped to internal edges. We are assuming that p =2™, for some

m <logn. This contraction assigns the busiest logical edges to be internal edges.

These edges carry log n—log p messages. Since each processor contains -3 logical

processes, K (M (SORT p)) = n(log n-log p). Any contraction that does not map
p

these first log p edges to internal edges will have a higher communication cost. These

results agree with and explain the results of Hsiao[47], even though his final aigorithm

¥

Ll ol | bed b e e

e] e e | €] €] e

)
y
)
'l
2
¥
?

SO RGOS0 da U AW —

Figure 3-11: Batcher’s Bitonic Merge Sort

..»". Y T W T Y P T TR YR TR TR BT R T PR BT TR Y M R TR TS U T T N U T P LR Y P T T AW TR VTR LW U T T L T LR LW LT TR U W U VW U W UTW TR W W W O ey

B was embedded in a grid instead of another cube.

Y In comparing the contractions for matrix multiply and Batcher’s sort, we see that
the same size cube is mapped in a different way when mapped to the same number of
e processors. The busiest edges are different for the two algorithms, thus, the contractions
oAy are different.

R b Ul
A

R

o«
EN

Ne s
R AXAR

RANRRA
L] ." .‘l ‘.l ll'

)
lr?‘v‘-’l.f?
J‘,JJ ML) 1

o 4

AR _Q’Hrf -

A d

-

s '
z .v;:’.‘-‘l.)
F AR "

P

..",'.

OO

.‘i.‘l'..’-. N

P s
. YU

Pk

« ¥y

.f-?"*a(“‘.-ﬁ “u, \ RN ORI "#-"b- W n : ,» - - 'y--.r .ﬂ‘\-- ., g .-.‘-r 1...‘ \ 'y e T
R e e R ity NGO,

CHAPTER 4

The Pipelining and Systolic Paradigms

Perhaps the most widely used paradigm for nonshared memory parallel computa-
tion is the systolic approach [5S]. Although definitions of systolic computing have been
provided by the inventors {53, 58] and others [59], the concept remains imprecise. We
present the pipelining paradigm and show that the systolic paradigm is a special case of
the more general concept of pipelining. We examine the paradigms using examples of
both systolic algorithms and pipelined algorithms that do not seem to meet all of the cri-
teria of the systolic definition. We conclude by considering the contraction of pipelined

algorithms.

4.1. Pipeline and Systolic Definitions

Pipelining is a well known technique used in hardware design (8, 16]. These pipe-
lines, by definition, exhibit parallel processing. Most classical pipelines are linear, hav-
ing one stream of data that visits all processors in succession. We broaden the pipelin-
ing definition to include multiple data streams that may interact. We also want to look

at the algorithmic structure of these pipelines, not their hardware implementations.

The key paradigmatic concept in pipelining and systolic algorithms is the decom-
position of the problem into subcomputations that are assigned to dedicated processes
with the data "flowing” through the processes, visiting all or an appropriate subset of
processes to complete the computation for that input. In addition, systolic algorithms
are expected to exhibit additional properties: locality of communication, a regular com-
munication structure, and have only a few different types of simple processes. These
extra properties come from the desire to implement the systolic algorithm directly in
custom VLSI. The locality of communication requires that two processors which are

directly connected must be O (1) distance apart. The other properties are desirable for

I' l"\."' I‘ l. I'
et

PR

i i e e it e g g e S NS OW O T
Yerowwr ey T BCET STV Y S w—

62
the ease of implementation.

We can again consider the execution time for members of the paradigm regardless
of the algorithm. The cost, /, called latency, is the longest time required for a single
piece of data to flow through the processes. This is the minimum time for completion of
a pipeline algorithm. The number of input groups, ¢, gives the amount of data that needs
to be processed. Generally, these two measures determine the running time of O (/+¢).

4.2. Flow Test

The property of flow not only gives these types of algorithms their names, but it
seems to be the property that distinguishes them from other parallel algorithms with
similar properties. Specifically, in Chapter 2 we described numerical CAB algorithms
exhibiting many of the properties of the pipelined algorithms. The Jacobi iterative algo-
rithm was decomposed into many small (approximation) subcomputations, each process
was specialized (to computing the voltage at a point), the communication was regularly
structured and local, and there were a small number of processes (boundary, source and
interior). But such algorithms are not normally designated as pipelined or systolic.
Assuming that this observation is a reflection of the style of computing and not simply a
statement about the historical order of the development of the Jacobi iteration and sys-

tolic computation, then what seems to be lacking in the Jacobi is the concept of flow.

The claim that the communication of the Jacobi algorithm does not exhibit flow
and that, say, the Kung and Leiserson systolic matrix multiplication algorithm does is
obviously a statement to which not all researchers would subscribe, but consider the fol-
lowing "flow test” which systolic algorithms generally pass and the Jacobi fails:

Flow Test [656]: Select an arbitrary communication edge and "radioactively tag”
a single transmission across that edge. (The concept of radioactive tags is due to
Cuny and her students, where it is used in debugging parallel programs [21].) As
the computadon progresses from the time of tagging, let all values computed
with one or more radioactive values become radioactive. Then define the "con-

taminated region” as the set of processes and communication channels touched

> R o, e

S
N

J".:')‘.)".'.’J A

Ly
)"

A A AT
S

iy 8
.l l‘ & ..
LR,

63
by some radioactive value. An algorithm passes the flow test if the edge over
which the initial value was transmitted is on the boundary of the region; other-
wise it fails the test.

Clearly, the Flow Test captures the concept of flow in that the tagged value "flows out”
to define the contaminated region. The Jacobi algorithm fails the Flow Test because a
process that receives the radioactive value will be sending out a radioactive element to
its four neighbors, eventually contaminating the entire process array, regardless of which
was the originally tagged edge. When it is presented, we will see that the Kung and
Leiserson band matrix multiply algorithm passes the Flow Test. The Flow Test is not a
perfect test, since some algorithms generally called systolic will fail, e.g. certain linear
arrays such as the band matrix-vector multiplication and the band lower triangular linear
system solver of Kung and Leiserson [52], but it does seem to identify the presence of

flow.

4.3. Systolic Algorithms

We start first with the systolic algorithms. They are good examples of several
aspects of pipeline algorithms besides being systolic. For each algorithm, we show the
interconnection structure, describe the algorithms, and apply the Flow Test to the algo-

rithm.

4.3.1. Band Matrix Multiply

One of the first systolic algorithms developed was the band matrix multiplication of
Kung and Leiserson [52] shown in Figure 4-1. The algorithm multiplies two nxn
matrices, A and B, with band widths / and m respectively, producing C. The processes
are organized as an /xm hex-connected array. These matrices flow in different direc-
tions through the processes. To produce the correct result, the placement of the input
data is very important. Since all data items move at the same time, there must be two
"empty" spaces, or "bubbles,” between the items. This insures that the correct data items
meet at a process, €.8. dy, b1y, and ¢, in the figure. The C values are initialized to

zero as they "enter” the array and therefore no input is required. Each data path can be

>

; ang A A A A A A A by

f i
%, :
)
e
N9
’S‘AL

o

W
ol

=
15
D
Y
% ..J
’
3
o2 3 ‘n €13

;}2 Figure 4-1: Band Matrix Multiply

ALY
s
- considered as a pipeline that interacts with the other pipelines. Notice that the results do
3:"{' not exit from the end of the input pipelines, but from output pipelines that cross and
o o
A interact with the input pipelines. The time required is O (n).
1

'
)
Pt This algorithm passes the Flow Test. Let us tag a,; as it crosses the edge coming
o . - - :
R o into the process containing ¢, in Figure 4-1. The values a5,, b, and ¢, will meet at
L) . e . . .
: the process containing ¢ ;. ¢, becomes radioactive because it is now a result of an
!

expression containing a radioactive piece of data. Notice that b, does not become

¢!

) radioactive, even though it flows through a contaminated process. c,, contaminates all
W
Y - processes above as it flows up. In a similar fashion, ¢ ;3 becomes radioactive and con-
L
o taminates its column of processes. The final contaminated area is the two output pipe-
.' lines above the travel of a,, and the original edge is on the boundary, and thus the aigo-
Y .
“'.:: rithms passes the Flow Test.
B!
b 4 %
O "

Fyin

i

'y

et S I -

3 S Ut TG PRI DN A O AL, RO LIN R ” TR DO
:’"‘!‘".’Q". .l». (% '2 l"&""’u l"l.- l‘o AR .n L !’y‘(‘, n‘lbl‘!‘k l'! .\.i.. 5 'A - I'!'l.. (A48 '-"-. .n. N :":' ..'. % A .,O ..:'..Q L0 ’.Q':’:&.':!I\'J ‘2'.‘:"!‘ () \.!"9!‘"?

T i @

a)}‘}’ 7
Y
P

a.llr
AT

DY
L

”,
”
"
d-l
4
-'/::‘
AR
@

4.3.2. WAP Matrix Multiply

Some algorithms do not produce results that flow out of the pipelines. Consider the
matrix multiply algorithm of S. Y. Kung ez al. [54] for the wavefront array processor.
This algorithm uses n? processes to multiply two nxn matrices. Figure 4-2 shows the
data staging and the interconnection structure. The data arrives at every "clock cycle”
and flows in vertical and horizontal pipelines. All ¢ values are initialized to zero. As
the data flows by each process, the a value times the b value is added into the ¢ value.
When the input data has passed through the input pipelines, the correct ¢ values are con-
tained in the processes. Although the results do not flow out of the pipelines, we
nevertheless consider this to be a systolic algorithm. Because there are no results
flowing in this algorithm and the inputs flow in a single row or column, it trivially passes
the Flow Test.

The advantage to this algorithm is that no "bubbles” are required in the input pipe-

lines. It does, however, require the data to be staged correctly so that the proper @ and b

b b1y

b gaz gzs 224

41 32 23 14
b3y bxn b3

b2y b1z
by
d14813a12411(C 1y 12

242370743, (€21

a344d334d324a3

Q44843034244

Figure 4-2: Data Staging for the WAP Matrix Multiply

......

e 66

values meet at the correct process. Also, if results are needed extemnally, the final values

::';',:' must be shifted out of the process array. The algorithm requires O () time.

PO

i

;t.u_.)'!} 4.3.3. Dynamic Programming

1

e 'r Another interesting systolic algorithm is the dynamic programming algorithm of
)

§ Guibas, Kung and Thompson [38]. The processes are arranged in a triangle with pipe-

‘4

J': lines in the horizontal and vertical directions. (See Figure 4-3.) Data moves from the
diagonal toward the top and right. At time 2¢, results are ready at every process that is ¢

&N distance away from the diagonal. Processes (12), (23), etc. are defined to be distance 1

from the diagonal. For the next ¢ time units these resuits move up and to the right at the

y
v,
s
4

Lo o e

@

1,
-
.

rate of one process per time unit. After that, they move one process in the same direc-

tion every two time units. Depending on the problem to be solved, the processes may

...u.
Z
X

have preloaded data. The computation performed at each process will also vary depend-

-
Qﬂ'

ing on the problem to be solved.

%!

_?"/Q{.

« Ty

(12) (13) (14) 15) (16)

»
L%

PR TR Y

O

@ H—2 H—2 55— 6)

oty

Clal

i

S22

(34) (35 (36)

2o
R
M)

.

o
L,

45) 46)

»
P

-

AN

'y

l‘.

o "|le
')

(56)

R
P A

Figure 4-3: Dynamic Programming Process Structure

5

@ """.k-l';f-: ./:'.‘:'-"j.

U.I'I «

Oty
LA

€ LY
:\).f-“\
®,

e A R R T R

x

l" "I“(ll '

e

-ft{xn I 4’. -

el P e e b e
s

' s
AN @ Porsy

sy

-

s~y

s

RECIAL IR R\ LA

LIPS
v Ad . T hA

R

PO

SAL RO PR

>

’l' 1A.L5imﬂ,

P

AN

oo

67

An interesting part of the Guibas, Kung and Thompson algorithm is the use of the

pipelines for both fast moving data elements and slow moving data elements. This

feature provides an order reversal on the data, and it can be implemented either by a pair

of connections between the processes or by a single connection doing double duty. This
algorithm also passes the Flow Test because all data flows up or to the right.

4.3.4. Lower Triangular Linear System Solver

Our last systolic algorithm is the lower triangular linear system solver of Kung and
Leiserson [52]. Given the linear system Ax =b, where A =(g;;) is a nonsingular nxn
band lower triangular matrix and b =(1,....b,,)7,' we want to solve for

X=Xy ...,X,)T. The following recurrences can be used to solve for x:

}’i(l) =0)
v =y ® v apx,

x =0~y

Figure 4-4 shows the linear systolic algorithm implementing the recurrences for a band
width of four. The box processes are implementing the first two equations and the
round process is implementing the third equation. Notice that the x; and y; values do
not need to come from an external source. Notice that this algorithm also has "bubbles”

in the input and output data.

This algorithm does not pass the Flow Test. Tag any edge between processes and
shortly all processes become contaminated. This is because the outputs at each proces-
sor are results of computations of both inputs. Regardless of which input is radioactive,
both outputs are radioactive. The initial edge is no longer on the boundary of the con-
taminated area. But this is a systolic algorithm. It is very obvious that data flows in
several directions in this algorithm. The Flow Test will fail for any pipelined algorithm

with two directional pipelines that has results flowing in both directions.

- ey YU 7O O I T WY P WU WY U T W RN B T Y RV ECT I WV ROV T T R TTUE T TR PRI AR RATUSTIT W W WU R

\J
W
Y

.o ,
LK a TRV

N
'
:‘?
)
68 o
4
a :i
as a4 ! i
. a2 as; ’
' a
! 21
! a 11 X
A .‘
‘ ' ! ! :
;l
{ i Yot ;
. Xy—> ‘ — 5
Y
s o
L. b 1 .
‘
Figure 4-4: Systolic Linear System Solver ::

T

[

4.4. Other Algorithms

N
! We now look at a few algorithms that are pipelined algorithms but may not satisfy g
" all of the systolic definitions. For each algorithm, we give the reason they are not sys- 3
D) ¥
;' tolic algorithms. "
| I,
' 4.4.1. Vector Sum Algorithm :
[4
. Consider the problem of computing the sums of n element vectors. (See Figure 4-]
5.) A single vector is summed using a tree of —;— processes. The vector is input at the A

0
V leaves and the sum of the vector comes out from the root. Successive vectors are input N

: at the leaves when the previous vector has moved up the tree by one level. We can iden-

R/
o tify each level in the tree as a stage in the pipeline, with the data flowing from stage to 2
¢ stage. The latency is O (log n), yielding an execution time of O (d+log n) where d is ‘
' the number of n element vectors to be summed. This algorithm passes the flow test and '
g O
2 it appears to have the features of systolic algorithms. But trees cannot be laid out in the E
‘ plane with edges of constant length independent of the size of the tree [69]. Thus, if <
! communication time is proportional to distance, as is the case in the VLSI models nor- .
) . i
1 mally associated with systolic arrays, then the time between stages increases as larger .
J
H
q]
~ :

L]
0 X g OO RND \) ¥
B R R R A T R R R ORI RO R S R e s e iy

%

e |
RRRX

2%

L3

A)
*n.ﬂr

x

-
e

s

®
Vb)
D
’

3 J

stage 1
Figure 4-5: Vector Sum Pipeline

and larger trees are considered. One wonders, therefore, whether tree based pipeline

algorithms meet the locality requirement of systolic computation.

