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Parallel Programming Paradigms

Philip Arne Nelson

University of Washington

Abstract

Paradigms for the development of sequential algorithms, such as divide-and-
conquer and the greedy method, are well known. Paradigms for the development of
parallel algorithms, especially algorithms for non-shared memory MIMD machines, are
not well known. These paradigms are important, not only as tools for the development
of new algorithms, but also because algorithms using the same paradigm often have
common properties that can be exploited by operations such as contraction.

This dissertation identifies four primary paradigms used by non-shared memory
MIMD algorithms. They are compute-aggregate-broadcast, divide-and-conquer, pipe-
lining, and reduction. Compute-aggregate-broadcast is used, for example, in numerical
approximation algorithms like the conjugate gradient iterations. Three variations of the
compute-aggregate-broadcast paradigm are studied. Divide-and-conquer is shown to be
applicable to parallel algorithms. The relationship between divide-and-conquer algo-
rithms and the n-cube is studied. Systolic techniques are known to be broadly applicable
for the development of MIMD algorithms. Systolic algorithms are shown to be
members of the more general pipelining paradigm. Finally, the reduction paradigm is
briefly studied.

The contraction problem, the problem arising when an algorithm requires more
processors than are available on the execution machine, is studied. Special attention is
given to common solutions to the contraction problem in each paradigm. \An optimal
contraction is given for algorithms using the tree interconnection structure.,For other
contractions, a method for comparing them is given. )

- This dissertation also presents two new parallel algorithms. The first algorithm is a
divide-and-conquer matrix multiplication algorithm with time complexity of 0(n) using
0(n2) processors and O(Iog n) using 0(n3) processors. The second algorithm is a compute-
aggregate-broadcast topological sort with time complexity of O(n log n) using O(n2 ) pro-
cessors and O(1og2 n) using 0(n3) processors.
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CHAPTER I

Parallel Programming

In recent years there has been a great increase in both the interest and availability

of parallel computation. Advances in hardware have made it possible to build multi-

processor computing assemblages. As parallel computers become more widespread in

research and commercial communities, more programmers will be writing parallel pro-

grams.

Many programmers do not have experience in the design of parallel algorithms.

Their experience in sequential computation, while valuable, may not provide the tools

needed for efficient algorithm design and implementation for a parallel environment.

This raises the obvious question: What are the techniques and tools for developing

efficient parallel algorithms?

In serial computation there are several recognized programming paradigms, such as

the divide-and-conquer, the greedy and the dynamic programming techniques [3].

These computational methods are not algorithms per se, but rather they are problem

solving strategies that are frequently used in structuring efficient algorithms. Thus,

paradigms are the high level methodologies we recognize as common to many of our

effective algorithms.

In parallel computation we expect to find similar high level methodologies com-

mon to many of the effective parallel algorithms. These parallel programming para-

digms, if identified early enough, may help the programmer understand parallel compu-

tation and the unfamiliar process of developing parallel algorithms.

This process of parallel programming is further complicated by the diversity in the

field of parallel computation. Parallel programming could be writing a program in a

data flow language like VAL [61], writing a program for the Cosmic Cube in Cosmic
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Cube C [781, writing a program in FORTRAN that is compiled with a parallelizing

compiler [6,51], designing an algorithm for a PRAM [321, or one of many other possi-
bilities. Each of these makes assumptions about how parallelism should be expressed

and about the underlying model of parallel computation.

While we expect the parallel programming paradigms to give information about

commonalities found in parallel algorithms, we do not expect a single paradigm to be

applicable to all models of parallel computation. Thus, for example, the "to do list" para-

digm -- keep a queue data structure of task descriptors and have server processes at the

completion of a task select a new task from the head of the list -- requires all processors

-. "to fetch from the same memory cell (list head) and thus seems to favor a shared memory

-g implementation [37).

In this dissertation, we will limit ourselves to a single model of computation and

consider parallel programming paradigms that are useful for that model. In the

remainder of Chapter 1, we choose a model of parallel computation and look more into

the advantages of studying programming paradigms. In Chapters 2 through 5, we study

several paradigms by examining algorithms exhibiting them. In Chapter 6 we conclude

with a look at future work available in the area of parallel programming paradigms.

1.1. Parallel Machines and the Type Architecture

There is a plethora of parallel computation models and architectures. Unlike the

* models of sequential computation, none of the parallel models has emerged as the quin-

* ,, tessential model. In the theory community, the paracomputer [76] or PRAM has

become preferred over other models such as circuits [17], aggregates [17], and hardware

modification machines [27]. There are even variations in the paracomputer type modes,

such as Goldschlager's SIMDAG [36], Dekel and Sahni's shared memory machine

(SNLM) [24] and the multiple variatiuns of the PRAM [29, 32].

Actual hardware designs are just as varied, ranging from the small parallelism

shared memory designs such as the Sequent [30] and Lawrence Livermore National

Laboratory's S-I [93] to the non-shared memory message passing machines such as the

0. .
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CHiP architecture (80], the cube connected cycles [74], the Ultracomputer [761, and the

Cosmic Cube [78]. There are also the so-called dance hall architectures [50] where

memory is shared by way of a combining network. Examples of the dance hall architec-

ture include the NYU Ultracomputer [37], the PASM Computer [43], the Cedar Com-

puter [33], the Butterfly [19], i.nd the RP3 [70].

With all the architectural diversity, the programmer is required to know exact

details about a machine before designing an algorithm. An alternative to this diversity is

found in Snyder's Type Architecture concept [82]. A type architecture is an idealized

machine that describes salient features and ignores unimportant ones. This is not a rigid

-specification to which all architectures must conform. In fact, it is not expected that one

-i -. type architecture will be sufficient for parallel computation.

In reviewing the previous architectures we see that two main styles of architectures

arise, shared memory and non-shared memory. The paracomputer is a reasonable type

architecture for the shared memory machines. The paracomputer (76] is a machine with

N identical processors which share a common memory. All processors can access the

memory simultaneously in a single time unit. The most general model allows both

simultaneous reads and simultaneous writes to a single memory cell.

While the paracomputer is a reasonable type architecture for shared memory

machines, none of the non-shared memory machines is abstract enough to be a good

type architecture. For this reason, we accept Snyder's Candidate Type Architecture

(CTA) [821 as a reasonable type architecture for non-shared memory machines. The

CTA is defined as:

"A finite set of sequential computers connected in a fixed, bounded degree graph

* with a global controller."

/"- This CTA speaks to realizable parallel architectures in several areas. A real

machine will have a finite set of processors. This can be viewed as a resource similar to

* memory in a sequential machine. These processors are sequential computers that are

operating asynchronously. This does not exclude limited parallelism at the processor

'p--
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like pipelining or 1/0 co-processors. The communication is through a fixed, bounded

degree graph, where messages are passed between processors through some communica-

tion channel instead of through common memory. And, finally, there is some kind of a

global controller of the processors.

The previously mentioned non-shared memory machines, with the exception of the

Cosmic Cube, fit into this type Architecture. The Cosmic Cube fails only in that it is not

a bounded degree graph, with 0 (log n) connections per node. Even with this deviation,

the Cosmic Cube or more generally, the n-cube is still realizable in current technology

[78]. As machine sizes grow, this may not be the case.

We now have two type architectures from which to choose. The paracomputer has

several drawbacks, of which the most serious is the unit cost assumption [82]. Also,

while it is easy to "simulate" a CTA on a paracomputer, it is not easy to "simulate" a

paracomputer on a CTA. The methods used to simulate a paracomputer on a CTA are

discussed in Chapter 5. All of these methods require at least 0 (log n) processing for

each "shared memory" reference. Some methods also require synchronous processors

and require all processors to cooperate to access the shared memory.

Because algorithms for a CTA are directly applicable to the paracomputer and it is

difficult to fit paracomputer algorithms on a CTA, we choose the CTA as our model of

parallel computation. Our algorithms and discussion assume a machine conforming to

the CTA. Because the CTA does not enforce any particular interconnection structure,

we do not assume any particular interconnection structure for algorithms, but let the

.-., natural communication needs of the algorithm define the interconnection structure. We

deviate in one place from the CTA in that we will consider graphs with log n degree,

specifically the n-cube interconnection structure.

1.2. Programming Paradigms

Having chosen the CTA as our model of parallel computation, we now return to

program,..ing paradigms. Remember that programming paradigms are not algorithms

per se, but are problem solving strategies frequently used in structuring efficient

.i
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algorithms. The benefit in identifying paradigms, besides the pleasant and perhaps

scientifically important insight that apparently dissimilar problems can be solved by

similar means, is the fact that the set of recognized programming paradigms becomes

the programmers "tool kit." It is a set of known-to-be-useful strategies that he can use to

structure the development of new or improved algorithms. Thus, the programmer not

only has a place to begin when developing a new algorithm, but more importantly,

experience and knowledge from earlier problem solutions can be directly transferred to a

problem by means of the paradigm. As we have noticed, both benefits are important in

the parallel computation arena, since to date programmers have generally had little

direct experience with parallelism. But for parallel computation in general, and the

CTA model specifically, there is an even more compelling reason to concentrate on pro-

gramming paradigms.

Programming paradigms generally encapsulate information about useful patterns of

data reference, which in the case of parallel computation simply says that paradigms

generally encapsulate information about useful communication patterns. Since provid-

ing efficient and effective communication is the problem in parallel computer arcitec-

ture, the paradigms serve as a specification of which communication patterns are most

% useful and hence should be supported well.

There is a cautionary remark to be made on precision: it is difficult to define para-
N, digms precisely. We know of no adequate and convenient formulation that can be used.

Since paradigms are not algorithms, one does not present them in a programming

language, nor are there algorithmic schemata that could be presented in some

metalanguage. They can be illustrated by example (which we will do), but this is an

inadequate definitional means since it is rarely clear which properties are special and

which are general. Still, paradigms are a phenomenon that programmers understand,

and in sequential computation, we have learned them by some means. Our approach

will be to describe them verbally and augment the description with examples.

Our discussion will center around three paradigms. Chapter 2 introduces the

compute-aggregate-broadcast paradigm, focusing on the various ways in which this

Win
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paradigm is exhibited. Chapter 3 focuses on how the divide-and-conquer paradigm is

used for CTA model. Chapter 4 considers the systolic and pipelining paradigms. In

Chapter 5 we briefly look at a fourth paradigm, reduction, and consider the methods for
"sharing memory" on a CTA architecture.

1.3. Contraction

There is yet another benefit from studying paradigms. Because the paradigms iden-

tify common features of algorithms, it may be possible that these common features can

be exploited by general techniques or alg hm transformations, such as techniques for

increasing performance. These technique, aat exploit common features then are appli-

cable to every algorithm of the paradigm using that common feature. This is the case for

the contraction of parallel algorithms.

Most parallel algorithms are designed assuming that processors are an unlimited

resource. This assumption manifests itself by the algorithm utilizing a problem size

dependent number of processors. The algorithm contraction problem arises when an

algorithm that is designed for use on n processors must be implemented on a physical

parallel computer with only p <n processors. In order to make the algorithm conform to

the real machine, several of the algorithm's "processors", now considered processes, are

grouped together and executed on a single physical processor. This activity is called

contraction[l 11.

How contraction is performed can have a significant effect on performance. Con-

sider two examples based on an n xn grid of processes, i.e. the processes communicate

with their four nearest neighbors:

(1) There is much process-to-process communication and approximately equal com-

putation required of each process.

(2) There is little process-to-process communication and the amount of computation

per process is proportional to its j index, e.g. process i ,j iterates j times.

Suppose we have only one fourth the required number of processors and now compare

two ways of forming contractions of four processes per processor[l1]: Coalescing

II0III1111 r Jll ; i l 1 1 11 r l
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groups of adjacent 2x2 subarrays; folding groups as if the grid is folded in half and then

in half again, i.e. i,j (l:ij<-) is associated with i,n-j+l, n-i+l,j and

n-i +l, n-j +1. Clearly, algorithm (1) should be contracted by coalescing because the

process-to-process communication for the processes sharing the same processor will

become intraprocessor communications (i.e. fast memory references) rather than slow

interprocessor communication; folding would not be as attractive because no communi-

cation is saved by locality. Alternatively, algorithm (2) should be contracted by folding

because the work is balanced since each processor will perform a matching amount of

long and short computations; coalescing would not be as attractive because the proces-

sors receiving processes with large indexes will become a bottleneck.

There are two methods available for performing contraction. Using the results of

Berman and her colleagues[12], an algorithm can be automatically contracted, and this

seems to be the best approach when nothing is known about the algorithm. At the other

end of the spectrum, the programmer has "complete" knowledge about the algorithm and

can perform the contraction manually [65] by deciding which logical processes are to be

mapped to the physical processors.

How should the programmer be guided when performing his own contraction? We

consider this an important question because contraction is a nontrivial problem for paral-

lel programmers [82]. This nontrivial nature makes the idea of a general contraction

technique for a paradigm more attractive. In the remaining part of this section we make

a first step toward answering this question by developing tools for reasoning about the

merits of different contractions.

Consider an instance of the algorithm contraction problem. We are given an algo-

rithm A that requires n processes. We assume that A conforms to the CTA model. As

we saw in the previous examples of contraction, variable amounts of computation for

each process can effect how contraction is performed. To remove this factor and due to

the fact that many of the algorithms we will study have balanced computation require-

ments, we assume that the processes of A require equal amounts of computation.
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Assume that the physical parallel computer has p processors. We would like the

physical processors to have balanced utilization. Since the processes of A have bal-

anced computation requirements, this is done by mapping the same number of processes

to each physical processor. The number of processes assigned to two arbitrary physical

processors should differ by at most an additive constant c. For most contractions, we

would like to have c-=l.

The contraction induces a communication graph for the p physical processors.

This new graph is defined by processes needing to communicate with other processes

not mapped to the same physical processor. We assume that if a process in processor i

needs to communicate with a process in processor j, there is a physical edge connecting

the two processors. We say there is a logical edge between the processes using the phy-

sical edge. The contraction may map many of these logical edges to one physical edge

in the new graph. That is, we are allowing only one edge between physical processors.

Logical edges share a physical edge by multiplexing. Because we are using the CTA

model, we require that the new graph to be a bounded degree graph.

As an example of contraction, let us assume we have an algorithm with a tree graph

as in Figure 1-1. Consider the contraction to 5 processors shown in Figure 1-2. This

contraction is produced by mapping sub-trees of size - to each physical processor.r~e P

This caused an increase in the degree, e.g. the new root vertex has four descendants.

* _Using this kind of a contraction, mapping sub-trees to processors, it can be shown that

Figure 1-1: A 15 Node Tree
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Figure 1-2: A 5 Processor Contraction

given p processors, contracting an algorithm with at least p 2 processes requires degree

p-1.

Next, consider a contraction of the tree to 4 processors as shown in Figure 1-3.
n

This contraction is performed by placing - processes from the same level of the tree
p

into the same processor. An extension of this method yields a binary tree in the p pro-

cessors where the root processor has only one descendant. Figure 1-4 shows a 31 node

tree contracted into 8 processors using this technique. Of these two contractions, only

the second contraction conforms to the CTA.

We will be considering the contribution of the communication time to the perfor-

mance of the contracted algorithm. Unless otherwise stated, we assume that a communi-

cation between processing elements costs a fixed time tc . During this time, no other

communication in the same direction may take place. We are specifically allowing all

Figure 1-3: A 4 Processor Contraction
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Figure 1-4: An 8 Processor Contraction of a 31 Node Tree

edges to have simultaneous communication. mmunication internal to a processor

costs the fixed time ti. We also assume that tc " :i.

As mentioned before, we would like to develop tools for reasoning about the rela-

tive merits of different contractions. This includes their communication costs and their

execution times. To aid in this objective we give the following definitions.

Let A =(V, E) be an algorithm where V, sometimes referred to as VA, is a set of

processes ( vertices and associated programs ) with I V I=n and E is a set of edges

(v 1, v 2), where v 1, v 2e V.

Let M (A, p ) = B be a contraction of algorithm A into algorithm B where B uses p

processors and p < I VA I. The contraction M maps elements of VA onto V8 such that

the number of elements of VA mapped to an arbitrary element of V5 differs by no more

one from the number of elements of VA mapped to any other element of VB.

Let w (e), the weight of e, for e = (v 1, v 2), be the larger of the number of messages

from v I to v 2 and the number of messages from v 2 to v I.

Let K (A) = MAX w (e), fore e E, be the communication "cost" of A. This cost is
e

an estimate of the minimum communication time required for the algorithm. Due to

dependencies, the actual communication cost may be more.

Let T (A) be the execution time for algorithm A.

We would like to be able to say: For a given A, p, M 1 , and M 2, and t. > ti, if

K(M(A,p))<K(M2(A,p)) then T(M(Ap))<T(M 2(A,p)). This is based on the
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notion that the bottleneck edge will be a lower bound on the time required for the execu-

tion of the mapped algorithm. However, due to communication dependencies, this may

'not be the case.

To see that the communication dependencies have an effect on contraction, con-

sider the algorithm and its contractions shown in Figure 1-5. The algorithm performs

the following operations: the center two columns of processes send a single message to

the two directly connected columns and then the processor labelled "S" starts a message

around the ring of processes and waits for that message 'o be returned. Each edge has

exactly one message sent across it, yielding a cost for the algorithm of K(A) = 1.
Consider the contraction in Figure 1-5a. This is performed by mapping all edges

used in the first communication to internal edges. There is at most one edge between any

two processors in this contraction. Therefore the cost of contraction a is
K (Ma (A ,p)) = 1. Now consider the contraction in Figure 1-5b. This is performed by

mapping all edges used in the first communication to external edges such that these

edges are connected to two processors. This maps - communication edges into a

'.~S S.,

• Figure 1-5: An Algorithm with Sequential Dependencies

0
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single physical edge. The cost of contraction b is K (Mb (A vp)) "
2p

By our previous statement comparing two contractions, we expect Ma to be the

better contraction and take less time. The time for contraction a is

n + n
T(Ma(A p))= -ti + pt c +

2p
The time for contraction b is

[ n
T T(M b (A p )  2- t + P- tc +  p ti .

We would like to know if T(Ma(A ,p)) > T(Mb(A p )). That gives

2p[ 2p 2

Simplifying gives

] p 2[c - - i. > n (gc - Tt),2 2 2p p

and finally

This can be satisfied for most values of n. That means that the contraction with the

larger communication cost runs in less time.

'1 Our communication cost K(M (A ,p)) is then a lower bound, but not an upper

* bound on the execution time of the algorithm. The longer running time of contraction a

is a direct result of the sequential dependence of the messages. If the algorithm was

modified so that all processors in the ring sent their one message in parallel, then con-

traction a would be the best. It is obvious that this modified algorithm makes much

better use of parallelism.

0
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We assume good parallel algorithms do not have this sequential communication

dependence. That is, we expect that these contracted algorithms are able to run in time
proportional to their communication cost K(M (A p)). The communication costs are

then a good indication of execution times. Therefore, it we expect the contraction with

the smallest communication cost to be the better contraction. That motivates us to map

the busiest edges of an algorithm to internal edges.

In the next three chapters, we apply these tools to the contraction of specific algo-

rithms. For the compute-aggregate-broadcast paradigw, we look at the contraction of

tree algorithms. For the divide-and-conquer paradigm we consider the contraction of the

n-cube. And finally, for the pipelining and systolic paradigms we consider the contrac-

V tion of mesh based algorithms. Where applicable, we include the results of comparing

the contractions by programming them using the Poker parallel programming environ-

ment [81].

1.4. Parallel Algorithms

Because our method of presenting these parallel programming paradigms is largely

through example, we need a method of expressing parallel algorithms. Often, an infor-

mal description of the algorithm is all that is needed. But some algorithms need a more

explicit description. This description is via a parallel programming language. As with

sequential languages, parallel languages describe a virtual machine. We would like this

virtual machine to match our chosen computation model. Not only do we want a

method of communicating the algorithms to the reader, but we want a language having

an efficient implementation on the same model.

There are several programming languages used for parallel programming from

which we could choose. Some compilers for FORTRAN extract the inherent parallelism

available in sequential programs. Examples of these systems include Parafrase [51] and

PFC [6]. However, there is much convincing evidence that parallel algorithms are dif-

ferent from sequential algorithms. For example, Snyder [82] displays a sequential algo-

rithm which has a high degree of data dependencies and does not admit a high degree of

IS
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parallelism, yet he shows that the problem can be solved with a high degree of parallel-
.. ( ,p ism if approached from a parallel viewpoint. This leads us to believe that any seqtlential

language can not be sufficient to express the parallelism we would like to see in our

algorithms.

Some sequential languages have been extended to include some form of parallel-

ism. Examples of these include FORTRAN 8X [92] and Path Pascal [15]. These

languages assume a shared memory paallel environment and implementations of these

languages will encounter the problems mentioned in simulating shared memory on a

CTA. Although some systems, e.g. Linc-. [4], restrict the use of shared memory, there
is still the problem of one processor needing to access data in any of the other proces-

sors. Even the data flow languages such as VAL [61] treat memory as a global resource.

Communicating sequential processes (CSP) as defined by Hoare [42] provide

another class of languages available for parallel programming. These do not provide

shared memory, but require sequential processes to communicate by message passing.

.' They do not bound the number of processes with which one process may communicate,

which provides the problem of arbitrary communication on a CTA (see Chapter 5).

Occam [48] is an example of this class of languages.

What we want is a language that conforms to the CTA. Snyder refers to these

languages as CTA-type languages [82]. The CSP languages and Cosmic Cube C [87]

are in principle CTA-type languages. Cosmic Cube C also has the problem of

unbounded degree communication, even greater than the log n Cosmic Cube. This is

solved by having message forwarding. If one restricted themselves to communication

with a bounded number of other processes, it would conform to all points of the CTA.

A better example of a CTA-type language is Poker [81]. A program consists of a
bounded degree graph where the vertices are processors and the edges are communica-

tion channels, a set of processes, and an assignment of processes to processors. A com-

plete algorithm is broken into phases, each with its own graph, set of processes and pro-

cess assignment. A global controller runs the phases in the proper order to complete the

0"



15

computation. Each process is programmed in a sequential programming language with

special constructs for communicating with the processes at adjacent processors and for

communicating between phases at the same processor.

We choose a Poker-like pseudo language for presenting our algorithms. We define

a graph, a set of processes and some implicit assignment of processes to nodes of the

'S.graph. In some cases, we define multiple graphs used at different points in the same pro-

cess. This is usually done to avoid the extra notation to actually show graphs, processes

and process assignments for multiple phases. Each unique type of process will be

described in a sequential pseudo language.

For communication purposes, a process identifies a directly connected process by a

symbolic name called a port. The port names are usually descriptive in terms of the

4.,'

Code leaf;
Ports Parent;
Parent -- Value;

End;

Code internal;
Ports Left, Right, Parent:
Parent +- max(Value. Left, Right);

End;

Code root;
Ports Left, Right;
Maximum := max(Value, Left, Right);

End;

Figure 1-6: Maximum Algorithm

. .e F III ', S 1, - 1 1 1
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interconnection graph. The cons.s-uct name-list -- expression sends the expression as a

message to each process identified in the namelist. Any time a port name appears in an

expression, the process waits for the "next" message to be received from the associated

process. When the message has arrived, it is used in the expression as the value of the

port name. We avoid making a rigid definition to allow flexibility in describing algo-

rithms. As an example, Figure 1-6 shows the description of a maximum algorithm.

"- Each process contains a variable Value for which we want the maximum over all

processes. This maximum is four.t in the root process at the completion.

'-.' Throughout this dissertation, we are interested in the algorithms, not how to fit an

0" algorithm on a specific machine. Due to this, we present the algorithms in terms of

processes not processors. Also, we let the algorithm define the communication graph,

instead of making an algorithm use a specific communication graph. The problem of

:- mapping an algorithm to a particular interconnection structure is treated elsewhere by

". Berman and Snyder [11] and Bokhari [13].

,e - I
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CHAPTER 2

The Compute-Aggregate-Broadcast Paradigm

In this chapter we present the compute-aggregate-broadcast (CAB) paradigm and

its variations. There are many algorithms included in the CAB paradigm, coming from

both numerical computation and non-numerical computation. We first start with a

definition of the CAB paradigm and give a simple example illustrating the basic con-

* cepts. We then explore the variations of the paradigm shown in both numerical and

non-numerical computation. Finally, we look at a speed-up technique and contraction,

both of which have relevance to a subset of the CAB algorithms.

2.1. CAB paradigm and Jacobi Iterations

Compute-aggregate-broadcast (CAB) algorithms are composed of three basic

phases: a compute phase which performs a computation, an aggregate phase which com-

bines local data into a few global values, and a broadcast phase which sends global

information to each process. The compute phase and its interconnection structure differ

widely from algorithm to algorithm. It may be a complete algorithm, like matrix multi-

plication, or it may be a single primitive operation performea oy each process. The

7: aggregate phase is usually a tree-based computation that combines data from the

processes, producing a single global value or a small number of values. Minimum and

maximum trees are examples of an aggregate phase. The broadcast phase sends global

0 information or a directive based upon it to all processes. This may be a "keep going"

message for iterative algorithms or a value necessary for the following compute phase.

"".W A simple example of a CAB algorithm is a parallel implementation of the classical

* Jacobi iterative method for solving Laplace's equation on a rectangle. An instance of

this kind of problem, the electric field problem, is shown in Figure 2-1. The rectangle is

represented by n discrete values, Vi,, the voltage at the point. The boundary and the

I,,.'€
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av 2v

ax 2  ay2

Vij+ = 1(f1+1j+ij-1+ ij+1)

0 v on boundary

Figure 2-1: Electric Field Problem

voltage sources are kept at a constant value. An initial guess is computed for each point.
Iteratively, a new value, the average of a point's 4 neighbors, is computed for each of

the n points. The iteration is terminated when the difference between the new value and

the old value at every point is less than some tolerance.

Using n processes, each Vij is assigned to a process. Figure 2-2 shows a 16 pro-

cess version of the algorithm with the code for an internal node in the aggregate and

broadcast trees. The compute phase calculates the new Vii's and the difference

between the old and new value. Using a 4-neighbor mesh interconnection structure

(Figure 2-2a), each process exchanges its Vii with its 4 neighbors. It then takes the aver-

age of the values received and calculates the difference with the old value. The aggrega-

tion phase connects the processes in a binary tree (Figure 2-2b) and computes the max-

imum of the differences between old and new values. Each process contains a differ-

ence value. The leaf processes send their value to their parents. The internal processes

take the maximum of their value and their children's, sending the result to their parents.

The root process retains the final global maximum. The broadcast phase sends a stop or

continue message to all processes depending on whether the global maximum is less

than the given tolerance. This broadcast also uses the binary tree.

This algorithm shows the "standard" features of a CAB algorithm. The first phase

is the compute phase, using 0 (1) time to compute a new value and the difference. The
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Code Jacobi;

Ports(mesh) North, East, South, West;
Ports(tree) Parent, Left, Right;

V = initial guess;

REPEAT

"Compute (mesh) }
North, East, South, West 4- V;
NewV North+East+South+West 4;

Dif = abs(NewV-V);(a) Mesh
V = NewV;

0 (Aggregate (tree))

% Dif = max(DifLeftRight);

Parent +- Dif;

f Broadcast (tree) I
done = Parent;
Left, Right --done;

UNTIL done;

END Jacobi;

(b) Tree (c) Code

Figure 2-2: 16 Process Jacobi

interconnection is the 4-neighbor mesh. The second phase is the aggregate phase, using

0 (log n ) time to compute a single maximum. The interconnection is an n node tree.
The third phase is the broadcast phase, using 0 (log n ) time to send a stop or continue

0
message. The interconnection is also an n node tree. The three phases are repeated

until the global termination condition is met. The total time for the algorithm is

0 (k log n ) where k is the number of iterations. The Jacobi iterative algorithm could be

*: described as a (CAB )k algorithm.

0
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Not all the CAB algorithms are (CAB)k algorithms. Some algorithms start with

aggregate or broadcast phases, although the sequence of phases is generally the same

with aggregate following compute, broadcast following aggregate, and compute follow-

ing broadcast. Some algorithms, like the Jacobi, iterate on the phases until some termi-

nation condition, like convergence, is reached, while others iterate a fixed number of

times. The execution time for a CAB algorithm is 0 (k (c +a +b)), where k is the

number of iterations and c, a, and b are the times for the phases. When the aggregate

and broadcast phases use trees, the times for a and b are 0 (log p ) for a p process sys-

tern.

2.2. Numerical CAB

Having started with the Jacobi algorithm as our first example of a CAB algorithm,

we continue looking at numerical CAB algorithms. The SOR algorithm builds upon the

simple CAB structure of the Jacobi, showing a more complex compute phase, and the

numerical integration algorithm provides the first variation of the CAB paradigm.

2.2.1. SOR

The SOR (successive overrelaxation) iterative method is used to solve linear sys-

tems of equations [95]. Adams [1] provides a good discussion about using the SOR on

,.- .J parallel computers. Although we do not discuss the merits of this method or provide the
,' mathematical basis for the algorithm, it is nevertheless a method that yields numerical

CAB algorithms. It is very similar to the Jacobi method that we have seen.

We are particularly interested in the multi-color SOR. The common SOR has
sequential data dependencies, but the multi-color SOR provides for easier parallel solu-

tions by having different data dependencies [82]. The algorithms follow the same basic

outline as the Jacobi. The major differences are found in the actual computation and in

.. the test for convergence.

* As an example of the multi-color SOR algorithms, consider the Red/Black SOR

using the "five point stencil" [1, 2, 94]. This algorithm can be viewed as having the data
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points being computed on a checker board. (See Figure 2-3.) For the compute phase, all

points on the red squares are computed using the current values of the black neighbors.

Then, all the points on the black squares are computed using the new values for the red

points. After all points have been computed, a convergence test is applied to each point.

The aggregation is a simple boolean AND tree computing TRUE if all points have con-

verged. The broadcast is a stop or continue message.

If we put a single data point in each process, all the processes containing black

points will be idle while the red points are being computed and similarly the red

processes will wait while the black points are being computed. By assigning one red

and one black point to a process, all processes will be busy all the time. The compute

phase now becomes "compute the red point and then compute the black point". The

communication structure remains the 4 neighbor mesh. In general, for the multi-color

SOR, one data element of each color is mapped into a single process [1]. This may

require an 8 neighbor mesh to meet the communication demands. The compute then

becomes a sequence of computing different colored points. The aggregate phase now

becomes a check to see if all points in a single process have converged and then the

standard binary tree to detect complete convergence. The broadcast remains the same.

Black Red Black Red
k k+l k k+l

* Red Black Red Black
k+l k k+l k

Black Red Black Red
k k+l k k+l

Red Black Red Black
k+l k k+l k

Figure 2-3: Red/Black SOR
0N
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2.2.2. Integration

Our next algorithm, numerical integration [66], exhibits a variation of the CAB
paradigm. For numerical integration, we are given the function f (x) and we would like

to integrate between a and b using n processes. An easy solution would be to divide up

the integration into n separate problems and let each process integrate a small section of

the curve. The problem with this technique is that some sections of the curve may need
more processing than other sections to get a satisfactory approximation. This provides

an unequal load for the processes.

A better solution gives one process control of the work the other processes are per-

formi-g. Consider the following algorithm.

Integrate f (x) between a and b.

While "not done" do

Control process: decide which section to integrate.
Broadcast: Broadcast the section

Compute: Each process integrates its l/n section of the curve.