4.4.2. Hough Transform
Another pipeline algorithm is the Hough Transform algorithm designed by Cypher

and Sanz {22]. The Hough Transform can be used to detect lines and curves in picture
data {26). Given a nxn image of pixels, the Hough transform does computations on

bands, usually one pixel wide. (See Figure 4-6.) For a given 0, the complete picture will

1,1

Band

n,n

Figure 4-6: Hough Transform on n xn Picture

9 'I‘.'I

DA S . g g . R
RIRNOONOa0N M)00 PO IO W LN A ~ AL LA
RN R R IR IR A KT R s s AN O ..f‘l;:?c?v,. Satntihy! -.0‘.0%. Ry .:‘2!-%:‘;?:'»!“

-
-

P

-

&=
-

S R e s R

R o

X
.\ 5
g

2
’

s

22, O

P N

[J
=
‘f- ;

o

1"? '.;:;P?-E'a'. ‘/

oL olel

W RN L

! "i'hl. .:.ﬁ;:? \

Dyl il L] LE
WAL @ ;
'_u_l"l."‘l“n"-'(n R &

N & 4
o«

@

o

i

PEL

5¥

7

Sy

l-"

27,
e T o

LRl
PSRl RS

l.- l‘.

LI I §

X A g
PR PLALM LI, RS AT

[X 4

<
:.f.t'.'

£

TS St e Aie Sva A¥a AN A oAk AR VAl WGub Sou g e n 3 0.0 HA B B et A 80 A A B At et ot mlA R th cta e baralE LhA

70
be processed by computing all bands. The bands are identified by the pair (0, p). Most
applications using the Hough transform require results for multiple values of 6.

The algorithm uses n? processes connected by the nxn torus. (A nxn mesh with
end around connections.) The picture is distributed one pixel per process. A value of 0 is
input to the first column. (Actual implementations may use sin 8 and cos 9 as input.)
The input, along with the values being computed will move to the right across the
processes. All bands for one 6 will be calculated by a single sweep. After the first value

of © has moved to the second column, another value of may be input.

Consider a single value of 8. Each process will contribute its pixel value to one
band. The band number is calculated by |row * cos® + column * sin® |. For 6=90°,
each row of processes will contain a single band. For other values of 6, the bands will
not be horizontal. Figure 4-7 shows the band numbers for 8=67.5°. To keep the bands
more horizontal than vertical, 0 is limited to 45°< 8 <135°. For the other values of 6, the
algorithm can be rotated by 90 degrees. For 8<90° the bands move up in the successive

columns. To simplify our discussion we assume that 45°<6<90.

There is a single total for each band. This total is started in column 1 and the band
number is then associated with the total. In the case where two processes in the same
column contain data from one band (rows S and 6 in Figure 4-7), the lower processor
retains the band total and does all the computation. To allow for this case, the processes
initially shift all pixels down by one process. As a total for a band moves through the
processes, the accumulated band data follows the bands by moving up in the column.

The limit of 45°<@ guarantees that each band moves up by at most one process.

If a band total moves off the top of the processes the band is completed, but the
data needs to be moved to the last column. This is accomplished by making the data
passive as it arrives at the last row. The passive data continues to shift up in the column
to make sure that any one process has the maximum of one passive data element. Also,

as the band total moves up out of the last row, new band totals must be started. This

means that each process contains data for two bands, the active band involved in the

71

==

16,16

FIEIRIRIEIEIBIBIEIEIBIEIRIRIEIE]
1= EIRIEIEIEIEIRIE]BIEIEIRIBIE]
lEERIRIBIEIRIEIEIE]BIEIE)BIE]
lElERIRIBIEIRIRIEEIRIEIEI R]
el RlRIBIEIEIEIRIE]IBIEIEIEE]
[lle]le] Bl Bl EIEIEIE]E] BB B E]
Fkll] R EIEIEIE EIE] B R B E
FklElEEIERIRIEIEIEIE]E R E]E]E]
FIEIkE]RERIEIEIEIEIE] R EIE E]
FIERlEIERRIBIBIEIRIBIE]E]EBIE]
IR RIEEIRIEIEIEIEIE]EIEE]
M RIEIFEIRIEIEIEIRIEIE]E]E]
M)l EERIRIEIEIRIE]IE]E]E]
MIEIE]R] IR RIRIEEIR] IR E 2]
aDiSaRENERREEE
BRI IR kIR FE]RIEIEI BB EE]

Figure 4-7: Band Numbers for 8 =67.5°

local computation and the passive band that does not pass through the current process.

Notice that in a single column, not all band totals will move at the same time. Con-
16, is started in the last row. This movement causes the process in row 6 to have no
active data. These "holes” are needed where one row moves up and another one does

sider column 4 in Figure 4-7. The totals for bands 2 through 6 and 15 move up by one
process, the totals for bands 7 through 14 remain in the same row, and a new band, band

not as is the case with bands 15 and 14 respectively.

-

—

. o= e ey . K s v g . .
T A AR IRINT e RN ~ R N
et Sl el e Sl ST © 2 2 x X ¥ A A N s ScSc i wewu‘rwmx) S s OLLA AL @ AR

The time used by this algorithm depends on two variables, n, the picture size and
p, the number of values of 8. One value of 0 is calculated by a single sweep of the data
across the nxn processes and requires O (n) time. Since successive values of can be

By v
e a X ¥ %
L R

wond

R

A

mi-»-i:&\

yRe

S

o
o
w2
”wm
%
“v

=

:
R
-
s
P
i

o

AR

X

% ,_‘&nv ‘.

o
L W OIXAL

M a Tl s
AN A
A N . Ml

R G
-}"i

e
oY
.

=4 i) "

A A
P LM L W Ol oS

-
s

' W,

i W
N

g
N Wl

RIENh
CRE Y

Gy
£

L4

| e s
AN i

-

o d W - G

L] N]
S

O

PR e,
.
e N

:‘.-".ﬁ P

R]
"". e

S

e

A AL

[l S i

v 5@

5
AL XA

® NGy
o ot o

A

)
27
N

R R R A e TR e

RRONINAOY

72

input at regular intervals, the last value of 0 will be input at time O (p). Therefore, the
total time is O (n+p).

There are two features of special interest. First, the vertical movement of the data
is very input data dependent, unlike the other algorithms where the flow pattern is fixed.
Each value of 8 will exhibit a different pattem of up shifts. Even with this vertical
movement, the algorithm passes the flow test. Also, computation involves only one of
two data values being moved, swapping the active and passive data when moved off the
top or bottom. The final results may have one or two computed values, and this is also
input data dependent. Even with these features, it is easy to see that this is a pipelined
algorithm. It may be too irregular in other respects to be classified as a systolic algo-
rithm.

4.4.3. Funneled Pipelines
Our last example of pipelined algorithms are the funneled pipelines [43]. The fun-

neled pipelines are used to implement a minimum spanning forest algorithm, a bicon-
nected components algorithm, and several other graph theoretic algorithms. These are
interesting because each stage in the pipeline is a filter, yielding a pipeline of filters.
Each filter outputs half as much data as was input. This produces less data for each

stage of the pipeline, allowing later filters more time to do their processing.

The funneled pipeline for the minimum spanning forest is composed of filters that
essentially compute reduced minimum spanning forest problems. Each filter is com-
posed of a tree of processes with n leaf processes. These leaf processes are the ones that
input and output the data. Input to the pipeline is an upper triangular matrix of edge
weights. The filters input two rows of edges and output one row of edges. This is a
combination of the two input rows. The tree structure of the filter allows "communica-
tion" between the leaves. The root processes contain memory to hold O (n) edges as

part of the final result.

The pipeline contains log n filters, connected by corresponding leaf nodes in each

filter. The n rows of the adjacency matrix are input to the first filter. The first filter

73
a
2
processes contain O(n log n) edges that make up a small superset of the minimum

passes — rows to the next filter, and so forth. After all stages have stopped, the root

spanning forest. A sequential algorithm computes the final result.

There are two specific poiats of interest for pipelined algorithms. First, this is the
only pipelined algorithm that uses communication internal to a pipelined stage to pro-
duce the correct results. This complex stage, using internal communication is the non-
systolic structure in the funneled pipelines. The second point is the exponentially
decreasing data between stages of the pipeline. We saw a similar feature in the vector
sum pipeline. The difference is that the vector sum has an exponential decrease in
edges, yielding the exponential decrease in data but still retaining the same number of
data elements per edge, but the funneled pipelines are connected with the same number
of edges and the actual amount of data across these edges reduces exponentially. This is
also a feature showing non-systolic properties because systolic algorithms generally
have the same amount of data across each edge. The result of this decrease in data is an
exponential time delay between the first stage and the last stage, giving a latency of 2k
for a k stage pipeline. This yields a latency of O (n). This does not slow down the algo-
rithm because the first stage requires O (n) time to input the adjacency matrix. The total

time is then O (n) time to produce the reduced minimum spanning fcrest problem.

4.5. Contraction of Pipeline Algorithms

A recurring interconnection structure in systolic algorithms is the mesh, seen in
several variations. For contraction of pipelined algorithms we consider the contraction
of mesh algorithms. We use the matrix product algorithm for the Wavefront Array
Processor{ WAP)([54] as our example. Recall that it uses n 2 processes connected in the 4
neighbor mesh for the nxn matrix product AB = C. The data is fed in along the top n
processes and from the left n processes, accumulating the final result in each process. A
loop is executed n times that reads an A value from the left and a B value from ab ve,
multiplies them together, and adds the result to c;;. The A and ™ values are sent to the

right and down, respectively. This causes the upper left process to be the first process to

l""-’-f-’-*’—l-}.‘,"n-.ﬁ_,-.,-’f.f f-f.{.\r.r.‘d“~('~.’~*‘.'l"-.n\" - L SRR ’.‘-fii."". ‘.‘-"Y'h\l\ .\\‘.
LY LYY D SN IR A TN S N “ PRI SS L eN PSR /,*‘,. LA T AN > O ...‘\
B » he o L O < Bakes) WA.- S’..A.'.& ('t "L‘m\;".‘j.l&‘i;!;ﬂ'n“_u'.\ -‘.\-'} -‘:‘-\}j\.\k‘?'.k"

‘. 3 Laa i S Ve B e B'a B30 Boa te Sig ST e At &'a g memmmmmm

L,
5

s
7
x

-
1@,

LA T A
L.

i
DRSRRA

Ay 4@® ’
AR

[3

P
v’ h
A

B
[}
(]

0 Kot . "

74
start execution. As the data moves into the array, there is a wa.cfront of executing
processes on the cross diagonal. Each edge is used to send all of one row of A or one
column of B. For the WAP algorithm we have the cost K (WAP) =n.

Consider the contraction in Figure 4-8. Let us call this contraction M {(WAP 23,
This is the contraction done by cutting the graph into p equal size connected subgraphs
and assigning one process from each subgraph selected from corresponding positions to
a single processor. The physical connection graph, shown in Figure 4-8, is a grid with
end around (i.e. toroidal) connections. The curv+ - lines use the end around connections.

For each logical process in a physical processo. nere are '~rizontal and vertical com-

2
L , n . .
munication paths. Since we have — logical processes in a processor, the number of
p

2
.n . .
lcgical edges using one processor-to-processor connection is 7 Since all horizontal

and vertical edges have the same number of messages, n, we have
3
K (M (WAP p)) = n7

O

-

0 TaX J
i O

Figure 4-8: A Contraction of 16 Processes to 4 Processors

s .4'

,«'. _- < - -' J4-/'
y’ o‘».- e

ol
"
o 5"

faial Tty

J‘.
-
. ~» &%, »

\
x‘f.u

RN
ﬂ\.nj

-
- o
3
3
i3

¥

-

4

3

]

g

3

z

L

2]

S5

75
Consider the contraction in Figure 4-9. Let us call this contraction M ,(WAP p).

5

»

“

c

This is the contraction done by cutting the graph into p equal size connected subgraphs

r
L

5% %

and assigning an entire subgraph to a processor. We see that only the perimeter

A
&{x’

-
' [e

processes have edges that go from processor-to-processor. Also, notice that no end

o around connections are needed. The number of communication paths over one
e

o8 2

0He Processor-to-processor connection is 7 Each communication path requires n mes-

(:

g sages giving K (M 5(WAP ,p)) = %—
P

" Comparing the two contractions, we see that K(M o(WAP ,p)) is smaller than

K (M ((WAP p)) by a factor of —f= telling us that M , is expected to be the better con-
p

traction. We conjecture that M, is the best contraction that can be achieved for grid
algorithms. The basis for this conjecture is that this contraction has the smallest perime-
ter for a given area, and has been commonly used for contraction in published algo-
rithms, for example for the Jacobi iterative method [1] and for the conjugate gradient

method [34].

Both M| and M, were programmed using Poker. Table 4-1 summarizes the

o results of the tmings. As predicted, M, was the faster contraction, but because the

)
g

NORINTN

VLSS
.

-

«
.
»

¥
2
x

1 .
Y

a

g
el

)
)
N3

SN e

;_.

Figure 4-9: Another Contraction of 16 Processes to 4 Processors

"]

. i
R hh

>

’
.

* o

C I

76

Table 4-1: Contraction Timings for the WAP Matrix Multiply Algorithm

WAP matrix multiply: ticks for n (items) on p (processors)
Contraction 16 on 4 64 0on 16 64on4d 256 0n 16
M, 48854 111478 400542 901543
M, 31113 73088 221545 707646

communication time is not the only time consuming part in these algorithms the differ-

ence is perhaps not as dramatic as might be expected. Again, Appendix A contains the

code for both contractions.

¥y

1
e
-
5
~
"

g9

el

- «’.-'-Q,,,‘,.

.
R e N

-
e

r

CEEELS

- |
-
¥

-
;

“an

O OO ' Wty Y
N u'- l’u l'a'l y, “:“ » "l'i":. "h‘ (] "’t'.h‘.h .h‘.h'!’a‘.'. ':0"‘ "'? "'5.3!.!'0“ 5 'bh't‘!‘bfo '....n‘ "0." ' ':"' "' "'l".i'. ;'.'l' ‘l'a y t‘: el ‘l" \ '\‘o‘ SO

) %) M
. “\'i‘ '!. LAN !‘

By By A)

iy -2ar—ae—ar—ar Jn

il > = = = PN

- e oS

» - e

L -

CoE XK X2 ~ I

$ N

R

2.

fagy

b

{.‘. .

;,-.: CHAPTER §

&

%

» Other Paradigms

&

r’\ In this chapter we look briefly at two other techniques. We present these in the
L belief that they are important and deserve more attention. The first of these is the reduc-
¢ S’E tion paradigm, a well known technique used in the theory of computation [44]. We
:: : show how this technique applics to parallel algorithms and give several example algo-
‘o rithms using reduction. The second is a way of approaching arbitrary communication
’:éj algorithms. These algorithms, which may require communication between any two
'?" processes, provide problems for CTA machines.

':'h 5.1. Reduction

~; Reduction, sometimes called reducibility, is used in complexity theory for solving
" ; decision problems. Simply stated, "If there is an algorithm for deciding X, then there is
.' an algorithm for deciding ¥ [56]." Often, there is no known algorithm for X, yielding a
";‘ result that says that deciding Y is no "harder” than deciding X .

::E' We use this same notion for computing solutions to problems. Simply stated, given
'hi an algorithm for computing X , we use this algorithm for X in the algorithm for comput-
; 5 ing Y. We specifically imply that there is already a known algorithm for computing X .
-».) Not only does this say that ¥ is no harder to compute than X, but that in solving ¥, we
W do not need to solve X again. Also, by using the algorithm for X, we may have made
0_‘ the solution to ¥ much easier. It may also be that if a better algorithm for X is found,
;Eg there will be a better algorithm for Y.