Aggregate: Sum the n areas. Re:.::: area of section to control process.

End while

0The broadcast uses a binary tree. An internal node receives the end points that its sub-

tree is to integrate. It then divides the interval into 3 pieces, a section for the left sub-

tree, a section for the right sub tree, and a section for itself, making sure that each pro-
cess will have the same sized section. The compute uses no communication. Each node

integrates its piece of the total section and decides if its value is a sufficiently accurate

approximation. The integration can be done by various methods, such as the trapezoid

method or Simpson's rule. The aggregation uses the tree to sum the areas computed in

the compute phase. If the computed value for a subsection is not sufficiently accurate,

the area is not added into the sum and the control process is sent a message identifying
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the subsection.

The control process is responsible for choosing the sections to integrate and col-

lecting the final value for the area. The initial step is to broadcast the entire interval to

be integrated. The results are a sum of the accurate subsection areas and a list of the

subsections needing more processing. This list is assumed to be small. The control pro-

cess then recursively integrates all of the subsections. This keeps all the processes busy

and never recomputes any subsection that has been integrated with sufficient accuracy.

We make two observations about this algorithm. First, this algorithm is a member

of the CAB paradigm, but the first phase executed is the broadcast, not the compute

phase as in the "standard" CAB. This kind of an algorithm could be called a BCA algo-

rithm. Also, the compute phase did not need any communication and therefore the algo-

rithm needs only a single communication interconnection structure. This variant of the

CAB paradigm can be observed in other algorithms, e.g. Dekel, Nassimi and Sahni's

O (log n) matrix multiplication algorithm for the binary n-cube[231.

2.3. Non-numerical CAB

We now turn our attention to the non-numerical CAB algorithms. We separate the

numerical and non-numerical CAB algorithms for two reasons. First, we find it interest-

ing and somewhat surprising that this paradigm covers both kinds of computation. The

CAB paradigm was first found in the numerical algorithms and later discovered in the

non-numerical algorithms. The second reason is the diversity of usage of the CAB para-

digm in the non-numerical algorithms. The topological sort algorithm uses aggregate

and broadcast phases that are not global. It also starts the algorithm with the aggregate

4 phase. Hitech Chess [28] is a hardware implementation of two related CAB subalgo-

rithms, used by a sequential controller. And finally, the CAB paradigm is useful in

parallel expert systems based on production systems.

4
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2.3.1. Topoloical Sort

We first look at the topological sort algorithm. For the topological sort, we are

given a directed, acyclic graph G =(V, E). The sort orders the members of V such that if

vertex Vi is before vertex Vj in the ordering, there is no path from vertex Vj to vertex Vi

in G.

Dekel, Nassimi and Sahni (23] sketch a parallel solution for topological sort using

an all-pairs longest paths algorithm. The vertices are sorted using the length of the long-

est path to the vertex as the sort key. Their algorithm runs in 0 (log2 n) time using n 3

processes. Ruzzo [18] uses the transitive closure of the original graph, sorting the ver-

tices by the number of predecessors in the transitive closure. This also takes 0 (log2 n)

time using n 3 processes.

Our parallel solution is achieved in two steps [66]. The first step is to compute a

level number, Level i , for every vertex Vi. All vertices with no incoming edges are

assigned a level of 0. All other vertices are assigned a level number that is the length of

the longest path from any level 0 vertex. Because G is acyclic, the maximum value for

a level number is n-1. The last step sorts the vertices into an increasing level number

order. It is the first step, the computing of level numbers, that can be solved using a

CAB algorithm. The sorting step can be done by a suitable sorter.

LEMMA 1: Sorting ((Level i , V5)} using the Leveli's as the sort key produces a

correct topological ordering of the V 's.

PROOF: Assume that given a correct assignment of the Leveli 's, the final ordering

of the Vi 's is not a topological ordering. Therefore, there must be two vertices, Vk and

V1, such that there is a path from V, to Vk and Vk is ordered before V1. Since Vk is

ordered before V1, then Levelk < Level. But Level, is the length of the longest path

from a vertex with indegree of zero to V1. Since, as we assumed, there is a path of

length at least one from V, to Vk, then the longest path from a vertex with indegree of

zero to Vk must be at least as long as Level,+l. But Levelk : Level, for Vk to be ordered

before V1, therefore the level assignment is incorrect. I

p,00' WV - 'thXd"I dMWWPA" - -r- A Arp A _
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Let us now look at the details of the algorithm to assign these level numbers. We

assume there are n2 processes, Pi8 , where 15,j:.n and n = I V I. Each Pi contains the

corresponding entry, Gij, from the adjacency matrix for graph G. Gij has the value I if

there is a directed edge from vertex i to vertex j in the graph to be sorted and a 0 other-

wise. The state information for each process Pi is contained in three variables, G k, the

current entry in the adjacency matrix, k, the "length" of edges in the adjacency matrix,

and Level, the local copy of Level i . Throughout the algorithm, the G k's define the

graph where edges are paths of length exactly k in the original graph.

Let us first consider a useful subalgorithm, UpdateLevel. (See Figures 2-4 and 2-

5.) In process Pij, UpdateLevel takes the state variables Gk, Level, and k, and pro-

duces a new value for Level. The starting value of Level is the length of the longest

Code UpdateLevel(G k, Level, k);

/* for processes Pii, i *j. *
Ports RowLeft, RowRight, Row Parent,

A' . ColLeft, ColRight, ColParent;

/* aggregate on column trees */
if ColumnLeaf then

if Gk = 1
then ColParent - k + Level
else ColParent (- 0

else /* internal node /
if Gk = 1

then ColParent - max(k+Level,ColLeft,ColRight)
else ColParent - max(ColLeft,ColRight);

/* broadcast */
Level = RowParent;
if Not RowLeaf then

Roweft, RowRight 4- Level;

End UpdateLevel;

Figure 2-4: UpdateLevel Algorithm, Non-root Process
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Code UpdateLevel_Root(G k, Level, k);

/* for processes PU */

Ports RowLeft, RowRight, ColLeft, ColRight;

/* aggregate */
, Level = max(LevelColLeft,CoRight);

/* broadcast */
RowLeft, RowRight +- Level;

End UpdateLevel_Root;

Figure 2-5: UpdateLevel Algorithm, Root Process

path terminating at vertex Vi of length less than k. The final value of Level is the length

of the longest path terminating at vertex Vi of length less than 2k.

The n 2 processes are connected in a variant of the mesh of trees [57]. Each row

and each column is connected into a tree with the root located at the process on the diag-

onal. (See Figure 2-6.) The computation of the new levels is based on the fact that if

there is an edge from Vi to Vj in the graph G k then Leveli must be k greater than the

Leveli because there is a path of length exactly k from Vi to Vj in the original graph. At

process Pij, if G k = 1, than there is a path of length exactly k from Vi to Vj and the new

level of V is at least Level + k. By taking a maximum of these new level numbers

across column j, we now have the new level for Vj. This is done for all columns at the

same time. The trees in the columns are used for this aggregation step. To set up for the

next UpdateLevel, we must make sure that Level in each Pij is updated to the current

level of Vi.Because the roots of the trees are on the diagonal, the correct value for the

level of Vi is in process Pij. A simple broadcast over the row provides the correct value

of Level to all processes in row i. This is done using the trees in the rows.

LEMMA 2: Code UpdateLevel, given correct input, correctly computes new level

numbers.

0 " -" .. , "-" "", . -, -
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Figure 2-6: The Mesh of Trees with Roots on the Diagonal

PROOF: At every process Piq, Level = Level i, the length of the longest path ter-

mnating at vertex Vi of length less than k. Therefore, each column j contains the

correct level numbers for all vertices. Consider the values received by the root process

Pj1 from the column sub-trees computing the maximum function. There are 2 cases to

consider.

Case 1 is where there are no paths of length exactly k terminating at vertex Vj. In

this case, G kc = 0 for all processes in column I. The leaves all return the value 0 and the

internal processes do not use local values in the maximum. Therefore, both sub-trees

return the value of 0 to the root process. The value of Level then remains the same.

(Note: The leaves must return 0, not Level. If they did return Level the value of the

maximum would be max Level1 .)

6i
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Case 2 is where there is at leas, one path of length exactly k terminating at vertex

Vj. In this case, at least one Gk = 1. Assume process Pij has G k = 1. There is then a

path of length k from Vi to Vj. The level of Vj must then be k + Level i . Since at Pij,

Level = Leveli , the value k + Level is used in the maximum computation. The max-

imum function computes the largest such value in the column j and assigns it to Leveli.

This new value is between k and 2k and therefore must be the length of the longest path

terminating at vertex Vj of length less than 2k.

The final broadcast sends the new level number to all processes so that at process

Pij, Level = Level i . "

Now that we have the UpdateLevel subalgorithm, we can look at the complete

topological sort algorithm. (See Figure 2-7.) The initial state, G k = Gij, Level = 0 and

k = 1, sets up the state variables for the first call to UpdateLevel. That is, G k is the initial

graph, all edges are paths of exactly length I and Level<l. After the first call to

UpdateLevel, only vertices with no inedges still have a level of zero. All other vertices

- have level of one because a path of length I terminates at them. The first part of the

loop prepares the state variables for the next call to UpdateLevel by squaring G k and

doubling k. The call to UpdateLevel then adds in paths of length exactly k into Level.

After log n - 1 squarings of G k and calls to UpdateLevel, each Level i has been set to
":-. the correct value. The final step of the algorithm sorts the vertices by their level

numbers.

LEMMA 3: Code Topological-Sort computes correct level numbers.

PROOF: The original state has the original graph in G k and all level numbers at 0

and k = 1. This is correct input for UpdateLevel. By Lemma 2, UpdateLevel correctly

computes level numbers less than 2k. Therefore, after the call to UpdateLevel, all level
numbers are less than 2. By squaring G k and doubling k, we now have correct input for

UpdateLevel. Again, by Lemma 2, the level numbers are computed correctly. After

each call to UpdateLevel, we must again square G k and double k. After the last call to

UpdateLevel, k = - and all level numbers are less than 2k or n. Since the longest path

2

0
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Code Topological-Sort;

/* for process P..

G k = Gii in original graph;
Level = 0;
k= 1;
UpdateLevel(G k,Levelk);
For index = 1 to log n -1 do

G k = BooleanMatrixMultiplication(G k,G k);
k = 2k;
UpdateLevel(G k,Levelk);

End for;

Sort( (Vi, Leveli is the key for Vi);

End Topological-Sort;

Figure 2-7: Topological Sort Algorithm

in G is n-I and Level i is the length of the longest paths terminating at vertex Vi of

length less than n, Level i is the length of the longest path from a level 0 vertex to vertex

vi. 0

The topological sort algorithm takes 0 (n log n ) time with n 2 processes. This is

because the boolean matrix multiply takes O(n) time with n2 processes and there are

log n iterations. Due to the trees in the UpdateLevel, the AB phases run in 0 (log n)

* time and this is not the dominant factor. This is not the best algorithm for n2 processors.
Ruzzo's algorithm takes 0 (n) by using the 0 (n) transitive closure algorithm given by

Guibas, Kung and Thompson [38]. If n3 processes are used, the matrix multiply time is

reduced to 0 (log n ) [23, 64,741, yielding 0 (log2 n + s) time for the algorithm, where s

is the time for sort algori.thm. Notice that the matrix multiply and sorting algorithms

may require a different . -,nmunication structures than the UpdateLevel algorithm uses.

It is possible to use an n-cube to compute UpdateLevel in time 0 (log n), making it pos-

*- sible to use a single interconnection structure for the complete algorithm by using the

matrix multiplication algorithm presented in Chapter 3 and Batcher's sort [10].
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We make a few observations about this algorithm. First, as we said before, the

aggregation and broadcast are not global, but localized to the rows and columns. Also,
notice that the aggregate and broadcast phases are done first, before any computing. If

we include the sort as the final compute phase, this algorithm is really an ABC

-A (aggregate-broadcast-compute) algorithm. Finally, the compute phase is a complex

phase that may be solved using a different paradigm, e.g. pipelining or divide and con-

quer.

2.3.2. Hitech Chess

Our second example of non-num , CAB is Ebeling's Hitech Chess machine [28].

Hitech Chess is a specially designed machine for playing chess. It is an architecture

.4-, using parallelism for move generation and position evaluation which has been imple-
A,.'', mented using custom VLSI. By March 1986, it had the USCF rating of 2352, 150 better

than the previous best computer chess system.

The machine can be viewed as a global controller, a parallel move generator and a

parallel position evaluator. For each move of the game, the controller performs an a-P

search, using special purpose hardware to increase the performance of the search. The

machine searches 200,000 positions per second. It is the parallel move generator and

parallel position evaluator that exhibit the CAB behavior.

Figure 2-8 shows the logical diagram of the Hitech Chess machine. The compute

* phase is the same for the move generation and the position evaluation. Given the state

of the chess board, they compute every legal move from that state. This is done by hav-
ing a processor for every possible move that could be made on the chess board. There

are about 4000 "ever-possible" moves for each side, giving about 8000 moves to check

for legality. The aggregate phases take the legal moves as input and produce a single

output.

The aggregate phase for the move generator produces a single move. Given a

- board position, there is a set of legal moves. These moves are ranked for order of

inspection for the a-P search. The controller asks the move generator for the iPh move

V ....
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Compute

Aggregate
! Broadcast

BMove 
Generator

B.oa Position EvaluatorA Broadcast

Aggregate

SCompute

Figure 2-8: CAB in Hitech Chess

0 in the ranking. For example, the first time the search sees a board position, it wants to

search down the most promising subtree. The controller would then ask for the best or
4* "

first move from the move generator. When the controller has backed up to that board

*_ position, it has already evaluated the first move and it now wants the second best move.

Since the moves from that position were not saved, the move generator recomputes all

the legal moves (compute phase) and selects the second best move as the output of the
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aggregation phase.

.%

The aggregate phase for the position evaluator produces a number that estimates
the worth of that position. The controller then takes the next move from the move gen-

erator and the value of the current position and decides whether to search the subtree

produced by the given move or to back up the search tree. This decision is broadcast to

both the move generator and the position evaluator. They update their copies of the

state and then start the compute phase for the new board position.

There several points of interest in Hitech Chess in relation to the CAB paradigm.

First is that while the aggregation interconnection is not a true tree, it is still logarithmic

in depth. Also, the actual aggregation step is modified in operation by both the position

in the search tree and, specifically for the position evaluation, by the place in the game.

And finally, two CAB algorithms are used to produce a single broadcast.

2.3.3. Production Based Expert Systems

As our last example of non-numerical CAB we look at expert systems, more

specifically, rule based production systems. It is believed that parallel processing is

needed to achieve the goals set for these systems [25). While it is not within the scope

of this dissertation to discuss in detail the use of parallelism in expert systems, we want
to show that current algorithms employ the CAB techniques.

In general, production systems [31, 40,671 are composed of a set of rules, called

production memory (PM) and a set of assertions, called working memory (WM). Each

rule of the PM is composed of a left hand side, used to match assertions in the WM, and

a right hand side, used to specify operations to be applied to the WM. The operation of

* the production system is a three step process. The first step is a match phase, where left

hand side of the rules in the PM are compared to assertions in the WM. Each rule that

matches is added to a conflict set. The second step is to select one rule in the conflict set

for execution by the the third step. The action of the third step changes the WM. These

three steps are repeated until some goal condition is met.
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DADO is a parallel processor designed to execute production systems [84]. The

processors are connected in a tree. Figure 2-9 shows the structure of the DADO

machine. Each rule in the PM is assigned to a separate subtree. The subtree contains

copies of relevant parts of the WM for the subtree's rule. The DADO algorithm, in its

simplest form, operates in the following way:

1. Each PM node and its subtree determine if the rule associated with the subtree is

part of the conflict set.

2. The tree above the PM level takes the conflict set from the PM nodes and

reduces it down to a single rule to be applied to the WM.