S' This notion is used in the theory of parallel computation. Anderson gives an algo-
° rithm for the maximal path problem that uses an algorithm for matching [7]. Although
X the underlying model of computation is the PRAM, it is an example of the reduction
13 paradigm. An interesting point about this algorithm is the fact that the known algorithm

OORONA OO0 iy

0 0 1
R :'q,q"’"c'. RO 4'. c',"' L) .,o.a‘.:n AN "‘q'.,c ORI e Wit

¥ QOO0 ! oi
.‘;!,,a' Y .,l'. c'..a'..a'. RO OO

AT AA T
£x .é. l"‘; 2

AN
w5
»

T AT Nl No¥ T B L2 Ealaiall Rl i i Bt e A Ath Al Al At Al G gl AR Al ol kAl L B o -

78
for matching uses rando. .ess. This makes the algorithm for maximal path use random-
ness. If a deterministic algorithm for matching was found with the same performance,
then the algorithm for maximal path would be deterministic.

There are CTA algorithms using the reduction paradigm. The topological sort
algorithm in Chapter 2 is a good example. Recall that the problem is solved by
transforming the graph into vertices with level numbers. The vertices, when sorted by
level numbers, will be in topological order. This changed the topological sort problem
into a numerical sort problem for which there are known algorithms. Also, the computa-

tion of the level numbers is performed using matrix multiplication.

There are several points of interest in this algorithm. First, the time and resources
of the matrix muitiply algorithm dominated the entire algorithm. For the fastest solu-
tion, the matrix multiply algorithm required O (n3) processes while the remaining part of
the algorithm required only O (n?) processes. For the solution where the matrix multi-
ply algorithm was limited to O (n %) processes, it dominated the time, taking O (n) time.

This algorithm also displayed two types of reduction. The first type, shown in the
use of the matrix multiply, is where the algorithm for Y uses that algorithm for X many
times. The second type, shown in the use of the sort algorithm, is where the algorithm
for Y wansforms the input into an instance of the problem for X. The algorithm for X

needs to be used only once and after the algorithm for Y has completed its work.

Schwartz [76] gives two algorithm for the shuffle-exchange Ultracomputer using
reduction. He shows how matrix inversion of a lower triangular matrix can be done
using matrix multiply [68,75]. For general matrices, he shows how to change the gen-
eral matrix into a lower triangular matrix (20, 73] and use the algorithm for inversion of
lower triangular matrices. The other algorithm is for connected components and uses

matrix multiply for repeated squarings.

Dekel, Nassimi and Sahni {23] also use reduction in several algorithms. These
include all-pairs shortest-paths, several spanning tree problems, and topological sort.

The algorithms used to solve these problems include matrix multiply, sorting and several

AR AN

KK A AN o o o A DRI) VO B S TR AR ~ SN A5 LA TR RN YK
O R S R o e i_.'l..h!.':'.!'t_. vt Toatteetln avontenieh AN) .. RN R e g

¥

@w‘ R N N T R R T T T W W W U W WU R R O R I R AR O TR A T T S I U T TR PR Y DY VN DN T AT RO R N E N TN WV W U W e ey

(“ 79
o of the graph algorithms just given.

(o 5.2. Arbitrary Communication Algorithms

») Most of the algorithms we have discussed have communication patterns that are
independent of the input data. The communication structure is known before the algo-
N rithm is executed. The one exception is the Hough transform given in Chapter 4. The

communication variance is displayed only in when to shift the data up or down in a

».:C column. The complete graph for all possible inputs is still a bounded degree graph,
' -\-"C. namely the torus.
“‘» There are problems for which known solutions may require any process to com-
..'. municate with an other process, depending on the input. An example of this kind of
*}é problem is the maximum flow problem. Both known parallel solutions [35,79] use
'*‘?.:: either a PRAM or a distributed network where all processors can communicate directly
= with any other processor. If these algorithms are to be used on a CTA machine, some
‘ method of dealing with the arbitrary communication must be used.

(\ One method of dealing with these algorithms is to use the techniques for PRAM
simulation on a CTA. Upfal and Wigderson [90] describe a scheme where the memory
:»3‘.: of a n processor PRAM is distributed through the local memories of a n processor CTA.
i.‘;' It keeps muldple copies of each "shared memory cell.” A read accesses a majority of
_,.:! the copies in order to know the correct value. A write needs to update a majority of the
:_;_f copies. This is shown to simulate a T step PRAM program using
:’ O (T (log n loglog n)?) steps of a shuffle-exchange Ultracomnuter [76]. This method
: works when the number of shared memory locations is larger than the number of proces-
.i SOrs.
' “g Nassimi and Sahni [63] show a different method for deterministic simulation of a n
3,’ processor PRAM by a n processor CTA. This works for n shared memory locations,
2 L custributed one to a processor. They provide a Random Access Read (RAR) and a Ran-
;E{ dom Access Write (RAW) based on sorting. For the RAR, requests for shared locations
5 are sorted using the processor number of the requested data as the key. Duplicate
e

. =
Bt
(::.'.

Wl NS R g DAl o W D) e DRI D O DRI
B R R e R e X e R B A

U
.'
.'
"

-o-"‘.
&.I
LS B B)

1 i b

-

ooc. e - e - P
Z @ = - 0@ i"';"}‘-) >

S

,_‘ Y Ry
ISAARANRST T I

=" RS
e

R)
! ‘.I.Q..l'ovl. ,l.a: '?l'o. IE" .E'n.l'u'fl\"'!t‘» ; 'p. AN l‘ ’l‘s |'. l‘q !'n‘l'.. I’., '., '..6 'l ()

80
requests are reduced to a single request placed at the processor containing the data. The
data values are then sent to the requesting processor by duplicating the necessary data
and sorting the results using the requesting processor number as the key. A similar
method is used for the RAW. The times are O(og?n) for the RAR and
0(10g2 n +d logn) for the RAW writing at most d elements into a single shared

memory location. These results work for the shuffle-exchange Ultracomputer.

Upfal [89] has shown a probabilistic algorithm for simulating a n processor PRAM
with a n processor shuffle-exchange Ultracomputer. The number of shared memory
locations can be larger than n. The shared memory locations are randomly distributed
among the n processors. It is shown that a T step PRAM program is simulated within
O (Tlog? n) with "overwhelming probability."

Another method used to solve the arbitrary communication problem is to concen-
trate on routing messages between processors. It is obvious that an arbitrary permuta-
tion can be achieved in O (log2 n) on a n-cube by using sorting. What we would like is
a faster routing technique, as fast as O (log n). Borodin and Hopcroft [14] have looked

at this question and have showed that in an interconnection structure with degree d, the

N,
time required in the worst case by any oblivious routing strategy is Q(—372-) Oblivious

means that the routing strategy is based only on the origin, destination, and the processor
making routing decisions. Several people have given probabilistic algorithms for rout-

ing that take O (log n) expected time [71, 88,91]

()

&) 000 \) o
XN '.!uu. A ‘\‘:fu'..ll..t A c‘.fo' ‘:' ‘a c‘. BRI 4y o'.

P T W T S T Y W W W T e W e W e T W U T W W T U U WU WU WU TY WY Wewy mmwww-v—v'i

pt
X

¥
Y

CHAPTER 6

.,

R
Ra

'.‘)
500

A

.

Summary and Further Research

5252

el
2O

In this dissertation we have studied several programming paradigms for non-shared
memory parallel computers. These paradigms are important, not only because they are

Sl g N,

'.’é the first ‘stcp in developing a comprehensive "tool kit" of parallel programmers and they
) ;; provide experience and knowledge transfer from earlier problem solutions, but they help
e us understand the commonalities of algcrithms in each paradigm.
E: One of these commonalities is communication patterns. Since efficient and effec-
N‘; tive communication is the problem in parallel computer architecture, this identification
"" of common communication patterns is important. In our study of paradigms, by focus-
? ing on algorithms and their natural communication structures, we have identified some
'": common communication patterns. These results can provide useful data to computer
EE *(architects on what communication topologies are most important.
3 Another commonality is the applicability of contraction techniques on muluple
:E algorithms in the same paradigm. These contraction techniques focus on communica-
.E_,. tion volume between processors, minimizing the amount of interprocessor communica-
‘ tion. These contraction results provide the programmer of real parallel computers tools
::: for solving real problems on today’s machines.
;;" The paradigms that we studied were compute-aggregate-broadcast, divide-and-
:‘) conquer, pipelining, and reduction. Of these only the compute-aggregate-broadcast
:' ! paradigm was new, but we showed how the others were applicable to non-shared
2,. “ memory parallel computers.
3’-!(The compute-aggregate-broadcast paradigm is used in a wide variety of algorithms
5 .; displaying several variations. These algorithms cover both numerical and non-
E numerical computation. Due to the aggregation and broadcast phases, tee
:'.‘t:
[

[P Mg
IO T O]
g, 1

*t ,q‘l ;«'\‘i.ﬁt tﬁ"!' lt.'l,.

QOGO OO0 OOON R DA D D g Y
DAL MONCNG ORGSO ACOIRIEENA A M) OUOMIRORR WK SOOGS0 GOOADINON0 0
AR Nttt BANTY S ARINCNK M RN RN Qe ettt b Tttt highe)

-

82
interconnection structures are used in all these algorithms. In most of these algorithms,
all processes were part of the same tree, implementing global aggregate and broadcast,
but local aggregate and broadcast utilizing several local trees was observed. Although
the compute, aggregate, and broadcast phases are usually performed in that sequence,
the variations of the paradigm displayed different phases being used first. Contraction of
CAB algorithms focused on the tree. We proved that contraction of trees based on
Leiserson’s tree layout is optimal.

As part of the compute-aggregate-broadcast paradigm, we presented a new algo-
rithm for topological sort. This algorithm used the ABC variation of the paradigm with
non-global aggregate and broadcast. The time for the algorithm is O (log? n) with

O (n?) processors and O (n log n) with O (n2) Processors.

The divide-and-conquer algorithms in parallel computation displayed a comparable
usefulness to that observed in the sequential paradigm. The parallelism is utilized in two

places, namely in the divide and combine operations and the parallel solution of sub-
problems. Several algorithms used the binary n-cube as the natural interconnection
structure. This was the result of the divide or combine using corresponding elements in
each of the sub-problems. The mesh interconnection was also shown to be used in some
divide-and-conquer algorithms. And finally, while some parallel divide-and-conquer

algorithms are not parallelizations of optimal sequential algorithms, there are some

sequential divide-and-conquer algorithms that parallelize easily. Contraction of divide-

. . . »

o and-conquer algorithms showed that different algorithms required different contractions
ﬂ

%3 of the binary n-cube to give good results.

o

- As part of the divide-and-conquer paradigm, we presented a new algorithm for

‘ . matrix multiplication. It is based on Strassen’s decomposition of an n xn matrix into 4
. -2—x% matrices. This algorithm runs in time O(n) using n? processors and time
% t

° O (log n) using EN processors.

%

AN
woldtele

(IO QO COCRMD 0 O , ; Ty T T
RGO T N o N B D YR ..‘ NI QRS . mm

T AR ALAE AL VaR TR VoY Vol Tl Sol Sat nwummvu“mmmmmexﬂrﬂmmmW"vm1-.'*-v'v-rq

3
'

83

odA- ~ m

: The pipelining paradigm encompassed many useful parallel algorithms. Because

i of the systolic algorithms, pipelining may be the most widely used technique in parallel

:| A algorithms. Not only does the pipelining paradigm include the systolic algorithms, but it

" includes non-systolic algorithms such as the funneled pipelines. It also includes tree :
‘ algorithms using pipelining that may not be systolic due to the violation of the locality !
- of communication requirement. For contraction of pipeline algorithms we looked at the '
(mesh interconnection structure. We saw that coalescing was better than projection. We '
'j. conjectured that this was the best contraction due to the fact that it had the smallest per-

J imeter for a given area.

‘ . We briefly looked at the reduction technique. This technique, often used by theore- '
" ticians, can provide reasonable solutions to problems. Combined with other techniques,

, as was seen in the topological sorting algorithm for Chapter 2, it is very useful.

" In this study, we have seen these paradigms displayed at several levels of computa-

- ton. The pipelining and systolic algorithms often are implemented in special hardware.

S We also saw a hardware implementation of a CAB algorithm. Algorithms like the

o divide-and-conquer matrix multiply show the usefulness of these paradigms at the data

b operation level, sometimes called "fine grain parallelism”. And finally, we have seen the

’; paradigms used at the higher level of algorithm design in applications of the reduction

ﬁ-: technique and the CAB nature of parallel expert systems.

'C' There is much to be done in the area of parallel programming paradigms. The

paradigms presented here are not expected to be exhaustive. There are several known

algorithms which do not seem to fit into any of these paradigms. As part of the search

‘ for more paradigms, known algorithms will be classified. Also, there may be other para-

& digms useful under other models of computation that do not apply to non-shared

" memory models.

, We presented these paradigms using a description augmented with example algo-

rithms. This is an imprecise method of defining paradigms. Although this method is

5 usable, there is much room for research in how to express paradigms.

)

“.I SO0 ot L

RO |"‘|'. o Wi hhheS 'q A‘. A tl. i ' '- W n'»':‘. t"'&‘n"‘ i |'o’0': l"o".d'!!?t;ﬁu‘.o' o' :!9."!",‘. Wm

O

¢ 1"’
2 rn_.l.'-(l. x &

Wh NS

e e
¢ :‘.-.,.

-
e
ARRRERRN

=L R

o
Al

;l
aca)

F RN RS
;‘a
SRAEA

s

OB M Qw2 () VOER T SOOI
LN KN S T SR K .of!!:"l,q"qu" NXRARCHX PN .:'Own'tfv'lfo‘bf e

84

For parallel algorithms, besides the classification already mentioned, we expect that

these paradigms will yield dividends, both in understanding and in the development of

new algorithms. Already, the understanding of these paradigms have yielded new algo-
rithms. The best example is the topological sort algorithm presented in Chapter 2.

The area of contraction contains many unknowns. First of all, we conjectured that
coalescing is the best contraction for meshes. This conjecture needs to be proved. Also,
we considered only three interconnection structures in contraction, the tree, the mesh
and the n-cube. Although we gave tools for comparing contractions, it is possible that

other interconnection structures are admissible to general contraction results.

As far as the tools that we presented, they are still very rudimentary. They are
applicable in a restricted class of algorithms. Better tools are needed to cover more gen-
eral conditions. As part of that, what other features of an algorithm should be con-
sidered? We concentrated on the volume of processor to processor communication
because, to date, communication time is a dominant factor in execution times. Com-
munication volume can be considered a "first order” effect. How much can be gained by
considering "second order” effects? In Chapter 1 we saw how message dependence
became a "first order” effect in an algorithm with a low degrec of paralielisin. How
much does message dependence effect algorithms with high degrees of parallelism?
Other things that could qualify as "second order" effects include computation between

messages and buffer sizes.

Finally, we briefly touched on multi-phase contraction. Much is yet unknown
about it. We mentioned three approaches to multi-phase contraction. Is one of them the
best approach? If not, when are they preferable to the others? Are there other

approaches to multi-phase contraction?

IO, LM O OO AN O O MR ! 0
e e e e g e e s et

»,
AR R

K) References
o
A

"‘ 1. L. M. Adams, lterative Algorithms for Large Sparse Linear Systems on Parallel
o Computers, Ph.D. Dissertation, University of Virginia, Charlottesville, 1982. 1
1y 1
’ ’ 2 L. M. Adams and H. F. Jordan, *‘Is SOR colorblind?’’, STAM Journal on Scientific !
é’ and Statistical Computing 7(2):490-506, Apr. 1986. ‘
B 3. A.V.Aho,]J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer ‘
" Algorithms, Addison-Wesley, Reading, MA, 1974.)
;c 4 S. Ahuja, N. Carriero and D. Gelemter, ‘‘Linda and Friends’’, Computer

2 19(8):26-34, [EEE Computer Society Press, Aug. 1986.