3. The selected rule is broadcast to all PM subtrees. The PM subtrees update their

copy of WM.

*. It is easy to see that step 1 is a compute step, step 2 is an aggregate step and step 3

is a broadcast step. The three steps are repeated until the goal condition is met, giving

rise to a standard (CAB)k algorithm. The tree structure of CAB algorithms is the inter-

connection structure of the entire machine. With fixed size subtrees for each rule, the

depth of the tree is logarithmic in the number of rules, the expected bound for CAB

algorithms.

Select and Act

PM Level

WM Subtrees

Figure 2-9: DADO Processor Structure

*
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Gupta describes implementing the OPS5 production system on the DADO [391

with three different algorithms. All of them have the same (CAB )k basic structure. The

differences are found in the compute step and in the information used in the aggregate

and broadcast steps.

2.4. A Method for Improving Speed

One of the reasons for studying paradigms is the applicability of a technique to

several algorithms using the same paradigm. One such technique for CAB algorithms is

a m- x for improving speed. The CAB algorithms which can : this method have

the - swing characteristics:

0 4run time is dominated by the aggregate and broadcast pha compute times

- less than 0 (log n), often times 0 (1)),

b) consecutive compute phases do not require information from the aggregate and

broadcast phases between the compute phases, and

c) extra computation phases will not result in invalid results.

The speedup method changes the algorithm to balance the time in the compute phases

with the time in the aggregate and broadcast phases. This is accomplished by repeating

the compute phase several times before a single aggregate-broadcast phase. An algo-

rithm originally described as (CAB)k' now becomes (C'AB), where m = k

* Assuming that the time for C1 is less than or equal to log n, the time for an aggregate-

broadcast phase, the total time for the algorithm is 0 (m log n ) instead of the original

time of 0 (k log n).

* For the Jacobi iteration algorithm, the compute time is 0(1), allowing 1 =log n,

yielding total time of 0 (log n) if k is smaller than 0 (log n) or 0(k) if k is larger than

. 0 (log n ). This method also works for the SOR algorithms. The numerical integration

., -" algorithm can make use of this by spending 0 (log n ) time integrating its own section

before reporting on the area or the lack of sufficient accuracy.

0
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There are CAB algorithms for which this technique will not work. The conjugate

gradient algorithm [34] computes an inner product during the aggregate phase and the

result of the inner product is required for the next compute phase. It cannot use this

technique to decrease execution time. AU of the non-numerical algorithms we have seen

had either long compute phases, like the topological sort, or they needed the results of

the aggregate and broadcast phases before the following compute phase and thus do not

benefit from this technique.

2.5. Contraction of CAB Algorithms

Another technique that has applicability to CAB algorithms is contraction. Due to

the fact that most CAB algorithms have a tree interconnection structure as part of their

aggregate and broadcast phases, we look at how to contract trees, specifically binary

trees. These results are applicable not only to the CAB algorithms but to all algorithms

that employ the binary tree interconnection structure. Also, since some CAB algorithms

have compute phases using other than tree interconnection structures, we look at the

problem of multi-phase contraction.

2.5.1. Tree Contraction

As representative of the binary tree algorithms, we choose to study the contraction

of the maximum algorithm. Each process in the tree contains a value. Leaf processes

send their value to their parents. Internal processes take the maximum of their own

value and their children's values and then send the result to their parents. The global

maximum will be computed at the root process in 0 (log n ) time. As stated before, we

are focusing on the communication for evaluating contractions. The communication in

the maximum algorithm requires one message over each edge. Therefore

Xp K (maximum) = 1, the communication "cost" of the maximum algorithm.

We are going to compare the contractions shown in Figure 2-10. In Section 1.3 we

saw that we need contractions that yield bounded degree graphs and that the contraction

in Figure 2- 10a, when extended to p processors, yields a binary tree.
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(a) (b)

Figure 2-10: Tree Contractions

The contraction in Figure 2-10b yields another bounded degree graph. This con-

traction is derived by the recursive tree construction given by Leiserson[58].

Leiserson's method of tree construction is shown in Figure 2-11. Given two instances

2 nodes

D
FD 4 nodes

7F 8 nodes
0

Figure 2-11: Leiserson Tree Construction
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of a tree each with an associated free node, shown by the label "F" in Figure 2-11, we

can build a new tree and an associated free node. The new edges are shown by dotted

lines. This produces a linear area layout in the plane with several desirable properties.

The contraction is performed by placing a sub-tree and its associated free node in a sin-

gle processor. This contraction produces a new graph where nodes have degree of at

most 3. The new graph is not a tree.

Consider the contraction in Figure 2-10a. Let us call this contraction
M 1(maximwuemp), the contraction of the maximum algorithm to p processors. Each

edge in the original algorithm requires one message. Each edge in the smaller graph

*contains 4 edges from the original graph. Since we have only one connection between

the physical processors, we have 4 messages for each edge. For an arbitrary n (size of

original algorithm) and p (the number of processors) we have

K (M 1(maximn~p)) -n
9 P

A similar contraction to Figure 2-10a is touched on by Berman and Snyder[ll1.

Figure 2-12 shows this contraction. This is achieved by "folding" the tree. As Berman
n

and Snyder notice, this contraction, M 2, has K (M 2(maximum ,p)) = -. This is also the
p

same contraction shown by Bailey and Cuny as the result of folding their graph embed-

dings [9].

' Figure 2-12: Berman and Snyder Tree Contraction

'Vd.
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Consider the contraction in Figure 2-l0b. Let us call this contraction

M 3(taximump 47). We note that each edge in the smaller graph has at most one edge

from the original graph in each direction. For an arbitrary n and p we have

K(M 3(maxinm4P)) = I.

Our experience from Chapter I tells us that since M 3 has a smaller K, it is the

preferable contraction. Both M I and M 2 depend on n andp for their cost. But, M 3 has

a constant cost, regardless of n and p. In fact, this contraction is optimum for all tree

* algorithms that have identical edge weights and unidirectional communication (all

*toward the root or all toward the leaves).

LEMMA 4: For complete binary tree algorithms with equal edge weights, and uni-

directional communication, algorithm contraction based on Leiserson's binary tree lay-

out technique yields an optimum communication cost measure.

PROOF: We first look for a lower bound. Since the tree is connected, the physical

processors must be connected. This requires at least one incident edge for each physical

-" processor. The smallest cost K(M(A ,p)) would be where a maximum of one logical

edge was mapped to a physical edge. Therefore, K (M (A 4))) > K (A), the cost of the

original algorithm.

For the mapping M3(A 4)), each processor contains a complete subtree and an
"extra" node. The extra nodes are used in the tree above the subtrees contained in the

* processors. Therefore, there at most 4 external connections. Of these four, two edges

are used to receive(send) data from(to) the children of the extra node, and two edges are

used to send(receive) data to(from) the subtree's and the extra node's parents. Since the

root of the subtree and the extra node are not at the same level in the tree, edges with

data flowing in the same direction can not be connected to the same physical processor.
(It is possible to have two of these edges over the same physical edge, but the data

moves in opposite directions.) This gives the same weight to the physical edges as the

original edges. Therefore, K (M 3(A 4)) = K (A), which is the lower bound. 0

V.
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Notice that this layout technique will place two logical edges in the same physical

edge for some physical edge. For tree algorithms with bidirectional communication, we

then get K (M -(A p)) =2K (A).

To demonstrate these results, the maximum algorithm was programmed using the

Poker parallel programming environment [81]. Both M, and M3 were programmed.

(The program for 64 data elements on 16 processors is included in Appendix A.) Each

contraction was timed using 4 and 16 data items per processor with 4 and 16 processors.

The results of these timings are given in Table 2-1. The first two entries for each map-

ping are the timings for 4 data items per processor. The last two entries are the timings

for 16 data items per processors. These numbers are the average time of 5 runs, each

run on different data. Both mappings were given identical data for each of the 5 runs.

Each "tick" represents a microsecond on the 64 processor Pringle. Integer assignment on

the pringle takes about 25 ticks and sending an integer to an adjacent processor takes

about 300 ticks assuming both processors are ready at the same time to complete the

communication.

This data shows clear superiority for M 3. With 4 data items per processor it was

2.6 times faster for both machine sizes. With 16 data items per processor it was at least

5.2 times faster. Although these few number of data points do not establish constants of

proportionality there are a few points of interest. First, consider the increase in time by

Table 2-1: Timings of the Maximum Algorithm

Maximum: ticks for n (items) on (processors)

Contraction 16 on 4 64 on 16 64 on 4 256 on 16

M 1  11484 19945 53341 63536

M 3 4307 7627 8838 12186
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changing the data size and machine size by a factor of 4. The increase in time for M 3 is

3320 for 4 data items per processor and 3348 for 16 data items per processor. The

difference between these increases is a small 28 ticks. But forM 1 these increase is 8461

and 12195 respectively, with a difference of 3734 ticks. Also, consider the time for 64

data elements on two different machine sizes. The time for M 3 increases by a factor of

only 1.2 on the smaller machine while M I increases by a factor of 2.7. And finally, it is

interesting the effect of increasing the data by a factor of 4 and using the same machine

size. For M 3 the times increased by the factors 2.1 and 1.6 for 4 and 16 processors

respectively. For MI the times increased by the factors of 4.6 and 3.1 respectively.

* 2.5.2. Multi-phase Contraction

The previous results on tree contraction are useful when an algorithm has only the

tree interconnection structure, for example, the CAB numerical integration algorithm.

Many of the CAB algorithms, for example, the Jacobi iterations, have compute phases

using a different interconnection structure. It is not obvious how to contract multiple

phases. For CAB algorithms, we usually have only two phases, a tree interconnection

structure and some other interconnection structure. More generally, it is difficult to con-

tract algorithms consisting of multiple phases where each phase has a different intercon-

nection structure.

There are several approaches that can be taken for multi-phase contraction. Each

of them assumes that different things are important and may be useful in different algo-

rithms.

In the first approach, each phase of the algorithm is contracted separately, yielding

the best results for each phase. Each phase may then have a different mapping from log-

ical processes to physical processors. Therefore, data may need to be moved between

- processors due to different mappings. This adds data movement phases between the ori-

ginal phases. Because of these data movement phases, this is reasonable only for algo-

rithms which save more by the individual contractions than it costs for the added phases.

0 ...
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In the second approach, the entire algorithm is considered a single phase. The cost

of the algorithm is calculated using the union of all phases' interconnection structures

and weighted for the number of times a phase is executed. The resulting contraction

makes a single assignment of logical processes to physical processes. No extra data

movement phases are required. It is possible that every phase is not contracted

optimally. It still may be less costly this way than adding the extra phases as in the first

approach.

In the third approach, one phase is chosen as the "primary" phase. Contraction is

performed for the best results of the "primary" phase. The other phases must use the

same process to processor assign,'ent as the "primary" phase. No extra data movement

phases are required. Sometimes, the secondary phases are allowed to change their algo-
J-:

rithm to match the process to processor assignments.

Because CAB algorithms usually have commutative operations in the aggregate

and broadcast phases, the third approach is better. The algorithm is contracted to give

the best results for the compute phase. For the aggregate and broadcast phases, the pro-

cessors are connected up into a tree. Each processor then computes ' -.ally yielding a

single value from each processor to be used in the aggregate phase. The broadcast needs

only to send each processor the broadcast information, not each logical process. This is

the method used in published algorithms f6r the Jacobi and SOR algorithms [I].

0

7o;



CHAPTER 3

The Divide-and-Conquer Paradigm

Divide-and-conquer is a well known paradigm in sequential algorithm develop-

ment [3,46,77]. A problem is divided up into two or more smaller problems, called

sub-problems. Each of these sub-problems are solved independently and their results

are combined to give the final result. These sub-problems are just smaller instances of

* the original problem, giving rise to a recursive solution. Processing may be required to

divide the original problem or to combine the results of the sub-problems.

In sequential computation, the sub-problems are solved serially. After dividing up

the original problem, each sub-problem is completely solved before starting to solve the

next sub-problem. After all the sub-problems have been solved, the results are com-

bined to yield the final solution. A tree structure is often a result of sequential divide-

* "4 !and-conquer. For example, the quicksort algorithm [41] produces a tree of sub-

problems.

In parallel divide-and-conquer, the sub-problems can be solved at the same time,

_ given sufficient parallelism. The splitting and recombining process also makes use of

* parallelism. Because the data is distributed in the processes, these splitting and recom-

bining operations may require process to process communication. Because the sub-

problems are independent, no communication is necessary between processes working

on different sub-problems.

In this chapter we look at several divide-and-conquer algorithms, showing how this

paradigm is used in parallel algorithms. We also investigate the relationship between

parallel divide-and-conquer and the binary n-cube. And finally, we consider contraction

of divide-and-conquer algorithms.
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3.1. Batcher's Bitonic Sort

As the first example of this paradigm we look at Batcher's bitonic merge sort [10].

The problem is that of sorting n data items using n processes. We assume that = 2k

for some k, and that each process initially contains one data item. The sort should leave

the smallest data item in the process labelled 1, the next smallest data item in the process

labelled 2, and so forth.

This algorithm contains two instances of divide-and-conquer. Figure 3-1 shows the

data exchanges required by the algorithm. The horizontal lines represent a single pro-

cess and the arrows point to the process which keeps tie larger data element. The first

*application of divide-and-conquer is shown by the box labelled a in Figure 3-1. The

data (processes) is divided in half. The first half is sorted increasing and the second half

is sorted decreasing. When this is completed, the data is in a bitonic sequence. Notice

that no processing is required to divide the data.

To combine the results of the sub-problems, the algorithm must turn a bitonic

sequence into a completely sorted sequence. The solution to this problem is the second

(a) (b)

3

6

"4
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~~~9 .. .................. .. . .. .
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"," ".Figure 3-1: Bitonic Sort Data Exchanges
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application of divide-and-conquer. To "sort" the bitonic sequence, the algorithm divides

the original bitonic sequence into two bitonil sequences such that the first bitonic

sequence contains the data for the first half of the sorted sequence and the second bitonic

sequence contains the data for the last half. The same process is then used to sort the

smaller bitonic sequences as shown by the box labelled b in Figure 3-1. Notice that for

this application of divide-and-conquer, the splitting required a comparison between

corresponding elements of each half. Also, this comparison is the only communication

between the halves in the entire sort algorithm.

The full communication structure for this algorithm is the binary n-cube. This can

be easily seen by projecting the horizontal lines in Figure 3 1 to a point and retaining the

vertical edges. It is also easily seen that the bitonic merge sort takes 0 (log2 n ) time.

This is due to the second application of divide-and-conquer taking 0 (log n) time and

being used in each of the log n sorts.

Notice that this algorithm is not a parallelization of an optimal sequential divide-

and-conquer sorting algorithm. If this parallel algorithm were to be run on a single pro-

cessor, the run time would be 0 (n log2 n). In fact, it is not an optimal parallel sorting

algorithm because there are 0 (log n ) parallel sorts [5]. However, the 0 (log n ) parallel

sorts have very large constants making Batcher's sort the best practical algorithm for

reasonable size sorting problems.

3.2. Matrix Multiplication

Our next divide-and-conquer algorithm is the multiplication of two dense n xn

matrices,

* AB =C

using n 2 processes, and assuming n = 2k for some constant k [64]. (A version of this

algorithm for shared memory machines was sketched by Horowitz and Zorat [451.) The

processes are viewed as an n xn array where the processes are labelled PE1i for

l:i<j 5n. The matrices A and B are initially distributed in the n 2 processes such that aij
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and bij are contained in PEj1 . After the product we have cij contained in PEij.

To begin with, consider the 2x2 case. PE II contains a I and b 11. To compute c I

the values a 12 and b 21 are needed. Similarly, all other processes need only 2 elements

not already stored at that process. To provide for direct communication, a grid intercon-

nection structure is used. The processes then send their aij value to the other process in

the same row, and their bij value to the other process in the same column as shown in

Figure 3-2. After this communication, each process, PEij, has all the data required to

Now consider the n xn case. The algorithm uses Strassen's [86] matrix decompo-

sition where two n xn matrices can be viewed as two 2x2 matrices of -Ix-- matrices.
2 2 nfl

The 2x2 matrices are then multiplied using matrix product and matrix addition on -x-
2 2

matrices.

Let A 1 be the upper left -x-I submatrix of A. Similarly define the other 3 sub-

al 1 a12  [bl b 121 = [ 11 C12l [a1llb11 +a12b 21 allbl2+al 2b22[2 a 22  [b 21 b 2 2 J 21 c 22 1 [a 2 bll+a22b 2i a 21 b 1 2+a 22 b 22 j
I I

a 12

all

b, b 21  b 12  b22

a 22

a 2 1

Figure 3-2: 2x2 Product and Communication Structure

h
•

4,.



rays of the processes, P. Then Aiy and Bij are contained in Pi, lI -j-2. As in the 2x2

-" case, A 12 and B 21 are required to compute C I,. If the corresponding processes in P I,
~and P 12 are directly connected (see Figure 3-3), A 12 can be sent to P 11 in parallel with

~one communication step. B 21 can be sent to P I, using a similar connection scheme in

' one communication step. The full connection structure connects PEj with both

PEi n. and PE i± 4 . With A 1,, B I,, A 12, and B 12 in P I,, C 11 can be computed by
2Y 2

n n

digt2x2matrices Ap12'uAts and on h matri ofdBthe n nalogus f roadute canbr

done using this same algorithm on the other -x- matrices. The recursion will stop

ooFigure 3-3:4x4 Connections

PE ,adE ,.WtA 1 B 1 A 2 anB 2 n@,C abcmueb
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after k-I levels when a 2x2 matrix product is done. The matrix addition is performed

element by element.

Each recursion level requires it's own interconnection structure for dividing up the

problem. The complete interconnection structure, supplying an edge for every commun-

ication in the algorithm on every level of recursion, is the n-cube.

The time required for this algorithm is 0 (n). Consider the time required by a sin-

gle process. The time for the 2x2 case is t (2) = 2 tc+ta +2tm, where tc is the time for a

communication step, t4 is the time for a scalar addition, and t . is the time for a scalar

multiplication. For the n xn case, the recurrence relation for the time is

t (n 2 tc +ta +to +2t (M)
) 2

where t, is the overhead time for each recursion level. The closed form is

t (n) = (2n -2)tc+(n -1)ta+(n - 2 )to+nt.

Therefore the time for this matrix multiply algorithm using n 2 processes is 0 (n).

A simple modification and the addition of more processes, produces an algorithm

nfl
which runs in 0 (log n) time. This is achieved by evaluating all 8 -x- matrix pro-

ducts at the same time, instead of 4 at a time. Figure 3-4 shows the connections needed
for an 8x8 matrix product. Each box represents a 8x8 plane of processes. The

0 1 2 3

Figure 3-4: 8x8 Connections for 0 (log n) Matrix Product

6I
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algorithm starts with n2 processes active, represented by plane 0. These processes con-

tain the original matrices, A and B. The processes communicate as in the 0 (n) algo-

rithm. At this point, each nxn block of processes has two matrix products to compute.2 2

One of the products is sent to a set of previously inactive processes, represented by plane

2. The connection shown between plane 0 and plane 2 has a communication channel for

each of the processes, connecting corresponding processes in each plane. This doubles

the number of active processes. The same algorithm is used to compute the "new" pro-

ducts. After the axa products have been computed, the processes that were sent the
2 2

second product send back their result. The results of the two producth are added element

by element to form the result of the n xn matrix product. The recursion for this algo-

rithm stops when a 2x2 product is to be computed. Each process does both multiplica-

tions and the one addition.

To see that the execution time is 0 (log n), consider the time of a single process in

plane 0. The 2x2 case has the same time of t( 2 )=2 tc+ta+ 2 tm. For the nxn case, the

recurrence relation is

t(n) = 5tc+ta+to+t(2)

where constants measure the same quantities as before. This recurrence relation is for

the original n 2 active processes. The 5tc comes from two tc's for the original communi-

cation, two re's from sending one subproblem to a "new" process and a tc for getting the

result back from the "new" process. The closed form is

t (n) = (5(log n -l)+2)tc+log n ta+(log n -l)to+2tm.

This algorithm uses n pros. It starts with n2 active processes. After the ini-

tial communication, the n2 processes are divided up into 4, -x.- sections, each having

2 2

two matrix products to compute. Every process sends two values, its part of one matrix

product, to an inactive process, thus activating it. This doubles the number of processes.
prdcSonpoes

r$4 d 
_
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We now have 8, --x-j problems using 2n 2 processes. Each matrix product is then2 2

computed by a "recursive call". This is one recursion level. At each successive recur-

sive level the number of active processes is doubled. There are log n -1 levels of
• Vl3

recursion. This gives 210g" -1n2 or 1 active processes at the evaluation of the 2x2

2

products.

n
3

What we really have is a single algorithm for matrix multiply that uses 2

processes and takes 0 (log n) time. The 0 (n) version was just a result of reduced paral-

lelism. Again, this algorithm is not a parallelized version of a standard sequential algo-

rithm.

3.3. The Fast Fourier Transform

There are some sequential divide-and-conquer algorithms that parallelize very

easily and produce good results. One of these is the fast Fourier transform (FFr). One

use for the FFT is multipoint evaluation of a polynomial over a field F [601. Given a

degree N polynomial,

) N-1
a (x) , aix'

i =0

multipoint evaluation computes the value of a (a i ) = Ai for each of m points

* fa,, Oi <m}.

By choosing m = N = 2 k and ai = oi, where co is a primitive N th root of unity in

F, the FFT algorithm computes all Ai, O-i <N in sequential time of 0 (N log N). (Fig-

ure 3-5 shows the sequential algorithm [60].) This is based on the decomposition of

a(x)= N l aix i

'-p. into
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Algorithm FFT(N,a (x),CO,A)
if N = 1 then

A0 :=ao;
else

/* split *I
n := N/ 2;

n-I
b(x) := ja~ix;

i=0Cax) :-- 'Ya2i+Ix';

i=O

/* recursive calls */FFT(n,b (X ),C02,B )

FFT(n,c (x ),cC);
/* combine */
fork := 0 to n-I do

At := Btk + 0.'kC

endforA:Bk+- C;

endif

Figure 3-5: Sequential FFT Algorithm

a (x) = b (y) + xc (y),

where
2  n-I n-I

N =2n,y =x2, b(y)= ,a 2 y , and c(y)- Ia 2i~ty'.
i-O i--O

• It also relies on two properties of (coi, 0:i <N). The first is that (co2i , 0!i <N) has

exactly n distinct elements, ( 2 , 0:i <n}. The second is that o.+'n = -o,). This

second property yields Aj = a (ci') = b (0o2j )+coDc (co2j) and

SAj+n=a(cdo+n)=b(o 2J)-o'c(co2J). The problem is then divided up into two

instances of multipoint evaluation, for b (y ) and c (y) at {0', 0.5 <n}. Since co2 is a

n th root of unity, these subproblems can be solved using the FFT algorithm.

To parallelize this algorithm, the split, the sub-problem solution, and the combine

are each done in parallel. We are assuming that we have N processes, that ai is initially

in process i, and that the result, Ai, is to be in process i after the algorithm is completed.

0
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The split takes a(x) and produces b(y) and c(y). To allow the sub-problems to be

solved in parallel, b (y) and c (y) must be placed in "separate" process groups conform-

ing to the initial conditions. We divide the processes in half and put b (y) in the first half

and c (y) in the second half. This split is shown at the top of Figure 3-6. In the figure,

each row of processes is the original processes at a different time in the algorithm. The

first row is the original configuration and the last row is the final result. The lines

a 0  a I a 2  a3  a4  a 5  a 6  a 7  wO
... O

a a0  a 2  a 4  a 6  a I a3  a5  a 7

a 0. a4  a 2  a6  a 1  a 5  a 3  a 7  )

a 0  a 4  a 2  a6  a I a5  a 3  a 7  0
V5

0)2

A 0  A I A 2  A 3  A 4  A5  A 6  A 7

Figure 3-6: Parallel FFT data movement

0

-N

N,

4- ., -, . .. .- ..
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between rows shows data movement between time frames. To accomplish the split, the

,4 a, values are unshuffled in one communication step. After this data movement, the split

is complete and each half of the processes has an independent problem and therefore can

be solved in parallel.

After both subproblems are solved, the first half of the processes contain the Bi s

and the last half contain the Ci s. Corresponding processes in the halves exchange their

values as shown at the bottom of Figure 3-6, retaining a copy of their own value. Pro-

cess i in the first half computes Ai = B + cdC and process i in the last half computes
An+i - B i --oici .

Figure 3-7 shows the algorithm for a single process involved in the parallel FF1

algorithm. The parameter N is the current problem size and i is the processes' position

in that group of N processes. Figure 3-6 shows the complete algorithm in terms of

communications for a FF1 of size 8. Notice that the bottom half shows the n-cube con-

nections. The upper half is the unshuffle connections on blocks with 2k processes, for

1 <k log n. This parallel version of the FFT takes 0 (log n) time. This comes from the

fact that one communication was needed for both the split and combine steps and that

the recursion goes log n levels deep.

3.4. Divide-and-conquer and the n-cube

As we noticed earlier, sequential divide-and-conquer often is related to the tree

* structure. This tree structure is the method in which the data is referenced. Since data

reference in sequential paradigms is related to communication structures in parallel

paradigms, we might expect a single interconnection structure related to parallel divide-

and-conquer. At first glance we might assume that this structure will also be a tree,

which has a communication bottleneck at the root. But, as we have seen in the divide-

and-conquer algorithms studied so far, the n-cube interconnection structure has been

part of or the complete interconnection structure.

The obvious question at this point is "What is the common feature of these algo-

F: rithms that produce the n-cube interconnection structure?" Is it the divide-and-conquer
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Algorithm FFr(Nj, ,a ,o,A)
ifN = 1 then

A :=a;
else

/* split */
PEwvshj,(NV) a;

a +- PEwum(N);
/* sub problem /
n := N/2;
FFT(n,i mod n ,a ,o)2,B)
/* combine *1
if i < n then

PE, R 4-B;
C <- PE,. .;

else :=B +cdC;

C :=B;
PE,_ft - C ;

• B +- PE, _,;
A :=B -CO'c;

endif
endif

Figure 3-7: Single Process, Parallel FFT Algorithm

paradigm or a combination of the paradigm and the specific algorithms? As we have

seen, the interconnections for divide-and-conquer algorithms come from the divide and

combine steps. The complete interconnection is defined by the all divide and combine

0 steps in the entire algorithm. In looking at the three previous divide-and-conquer algo-

rithms, we notice that the divide step in the matrix multiply and the second occurrence

of divide-and-conquer in Batcher's sort and that the combine step in the FFT require

communication between corresponding processes in each of the sub-problems. It is easy

to see that the main problem's divide or combine requires the high order edges of the

n-cube. Because of the recursive nature of divide-and-conquer, each sub-problem will

require a similar sub-structure, yielding the binary n-cube.

The other feature that is needed to yield the binary n-cube is that the original prob-

lem starts with all processes "active." In each of the previous algorithms, the problem is
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distributed in n or n 2 processes. All n or n 2 processes communicate in the divide or the

combine step. As an example of an algorithm that does not start with all processes

*active, consider the numerical integration algorithm discussed in Chapter 2. We change

that algorithm to a divide-and-conquer algorithm.

A single process has the interval that needs to be integrated. The process divides

the interval into two intervals and sends one of the two sub-problems to a previously

inactive process. Each active process now integrates its interval using the same algo-

rithm. The recursion is stopr ,. after the first process has recursed log n times, yielding

n active processes. After th :cursion has stopped, each process integrates its interval

using standard methods. T-_ combine steps are then adding the areas of the two sub-

intervals or recording that they are not accurately integrated and added to the list of

sub-intervals needing more processing.

Figure 3-8 shows the communication links for n = 16. The initially active process

is numbered 0. Processes activated by the i th level of recursion are numbered i. Notice

that this is not the binary tree one might expect, but a "tree" constructed from edges of
the binary n-cube. Processes labelled i have all binary n-cube connections of order

log n - i and less. Notice that this is also the same interconnection structure found in

the "3rd" dimension of the 0 (log n) matrix multiply.

00

0

EO~ EOE 3 tOE 3 3

Figure 3-8: DAC Integrate Connections

Udj~



M N, ,

4'

55

3.5. Connected Ones

Not all divide-and-conquer algorithms require the binary n-cube interconnection

structure. Stout discusses several divide-and-conquer algorithms for image processing

[85]. One of these is the algorithm for connected components for image data, some-

times called connected ones [62,72]. The divide-and-conquer strategy used to solve this

problem produces the 4-neighbor mesh.

Given an n xn black and white pixel image, each connected set of black (or white)

pixels are to be assigned a unique number. Two pixels are connected if they are neigh-

bors using either the 4-neighbor or 8-neighbor methods. The divide-and-conquer solu-

tion takes the image and divides it into 4 quadrants, solving the connected ones problem

for each quadrant independently. Once they are solved, only the boundaries with other

quadrants need to be examined to find components that cross the boundary. The results

of this border examination is a graph connected components problem where the vertices

of the graph are components in each of the four quadrents and the edges are defined by

having the components adjacent on the boundary. The solution to the graph connected

components provides the final labelling.

For a parallel implementation, we use a n xn process array where each process

contains one pixel. The division into quadrants provides four independent problems to

be solved in each .- x-- sub-arrays of the processes. After the four sub-problems have

been solved, the boundaries need to be examined to find components that lie in two or

4 more quadrants. Adjacent processes on the boundaries exchange information as shown

in Figure 3-9. It shows the connections required for the final boundary exchange for an

* 8x8 image. These boundary processes now know which components in each quadrant

are adjacent. This information is a graph with 0 (n) edges and 0(n) nodes. The n xn

... processes then solve the graph connected components problem. Using the solution to

the graph connected components, each quadrant corrects its label. The complete graph
0 for all boundary exchanges is the 4-neighbor mesh. The algorithm used for solving the

graph connected components adds other edges.
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Figure 3-9: Connected Ones Communication

Nassimi and Sahni [62] provide a complete algorithm using only the 4-neighbor

mesh that runs in O (n) time. Prasana Kumar and Eshaghian [72] give a sketch of the

algorithm for a mesh of trees that runs in 0 (log4 n) time.

3.6. Contraction of Divide-and-Conquer Algorithms

We would also like to apply contraction to the divide-and-conquer paradigm.

Since we have been applying contraction to specific interconnection structures, a natural

interconnection structure to study for the divide-and-conquer paradigm is the n-cube.

The first algorithm we will consider for contraction is the O (n) matrix multiply

algorithm. To be able to talk about the contraction we need to be able to talk about the

n-cube. An order k n-cube has 2k processes. (See Figure 3-10.) We assume that the

processes are numbered in a row major order. Each process is an order 0 cube, each

pair of processes, 2i and 2i +1 is an order 1 cube, and similarly for each block of 2'

processes for 1!5j<k. An edge is an order k edge if it connects corresponding

processes in order k-1 cubes and therefore connects processes whose numx: ,iffer by

* 2".Hr u
0~-6LY FA6X
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Figure 3-10: An Order 4 N-cube

The 0 (n) time matrix multiply algorithm runs in an order 2 log n cube. Since the

processes are numbered in row major order, the matrices are stored in the processes in

row major order. The longest edge connecting processes containing the same row of

data is an order log n edge. To identify this edge easily, we call it the order k edge.

That makes the longest edge connecting processes in the same column an order 2k edge,

the longest edge in the order 2 log n or order 2k cube.