R
o)

T 5. M. Ajtai, J. Komlos and E. Szemeredi, ‘‘An O(n log n) Sorting Network’’,
«- Proceeding of the Fifteenth Annual ACM Symposium on Theory of Computing, 1- X
(9, 1983, ;
% !
o 6. J. R. Allen, K. Kennedy, C. Porterfield and J. Warren, ‘‘Conversion of Control :
& (1
_t Dependencies to Data Dependencies’’, Proceedings of the 10th Symposium on

) Principles of Programming Languages, 177-189, 1983.
-:ﬁ 7 R. Anderson, The Complexity of Parallel Algorithms, Ph.D. Dissertation, Stanford

S University, 1985.

‘: 8. J. Baer, Computer Systems Architecture, Computer Science Press, Potomac,
N
_, Z Maryland, 1980.
‘: 9. D. A. Bailey and I. E. Cuny, ‘‘An Efficient Embedding of Large Trees in
L,

; Processor Grids’', Proceedings of the 1986 International Conference on Parallel

‘ Processing, 819-822, 1986.
!

« i 10. K. E. Batcher, ‘‘Sorting Networks and their Applications’’, Proceedings of the

o AFIPS Spring Joint Computer Conference 32 :307-314, 1968.
@
o9 11. F. Berman and L. Snyder, ‘‘On Mapping Parallel Algorithms into Parallel
‘"

) Architectures’’, Proceedings of the 1984 International Conference on Parallel

o

.

'¢'

'l ’\'Hﬁ'\‘

>, 'y ' 0 ‘ -
'l‘ ". " L 20ai) |.|l.'.‘ U t'llq.‘ .ﬁ. "‘ I‘q ‘ 0"’.' () ' .l. . '.' “i" ... ‘.ﬂ"l'!.:. } , ‘3’ .‘. .0. ’ o

,,,,,,,,,

12,

13.

14.

15.

16.

17.

18.

19.

21.
22.

86
Processing, 307-309, 1984.

F. Berman, M. Goodrich, C. Koelbel, W. J. Robison III and K. Showell, *‘Prep-P:
A Mapping Preprocessor for CHiP Architectures’’, Proceedings of the 1985

International Conference on Parallel Processing, 731-733, 198S.

S. H. Bokhari, ‘‘On the Mapping Problem’’, /[EEE Transactions on Computers C-
30(3):207-214, Mar. 1981.

A. Borodin and J. E. Hopcroft, ‘‘Routing, Merging and Sorting on Parallel Models
of Computation’’, Proceedings of the Fourteenth Annual ACM Symposium on
Theory of Computing, 338-344, 1982.

R. H. Campbell and R. B. Kolstad, ‘‘An Overview of Path Pascal’s Design’’,
SIGPLAN Notices 15(9):13-14, Sep. 1980.

T. C. Chen, ‘‘Overlap and Pipeline Processing’’, in Introduction to Computer
Architecture, H. S. Stone (editor), Science Research Associates, Chicago, 427-
485, 1980.

S. A. Cook, ‘“Towards a Complexity Theory of Synchronous Parallel
Computation’’, L’ Enseignment Mathematique XXVTI :99-124, 1981.

S. A. Cook, ‘‘A Taxonomy of Problems with Fast Parallel Algorithms’’,
Information and Control 64 :2-22, Academic Press, 1985.

W. Crowther, J. Goodhue, E. Starr, R. Thomas, W. Milliken and T. Blackadar,
‘‘Performance Measurements on 128-node Butterfly Parallel Processor’,
Proceedings of the 1985 International Conference on Parallel Processing, 531-
540, 1985.

L. Csanky, ‘‘Fast Parallel Matrix Inversion Algorithms’’, SIAM Journal on
Computing 5(4):618-623, Nov. 1976.

J. E. Cuny, Private Communication, Oct. 1986.

R. E. Cypher and J. L. C. Sanz, ‘‘The Hough Transform Has O(N) Complexity on
SIMD NxN Mesh Array Architectures’’, Technical Report 87-03-04, University

-.-.
e e

-
-

fon X<

Y &y 3
S 1P

87

of Washington, Seattie, Mar. 1987.

’\é 23. E. Dekel, D. Nassimi and S. Sahni, ‘‘Parallel Matrix and Graph Algorithms’’,
\3 SIAM Journal on Computing 10(4):657-675, Nov. 1981.
,' 24. E. Dekel and S. Sahni, ‘‘Parallel Scheduling Algorithms’’, Proceedings of the
\ 1981 International Conference on Paralle! Processing, 350-351, 1981.
25. R. J. Douglass, ‘‘A Qualitative Assessment of Parallelism in Expert Systems’’,
'_ IEEE Software 2(3):70-81, May 1985.

\ 26. R. 0. Duda and P. E. Hart, ‘‘Use of the Hough Transformation To Detect Lines
E‘ and Curves in Pictures’’, Communications of the ACM 15(1):11-185, Jan. 1972.
; 27. P. W. Dymond and S. A. Cook, ‘‘Hardware Complexity and Parallel
=

Computation’’, Proceedings of the 21st Annual Symposium on Foundations of

2

Computer Science, 360-372, 1980.
28. C. Ebeling, All the Right Moves: A VLSI Architecture for Chess, Ph.D.

Dissertation, Carnegie-Mellon University, Pittsburgh, PA, 1986.

oy
£ " oy
l-’l‘,

29. F. Fich, P. L. Ragde and A. Wigderson, ‘‘Relations Between Concurrent-Write
Models of Parallel Computation’’, Proceedings of the 3rd Annual ACM

Y

RSN

Symposium on Principles of Distributed Computing, 179-189, 1984.

;
E:: 30. G. Fielland and D. Rogers, ‘‘32-bit Computer System Shares Load Equally
\’ Among up to 12 Processors’’, Electronic Design 32(18):153-168, Sep. 6, 1984.

.j 31. C. L. Forgy, On the Efficient Implementation of Production Systems, Ph.D.
j Dissertation, Carnegie-Mellon University, 1979.

Nj 32. S. Fortune and J. Wyllie, ‘‘Parallelism in Random Access Machines’’,

., Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, 114-
118, 1978.

33. D. Gajski, D. Kuck, D. Lawrie and A. Sameh, ‘‘Cedar -- a Large Scale
‘ Multiprocessor’’, Proceedings of the 1983 International Conference on Parallel
X g Processing, 524-529, 1983.

'

e

()

M
@

"

?]

.l

:‘:o it et hat e i R O D O NN T TR IO RS AR O d
-ﬁ';‘l\'l‘.’\',hn’!'q'- POLDRN l'.'i'."q'. LA A".‘A".‘l'.‘n'.‘n‘!‘l‘!'.’!“'!'u» ., ":‘.'a'! ‘!!‘-',‘-""-'!'.".'a'!'n‘.'a'.-%:|:‘-'!‘::!‘:'. Ot ..::'.'ﬂt‘.‘O.,‘:".‘:"!.A't‘.'Q":!‘:".‘:".’.‘!‘;:'.’.‘. 'f

e
K
hl
%
o 88
!E.. 34. D. Gannon, L. Snyder and J. VanRosendale, ‘‘Programming Substructure
; 53 Computations for Elliptic Problems on the CHiP System’’, in Impact of New
SE Computing Systems on Computational Mechanics, A. K. Noor (editor), The
' American Society of Mechanical Engineers, 65-80, 1983.
:)E 35 AL V. Goldberg and R. E. Tarjan, ‘‘A New Approach to the Maximum Flow
: ..; Problem’’, Proceedings of the Eighteenth Annual ACM Symposium on Theory of
‘(" Computing, 136-146, 1986.
; f{ 36. L. M. Goldschlager, ‘‘A Unified Approach to Models of Synchronous Parallel
E: Machines’’, Proceedings of the Tenth Annual ACM Symposium on Theory of
o Computing, 105-111, 1978. '
‘,_f_? 37. A. Gottlieb, B. D. Lubacbevsky and L. Rudolph, ‘‘Basic Techniques for the
: Efficient Coordination of Very Large Numbers of Cooperating Sequential
Processors’’. ACM Transactions on Programming Languages and Systems
{ 5(2):164-189, Apr. 1983.
::\ 38. L. J. Guibas, H. T. Kung and C. D. Thompson, ‘‘Direct VLSI Implementation of
-

Combinatorial Algorithms’’, Proceedings of the Conference on Very Large Scale

Integration: Architecture, Design, Fabrication, Cal Tech, 255-264, Jan. 1979.

aLhh%

E: 39. A. Gupta, ‘‘Implementing OPSS Production Systems on DADO’, Proceedings of
: ' N the 1984 International Conference on Parallel Processing, 83-91, 1984.
__ 40. F. Hayes-Roth, ‘‘Knowledge-Based Expert Systems’’, Computer 17(10):263-273,
:f. Oct. 1984,
-.:; 41. C. A.R. Hoare, ‘‘Quicksort’’, Computer 5(1):10-15, Jan. 1962.
.1 42. C. A.R. Hoare, ‘‘Communicating Sequential Processes’’, Communications of the
3;:, ACM 21(8):666-677, Aug. 1978.
;C: 43, P. H. Hochschild, E. W. Mayr and A. R. Siegel, ‘‘Techniques for Solving Graph
: Problems in Parallel Environments’’, Proceedings of the 1983 International
E. : Conference on Parallel Processing, 351-359, 1983.
D
i
o

Ol g

NaCh - O CADADELNA A " " - B x
¥y 4 "‘.‘ ",""'.'."' RS & SOLOUOONON 0 Q
'.h“ [.‘ “Q' "‘1’ "-.|‘.A.‘..q‘.‘..%‘l"‘q“fﬁ'.’l'ﬁ’!'...l."!'".:'Q.:.|.:'.‘:“‘!’.‘!'ﬁ.:’l‘!.ﬁ !'l !'i‘:':"!‘:‘.-.l‘!.b“

DS 0% 0y ot e RS g Vb OO0
------- DOIOSGHINGS '"-‘;"t"?c."wf"i!*\fi'«'.".3“s?"o"?n?"::":fﬁ‘-'

L TRrTY T

R
" d
oA
AN
Y ::
f&‘
&‘
!!!. : 89
}_ 44. J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages,
oY
.,.33 and Computation, Addison Wesley, Reading, MA, 1979.
D
3¢ 45. E. Horowitz and A. Zorat, *‘Divide-and-Conquer for Parallel Processing’’, [EEE
. i Transactions on Computers C-32(6):582-585, June 1983.
e
:CE 46. E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Computer
oL Science Press, Rockville, MD, 1984.
S o 47. C. Hsiao, Highly Parallel Processing of Relational Databases, Ph.D. Dissertation,
e Purdue University, Dec. 1982.
’2;. 48. INMOS Limited, OCCAM Programming Manual, Prentice-Hall, Englewood
® Cliffs, NJ, 1984.
*::: 49. A. Kapaun, K. Wang, D. Gannon, J. Cuny and L. Snyder, ‘‘The Pringle: an
(o,
f}} Experimental System for Parallel Algorithm and Software Testing’’, Proceedings
'(> ; of the 1984 International Conference on Parallel Processing, 1-6, 1984.
~$ 50. R. M. Keller, ‘‘Comment in a technical presertation’’, Parallel Architectures !
"jzj Workshop, Boulder, Colorado, 1982.
‘\':‘,4
“ 5. D. J. Kuck, R. H. Kuhn, B. Leasure and M. Wolfe, ‘“The Structure of an
\j-s Advanced Vectorizer for Pipelined Processors’’, Proceedings of the 4ih
g ."\
o International Computer Software Applications Conference, 709-715, 1980.
) "u.:
;’."' . 52. H.T. Kungand C. E. Leiserson, ‘‘Systolic Arrays (for VLSI)"’, in Sparse Matrix
T Proceedings 1978, 1. S. Duff and G. W. Stewart (editors), Society for Industrial
-
s and Applied Mathematics, 256-282, 1979.
o
N 53. H.T.Kung, ‘““Why Systolic Architectures?’’, Computer 15(1):37-46, Jan. 1982.
[
fﬁ“ 54. S. Y. Kung, K. S. Arun, R. J. Gal-Ezer and D. B. B. Rao, ‘‘Wavefront Array
:_,E Processor: Language, Architecture, and Applications’’, /[EEE Transactions on
o
Dy Computers C-31(11):1054-1065, Nov. 1982.
Ro *n
.3 55. H. T. Kung, A Listing Of Systolic Papers, Department of Computer Science,
:N.:j. Carnegie-Mellon University, Pittsburgh, Pennsylvania, Sep. 1986.
Rl
1B
°

Ty

=
N
-

)

b
h)
'y

O T AT T N ") *1 o 4,‘) N % 5 Al 0
o v
SNy O L T T e * v aee ! oty \ ':'.’, v

..........................

2

.

r‘..\.

é'!\.‘ 90
56. R. Ladner, Complexity Theory, Class Notes, University of Washington, Seatle,

v,,.,_,.
o

WA, Jan. 1982.

f-

¥z

L d

57. F. T. Leighton, Layouts for the Shuffle-Exchange Graph and Lower Bound
Techniques for VLSI, Ph.D. Dissertation, MIT, Aug. 1981.

Y

3 58. C. E. Leiserson, Area-Efficient VLSI Compusation, MIT Press, Cambridge, MA,
o 1983
; -)'v...r .
_ . 59. H.F.Liand R. Jayakumar, ‘‘Systolic Structures: A Notion and Characterization’’,
I
o Journal of Parallel and Distributed Computing 3(3):373-397, Academic Press,
Tl Sep. 1986.
S
® 60. J. D. Lipson, Elements of Algebra and Algebraic Computing, Addison-Wesley,
- Reading, MA, 1981.
E 61. J. R. McGraw, ‘“‘The VAL Language: Description and Analysis’’, ACM
; v Transactions on Programming Languages and Systems 4(1):44-82, Jan. 1982.
. ,1-")
:;23 62. D. Nassimi and S. Sahni, ‘‘Finding Connected Components and Connected Ones
)
<

on a Mesh-Connected Parallel Computer’’, SIAM Journal on Computing
9(4):744-757, Nov. 1980.

OS%

-
-
4

63. D. Nassimi and S. Sahni, ‘‘Data Broadcasting in SIMD Computers’’, /[EEE

:" " ;
;:l 3 Transactions on Computers C-30(2):101-107, IEEE, Feb. 1981.
g
& 64. P. A. Nelson, ‘‘A Non-systolic Matrix Product Algorithm’’, Technical Report 85-
'_:_ 11-02, Department of Computer Science, University of Washington, Nov. 1985.
f\t 65. P. A. Nelson and L. Snyder, ‘‘Programming Solutions to the Algorithm
ZQ:: Contraction Problem’’, Proceedings of the 1986 International Conference on
]

162 Parallel Processing, 258-261, Aug. 1986.
‘ 66. P. A. Nelson and L. Snyder, ‘‘Programming Paradigms for Nonshared Memory
':-?_3:' Parallel Computers’’, in The Characteristics of Parallel Algorithms, L. Jamieson,
5oy D. Gannon and R. Douglass (editors), MIT Press, Cambridge, MA, 3-20, 1987.
o
RO
i,
o

- .

5
< J0) Q)) Tnates? ann WO Q0 OO0 \ 0 et y
R O e O K R DX R D e e s AR

a 4¥y .

67.
68.

69.

70.

71.

72.

73.

74.

75.
76.

77.

Y .-“4’ O, ()
'“ “'.\'!. .l¢ » l"l‘n L.

AN

91
N. Nilsson, Principles of Artificial Intelligence, Tioga Press, Palo Alto, CA, 1982.

S. E. Orcutt, ‘‘Parailel Solution Methods for Triangular Linear Systems of
Equations’’, Technical Report 77, Digital Systems Laboratory, Stanford
University, 1974,

M. S. Paterson, W. L. Ruzzo and L. Snyder, ‘‘Bounds on the Minimax Edge
Length for Complete Binary Trees’’, Proceedings of the Thirteenth Annual ACM
Symposium on Theory of Computing, 293-229, 1981.

G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder, K. P.
McAuliffe, E. A. Melton, V. A. Norton and J. Weiss, ‘‘The IBM Research Parallel
Processor Prototype (RP3): Introduction and Architecture’’, Proceedings of the
1985 International Conference on Parallel Processing, 764-771, 1985.

N. Pippenger, ‘‘Parallel Communication with Limited Buffers’’, Proceedings of
the 25th Symposium on Foundations of Computer Science, 127-136, 1984.

V. K. Prasana Kumar and M. M. Eshaghian, ‘‘Parallel Geometric Algorithms for
Digitized Pictures on Mesh of Trees’’, Proceedings of the 1986 International
Conference on Parallel Processing, 270-273, 1986.

F. P. Preparata and D. V. Sarwate, ‘‘An Improved Parallel Processor Bound in

Fast Matrix Inversion’’, Information Processing Letters 7(3):148-150, Apr. 1978.

F. P. Preparata and J. Vuillemin, ‘“The Cube-Connected Cycles: A Versatile
Network for Parallel Computation’’, Communications of the ACM 24(5):300-309,
May 1981.

A. Sameh and R. Brent, ‘‘Solving Triangular Systems on a Parallel Computer™’,
SIAM Journal on Numerical Analysis 14(6):1101-1113, Dec. 1977.

J. T. Schwartz, ‘‘Ultracomputers’’, ACM Transactions on Programming

Languages and Systems 2(4):484-521, Oct. 1980.
R. Sedgewick, Algorithms, Addison Wesley, Reading, MA, 1893.

» " . " "Lq' ", o Yy
et R T B

92

78. C. L. Seitz, ‘“The Cosmic Cube’’, Communications of the ACM 28(1):22-33, Jan.
1982.

79. Y. Shiloach and U. Vishkin, ‘‘An O(nzlog n) Parallel Max-Flow Algorithm’”,
Journal of Algorithms 3(2):128-146, Academic Press, Inc., June 1982.

80. L. Snyder, ““Introduction to the Configurable, Highly Parallel Computer’’,
Computer 15(1):47-56, Jan. 1982.

81. L. Snyder, ‘‘Parallel Programming and the Poker Programming Environment’’,
Computer 17(7):27-36, July 1984.

82. L. Snyder, “‘Type Architectures, Shared Memory and the Corollary of Modest
Potential’’, Annual Review of Computer Science, 1986.

83. L. Snyder, ‘‘Poker (4.0) Programmer’s Reference Guide’’, Technical Report 86-
05-04, Computer Science Department, University of Washington, 1987.

84. S. J. Stolfo and D. P. Miranker, “DADO: A Parallel Processor for Expert
Systems’’, Proceedings of the 1984 International Conference on Parallel
Processing, 74-82, 1984,

85. Q. F. Stout, ‘‘Supporting Divide-and-Conquer Algorithms for Image Processing ™,

.{ Journal of Parallel and Distributed Computing 4(1):95-115, Academic Press, Feb.
o 1987.

t_ 86. V. Strassen, ‘‘Gaussian elimination is not optimal’’, Numerische Mathematik 13
:{ :354-356, 1969.

:::: 87. W. Su, R. Faucette and C. L. Seitz, ‘*‘C Programmer’s Guide to the Cosmic
j: Cube’’, Technical Report 5203:TR:85, Computer Science Department, California
i.'f Institute of Technology, Sep. 198S.

j«. 88. E. Upfal, “‘Efficient Schemes for Parallel Communication’’, Journal of the ACM
[31(3):507-517, July 1984.

!— 89. E. Upfal, ‘A Probabilistic Relation Between Desirable and Feasible Models of
?{: Parallel Computation’’, Proceedings of the Sixteenth Annual ACM Symposium on

v.

NSV VTS (N ey ST Nty L, gt e dl A% % 1% SR e S W e d v Ty Vo VT
XSt a‘.. ARttt ':'.-.l‘.. UL O XX -.0'&!‘&":!&';'6“.! AETOAS 'J""‘.&"l,“l'.“ot.‘l‘.“:’Jl,"}:‘:h’:ﬁ‘I\“

-
o ol «
- ‘..

.“.“’

»

XXX
P Al

=

93

S,

i}‘: Theory of Compuring, 258-265, 1984,
e
;:.;EE. 90. E. Upfal and A. Wigderson, ““How to Share Memory in a Distributed System”,
1:" Proceedings of the 25th Symposium on Foundations of Computer Science, 171-
1
5 180, 1984,
o
;_f 91. L. G. Valiant and G. J. Brebner, ‘‘Universal Schemes for Parallel
<

Communication’’, Proceedings of the Thirteenth Annual ACM Symposium on
Theory of Computing, 263-277, 1981.

i X XY
<

92. J. L. Wagener, ““‘Status of Work Toward Revision of Programming Language
Fortran’’, SIGNUM Newsletter 19(3):5-42, July 1984.

55
Pk 8 n’"f, [t

93. L. C. Widdoes, Jr., ““The S-1 Project: Developing High-Performance Digital
Computers’’, Proceedings of the IEEE Compcom, 282-291, 1980.

on o o »
A i

94. D. Young, Iterative Methods for Solving Partial Differential Equations of Elliptic
Type, Ph.D Dissertation, Harvard University, Cambridge, MA, 1950.

~

95. D. Young, [terative Solutions of Large, Linear Systems, Academic, New York,
1971.

el

PR R
y
XA N

%
"
3ot
]

i

\i

O

0N T GA LN LR W O e Wl
Wy Ry 1% ’ y

RO A SOOGS0 _."’o’ln X

N »

\y g, 80 T Wy AT 00y 10 g Uy Vgt *) 0 O oA YIOLIOU Y, WY L 0t iy! Q
i AL .,|‘.'f|‘..l‘_'..i!.f|.‘nf-'-ftﬁ. R e T U ORI M TN R KA L ,'.02‘!!3‘":‘?*!'5,'&c""."’!"”‘!‘r‘.’:".'h N

L N o o o o e e
IS AN Y10

ke

- -)
B AT Tty 3T E e

ral

- o=

[Juts

'.oo

1’ X

0) N
JOB00

’ oV ATY PN "N RS NEY WY wWww

APPENDIX A

Implementations of Selected Algorithms

As part of this dissertation, we include the implementation of several algorithms.
Although this does not contribute directly to the understanding of paradigms, seeing an
implementation for an algorithm may help one understand the algorithm and give insight
into the special features of a paradigm displayed in the algorithm. The algorithms
implemented are all discussed in Chapters 2 through 4. As such, we do not discuss the
algorithm, but we mention special points about the implementation that were not
discussed in the chapters. All implementations are done using the Poker programming
environment [81]. We give a description of the Poker programming environment and

present the implementations of the algorithms.

A.l. The Poker Programming Environment

Poker is a programming environment designed for writing parallel programs for the
CHiP architecture [80]. It represents a parallel program as a data base containing
multiple phases of computation. Each phase is represented by a communications graph,
an assignment of processes to processors, an assignment of logical names to actual
communication channels, and process codes. These components are manipulated using
a graphical interface that allows the Poker program to be displayed and edited from
several views. For our purpose, it is sufficient to understand the information presented

in these views and not how to interact with the environment.

As an example program, consider the implementation of the maximum algorithm
given in Chapter 1. The algorithm used a 15 node tree interconnection structure with
special processes at the leaves, internal nodes, and the root. Each process has a value

and the result is to terminate with the maximum in the root process.

- R
Ao s'.'q!"a"‘:"' XX ""'.l".if‘.I'.‘.\','.'!‘:'f"!.'."Qt'l.t".'n'i&"‘ 'h"l.c ’ 4.0'0.\0 |";o’l!h'hl\bcl.t'l s'b.ohl.ns‘.'n .'t‘.'t"a Yt

eV -

W

0 95

Iﬁ Poker works only with square arrays of processors. Each processor is numbered by
:;’ both row and column. (In this example we use processor 1,3 as an example because it is
v .t: not part of the tree algorithm.) The "Switch Setting View" allows the programmer to
..' view and modify the communicadons graph. Figure A-1 shows a Poker representation
:: \' of a 15 node tree. Notice that each processor is represented by a square, and the
e communication channels are represented by connections to the square. Only 8

connections to each processor is allowed. They attach to the processor at the eight

s Y

.
L

compass points of north, northeast, east, southeast, south, southwest, west, and

0

‘. y H H " "
j northwest. The north connection is at the "top” of the processor.
e
<
%! . " . . .
5 The "Code Names View" allows the programmer to specify which sequential
° . . .
o process will be executed at each of the processors in the square. Figure A-2 shows the
e " _ . .
o Code Names View". The process leaf will be executed at processor 1,1. Notice the
1o
.‘_‘.\
B)
"-ﬁ
5 1 1 1 1
o 1 2 3 4
oot
Y 2 2 2 2
o 1 2 3 4
o
A4
1
3 3 3 3
. 1 2 3 4
Y,
D
by 4 4 4 4
P 1 2 3 4
e
>,
G
‘b. o'
- Figure A-1: A 15 Node Tree in Poker
L J
g
<
e
W
)
oy
4 Y}
o
*
Uy ¥
e

: '
l':t:. .l..|:.. .l'.::. '2 ..“ .qﬁ‘“"t. ".‘."‘..." %‘

PR
By

‘r- " -t

=

-.~:.".

L)
i\

)

¢

s

£

B

LAK,

o+

OGO B A LA A T M i A L AT P et eh AT N W ATy
: (QLK)) i, e, AN
ey !l‘:.:'v!l.t.z .!-'...-.ﬂa.'.v!hv...:!!. N hvh, ‘»!0':?":!::‘05'0_l'.'t'q_’ﬂ;’!'.f.‘..I'u!"n,l‘;!I‘n!“n,"c.i‘r‘.l"'.I‘q!".fh\?l’cfl?:‘,i’:!":’|‘o‘.‘ﬁ|:’0‘

96

1 leaf 4

parameter}

parameter2
2 1ntem intern ~2 1ntemn 2 intem 4
3 leal 3 intem 3 intemn leat 4
4 leaf 4 leaf 4 leaf 3 leaf 4

Figure A-2: Code Names View for Maximum

correspondence of the processors to the "Switch Setting View." Although it is not used
for the maximum algorithm, processor 1,3 shows that parameters may be given to the

processes at the start of the phase.

These processes are programmed in one of two languages, XX (dos equis) or Poker
C [83]. XX is the first language supported by Poker and is used for programming the
Pringle {49]. Poker C was later added for speed of simulation on a sequential processor.
Both languages are used in the following implementations. The major constructs of
interest for our programs appear in both languages because they are designed for use
with Poker. This construct has to do with communication. Processes communicate with
each other through ports. In the program, these ports are given logical names. Figure
A-3 shows the code for a leaf processor. Notice that the only process a leaf process
communicates with is a parent process. Figure A-4 shows the code for an internal

processor. Notice that the internal process has ports for its left child, right child and

GOSN TN OO

.
a*.'\"."’et’el'a, 'c’!!.,l

L]
N

el
‘:!l!:'.r.

>
S

o
¥ %
N

®
o
hoy)
N
o
N 97
{
j code leaf;
«5
o ports Parent;
.
I M .
1 bcgm
o
o int Value;
-
E-" Parent <- Value;
[}
‘ < end.
oo Figure A-3: A Leaf Process
) 0
o, code ir.ternal;
3
Al orts _eft, Right, Parent;
K- P g t
‘N .
po begin
o) ..1.
b~ int Value;
I } int max, temp;
g
Y max := Value;
o temp <- Left;
o if temp > max then max := temp;

9

temp <- Right;

-::: if temp > max then max := temp;

N

~ Parent <- max;

\J

o d

3 end.

::::; Figure A-4: An Internal Process

o

'~‘\.'

Ll .

o parent. For completeness Figure A-5 shows the code for the root process.

| 29

[] L . .

K Communication with the other processors is performed by the port /O statement.
59
4ot The port I/O statement has two forms:
4 f-'
[: variable <- port
A .

o port <- expression

o where the first form represents reading from the port (receiving a message from the other
L)

A

2

‘g

o

36

)

)

"l::l. s) T i v YR .:o 3 0 sl ooty RS x ORI, RN
HII e Rt e ACEEITONENG SRS la-'lh'n’.fl'.’n'.'q'a.i‘..s‘,.n'.'ﬂ, MO R '! " ﬁ,“.i!'.i, ,!‘,’.!‘,‘.!!!.l,l,h N .Q.‘Q:lthfq'l.“.lu. .".__

N

o

K

D

"': o8
{ . process) and the second form represents writing to a port.

4 Eig‘ These logical port names allow one process to be used at several processors using
:é” different communication channels for the same logical communication. The "Port
. Names View" allows the programmer to specify the relationship between logical port
:ﬁ: name and physical communication channel for each of the processors. Figure A-6
:1-\:'_ shows the port names for the maximum algorithm. Processor 1,3 shows the logical
N name placement in the square corresponding to the physical connections. Notice that

m—

processor 1,1 communicates on the south connection while processor 3,1 communicates

NI

;,EE‘ on the north channel for the same logical name.