To find the cost of the matrix multiply algorithm, K (CMM), we need to find the

edge with the most messages. At the first level of recursion, the order k and 2k edges

were used to send a message each way. This is the only use of these edges in the algo-

5rithm. Therefore, w (e) = 1, where e is a order k or 2k edge. At the second level of

recursion, two matrix products are computed using the order k-I and 2k-1 edges. Each

matrix product sends one message each way on each edge giving w (e) = 2, where e is a

order k-1 or 2k-i edge. At level I of the recursion, w (e) = 21-1 messages over the

order k-(1-l) and 2k-(1-1) edges. The recursion stops when we have order 2 cubes.

This is at the log n level of recursion. There are -i matrix multiplies done by order 2

cubes. These order 2 cubes use the order 1 and k+l edges. Each matrix multiply sends

S',, , ., , .
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1 message each way giving w(e)=-f where e is a order I or k+1 edge. Since this is
2'n

the largest value, K (CMM) = -2.

Consider any contraction, M (CMMp,) where p = 2" for some m S 2k.

M (CMM ,p) wil map 1- logical processes to every processor. This allows us to put aput

cube of order log [_ = 2k-m into each processor. The processor-to-processor con-

nection graph is also a cube and is of order m. Each processor-to-processor connection
supports - communication paths in the original graph. The real question is which

P

sub-cube do we map to each processor. The cost of the contraction, K (M (CMM ,p))

n2
" will be - times the maximum w (e), where e is mapped to a physical edge. If e is

c^der 1 or2k+1 from the original cube, K(M(CMMp))=

2k-r

Consider the contraction that maps the edges of order 1 through 1 and[ 2

order k+1 through k+ k into internal edges. (This coalesces square blocks of
2j

r...

processors when the cube is laid out in a row major order as in Figure 3-10.) This makes

0 the edge of order k+ +1 the edge with the most messages. This edge is used by

[. 2k~m [2m ~

level k- I of the recursion. From before we know that

0 A: -

w(e) 2 Therefore K (M (CMM ) 2 Clearly, this con-: ?"2 2p

traction is better in terms of the number of messages over the busiest physical edge than

0 any contraction that does not keep the high traffic logical edges internal to a processor.

0.



r..

59
By contrast, let us consider the Batcher bitonic merge sort. This sort runs on an

order k cube to sort n = 2k elements. The final sorting will have the smallest element in

the first process and the largest element in the last process. Figure 3-11 shows a graphi-

cal representation of the algorithm. (This is the same as Figure 3-1.) The arrows

represent a data exchange and a compare, leaving the larger number at the end with the

arrow and the smaller at the other end. It is obvious from the figure that the order 1 edge

has the most messages. Therefore, K (SORT) = log n.

Again, to contract this algorithm, we see that we want to assign a sub-cube into a

A. processor. Consider the contraction M(SORT p) where the edges of order 1 through

order log p are mapped to internal edges. We are assuming that p = 2", for some

,%/ m < log n. This contraction assigns the busiest logical edges to be internal edges.

These edges carry log n-log p messages. Since each processor contains -1 logical

processes, K (M (SORTp)) = n (log n-log p) Any contraction that does not map
_A4 •P

these first log p edges to internal edges will have a higher communication cost. These

results agree with and explain the results of Hsiao[47], even though his final algorithm

I
2'i

5
6
7

9
10

* 12
13
14
15
16

Figure 3-11: Batcher's Bitonic Merge Sort

-~ 44 I..4I' . % , 4 . ~ -
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, was embedded in a grid instead of another cube.

,." In comparing the contractions for matrix multiply and Batcher's sort, we see that

~processors. The busiest edges are different for the two algorithms, thus, the contractions

are different.

I.?



CHAPTER 4

The Pipelining and Systolic Paradigms

Perhaps the most widely used paradigm for nonshared memory parallel computa-

tion is the systolic approach [55]. Although definitions of systolic computing have been

provided by the inventors [53,58] and others [59], the concept remains imprecise. We

present the pipelining paradigm and show that the systolic paradigm is a special case of

the more general concept of pipelining. We examine the paradigms using examples of

both systolic algorithms and pipelined algorithms that do not seem to meet all of the cri-

teria of the systolic definition. We conclude by considering the contraction of pipelined

algorithms.

4.1. Pipeline and Systolic Definitions

Pipelining is a well known technique used in hardware design [8, 16]. These pipe-

lines, by definition, exhibit parallel processing. Most classical pipelines are linear, hav-

ing one stream of data that visits all processors in succession. We broaden the pipelin-

ing definition to include multiple data streams that may interact. We also want to look

at the algorithmic structure of these pipelines, not their hardware implementations.

The key paradigmatic concept in pipelining and systolic algorithms is the decom-
position of the problem into subcomputations that are assigned to dedicated processes

with the data "flowing" through the processes, visiting all or an appropriate subset of

processes to complete the computation for that input. In addition, systolic algorithms

are expected to exhibit additional properties: locality of communication, a regular com-

munication structure, and have only a few different types of simple processes. These

extra properties come from the desire to implement the systolic algorithm directly in

custom VLSI. The locality of communication requires that two processors which are

directly connected must be 0 (1) distance apart. The other properties are desirable for

0

N~~
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the ease of implementation.

NWe can again consider the execution time for members of the paradigm regardless
of the algorithm. The cost, 1, called latency, is the longest time required for a single

piece of data to flow through the processes. This is the minimum time for completion of

a pipeline algorithm. The number of input groups, t, gives the amount of data that needs

to be processed. Generally, these two measures determine the running time of 0 (1 +t).

4.2. Flow Test

The property of flow not only gives these types of algorithms their names, but it

seems to be the property that distinguishes them from other parallel algorithms with

similar properties. Specifically, in Chapter 2 we described numerical CAB algorithms

exhibiting many of the properties of the pipelined algorithms. The Jacobi iterative algo-

rithm was decomposed into many small (approximation) subcomputations, each process

was specialized (to computing the voltage at a point), the communication was regularly

structured and local, and there were a small number of processes (boundary, source and

interior). But such algorithms are not normally designated as pipelined or systolic.

Assuming that this observation is a reflection of the style of computing and not simply a

statement about the historical order of the development of the Jacobi iteration and sys-

tolic computation, then what seems to be lacking in the Jacobi is the concept of flow.

The claim that the communication of the Jacobi algorithm does not exhibit flow

and that, say, the Kung and Leiserson systolic matrix multiplication algorithm does is

obviously a statement to which not all researchers would subscribe, but consider the fol-

lowing "flow test" which systolic algorithms generally pass and the Jacobi fails:

0 Flow Test [66]: Select an arbitrary communication edge and "radioactively tag"

a single transmission across that edge. (The concept of radioactive tags is due toK-' Cuny and her students, where it is used in debugging parallel programs [21].) As

the computation progresses from the time of tagging, let all values computed

with one or more radioactive values become radioactive. Then define the "con-

taminated region" as the set of processes and communication channels touched

W
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by some radioactive value. An algorithm passes the flow test if the edge over

which the initial value was transmitted is on the boundary of the region; other-

wise it fails the test.

Clearly, the Flow Test captures the concept of flow in that the tagged value "flows out"

%e to define the contaminated region. The Jacobi algorithm fails the Flow Test because a

process that receives the radioactive value will be sending out a radioactive element to

its four neighbors, eventually contaminating the entire process array, regardless of which

was the originally tagged edge. When it is presented, we will see that the Kung and

Leiserson band matrix multiply algorithm passes the Flow Test. The Flow Test is not a

perfect test, since some algorithms generally called systolic will fail, e.g. certain linear

arrays such as the band matrix-vector multiplication and the band lower triangular linear

system solver of Kung and Leiserson [52], but it does seem to identify the presence of

flow.

4.3. Systolic Algorithms

We start first with the systolic algorithms. They are good examples of several

aspects of pipeline algorithms besides being systolic. For each algorithm, we show the

interconnection structure, describe the algorithms, and apply the Flow Test to the algo-

rithm.

4.3.1. Band Matrix Multiply

One of the first systolic algorithms developed was the band matrix multiplication of

Kung and Leiserson [52] shown in Figure 4-1. The algorithm multiplies two n xn

matrices, A and B, with band widths I and m respectively, producing C. The processes

are organized as an I xm hex-connected array. These matrices flow in different direc-

tions through the processes. To produce the correct result, the placement of the input

data is very important. Since all data items move at the same time, there must be two

"empty" spaces, or "bubbles," between the items. This insures that the correct data items

meet at a process, e.g. a1I, b I,, and c in the figure. The C values are initialized to

zero as they "enter" the array and therefore no input is required. Each data path can be
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a23  A A A A A A A b32

a32 a 22 a .12 :b 1 b 22 b 2

a 31  a.21  al b .' b 1 2  b13

.C.

",C c21 C 12

C 3 1  C 22  C 13

Figure 4-1: Band Matrix Multiply

considered as a pipeline that interacts with the other pipelines. Notice that the results do

not exit from the end of the input pipelines, but from output pipelines that cross and

interact with the input pipelines. The time required is 0 (n).

This algorithm passes the Flow Test. Let us tag a 21 as it crosses the edge coming
into the process containing c in Figure 4-1. The values a 21, b 12 and c 22 will meet at

the process containing c ,. c 22 becomes radioactive because it is now a result of an

expression containing a radioactive piece of data. Notice that b 1 2 does not become

* radioactive, even though it flows through a contaminated process. c 22 contaminates all
4

processes above as it flows up. In a similar fashion, c 23 becomes radioactive and con-

taminates its column of processes. The final contaminated area is the two output pipe-

lines above the travel of a 21 and the original edge is on the boundary, and thus the algo-

.4- rithms passes the Flow Test.
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4.3.2. WAP Matrix Multiply

Some algorithms do not produce results that flow out of the pipelines. Consider the

matrix multiply algorithm of S. Y. Kung et al. [54] for the wavefront array processor.

This algorithm uses n 2 processes to multiply two n xn matrices. Figure 4-2 shows the

data staging and the interconnection structure. The data arrives at every "clock cycle"

and flows in vertical and horizontal pipelines. All c values are initialized to zero. As

the data flows by each process, the a value times the b value is added into the c value.

When the input data has passed through the input pipelines, the correct c values are con-

tained in the processes. Although the results do not flow out of the pipelines, we

nevertheless consider this to be a systolic algorithm. Because there are no results

-- flowing in this algorithm and the inputs flow in a single row or column, it trivially passes

the Flow Test.

The advantage to this algorithm is that no "bubbles" are required in the input pipe-

i ".Ne:lines. It does, however, require the data to be staged correctly so that the proper a and b

b44
b 43  b 34

b42  b33  b 24
b 41  b32  b 23 b 14
b 31  b 22 b13
b 2 1  b 12

a 34 a 33 a 32 a 31

a 44 a43 a 42 a 41

Figure 4-2: Data Staging for the WAP Matrix Multiply
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values meet at the correct process. Also, if results are needed externally, the final values

must be shifted out of the process array. The algorithm requires 0 (n) time.

4.3.3. Dynamic Programming

Another interesting systolic algorithm is the dynamic programming algorithm of

Guibas, Kung and Thompson [381. The processes are arranged in a triangle with pipe-

lines in the horizontal and vertical directions. (See Figure 4-3.) Data moves from the

diagonal toward the top and right. At time 2t, results are ready at every process that is t

distance away from the diagonal. Processes (12), (23), etc. are defined to be distance 1

from the diagonal. For the next t time units these results move up and to the right at the

rate of one process per time unit. After that, they move one process in the same direc-

tion every two time units. Depending on the problem to be solved, the processes may

have preloaded data. The computation performed at each process will also vary depend-

ing on the problem to be solved.

I~i0

, ',,Figure 4-3: Dynamic Programming Process Structure

( (13) (

23 25N!7-:

(34) (35) (36
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An interesting part of the Guibas, Kung and Thompson algorithm is the use of the

pipelines for both fast moving data elements and slow moving data elements. This

feature provides an order reversal on the data, and it can be implemented either by a pair

of connections between the processes or by a single connection doing double duty. This

algorithm also passes the Flow Test because all data flows up or to the right.

4.3.4. Lower Triangular Linear System Solver

Our last systolic algorithm is the lower triangular linear system solver of Kung and

Leiserson [52]. Given the linear system Ax = b, where A = (aij) is a nonsingular n xn

band lower triangular matrix and b =(b 1,...,b.)T,, we want to solve for

x = (x1, ..... x,,)T. The following recurrences can be used to solve for x:

yi(1) = 0

yk+1) = y) + akxk,

x i  = (bi - y i
(i )) / a i i"

Figure 4-4 shows the linear systolic algorithm implementing the recurrences for a band

width of four. The box processes are implementing the first two equations and the

round process is implementing the third equation. Notice that the xi and yi values do

not need to come from an external source. Notice that this algorithm also has "bubbles"

in the input and output data.

This algorithm does not pass the Flow Test. Tag any edge between processes and

shortly all processes become contaminated. This is because the outputs at each proces-

sor are results of computations of both inputs. Regardless of which input is radioactive,

both outputs are radioactive. The initial edge is no longer on the boundary of the con-

taminated area. But this is a systolic algorithm. It is very obvious that data flows in

several directions in this algorithm. The Flow Test will fail for any pipelined algorithm

with two directional pipelines that has results flowing in both directions.

S, ,
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Figure 4-4: Systolic Linear System Solver

4.4. Other Algorithms

We now look at a few algorithms that are pipelined algorithms but may not satisfy

all of the systolic definitions. For each algorithm, we give the reason they are not sys-

tolic algorithms.

4.4.1. Vector Sum Algorithm

Consider the problem of computing the sums of n element vectors. (See Figure 4-

5.) A single vector is summed using a tree of - processes. The vector is input at the
2

leaves and the sum of the vector comes out from the root. Successive vectors are input

at the leaves when the previous vector has moved up the tree by one level. We can iden-

tify each level in the tree as a stage in the pipeline, with the data flowing from stage to

stage. The latency is 0 (log n ), yielding an execution time of 0 (d+log n) where d is

the number of n element vectors to be summed. This algorithm passes the flow test and

it appears to have the features of systolic algorithms. But trees cannot be laid out in the

plane with edges of constant length independent of the size of the tree [691. Thus, if

communication time is proportional to distance, as is the case in the VLSI models nor-

mally associated with systolic arrays, then the time between stages increases as larger
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stage3"

stage2

Figure 4-5: Vector Sum Pipeline

and larger trees are considered. One wonders, therefore, whether tree based pipeline

algorithms meet the locality requirement of systolic computation.

4.4.2. Hough Transform

Another pipeline algorithm is the Hough Transform algorithm designed by Cypher
and Sanz [221. The Hough Transform can be used to detect lines and curves in picture

data [26]. Given a n xn image of pixels, the Hough transform does computations on

bands, usually one pixel wide. (See Figure 4-6.) For a given 0, the complete picture will

Band

SP
k .d

n,n

Figure 4-6: Hough Transform on n xn Picture

0
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be processed by computing all bands. The bands are identified by the pair (0, p). Most

applications using the Hough transform require results for multiple values of 0.

The algorithm uses n 2 processes connected by the n xn torus. (A n xn mesh with

end around connections.) The picture is distributed one pixel per process. A value of 0 is

input to the first column. (Actual implementations may use sin 0 and cos 0 as input,)

The input, along with the values being computed will move to the right across the

processes. All bands for one 0 will be calculated by a single sweep. After the first value

of 0 has moved to the second column, another value of 0 may be input.

Consider a single value of 0. Each process will contribute its pixel value to one

band. The band number is calculated by Lrow * cos 0 + column * sin 0J. For 0--900,

each row of processes will contain a single band. For other values of 0, the bands will

not be horizontal. Figure 4-7 shows the band numbers for 0=67.5. To keep the bands

more horizontal than vertical, 0 is limited to 45%< 0<135*. For the other values of 0, the

algorithm can be rotated by 90 degrees. For 9<900 the bands move up in the successive

columns. To simplify our discussion we assume that 450<0590.