'LE: The last feature we must mention is how data is transferred from phase to phase. In

.,' . XX, the variables in the process codes are allocated in the same place in memory,

providing an unnamed common block. Values written in one phase are available in the
- next phase. To insure correct values, the order and types of the variables in the two

AESAES
_ NN

process codes must be identical.

code root;
ports Left, Right;
begin

AN int Value;
. int max, temp;

. max := Value;

: temp <- Left;

S, if temp > max then max := temp;
oy temp <- Right;

ShN if temp > max then max := temp;

/ end.
2 Figure A-5: The Root Process

T e
A
ORI

-

AT R, T L AT LA M A R AL A R e L% % N L R B T A OO R o SR T HEANCNM]
T e e R T e o T S T

»)
: J'}I }l I.‘

U

' 99
!
,.
& 1 1 1 north 1 4
\ nwest neast
» west east
) Right | | swest seast
. Parent Left south Parent
o 2 Left 1j [2 Parent 2 3| | 2 Right
Parent
: Parent | | Left Right | | Parent
g
Right Right Left Left
& TParent 1) [3 Parent TParent 3 [3 Parent 4
W Left Right
p Right Left
. 3 1] [4 Parent 4 Parent 3 3
! Parent Parent
Y
>
~
"W Figure A-6: Port Names View for Maximum
!
In Poker C, this phase to phase communication is facilitated by use of the "inter-
: phase variable space.” The inter-phase variable space is a collection of variables
v accessible by all phases. To read a value from the inter-phase variable space, a process
é “imports” a value into a local process variable using the import statement. To set a
' value, a process "exports” an expression. The form of these statements are:
A import(local_variable,inter-phase)
X export(expression,inter-phase).
.
L In the following implementations, we present enough of the Poker structures to
; completely define the program. In some programs, only one process code is used. For
X those programs, we do not include the Code Names View. For others, all processors
¢ have the same port name assignment and only a single processor is shown for the Port
' Names View. Codes are in both XX and Poker C, but a single program has codes in
' only one of the languages.
3,
¢

L R

)

L)

|
0 Q Q Q QO30

T B s T A e B e R e S b Y

-

R o A W e,

hov 100

s A.2. Jacobi Iterations
I
;| \'_’, The following program solves the electric field problem as given in Chapter 2. The
3
R square is represented by 256 discrete points. Due to the fact that the upper right is a
;;‘, mirror image of the other three quadrants, using reflection and negation, only the upper
N
:' 5 right is computed. The initial guesses are the parameters to the compute phase. A
\ special code is placed in processors representing the charged bar. The aggregation
(phase is a tree that does minimum sum. The control script implements the broadcast by
::5;‘ restarting the compute-aggregate loop when the algorithm is not completed. Figures A-
;_ ; 7 and A-8 show the switch settings for phase 1 and phase 2 respectively. Figures A-9,
ol A-10, A-11 and A-12 show the code names and port names for enough processors to
®
W provide all the necessary information.
I
::;’ The following are the codes for each process and the Poker script to run the entire
I x, =
\ : algorithm.
¢
b
o
®)
2o
i
oy

5 %
_€

Figure A-7: Jacobi Phase 1 Switch Settings

TN YO SO G e

oSl N

Xl 15
.-.'a‘.‘

%

b

» - i - 4 - ' - o " .\ Ty . k. ﬂ N . ‘h N
Bl T ¥ L2040 Tl) o A IR O N
Pl il » o l'c".u.l""’ I‘!'I’ b, 7 \) ""'“w..l‘,‘l‘-.l.p..‘l.l‘- .!.I.h.l.u.l.n .:.“’.l.'»‘ﬁ‘«'l'?'l“.‘!“.‘l“.‘l".‘).; W n",’" .!! { X

LR 0.8, v WYy A Ny s W

G
e

3%

°

s

.‘J

7

o,

;,,: 101
e

o

N

" 0 00000 o g
o

Oy 0O 0 0O 0O o O
l..'

K —0 0 —A 0O
Y

N9

-.-‘ O (—O O 0O O g O
oy

‘ 0O g o g 4O ag
19.9%)]

ki —
5 — 0 oO0—d o0—O
L)

o O 0O 0O 00 0O g 0
°

N T o000 gdoag g Qg

2

R 4 Figure A-8: Jacobi Phase 2 Switch Settings
’l!u,
, - var S var var 3 var
and 50 50 50 50

iy
R
fi' ~ o const 6 const ?1 const var
b, 100 100 100 50
,‘) T var T var 7 var N[T var 3
" N 50 50 50 50
D : var 8 var pi var var
Yol 50 50 50 50
LA,
@

3
»

Figure A-9: Jacobi Phase 1 Code Names

- e T
L XA

YT as AT @ o
X ’ R
RIP AT e

A

B ®

- e

"_'.'b

-‘-“

5

-
g
]

\'
)
AR et S MV A A ' L O O I T I X KN MO L o L R IR LA SN
A R Gt ni e dedintuge .p!l..»‘.")"!l‘g)::tl::’_bf!‘!.’l’.”3.“.lq,ﬁl::!t.‘!h:!."’0."’0“'.“v "~ .,3(:!‘.‘,!, KR RSN I

'.:: q 102

- STel hode
Y

3 root ﬁl
'i: § mode 6 inode 'ZM_JI
R |
:) T Teal '71?37 TWJ\
s

h Figure A-10: Jacobi Phase 2 Code Names

.
L T north
¥

N west east

south

)
5‘ , Figure A-11: Jacobi Phase 1 Port Names

>

parent third

right right
parent left

6 nght 1] { 6 parent 6

o -

E
i

parent | | left right

.t’ v }
O

left right left

T parent 1] [7 parent T parent]|

AL{L"\[K‘

[2%

left right
right left

M et
[3
b*3 -

Figure A-12: Jacobi Phase 2 Port Names

const.pc

CRERER

code const;
ports north, east, south, west;

R
WS trace newval;
'\

1) § .
UOOTROOO0N OO0 50, 00000, 0 w8 1% e T 1T VT 00 Bt 10 001 Wi gV 0 T) U 0T g W e e e Ve Uy Y e U e gt g0y, GO
:‘3‘:‘!':".!:"':",l:'? : '4"-""":-".&?""-!“ut‘"f“::‘“’"#’"‘":’." b,‘!t"n‘l'l‘.'4..I'nfi'a’l'ael':,i':ft.:.,d',‘h‘a?('xft'cfl’o!l'u!d'v!“"":-.i'ae".96'.?6'1. G':..I't?'.t'l .a.itx".“..:'"'.e"n.“l.a""’l'u.l'?l‘.’ N

orarar e
L
Pl urefel Y

L=

&) \ 5
sl e

main (ival)
float ival;

{

float curval, newval;
float nval, eval, sval, wval;
float diff;

/* initial value/current value */
curval =-1;
import(curval,val);

if (curval < 0) curval = ival;

/* send */

if PEi'!'=1) north <- curval;
if (PEj != PEn) east <- curval;
if (PEi != PEn) south <- curval;
if (PEj!=1) west <-curval;

/* receive */

if (PEi!=1) nval <- north;
if (PEj != PEn) eval <- east ;
if (PEi !'= PEn) sval <- south;
if (PEj!=1) wval <- west;

/* calculate */
newval = curval;
diff = 0;
/* report */
export(newval,val);
export(diff,diff);

}

var.pc

code var;

ports north, east, south, west;

trace newval;

main (ival)

float ival;

{

) \

ot T e e 000G, DA N
DU »-‘i".'s'.:'t',.'!!-'!‘q‘l!q"l‘c'O‘o't‘o'l‘ " P“"‘a@""‘.‘.l. :0' |”!&?‘3§"1'":"':

.....

T T NI
‘! ’h. A ":‘ki‘.'

L] S\ B\ R,
SOGLOOCK) 7 4
‘A“'n"'«"':?‘.t. ‘I.‘)

'S hba il 2 bt T T T T T TP Ow e

¥,

i -
€
g

R

L

_.

¥7 104
! i float curval, newval;

N float nval, eval, sval, wval;

',f float diff;

)

" /* initdal value/current value */
. curval =-1;

I import(curval,val);

" if (curval < 0) curval = ival;

;:: /* send */
(" if (PEi!=1) north <- curval;

if (PEj != PEn) east <- curval;

o if (PEi != PEn) south <- curval;
N if (PEj !=1) west <- curval;
p, /* receive */

b if (PEi!=1) nval <- north;

W)

;..; _ else t_wal =0;

) if (PEj != PEn) eval <- east;
Y else eval = 0;

oy if (PEi != PEn) sval <- south;
" else sval = -curval;

;3.: if (PEj!'=1) wval <- west;

:. else wval = curval;

a

::: /* calculate */

5 newval = (nval+eval+sval+wval) / 4;
;; diff = newval-curval;

f if (diff<0) diff = -diff;

R

N /* report */

A export(newval,val);

’r, export(diff,diff);

'N’

hL)

>

5 leaf.pc

®

B code leaf;

-

i ports parent;

° main()

'n { .

W float diff;

d

»

o

nt

':‘ » : " - - - - !
,olf:'»:._l:“:l|f:t:!:l:?:h‘,:l:::':f:!:f:!:::l:::o.f:0.’:0:3:l:f:!:,:’.,!!:,.l:f",!:l ‘!q‘f:th:c:go:_':t e:»:,:o:l:q:::!:::’:I:o:,:o‘l:eé:o:g: .:':e'9,:'Of:'lf:ﬂ:’f:':?:ﬁ’:‘ ‘:‘,:’:.:’:.;..3:&:.&&&?:' '3': .:,‘:’:,

] S 8 L A" []
ALLON0N Foathatrey
R T T ORI

import(diff,diff);
parent <- diff;
}
inode.pc
code inode;
ports parent,left,right;
main()
{
float diff;,
float lval, rval;
import(diff,diff);
lval <- left;
rval <- right;
diff = (diff>lval?diff:lval);
diff = (diff>rval?diff:rval);
parent <- diff;
}
root.pc
code root;

trace cont, diff;
ports third,left,right;

main(tol)

float tol;

(
float diff;
float lval, rval,tval;
int cont;

import(diff,diff);

tval <- third;

diff = (diff>tval 2diff:tval);
lval <- left;

rval <- right;

diff = (diff>Ival?diff:lval);

BOELD NGO OIS IS NS { NP S S N
KR O A A R D A R T S T NI R T S R RS

()

.
eatianhirdogit

A

105

(AROIOO IO
Lottt aboh

e il © Ry

(X 106
. diff = (diff>rval?diff:rval);

-;3‘ cont = (diff<tol?0:1);

:'.. export(diff,max);

A

R)

;::ii Poker script

;::} run 1 trace’x

Rt run,

; og"x

r run 2 trace™x

R0 log™x

0 if 53 max > 0.1 skip -4"x

o

L} "

A

, A.3. Batcher’s Sort

"T

:' The following program is the 64 processor divide-and-conquer sort of Batcher. We
': present the sort phase. This was tested with two other phases that loaded a test problem
LA

! and dumped the answer. The interconnection structure is the 64 processor n-cube,
,.

:: 2 shown in Figure A-13 for the upper left 16 processors. All other quadrants are
Q reflections of the upper left quadrant. Since there is a single code, batchers.pc, we do
s

:: not include a code names view. The port names for the upper left 16 processors is given
- in Figure A-14. |

i

.:' batchers.pc

o

S

‘i code batchers;

&)

o ports dell, del2, del4, del8, del16, del32;

4

o

It main()

®

Ly (

o int element;

N port del(6];

5 #define UP 1

® #define DOWN -1

':' N

B

0 del[0] = dell;

5 gty) L] [}

RSO0 XA EOOOOOOOOIUOUO O MRS A AR SO OAON OO OO GO O U A ABOAONM
R A N N A N I N I h".!“t‘:‘!':"h"*."-","'ﬁ"'v‘.’-‘u""‘ l‘Jr'»‘b‘.:‘u"'lfq'ifa'i‘ SOt U*’*"f‘f*‘!‘ "2‘7":",’;'?':!".f‘t"‘f’iuﬁ /

» w3 4 e N ORI

RN 107

Q&U U&u

% N %

ny

,E:: : Figure A-13: 6-Cube Interconnection
:n{.' del[1] = del2;

:‘j i del(2] = del4;

o del[3] = del8;

:l. del[4] = del16;

;3 2 del(5] = del32;

hES

3 .

,, ’ import(element,element);

R sort(&element,PEid-1,PEn*PEn,S,UP.del);
;’.'l

E ‘? export(element,result);

‘:::. ¢ Y 1]

i }

o0

[\

E:::: sort (elem, id, n, lev, dir, del)

o int *elem, id, n, lev, dir;

® port del[6];

& (

b if (lev >=0) (

e n/=2, “
e

L

w

0‘ ,:.

"
Uk IR MU0
e I,

QOO RN, B g g gt s eV N e W a8 U g e AT Uy B g B b g, Ve V1 W 00 0
A B N T N i i e B o i e e el e

. -

ity

\J
Ly ?\‘M‘:‘..’A\ '

Tdeld T [TdeBI 3
del2 |1dei32 deld ||deld2 deld K del2
del32 dell | |dell del2 ||del2 dell |]dell deld
dell6 del16 del16 dell6
del8 del8 del8 del8
deld del2 deld deld | |del2
dell dell del2 del2 dell dell deMd
del32 del32 del32 del32
dell6 dell6 dell6 dell6
Tdel1& 1) [3 dell8
deld del2 deld deld | [del2
dell dell del2 del2 dell dell deld
dei32 del32 del32 del32
del8 del8 del8 del8
4 del8 Tdel8 2[4 del8 3[4 del8 4§
deld del2 dell6 deld dell6 deld del2
del16 dell dell del2 del2 dell dell deld
dellé
del32 del32 del32 del32

Figure A-14: Batcher’s Sort Port Names

sort(elem,id % n, n, lev-1, id<n?UP:DOWN, del);
merge(elem,id,n,lev,dir,del);

merge (elem, id, n, lev, dir, del)
int *elem, id, n, lev, dir;

port del{6];

{

int temp;

del[lev] <- *elem;
temp <- del{lev];

if ((id >=n && dir == UP) Il (id < n && dir == DOWN))
{ *elem = (*elem<temp ? temp : *elem); }

else
(*elem = (*elem>temp ? temp : *elem); }

if (lev > 0) merge(elem, id%n, n/2, lev-1, dir, del);

4

-

-~
- -

- "
A NN PP K

=

a KX ARY L B o

PO

>

"

PN
[

A PRSP Sc

el i el P s

,..‘..

c."t."o."b

A.4. Matrix Multiply

The following program is the 64 processor divide-and-conquer matrix multiply.

109 4

We present the matrix multply phase. This was tested with two other phases that

loaded a test problem and dumped the answer. The interconnection structure is the 64 '

processor n-cube, shown with Batcher’s sort in Figure A-13. Again, since there is a $

single code, matmul.x, we do not include a code names view.

matmul.x

code matmul; /* matrix product */

trace aele, bele, cele;

ports vert2, vert4, vert8, horiz2, horiz4, horiz8,;

begin

'Q'l ..’c..'

. . .I’. .'..ﬂ

1 horiz8 1 211 31 vent8
horiz4| | vert8 horiz8| | vert8 horiz8| | horiz4
vert8 horiz2{ | horiz2horizé4 | | horizdhoriz2 | | horizZhoriz8
vertd vertd4 vertd vertd4
vert2 vert2 vert2 vert2
2vertl 1} | 2 vertd 2vertz Si[2ventZ 4
horiz8horizd horiz8 horiz8| | horiz4
horiz2| | horiz2horiz4| | horiz4horiz2 | | horizZhoriz8
vert8 ven§ vert8 vert8
vertd vertd vertd vertd
vertd] vertd 3 vertd 3 vend
horiz8horiz4 horiz8 horiz8| | horiz4
horiz2| | horiz2horiz4 | | horizdhoriz2| | horiz2horiz8
vert8 vert8 vert8 vert8
vert2 vert2 vert2 vert2
dvertz | vert 4 vertd 3| 4 vert
horiz8horiz4| | vertd horiz8| | vertd horiz8| [horizd
vertd horiz2| | horizzhoriz4 | | horizéhoniz2 | | horizzhoriz8
vertd
vert8 vert8 vert8 vert8

Figure A-15: DAC Matrix Multiply Port Names

'l‘a‘.lo'da.'."‘.lql

l‘.'h‘

ekttt

‘l .' " OO ' i,

'1

'0' .."‘.0 hh"lo%uh 'Q"Q

St

o '
Ny
o

..

i

e

Oy

s 110

v int acle, bele, cele, othera, otherb;
on int save4, save8;

o sint i2, i4, i8, j2, j4, j8;

S .

e /* initalize */

i

i cele :=0;

o) 2 := PEi-1;

o i8:=i2/4 mod 2;

0'.: i4:=i2 /2 mod 2;

P i2 :=i2 mod 2;

o j2 := PEj-1;

{ j8:=j2/4 mod 2;

0 j4:=j2/2mod 2;

Py j2:=j2mod 2

e

i ":"

RO /* do the matrix multiply */
° gosub Compute8x8;

e |

s .‘:3 exit; /* end of program */

o

; "; /* Subroutines */

)

s Compute2x2:

b /* send values */

W . vert2 <- bele;

horiz2 <- aele;
otherb <- vern2;

2 othera <- horiz2;
& ﬁ. /* multiply */
b if i2 = j2 then
N ‘Qc cele := cele + aele * bele + othera * otherb
oS else
® cele := cele + aele * otherb + othera * bele;
P return;
g
t’: X
KT Computedx4:
. L]
;:. . vert4 <- bele;
‘-‘ horiz4 <- aele;
W if i4 = j4 then begin
-:?- gosub Compute2x2;
3 B
d) bele <- vert4;
f:.;‘,t aele <- horiz4;
24 gosub Compute2x2;
:-,—. end else begin
W saved := bele;
N bele <- vert4;
)
i,
'.
L
fi'w
RV N)
R R R R A R A R R R R AR RS

oy
Rt
o
2
g
4N
.:M 111
T gosub Compute2x2;
Ny aele <- horiz4;
N bele := saved;
! N gosub Compute2x2;
oN end;
= return;
t
:l'?i
;: N Compute8x8:
KON vert8 <- bele;
§) horiz8 <- aele;
P if i8 = j8 then begin
(] gosub Computedxd4;
o bele <- vert8;
o aele <- horiz8;
. é gosub Computedx4;
K end else begin
® save§ := bele;
- bele <- vert8;
o gosub Compute4x4;
ny aele <- horiz8;
o bele := save8;
Y gosub Computedx4;
N end;
P M
N return;
::l'
nil end.
hoL
D,
o
.:C\ A.S. WAP Matrix Multiply
g}
+ BN
j_'-: This implementation of the Wavefront Array Processor matrix multiply algorithm
.1_ does not strictly follow the systolic paradigm. Instead, the data is contained in the
e
- processors to start with. The data is then circulated using the torus connections to get
LA
j,‘:: the same data flow as the systolic implementation. The remaining part of the algorithm
Fag
° is the WAP matrix multiply.
et
LA
, matmul.x
g
)
oY code matmul (size);
‘ trace aele, bele, cele, indx;
‘ }
» 3.8
::' ports left, right, up, down;
s
0
: "y

1

LA AT A N OO ML) \ 0, OURUDE . Q Y '
AT) 8 0yt W ¥ s 0 DO D000 900 N Bt T T NS SR G S T b s de by Bttt yd
R o ..'v,-‘ﬁ,.'n‘.’a,.'_l‘:f\,q‘sf._af.."‘,'.'_ﬂ:hf.ﬁf.fn:,'::.%f.'a..'»2.9-‘3.!'.0, A s e G i e e e e e

) 112

AL

SIS AL,
S,

5 . o
o O
S

Figure A-16: WAP Matrix Multiply Interconnection

505452

o "l":i 7,
Y. ‘-

,.'-

DI 2 Y
]
2,

el

¢ mamul 6] { & matmul mmrig 8|
8 8 8

-
L

»
.

w:}: T matmul 6| [~ matmul mmrig 8|
Iy 8 8 8
i \3’
oo
T mmlow ¥ mmlow 8 mmlr
Wi

s Figure A-17: WAP Matrix Multiply Code Names

LS TR iy ST O ISR O N IR 0 { ICACHIAIIOORO Q R 0
B A e R R O OO A B s *2‘.'.::‘!'2‘3.'Yu‘_!of‘!tf‘?v.‘?-:'30:‘3v:'?c:'?v‘.'fc‘.'?vf', AN

Rl Yo

Y. VR

'.; 113
-

3 w
:'l: left right
down

t

'y

N, Figure A-18: WAP Matrix Multiply Port Names
N

,E: N begin
(. int aele, bele, cele;
o int size;
b

o sint indx, PEn;

_; PEn := size;

o indx := PEj;

W indx :=0;

o indx := PEj;

.
(- /* start wave around */

~ right <- aele;

"'j down <- bele;

ey for indx := 2 to PEn do begin
o if PEj >= indx then begin aele <- left; right <- aele end;
:) if PEi >= indx then begin bele <- up; down <- bele end;
- | end;
i /* do the multiply */

;ﬁ' for indx := 1 to PEn do begin

o aele <- left;

>3 right <- aele;
! -b-
iy bele <- up;
'C: down <- bele;

o cele := cele + aele * bele;

'Y end;

v

A4 end.

Ny
AG
& .

.—-‘ mmrig.x

0 code mmrig (size);

Wi

()

R

o

i

gt 9,1

O e IR W N RRICKH AT S v O] W n it T g W tin et ntwt iy :
A SRR .l'qb?:h,'.,tﬁ'.ﬁft?oﬁ. LA M !.h'..o‘.’,i,'-fﬁ'.of‘l'n. ’o!’!.!t'o’.l!!!&';‘..‘.h'.?0 DRI AL DO KDL N D]

Aaitagty
l‘l?"l!..l!‘!l,

p v -

-
Y, Y,

a;' i

s
e

W55

Lol S & o, A
B .'}:fr" :’:“x)

frfzh{j.

LR W o

My

3
"
o
3
[)
[+
%

-H.

DAL VDN
R B Gl R &

trace acle, bele, cele;

ports left, right, up, down;
begin

int aele, bele, cele;
int size;

sint indx, PEn;

PEn := size:

/* start wave around */
right <- aele;
down <- bele;
for indx := 2 to PEn do begin

if PEj >= indx then begin aele <-
if PEi >= indx then begin bele <-
end;

left; right <- acle end;
up; down <- bele end;

/* do the multiply */

for indx := 1 to PEn do begin
aele <- left;

bele <- up;
down <- bele;
cele := cele + aele * bele;
end;
end.
mmiow.x
code mmlow (size);

race aele, bele, cele;
ports left, right, up, down;
begin

int aele, bele, cele;
int size;

A 2 ¥ IO L AN O
SRRNIIAIE, .ttt tiettintattin it

Un24)
.ﬁﬁﬂ

1'.:%.:"

. ERAGOLOIOUI LI XA O
AR
MOURAO N X

- - -
" - -

A }A-J

Y VRERTR

P4

- e -
i

P

- -
0L A RPN MLl I PSS

115
sint indx, PEn;

PEn := size;

/* start wave around */
right <- acle;
down <- bele;
for indx := 2 to PEn do begin
if PEj >= indx then begin aele <- left; right <- acle end;
if PEi >= indx then begin bele <- up; down <- bele end;
end;

/* do the multiply */
for indx := 1 to PEn do begin
aele <- left;
right <- aele;
bele <- up;
cele := cele + aele * bele;
end;

end.

mmir.x

code mmlr (size);

trace aele, bele, cele;

ports left, right, up, down;
begin

int aele, bele, cele;
int size;

sint indx, PEn;

PEn :=ssize;

/* start wave around */
right <- acle;
down <- bele;

T o ¢
.""" “ Wl 0‘2."' ", '0 Jn .‘.0.‘.0 ”l’.’ |"l\‘.‘ c"‘h "-'e%"’ InCr ' ‘.'ﬁ 'l'a.t:"l' b .‘ ". &h 'g‘t‘."‘ ‘:':‘n Ot .i'q C‘o. ‘."‘q'l‘ .l‘g‘t'

!\ .
)
.“Q.‘
o
Lal
S
LY N
2 116
! for indx := 2 to PEn do begin
iy if PEj >= indx th i B o ;
e if PEj >= in en begin aele <- left; right <- acle end;
,;:o if PEi >= indx then begin bele <- up; down <- bele end;
;.I' o end;
:.og:
-,-.I%.
1
R /* do the multiply */
el for indx := 1 to PEn do begin
0 aele <- left;
R
e bele <- up;
(v cele := cele + aele * bele;
\ . end;
4 “Pl
&
Vol end.
Sy
™
.-
bie
-‘:_'%:: A.6. Contractions
e
e As part of our study of contraction, we implemented two algorithms with two
y mp
"
;i;' . different contractions. These contractions were compared with the analytical tools
el . . .
::;n"‘ developed in Chapter 1 and these implementations demonstrated that these tools gave
','I‘. .
_::;::,. accurate predictions of their relative performance. (See the contraction sections in
)
5 Chapters 2 and 4.) The implementations are included here for completeness. Although
;" d the timings given were for several different problem and machine sizes, we give only the
R
! '-‘-‘: implementation for 64 processes on 16 processors. The other sizes are straight forward
)
! -{: changes to the given implementations.
o
’.5:: The tree contraction algorithm is maximum and the mesh contraction algorithm is
gty . . :
:?':::" WAP matrix multiply given previously. We provide enough of the interconnection
|'|
e structure, port names, and code names to be able to reconstruct the program.
@
s A.6.1. Folded Tree Algorithm
oy
)]
s root.x
\
L
. code root ;
DO >
N
.;::'.. trace max, lmax, rmax;
D/
t"‘ »
|'°::
.'l..’l
[
QA
I“ ()
BN A MUY At ‘ OO ' OO0
R R R R R R R R R

MK

1 Seg_ < Laay e a-x ot m“m

W 117

o, Figure A-19: Tree Folding Interconinection

o
e TTeal 1] [Troot Them 3| [Tl 3‘

g Z mtern 1] [2 ntem Z intern ‘J] themj

(R
4 ! T leal T 3 intem T intemn T Teal 1]

. TTeal 1) (A Vel T Teal TTeal Z)

" Figure A-20: Tree Folding Code Names

|
@

Fires

S0 s

a4

IR

JJ "
'»' '0' ol h’t o, t‘l.s'u'.c'5.:"d‘0‘ 0'&"’:’. '.’ l". " .cu j;,,., 0‘:&3.,\,5‘0;, (W O (.‘,‘.i". 'm’m‘ ‘.!'f. "',0,‘.!".! LY ,,\'l'g l..‘l 'q.l‘c‘

Y 118

i T o (T [T 3

Wi left parent
A left

) .
'.: parent right parent

lj TTel z Zp:r;ﬁ.ﬂ Znght g

"o V|
X parent | | left right | |parent

Uy right right left left
P Tpaent 1| [3 parent Jparent 3| [3 parent 3]

Y left right

::‘\‘ . fz_ghl left

whe | parent 2} [4 parent —4
\ 7{ parent

ok Figure A-21: Tree Folding Port Names
ports parent, left;

W begin

g int val(4];

D int Ival, rval, Imax, rmax, max;
WY sint indx;

-
o

e : o

" lval <- left;
rval <- left;
if lval > rval
then Imax := lval
else Imax :=rval;
if Imax < val[1] then Imax :=val[1];
lval <- left;
rval <- left;
if lval > rval
then rmax := lval

PP
R R

-
)

' ®
<

5

ﬁ_ N else rmax :=rval;

e if rmax < val[2] then rmax := val[2];
Ay if lmax > rmax

L then max := lmax

::: - else max := rmax;

KX t}- for indx := 3 to 4 do

g O OOt BT AT L OO0 00N DL KOOI X AT IO RO LI IR IO
'0?¢"?s"..c'"v:':0'.&,0'.:,:'.0.0 h:'.‘.i.l. '1.0‘520"!:'.0.&l&'.‘f:"’:’""":‘".t".oq":":b‘lfo"’!'beﬂi.t',‘K ,..;'f.ﬁf:..\','ﬁ'.ofi:u'u. :‘ o l‘!'l‘!‘l't“"‘l'!‘A".O.'c'ﬁ‘:':‘:‘,i‘2’""Q'

'y [) -
(LN X /)
‘-"f-"fo"g".\\!"l..n’!fs

B
L)

P PR r s T Py P
Gl balaleg

if max < val{indx] then max := val[indx];
parent <- max;

end.
internal.x
code internal ;
trace lval, rval, max;
ports parent, left, right;
begin
int val[4];
int lval, rval, max;
sint indx;

for indx := 1 to 2 do begin

/* left tree */
lval <- left;
rval <- left;
if lval > rval
then max :=lval
else max :=rval;
if max < val[indx] then max := val{indx];
parent <- max;
/* right tree */
lval <- right;
rval <- right;
if lval > rval
then max := lval
else max :=rval;
if max < val[indx+2] then max := val{indx+2];
parent <- max,

end;
end.

leaf.x
code leaf ;

trace indx;

SR R R T Y

TR e R R AR K
N ERG R ATa t ftat e O

0%

i

119

/ Q AN JO
.l'.st"oh,‘cet'ufi'v.t'&el'.go'gtl!,fo‘

e W TE TV ET TR SN YW YW T TR TRV T WY W R WU T W W WU SRT Ty - ez ot adebdtindelinbdebind b dis At

[
)

Y
ri

s

pExA
rx

.

I's

120

2A
g

ports parent;

begin

LR
P,

s

int val(4];
sint indx;

.

- S - -
4

- -

for indx := 1 to 4 do parent <- val[indx];

"
xS
.-

’l'::' , end.

r A.6.2. Leiserson Layout Tree Algorithm

f}:?.'-_f@iﬂt?

-
e
o

Figure A-22: Leiserson Layout Interconnection

h

Kl
"

1 wmnter? 1 inter2 1 interZ 31 T interl

2

i e e
»

T g
o4

»

.
" s

¥

Znterl 1] [2 inter] inter] 2 leals 7\

i
-
3

3 leat3 Teal3d 3 leafZ 4

4 leall 1]] 4 leald 4 Teal? 3'r 4 leaf2

ARLLELS

Figure A-23: Leiserson Layout Code Names

0% AR LANNR BN

.....