There is a single total for each band. This total is started in column 1 and the band
number is then associated with the total. In the case where two processes in the same

column contain data from one band (rows 5 and 6 in Figure 4-7), the lower processor

retains the band total and does all the computation. To allow for this case, the processes

initially shift all pixels down by one process. As a total for a band moves through the

processes, the accumulated band data follows the bands by moving up in the column.

, The limit of 45'<0 guarantees that each band moves up by at most one process.

If a band total moves off the top of the processes the band is completed, but the

data needs to be moved to the last column. This is accomplished by making the data

passive as it arrives at the last row. The passive data continues to shift up in the column

to make sure that any one process has the maximum of one passive data element. Also,

* as the band total moves up out of the last row, new band totals must be started. This

means that each process contains data for two bands, the active band involved in the

-0 . . . ,, . ... .
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Figure 4-7: Band Numbers for 0 = 67.50

local computation and the passive band that does not pass through the current process.

Notice that in a single column, not all band totals will move at the same time. Con-

sider column 4 in Figure 4-7. The totals for bands 2 through 6 and 15 move up by one
process, the totals for bands 7 through 14 remain in the same row, and a new band, band

16, is started in the last row. This movement causes the process in row 6 to have no

active data. These "holes" are needed where one row moves up and another one does

not as is the case with bands 15 and 14 respectively.

The time used by this algorithm depends on two variables, n, the picture size and

p, the number of values of 8. One value of 8 is calculated by a single sweep of the data

across the n xn processes and requires 0 (n) time. Since successive values of 8 can be
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input at regular intervals, the last value of 0 will be input at time 0 (p). Therefore, the

total time is 0(n+p).

* .7.There are two features of special interest. First, the vertical movement of the data

is very input data dependent, unlike the other algorithms where the flow pattern is fixed.

'V Each value of 0 will exhibit a different pattern of up shifts. Even with this vertical

movement, the algorithm passes the flow test. Also, computation involves only one of

two data values being moved, swapping the active and passive data when moved off the

top or bottom. The final results may have one or two computed values, and this is also

input data dependent. Even with these features, it is easy to see that this is a pipelined

algorithm. It may be too irregular in other respects to be classified as a systolic algo-

rithm.

4.4.3. Funneled Pipelines

Our last example of pipelined algorithms are the funneled pipelines [431. The fun-

neled pipelines are used to implement a minimum spanning forest algorithm, a bicon-

nected components algorithm, and several other graph theoretic algorithms. These are

interesting because each stage in the pipeline is a filter, yielding a pipeline of filters.

Each filter outputs half as much data as was input. This produces less data for each

stage of the pipeline, allowing later filters more time to do their processing.

The funneled pipeline for the minimum spanning forest is composed of filters that

essentially compute reduced minimum spanning forest problems. Each filter is com-

posed of a tree of processes with n leaf processes. These leaf processes are the ones that

input and output the data. Input to the pipeline is an upper triangular matrix of edge

* weights. The filters input two rows of edges and output one row of edges. This is a

combination of the two input rows. The tree structure of the filter allows "communica-

tion" between the leaves. The root processes contain memory to hold 0 (n) edges as

part of the final result.

The pipeline contains log n filters, connected by corresponding leaf nodes in each
;.7. filter. The n rows of the adjacency matrix are input to the first filter. The first filter



73

passes - rows to the next filter, and so forth. After all stages have stopped, the root

processes contain 0 (n log n) edges that make up a small superset of the minimum

spanning forest. A sequential algorithm computes the final result.

There are two specific points of interest for pipelined algorithms. First, this is the

only pipelined algorithm that uses communication internal to a pipelined stage to pro-

duce the correct results. This complex stage, using internal communication is the non-

systolic structure in the funneled pipelines. The second point is the exponentially

decreasing data between stages of the pipeline. We saw a similar feature in the vector

sum pipeline. The difference is that the vector sum has an exponential decrease in

- edges, yielding the exponential decrease in data but still retaining the same number of

data elements per edge, but the funneled pipelines are connected with the same number

of edges and the actual amount of data across these edges reduces exponentially. This is

also a feature showing non-systolic properties because systolic algorithms generally

have the same amount of data across each edge. The result of this decrease in data is an

exponential time delay between the first stage and the last stage, giving a latency of 2 k

for a k stage pipeline. This yields a latency of 0 (n). This does not slow down the algo-

rithm because the first stage requires 0 (n) time to input the adjacency matrix. The total

time is then 0 (n) time to produce the reduced minimum spanning w'rest problem.

4.5. Contraction of Pipeline Algorithms

A recurring interconnection structure in systolic algorithms is the mesh, seen in

several variations. For contraction of pipelined algorithms we consider the contraction

of mesh algorithms. We use the matrix product algorithm for the Wavefront Array

0 Processor(WAP)[54] as our example. Recall that it uses n 2 processes connected in the 4

neighbor mesh for the n xn matrix product AB = C. The data is fed in along the top n

processes and from the left n processes, accumulating the final result in each process. A

loop is executed n times that reads an A value from the left and a B value from ab ..e,

multiplies them together, and adds the result to cij. The A and 7 values are sent to the

right and down, respectively. This causes the upper left process to be the first process to

-0- .- - -'2 ,



74

start execution. As the data moves into the array, there is a wa, efront of executing

processes on the cross diagonal. Each edge is used to send all of one row of A or one

column of B. For the WAP algorithm we have the cost K (WAP) = n.

Consider the contraction in Figure 4-8. Let us call this contractio. 4! (WAP ,p).

This is the contraction done by cutting the graph into p equal size connected subgraphs

and assigning one process from each subgraph selected from corresponding positions to

a single processor. The physical connection graph, shown in Figure 4-8, is a grid with

end around (i.e. toroidal) connections. The curv- lines use the end around connections.

For each logical process in a physical processo nere are , -rizontal and vertical com-
f2

munication paths. Since we have - - logical processes in a processor, the number of

logical edges using one processor-to-processor connection is -. Since all horizontal
p

and vertical edges have the same number of messages, n, we have

n3
K(M (WAPp)) =

0

Figure 4-8: A Contraction of 16 Processes to 4 Processors

7?
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Consider the contraction in Figure 4-9. Let us call this contraction M 2(WAP ,p).

'This is the contraction done by cutting the graph into p equal size connected subgraphs

and assigning an entire subgraph to a processor. We see that only the perimeter

processes have edges that go from processor-to-processor. Also, notice that no end

around connections are needed. The number of communication paths over one

processor-to-processor connection is - Each communication path requires n mes-
ph2

sages giving K (M 2(WAP ,p)) =

Comparing the two contractions, we see that K(M 2(WAP ,p)) is smaller than

K (M I(WAP ,p)) by a factor of , telling us that M 2 is expected to be the better con-

traction. We conjecture that M 2 is the best contraction that can be achieved for grid

algorithms. The basis for this conjecture is that this contraction has the smallest perime-

ter for a given area, and has been commonly used for contraction in published algo-

rithms, for example for the Jacobi iterative method [1 ] and for the conjugate gradient

method [34].

Both MI and M 2 were programmed using Poker. Table 4-1 summarizes the
results of the timings. As predicted, M 2 was the faster contraction, but because the

Figure 4-9: Another Contraction of 16 Processes to 4 Processors



76

Table 4-1: Contraction Timings for the WAP Matrix Multiply Algorithm

WAP matrix multipl :,ticks for n (items) on p (processors)

Contraction 16 on 4 64 on 16 64 on 4 256 on 16

M 48854 111478 400542 901543
M 2  31113 73088 221545 707646

communication time is not the only time consuming part in these algorithms the differ-

ence is perhaps not as dramatic as might be expected. Again, Appendix A contains the

code for both contractions.

I

I
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CHAPTER 5

Other Paradigms

In this chapter we look briefly at two other techniques. We present these in the

belief that they are important and deserve more attention. The first of these is the reduc-

tion paradigm, a well known technique used in the theory of computation [44]. We

show how this technique applies to parallel algorithms and give several example algo-

rithms using reduction. The second is a way of approaching arbitrary communication

algorithms. These algorithms, which may require communication between any two

processes, provide problems for CTA machines.

5.1. Reduction
* 4

Reduction, sometimes called reducibility, is used in complexity theory for solving

decision problems. Simply stated, "If there is an algorithm for deciding X, then there is

an algorithm for deciding Y [56]." Often, there is no known algorithm for X, yielding a

* 01.result that says that deciding Y is no "harder" than deciding X.

We use this same notion for computing solutions to problems. Simply stated, given

an algorithm for computing X, we use this algorithm for X in the algorithm for comput-

ing Y. We specifically imply that there is already a known algorithm for computing X.

% Not only does this say that Y is no harder to compute than X, but that in solving Y, we

do not need to solve X again. Also, by using the algorithm for X, we may have made

0* the solution to Y much easier. It may also be that if a better algorithm for X is found,

there will be a better algorithm for Y.

This notion is used in the theory of parallel computation. Anderson gives an algo-

* rithm for the maximal path problem that uses an algorithm for matching [7]. Although

N the underlying model of computation is the PRAM, it is an example of the reduction
Jparadigm. An interesting point about this algorithm is the fact that the known algorithm

--
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for matching uses rando. .ess. This makes the algorithm for maximal path use random-

ness. If a deterministic algorithm for matching was found with the same performance,

then the algorithm for maximal path would be deterministic.

There are CTA algorithms using the reduction paradigm. The topological sort

algorithm in Chapter 2 is a good example. Recall that the problem is solved by

transforming the graph into vertices with level numbers. The vertices, when sorted by
level numbers, will be in topological order. This changed the topological sort problem

into a numerical sort problem for which there are known algorithms. Also, the computa-

tion of the level numbers is performed using matrix multiplication.

There are several points of interest in this algorithm. First, the time and resourceso

of the matrix multiply algorithm dominated the entire algorithm. For the fastest solu-

tion, the matrix multiply algorithm required 0 (n 3) processes while the remaining part of

the algorithm required only 0 (n 2) processes. For the solution where the matrix multi-

ply algorithm was limited to 0 (n 2) processes, it dominated the time, taking 0 (n) time.

This algorithm also displayed two types of reduction. The first type, shown in the

use of the matrix multiply, is where the algorithm for Y uses that algorithm for X many

times. The second type, shown in the use of the sort algorithm, is where the algorithm

for Y transforms the input into an instance of the problem for X. The algorithm for X

needs to be used only once and after the algorithm for Y has completed its work.

Schwartz [76] gives two algorithm for the shuffle-exchange Ultracomputer using
reduction. He shows how matrix inversion of a lower triangular matrix can be done

using matrix multiply [68,75]. For general matrices, he shows how to change the gen-

eral matrix into a lower triangular matrix [20,73] and use the algorithm for inversion of

lower triangular matrices. The other algorithm is for connected components and uses

matrix multiply for repeated squarings.

Dekel, Nassimi and Sahni [23] also use reduction in several algorithms. These
• include all-pairs shortest-paths, several spanning tree problems, and topological sort,

The algorithms used to solve these problems include matrix multiply, sorting and several

POO ----... -- ,~~%*-



urn rwn nu - w r..r , r -., - - , -. -. -= .r um .... nn -un an,, .,.r-,- rr , nn- w r-w- vwvw . dt.: - h- , l. Mn Mn: W:= , = W. -1 rw, rv .rt

79

of the graph algorithms just given.

5.2. Arbitrary Communication Algorithms

Most of the algorithms we have discussed have communication patterns that are

independent of the input data. The communication structure is known before the algo-

rithm is executed. The one exception is the Hough transform given in Chapter 4. The

communication variance is displayed only in when to shift the data up or down in a

column. The complete graph for all possible inputs is still a bounded degree graph,

namely the torus.

There are problems for which known solutions may require any process to com-

0.i municate with an other process, depending on the input. An example of this kind of

problem is the maximum flow problem. Both known parallel solutions [35,79] use

either a PRAM or a distributed network where all processors can communicate directly

with any other processor. If these algorithms are to be used on a CTA machine, some

method of dealing with the arbitrary communication must be used.

One method of dealing with these algorithms is to use the techniques for PRAM

simulation on a CTA. Upfal and Wigderson [90] describe a scheme where the memory

of a n processor PRAM is distributed through the local memories of a n processor CTA.

It keeps multiple copies of each "shared memory cell." A read accesses a majority of

the copies in order to know the correct value. A write needs to update a majority of the

- copies. This is shown to simulate a T step PRAM program using

O(T(log n loglog n) 2) steps of a shuffle-exchange Ultracornmiter [76]. This method

works when the number of shared memory locations is larger than the number of proces-

* sors.

Nassimi and Sahni [63] show a different method for deterministic simulation of a n

processor PRAM by a n processor CTA. This works for n shared memory locations,

cistributed one to a processor. They provide a Random Access Read (RAR) and a Ran-

dom Access Write (RAW) based on sorting. For the RAR, requests for shared locations

are sorted using the processor number of the requested data as the key. Duplicate
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requests are reduced to a single request placed at the processor containing the data. The

data values are then sent to the requesting processor by duplicating the necessary data

and sorting the results using the requesting processor number as the key. A similar

method is used for the RAW. The times are O(log2 n ) for the RAR and

0 (log2 n + d log n) for the RAW writing at most d elements into a single shared

memory location. These results work for the shuffle-exchange Ultracomputer.

Upfal [89] has shown a probabilistic algorithm for simulating a n processor PRAM

with a n processor shuffle-exchange Ultracomputer. The number of shared memory

locations can be larger than n. The shared memory locations are randomly distributed

among the n processors. It is shown that a T step PRAM program is simulated within

0 (Tlog 2 n) with "overwhelming probability."

Another method used to solve the arbitrary communication problem is to concen-

trate on routing messages between processors. It is obvious that an arbitrary permuta-
tion can be achieved in 0 (log2 n) on a n-cube by using sorting. What we would like is

a faster routing technique, as fast as 0 (log n). Borodin and Hopcroft [14] have looked

at this question and have showed that in an interconnection structure with degree d, the

time required in the worst case by any oblivious routing strategy is Q(-N-). Oblivious

means that the routing strategy is based only on the origin, destination, and the processor

making routing decisions. Several people have given probabilistic algorithms for rout-

ing that take 0 (log n) expected time [71,88,91]

S4
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CHAPTER 6

Summary and Further Research

In this dissertation we have studied several programming paradigms for non-shared

memory parallel computers. These paradigms are important, not only because they are

the first step in developing a comprehensive "tool kit" of parallel programmers and they

"a provide experience and knowledge transfer from earlier problem solutions, but they help

us understand the commonalities of algcrithms in each paradigm.

A- .One of these commonalities is communication patterns. Since efficient and effec-

tive communication is the problem in parallel computer architecture, this identification

of common communication patterns is important. In our study of paradigms, by focus-

ing on algorithms and their natural communication structures, we have identified some

a" common communication patterns. These results can provide useful data to computer

architects on what communication topologies are most important.

Another commonality is the applicability of contraction techniques on multiple

algorithms in the same paradigm. These contraction techniques focus on communica-
tion volume between processors, minimizing the amount of interprocessor communica-

* tion. These contraction results provide the programmer of real parallel computers tools

for solving real problems on today's machines.
t.2.

The paradigms that we studied were compute-aggregate-broadcast, divide-and-

conquer, pipelining, and reduction. Of these only the compute-aggregate-broadcast

paradigm was new, but we showed how the others were applicable to non-shared

memory parallel computers.

The compute-aggregate-broadcast paradigm is used in a wide variety of algorithms

displaying several variations. These algorithms cover both numerical and non-

numerical computation. Due to the aggregation and broadcast phases, tree

0I
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interconnection structures are used in all these algorithms. In most of these algorithms,

all processes were part of the same tree, implementing global aggregate and broadcast,

but local aggregate and broadcast utilizing several local trees was observed. Although

the compute, aggregate, and broadcast phases are usually performed in that sequence,

the variations of the paradigm displayed different phases being used first. Contraction of

CAB algorithms focused on the tree. We proved that contraction of trees based on

Leiserson's tree layout is optimal.