» - ’
ek Ve] G OAOO000 SOOUOUOWRIOL OV OAGNE OGO OOCHIAKAN) IOV OO
\‘f:‘-'.l‘s"‘-"':?"nft‘,of",a’:r.'.\.".! X RO RGOS LRI AR A D X A AR AR SOO Y ACOCNIH

:"‘. 121

8
"7

By
Rz
—_

L

T parent T —_‘q
left right |!perentright ||parent
tparen left left

U"j’
5
:I.E
By
i

right

%2

T 2 Zparent 3} [Z parent
parent left

right right
left left

3 parent T parent J) B
left left parent

e s
5

Pt
=]
-4

XX

a
=

o ‘”b—
L
3
8

-
(o]

v AT

o
¥

L g e
ff
-5
-
-

parent parent ﬂ parent

,';').4 ®

e
-

OIS

F)

Figure A-24: Leiserson Layout Port Names

»

P

interl.x

2]
A

Taa "
2

code interl ;

.l

> g
P

-
H

trace indx, max;

30

4 ports parent, left, right;
; N-{'; begin

Y

.4 int val[4];

o int max, lval, rval;

::. sint indx;

£y
Aty A,

max := val[l];

b_ forindx :=2to 3do
e if val(indx] > max then max := val[indx];
e
right <- max;
il max := val(4];
;:;‘ lval <- left;
b if lval > max then max := Ival;
??:o, (rval <- right;
;‘,‘

LN L} 0 l AN ® . o
OLRR ‘:' SRR OIRNIN e K 3'«.’;‘; 9“' ‘ e ‘u K ety .*!’Yl‘!'f ﬁ \'e W, o‘:’~ ,"s' KRN
ot 5 PR LA

‘, q‘l“h"'l n'l ;" 0 t "‘ u ‘7' "it‘) lh A

.“ .
na
P

k)
-,

ol e e e e
o Jon
e

P's

2, £ Pt e
= > 2 2

>

e
TV S

(R
.‘Q L

Ry c,l 1, o.l ',u

if rval > max then max := rval,

parent <- max;
end.
inter2.x
code inter2 ;
trace indx, max;
ports parent, left, right, tparent;
begin
int val[4];
int max, lval, rval;
sint indx;

max := val[l];
forindx :=2to0 3do

if val[indx] > max then max := val[indx];

tparent <- max;

max := val[4];
lval <- left;

if lval > max then max := lval;

rval <- right;

if rval > max then max :=rval;

parent <- max;
end.
leafl.x
code leafl ;
race indx, max;
ports parent;
begin

int val[4];
int max;

X)

¥y
"’ "'l"'l“ “"z .h‘ ‘!Q:‘?! ."h‘ ?g“

P

J OO0
” .l"'i‘;.‘ |ll "l p i‘ ‘Q "I'

J
b, *?0?« ’

"
SRS ’0

N

".x

i'e

Q

122

DO
R RIOKRIRN

ql

d..
‘o
K
(X
®
(hels
'l..'i
o
T"..::
o 123
T sint indx;
3? max ;= val[l];
ol for indx := 2 t0 4 do
e if val[indx] > max then max := val[indx];
v) parent <- max;
‘ii."
e end.
)
W leaf2.x
{ - code leaf2 ;
B
:: ‘ trace indx, max;
ol
N ports parent;
®
"g‘ “’:: begm
[‘\.'f
15N
e int val(4];
W int max, lval;
‘ N sint indx;
O
max := val[l];
,4 forindx :=2to 3do
N if val[indx] > max then max := val[indx];
\l '."v
;‘)’ v lval <- parent;
! - if Ival > max then max := lval;
NN if val[4] > max then max := val[4];
[re parent <- max;
g
L 1 end.
3
nedl leaf3.x
_g:g
e code leaf3 ;
o
o trace indx, max;
|:i 5 “
el ports parent, left;
AR
o _
begin
s'i'
e int val(4];
:S:' int max, lval;

: u'-\; g ,q (M O de TR
e R R A T KRR

! :
by c g’\!"l' l'q.. hl’; 0‘ "p i .% 0' ‘l' ’G'g’i' 0' ..Q' 0‘ ‘0' ‘0‘ Q}‘ C'ql.‘tﬁis

» lo&.!‘

;.
R e
By Ty o N
[l. l' J "l',l -

2

| @ [ty

A

t

|
Ty S AT
o

EREAG

- s W
-

T Q}

CX_¥_1
®

-

TR @ il

..:

DY)
R ASOACIOOS0LS
B -“_.‘x’ ')’.‘l -.i‘.).,,-,‘.%

OGS O OIONOA0ATANINIAANN)
R R D T OO

sint indx;

max := val[1];
forindx :=2to3do
if val(indx) > max then max := val[indx];

lval <- left;

if lval > max then max := lval;

if val[4] > max then max := val[4];
parent <- max;

end.

A.6.3. Coalesced Mesh Algorithm
matmul.x

code matmul ;

trace a[1], a[2], b(1], b[2];

ports left, right, up, down;

begin

int aele[2,2], bele{2,2], cele[2,2];
int temp;

@

Sy
I
EIEs
rars

Figure A-25: Coalesced Mesh Interconnection

G

ol
o

N dTay 02 AT AT AT ATy AV AT W10 Ve 07, 0 V.
20,0 0 L N O N AR N N b he

5

G OO
Wil N T

R 125

o 2 mamnul meuflﬂ 2 mmng 4

I T mammul 3] [3 matmul 3| [T mmng 4

PR

4 mmlow 4 mmlow 3)|{4dmmlr 4

-
5:".52 w

XL

Y

Figure A-26: Coalesced Mesh Code Names

o e

1 up 1

-
)
LI N

left right

T L RN Nl ,
3 A s B -
:

Figure A-27: Coalesced Mesh Port Names

L)

P~ int a[2], b{2];
o
o
o~ sint indx, indx1, indx2;
SN
L
R
oy /* start wave around */
:-.j indx1 := 2;
u while indx1 > 0 do begin
for indx2 := 1 to 2 do begin
right <- aele[indx2.indx1];
& down <- bele[indx1,indx2];
: end;
o indx1 :=indx1 - 1;
p end;
Y for indx := 2 to PEn do begin
I if PEj >= indx then
ki for indx1 := 1 to 4 do begin temp <- left; right <- temp end;
i if PEi >= indx then
N\
2
L J
I"
Y
o}
1, — . . e . ’ : . . g
D A R N O R O

"’; Ax‘;f-_‘:ngxf

- Lo g
L

SISl

ALL N 3_‘-_:

-
- - -

PLIRI LS o

RO AL
PP LINBNE i L3555,

AN

a,
L

il PR i
220", @ xS

G RER:

|

l" ”‘ l.‘ \

ASOSONOBON0AG 0 ‘ : ~ s \ .
DI P M Ml M (] N 3 0 A KON XA QS CRICEERN MICTO MR RO N
B2 :’.J’,‘,0’,’!’..%”,’!.@2‘? "Q.‘!Q!"n“ﬁ.li;‘?h- ‘,\'.“!c.‘ljn”gq:ql:l_'tt‘aa,l_'q:.,q.l'vthf_p. 9 ’Q,.:!'g’l’.‘.l?:b’:zl!’,lfq;l"\-“.!",‘!.’l'),l!;..!"l!.. ’t‘!""!‘..' ‘.

e aly

for indx1 := 1 to 4 do begin temp <- up; down <- temp end;
end;

forindx :=1to 2 do
forindxl :=1to 2do
cele[indx,indx1] := 0;

/* do the multiply */
for indx := 1 to 2*PEn do begin
for indx1 := 1 to 2 do begin
afindx1] <- left; right <- a[indx1];
b(indx1] <- up; down <- bfindxl1];
end;
forindxl :=1to 2do
forindx2 :=1t0 2do
cele(indx1,indx2] := celefindx1,indx2] + a[indx1]*b[indx2];
end;

end.

mmrig.x

code mmrig ;

race indx, cele[1,1], cele[1,2], cele[2,1];
ports left, right, up, down;

begin

int aele[2,2], bele[2,2], cele[2,2];
int temp;

int al, a2, bl, b2;

sint indx, indx1, indx2;

/* start wave around */
indx1 := 2;
while indx1 > 0 do begin
for indx2 := 1 to 2 do begin
right <- aele(indx2,indx1};
down <- bele[indx1,indx2];

B0 T T Ve N

........

&'

OO0
’l':*n‘,

i

A'&‘

it
!'a N

'!c?

'b
~l
-x‘::}
N

l'.A.

oo
P d AL

9>

‘> o
¥

- ol
N)

a.:.

W
3, l'::l ¢ by u
nathaihiin

W o, ety WP gty d O R SRS O EANS
b O] ‘c'.'l'.‘c'.'a’;‘:’.'a'!_'u‘o'a'.’n'!'; EOCOIIAN :‘-’!‘A‘:'A".'n‘:'c'!.‘:’:‘t'!'a"'ﬂ"a"'ﬂ

end;
indx1 := indx1 - 1;
end;
for indx := 2 to PEn do begin
if PEj >= indx then
for indx1 := 1 to 4 do begin temp <- left; right <- temp end;
if PEi >= indx then

for indx1 := 1 to 4 do begin temp <- up; down <- temp end;

end;

forindx := 1 t0 2do
for indx]l := 1to 2do
cele[indx,indx1] := 0;

/* do the multiply */

for indx := 1 to 2*PEn do begin
al <- left;
bl <-up; down <-bl;
cele[1,1] :=cele[1,1] + al*bl;
a2 <- left;
b2 <- up; down <- b2;
cele[1,2] :=cele[1,2] + al*b2;
cele[2,1] :=cele[2,1] + a2*bl;
cele[2,2] := cele[2,2] + a2*b2;

end;

end.

mmlow.x

code mmlow ;

trace indx, cele[1,1], cele[1,2], cele[2,1];
ports left, right, up, down;

begin

int aele[2,2], belef2,2], cele(2,2];
int temp;

int al, a2, bl, b2;

sint indx, indx1, indx2;

OCK) ‘
800, 4% 30 A% AT T A% AR A0, "

LA)

127

atetyt Syt
s".'ﬂ!‘ﬂ"u

".l.;" ““““ TR TON TUN U TULR TUN TUR TR TOR TR W
o .
‘ o
. Al
e
Cha
o
s 128
4
- /* start wave around */
N indx1 := 2;
N while indx1 > 0 do begin
" N for indx2 := 1 to 2 do begin
ALY right <- aele[indx2,indx1];
Ly down <- belefindx1,indx2};
A ‘ end;
oY indx1 := indx1 - 1;
:""l N end;
T for indx := 2 to PEn do begin
(if PEj >= indx then
¥ o for indx1 := 1 to 4 do begin temp <- left; right <- temp end;
e if PEi >= indx then
o for indx1 := 1 to 4 do begin temp <- up; down <- temp end;
B l'f-i end; .
[V, o
®
B J'— .
AN forindx := 1to 2do
;ﬁ: for indx1 :=1to 2 do
L o cele[indx,indx1] := 0;
AR
. /* do the multiply */
Pl for indx := 1 to 2*PEn do begin
iy al <- left; right <- al;
:" . bl <- up;
iond cele[1,1] := cele{1,1] + al*bl;
®) a2 <- left; right <- a2;
e, b2 <- up;
- cele[1,2] := cele[1,2] + al*b2;
; f.:j cele[2,1] := celef2,1] + a2*bl;
ey cele[2,2] :=cele[2,2] + a2*b2;
."" end;
B
;‘E: end.
a5
'1-:‘_‘
;.-?'- mmir.x
o
" code mmir;
By trace indx, cele(1,1], cele(1,2], cele(2.1];
-
ports left, right, up, down;
%
ol begin
300
o
A’.’l.
L

§

Ny

‘:’" OOOGOGNOUOADEON MO OO OO OO MO MO A O OB A OO O IO SHAROAOADOINOSONCN]
J : (SOOI OG0 () ' HRGHE) BOOCAON

Wttty B T A R T RN I A TN ’lo"‘?!‘i‘ AN AROUCUCORMOU LRI MM L OO,

......

Sp
F
i
l

i‘l'
,E.:'
e
1
J'\.'
iy
’ ’:} 129
1 int acle(2,2), bele[2,2], cele[2.2];
A int temnp;
" int al, a2, bl, b2;
B %
D) sint indx, indxi, indx2;
2
a. ¢
i /* start wave around */
N indx1 = 2;
{ while indx1 > O do begin
[N for indx2 := 1 to 2 do begin
i‘; right <- aele[indx2,indx1};
o down <- bele[indx1,indx2];
] end;
add indx1 := indx1 - 1;
.4 end;
W for indx := 2 to PEn do begin
= if PEj >= indx then
A for indx1 := 1 to 4 do begin temp <- left; right <- temp end;
a5 if PEi >= indx then
(for indx1 := 1 to 4 do begin temp <- up; down <- temp end;
ah end;
o
R
U0
A for indx := 1 to 2 do
3’ for indx1 :=1to Zdo
Y cele{indx,indx1] := 0;
»
N
;:,'. /* do the multiply */
! for indx := 1 to 2*PEn do begin
: al <- left;
.}; bl <- up;
- cele(1,1] :=cele[1,1] + al*bl;
oty a2 <- left;
o b2 <- up;

cele[1,2] :=cele(1,2] + al*b2;

cele[2,1] := cele[2,1] + a2*bl;

cele[2,2] := cele[2,2] + a2*b2;
end;

end.

l. l,ﬂ,_‘ 3
.:f ,-_.-_.-’*955'_._ _,-_i‘ &~

,.-,':

EXNEKP I A S

s

i

L)
o , . , s .
Uttty . O 3 Wyt ASOH0 8 00 %4 ARG O) Y SO Y IO X W T KA

NN OO0 R e T Bt e R R R O U O N

NN .
v

o

P
R

e

i

N A.6.4. Folded Mesh Algorithm
149 o

N

‘é} The folded mesh algorithm uses the same interconnection structure and port names
1N

R as the coalesced mesh. Since it uses the same code in all processors we do not give the
~. code names for the folded mesh.
A

oy matmul.x

e
(c{:{cs code matmul;

‘NN trace indx, indx1, indx2;

; ; ports left, right, up, down;

IJ‘.

o begin

o int aele(2,2], bele[2,2], cele[2,2];
T int aval, bval, temp;

o

NI
(e sint indx, tindx;

g sint count, indx!, indx2;

4y .’.J'.

)

oy
g

ﬁ:{' 3 /* do this for each "data point” */
3) indx! :=[;

. indx2 := 1;

%

R

for count := 1 to 4 do begin

/* start wave around */

'® tindx := 2;

Wit while tndx > 0 do begin

- right <- aele[indx1,tindx];

b down <- bele[tindx,indx2];

o for indx := 2 to PEn do begin

; if PEj >= indx then begin temp <- left; right <- temp end;
.~ if PEi >= indx then begin temp <- up; down <- temp end;

Rl end;
A tindx := tindx - 1;

Lo end;

[

®

vy

5:{., /* do the multiply */

" for indx := 1 to 2*PEn do begin

g

~

¢
t

, Q R R R S i T AR kR
b S X A D D B O R R OB DT DR X

wWwh

[N i y

OO U IO \) U OO KKK () A ()
~'“-‘“n','n‘3a':fs’.?n'.ft'f?n'f',u‘.'-‘n?..t'.,i’!ﬁ"ﬁ'u‘c':’l'.?n"'n'!'c'.’c'.’a':’c':.A':,’a'.?c'qﬁ'!'ﬂm"’:'.‘A"’u':'

& .

Q
R

9
W
i

"

K}

Y

'.Q 13 1
[W

, aval <- left;

::{ if PEj < PEn then right <- aval;

% bval <- up;

if PEi < PEn then down <- bval;

MY cele{indx1,indx2] := cele[indx1,indx2] + aval * bval;
' end;

kv

/* next item to work on */

\ if count < 2 & indx1 = 1 then begin
:. indx1 := indx1 + indx2;
(indx2 := 1;

» end else if count > 2 & indx2 = 2 then begin
o indx2 := indx1+1;

.p: indx1 := 2;

- end else begin

ors indx2 :=indx2 + 1;

. indx1 := indx1 - 1;

v end;

/-.‘
1

o end;
f end.

15

B}

0,

0

el

o

el

-

| .
A g T By N
"H ~ @ e @

@ RN @ r N,

“

l‘.

s - 8 4 ACAY X Y O 0
EAS) A o Qb4 00 0,

p’t’t"'t’!‘l‘:’lﬁ: l‘:‘l’, 9% p.l .0':,‘:‘ v‘!".\.ﬂ‘c" .’\\ti‘ x‘.f;‘:.:‘?le‘,!,) ;"' "%’.“o!\'_r!l’d\'c‘!’n.i

RO SR N

R
)
A

KHAR Vita

) Philip Arne Nelson (I -.f:c:

3::,& Pll Redacted completing high school at Rio Lindo Academy in Healdsburg, California, he attended
>
: X Pacific Union College in Angwin, California. In 1977 he received a Bachelor of Science

with majors in Physics and Computer Science. In 1979 he received a Masters of Science
in Computing Science from University of California, Davis. After teaching Computer
Science for two years at Pacific Union College, he attended the University of Washing-

". .
R ton in Seattle.
¥

]
%

e

Ay

Pl s S PO
A

YA

s
CEP LS

OO0 St AWM S QA AT A e LA AN AR AR AR OO QSO
b UNASE RS SEI e t.':'l‘.:"?o ettt ettt et e e .:',"o!',l'.m. et a.'4'!'.'!‘2"-‘;0.‘A".'o".’a'..‘:'!‘u".‘A"‘A'!‘n‘!‘,d‘.‘t%'t‘h‘Jt‘t‘u!",l"'.t',!l‘.'n

\3
) 'O' X
Lt