As part of the compute-aggregate-broadcast paradigm, we presented a new algo-

rithm for topological sort. This algorithm used the ABC variation of the paradigm with

non-global aggregate and broadcast. The time for the algorithm is 0 (log2 n) with

0 (n 3) processors and 0 (n log n ) with 0 (n 2) processors.

The divide-and-conquer algorithms in parallel computation displayed a comparable

usefulness to that observed in the sequential paradigm. The parallelism is utilized in two

places, namely in the divide and combine operations and the parallel solution of sub-

problems. Several algorithms used the binary n-cube as the natural interconnection
structure. This was the result of the divide or combine using corresponding elements in

each of the sub-problems. The mesh interconnection was also shown to be used in some

divide-and-conquer algorithms. And finally, while some parallel divide-and-conquer

algorithms are not parallelizations of optimal sequential algorithms, there are some

sequential divide-and-conquer algorithms that parallelize easily. Contraction of divide-

and-conquer algorithms showed that different algorithms required different contractions

of the binary n-cube to give good results.

As part of the divide-and-conquer paradigm, we presented a new algorithm for

matrix multiplication. It is based on Strassen's decomposition of an n xn matrix into 4

x-- matrices. This algorithm runs in time O(n) using n2 processors and time
2 2

n
3

0 (log n) using - processors.H2
0 3R
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The pipelining paradigm encompassed many useful parallel algorithms. Because

of the systolic algorithms, pipelining may be the most widely used technique in parallel

algorithms. Not only does the pipelining paradigm include the systolic algorithms, but it

includes non-systolic algorithms such as the funneled pipelines. It also includes tree

algorithms using pipelining that may not be systolic due to the violation of the locality
of communication requirement. For contraction of pipeline algorithms we looked at the

mesh interconnection structure. We saw that coalescing was better than projection. We

". conjectured that this was the best contraction due to the fact that it had the smallest per-

imeter for a given area.

-We briefly looked at the reduction technique. This technique, often used by theore-

ticians, can provide reasonable solutions to problems. Combined with other techniques,

as was seen in the topological sorting algorithm for Chapter 2, it is very useful.

In this study, we have seen these paradigms displayed at several levels of computa-

tion. The pipelining and systolic algorithms often are implemented in special hardware.

We also saw a hardware implementation of a CAB algorithm. Algorithms like the

divide-and-conquer matrix multiply show the usefulness of these paradigms at the data

operation level, sometimes called "fine grain parallelism". And finally, we have seen the

paradigms used at the higher level of algorithm design in applications of the reduction

technique and the CAB nature of parallel expert systems.

There is much to be done in the area of parallel programming paradigms. The

paradigms presented here are not expected to be exhaustive. There are several known

algorithms which do not seem to fit into any of these paradigms. As part of the search

for more paradigms, known algorithms will be classified. Also, there may be other para-

digms useful under other models of computation that do not apply to non-shared

memory models.

We presented these paradigms using a description augmented with example algo-

rithms. This is an imprecise method of defining paradigms. Although this method is

usable, there is much room for research in how to express paradigms.
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For parallel algorithms, besides the classification already mentioned, we expect that

these paradigms will yield dividends, both in understanding and in the development of

new algorithms. Already, the understanding of these paradigms have yielded new algo-

rithms. The best example is the topological sort algorithm presented in Chapter 2.

The area of contraction contains many unknowns. First of all, we conjectured that

coalescing is the best contraction for meshes. This conjecture needs to be proved. Also,

we considered only three interconnection structures in contraction, the tree, the mesh

and the n-cube. Although we gave tools for comparing contractions, it is possible that

other interconnection structures are admissible to general contraction results.

0 As far as the tools that we presented, they are still very rudimentary. They are

applicable in a restricted class of algorithms. Better tools are needed to cover more gen-

eral conditions. As part of that, what other features of an algorithm should be con-
sidered? We concentrated on the volume of processor to processor communication

because, to date, communication time is a dominant factor in execution times. Com-

munication volume can be considered a "first order" effect. How much can be gained by

considering "second order" effects? In Chapter 1 we saw how message dependence

became a "first order" effect in an algorithm with a low degrec of parallelism. How

much does message dependence effect algorithms with high degrees of parallelism?

.. Other things that could qualify as "second order" effects include computation between

messages and buffer sizes.

. Finally, we briefly touched on multi-phase contraction. Much is yet unknown

about it. We mentioned three approaches to multi-phase contraction. Is one of them the

best approach? If not, when are they preferable to the others? Are there other

* approaches to multi-phase contraction?

V,'
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APPENDIX A

Implementations of Selected Algorithms

As part of this dissertation, we include the implementation of several algorithms.

Although this does not contribute directly to the understanding of paradigms, seeing an

implementation for an algorithm may help one understand the algorithm and give insight

into the special features of a paradigm displayed in the algorithm. The algorithms

implemented are all discussed in Chapters 2 through 4. As such, we do not discuss the

algorithm, but we mention special points about the implementation that were not

discussed in the chapters. All implementations are done using the Poker programming

environment [81]. We give a description of the Poker programming environment and

present the implementations of the algorithms.

A.I. The Poker Programming Environment

Poker is a programming environment designed for writing parallel programs for the

CHiP architecture [80]. It represents a parallel program as a data base containing

multiple phases of computation. Each phase is represented by a communications graph,

an assignment of processes to processors, an assignment of logical names to actual

communication channels, and process codes. These components are manipulated using

a graphical interface that allows the Poker program to be displayed and edited from

several views. For our purpose, it is sufficient to understand the information presented

in these views and not how to interact with the environment.

As an example program, consider the implementation of the maximum algorithm

given in Chapter 1. The algorithm used a 15 node tree interconnection structure with

special processes at the leaves, internal nodes, and the root. Each process has a value

and the result is to terminate with the maximum in the root process.
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Poker works only with square arrays of processors. Each processor is numbered by

both row and column. (In this example we use processor 1,3 as an example because it is

not part of the tree algorithm.) The "Switch Setting View" allows the programmer to

view and modify the communications graph. Figure A-I shows a Poker representation

of a 15 node tree. Notice that each processor is represented by a square, and the

communication channels are represented by connections to the square. Only 8

connections to each processor is allowed. They attach to the processor at the eight

, compass points of north, northeast, east, southeast, south, southwest, west, and

northwest. The north connection is at the "top" of the processor.

The "Code Names View" allows the programmer to specify which sequential

.. process will be executed at each of the processors in the square. Figure A-2 shows the

"Code Names View". The process leaf will be executed at processor 1,1. Notice the

"-'' E0.

34

00 O

Figure A-I: A 15 Node Tree in Poker

0
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Figure A-2: Code Names View for Maximum

correspondence of the processors to the "Switch Setting View." Although it is not used
for the maximum algorithm, processor 1,3 shows that parameters may be given to the

processes at the start of the phase.

These processes are programmed in one of two languages, XX (dos equis) or Poker
C [83]. XX is the first language supported by Poker and is used for programming the

Ni Pringle [49]. Poker C was later added for speed of simulation on a sequential processor.Both languages are used in the following implementations. The major constructs of

interest for our programs appear in both languages because they are designed for use
-" with Poker. This construct has to do with communication. Processes communicate with
., each other through ports. In the program, these ports are given logical names. Figure

A-3 shows the code for a leaf processor. Notice that the only process a leaf process
communicates with is a parent process. Figure A-4 shows the code for an internal
processor. Notice that the internal process has ports for its left child, right child and
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code leaf;

ports Parent;

begin

int Value;

Parent <- Value;

end.

Figure A-3: A Leaf Process

code internal;

ports ..eft, Right, Parent;

begin

int Value;
int max, temp;

max:= Value;
temp <- Left;
if temp > max then max := temp;
temp <- Right;
if temp > max then max:= temp;

Parent <- max;

end.

Figure A-4: An Internal Process

parent. For completeness Figure A-5 shows the code for the root process.

Communication with the other processors is performed by the port 1/0 statement.

The port 1/0 statement has two forms:

variable <- port

port <- expression

where the first form represents reading from the port (receiving a message from the other
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process) and the second form represents writing to a port.

These logical port names allow one process to be used at several processors using

different communication channels for the same logical communication. The "Port

Names View" allows the programmer to specify the relationship between logical port

name and physical communication channel for each of the processors. Figure A-6

shows the port names for the maximum algorithm. Processor 1,3 shows the logical

A.. name placement in the square corresponding to the physical connections. Notice that

processor 1,1 communicates on the south connection while processor 3,1 communicates

on the north channel for the same logical name.

The last feature we must mention is how data is transferred from phase to phase. In

XX, the variables in the process codes are allocated in the same place in memory,

providing an unnamed common block. Values written in one phase are available in the

next phase. To insure correct values, the order and types of the variables in the two

process codes must be identical.

code root;

ports Left, Right;

begin
,,-,

int Value;
,"t max, temp;

5 max:= Value;
temp <- Left;
if temp > max then max:= temp;
temp <- Right;
if temp > max then max:= temp;

end.

Figure A-5: The Root Process

'N.
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Figure A-6: Port Names View for Maximum

In Poker C, this phase to phase communication is facilitated by use of the "inter-

phase variable space." The inter-phase variable space is a collection of variables

accessible by all phases. To read a value from the inter-phase variable space, a process

"imports" a value into a local process variable using the import statement. To set a
value, a process "exports" an expression. The form of these statements are:

import(localvariable,inter-phase)

export(expression,inter-phase).

In the following implementations, we present enough of the Poker structures to

completely define the program. In some programs, only one process code is used. For

those programs, we do not include the Code Names View. For others, all processors

have the same port name assignment and only a single processor is shown for the Port

Names View. Codes are in both XX and Poker C, but a single program has codes in

only one of the languages.

I p
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A.2. Jacobi Iterations

,' The following program solves the electric field problem as given in Chapter 2. The

square is represented by 256 discrete points. Due to the fact that the upper right is a

mirror image of the other three quadrants, using reflection and negation, only the upper

right is computed. The initial guesses are the parameters to the compute phase. A

special code is placed in processors representing the charged bar. The aggregation

phase is a tree that does minimum sum. The control script implements the broadcast by

restarting the compute-aggregate loop when the algorithm is not completed. Figures A-

7 and A-8 show the switch settings for phase 1 and phase 2 respectively. Figures A-9,

A- 10, A-11 and A- 12 show the code names and port names for enough processors to

provide all the necessary information.

The following are the codes for each process and the Poker script to run the entire

algorithm.

I

Figure A-7: Jacobi Phase I Switch Settings

.. er
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Figure A-8: Jacobi Phase 2 Switch Settings
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~Figure A-9: Jacobi Phase I Code Names



In0 VUMM Mv

102

Figure A-10: Jacobi Phase 2 Code Names
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main (ival)
float ival;

float curval, newval;
float nval, eval, sval, wval;
float diff;

1* initial value/current value *

curval. = -1;
import(curval,val);
if (curval. < 0) curval = ival;

/I send */
if (PEi != 1) north <- curval;
if (PEj I!= PEn) east <- curval;
if (PEi I!= PEn) south <- curval;

* if (PEj !=1) west <- curval;

I"' receive ~
*if (PEi !=1) rival <- north;

if (PEj !=PEn) eval <- east;
if (PEi !=PEn) sval <- south;
if (PEJ!=1) wval <- west;

/* calculate */
newval. = curval;
diff = 0;

1* report *
export(newval,val);
export(diffdiff);

- var.pc

code var,

6 ports north, east, south, west,

trace newval;

0 IVmain (ival)
float ival;
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float curval, newval;
float nvai, eval, sval, wval;
float diff;,
/* iniial value/current value '

curval. = -1;
iznport(curval,val);
if (curval < 0) curval = ival;

/* send */
if (PEi I!= 1) north <- curval;
if (PEj ! PEn) east <- curval;
if (PEi !=PEn) south <- curval;
if (PEj !=1) west <- curval;

1* receive */
*if (PEi I= 1) nval <- north;

else nval = 0;
if (PEJ ! = PEn) eval <- east;

else eval = 0;
if (PEi != PEn) sval <- south;

else sval = -curval;
if (PEjI!= 1) wval <- west;

else wval = curval;

/* calculate */
newval = (nval+eval+sval+wval) /4;
diff = newval-curval;
if (diff<0) diff = -diff,

/* report */
export(newval,val);
export(diff,diff);

Ieatpc

code leaf;

ports parent;

main()

float diff;
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import(diff,diff);
parent <- diff;

inode.pc

codeinode;

ports parent,leftaright;

main()

float cliff;
float ival, rval;

iznport(diff,diff);
Ival <- left;
rval <- right;
cliff = (diff~lval?diff:lval);
cliff = (diff>rval?diff~rval);
parent <- cliff;

root. pc

4 code root;
tr-ace cont, cliff;

ports third,leftfright;

main(tol)
float tol;

float diff;
float Ival, rval,tval;
int cont;

import(diff,diff);
tval <- third;
cliff = (diff>tval?diff:tval);,

* ival <- left;
rvai <- right;
cliff = (diff'lval?diff:lval);

bm
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diff = (diff>rval?diff-rval);
cont = (diff<WolO: 1);
export(diff,max);

Poker script

run I tracex
log~x
run 2 tracex
log~x
iff53 max>O. 1 skip -4^x

* A.3. Batcher's Sort

The following program is the 64 processor divide-and-conquer sort of Batcher. We

present the sort phase. This was tested with two other phases that loaded a test problem

and dumped the answer. The interconnection structure is the 64 processor n-cube,

shown in Figure A-13 for the upper left 16 processors. AUl other quadrants are

reflections of the upper left quadrant. Since there is a single code, batchers.pc, we do

not include a code names view. The port names for the upper left 16 processors is given

in Figure A- 14.

batchers.pc

code batchers;

ports dell, del2, de14, del8, de116, de132;

main()

int element;
port del(6];

#define UP 1
* #define DOWN -1

del[O] -=dellI;
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Figure A-13: 6-Cube Interconnection

del[ I] = del2;
del[2] = del4;
del[31 = del8;

'4del(41 =del 16;
del[5] = de132;

import(element,element);

sort(&element,PEid- 1 ,PEn*PEn,5,UP,del);

export(element,re suit);

sor (1 lm d ,lv idl

sot ( elem, id, n, ev, dir, dl

* port del[6];

if (1ev >= 0)
n /= 2;
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de32 lIdel e4de112 dei4 del2dl
Ie3dell6 I dcl2 c e I del I d14

del8 delSI dcMdei del el

de13 2 Idl42 du13 de32

dell dell dcI2Idl2 dellI dell dcl4
1d1321 del32 ~duI32 d321

du4deI 6 de6 d116 del d1

d4 c2deI 4 6I del 14
'delldedel2 1 dcI2 dell 1dell de 1

We32 de32 d32 de32

sot~le~d n ndev-i idenUP:DOW del

Ael merge (eeem id,2 r,2 dev, dir, del)

port del[6]

temp2 de-3 del32lev]

*otelemidn n, (*l lcemp 1, temp: DOWN,) de)

megem (*edlevtep ?tem *elm)

if( )merge elem, idn, n2 1ev-, dir, del);

tm-~ del 'V]



109

A.4. Matrix Multiply

The following program is the 64 processor divide-and-conquer matrix multiply.

We present the matrix multiply phase. This was tested with two other phases that

loaded a test problem and dumped the answer. The interconnection structure is the 64

processor n-cube, shown with Batcher's sort in Figure A-13. Again, since there is a

single code, matmul.x, we do not include a code names view.

rnatmui.x

code matmul; /* matrix product *

trace aele, bele, cele;

ports vert:2, vert4, vert:8, horiz2, horiz4, horiz8;

begin

1TE5riz8 1 1 2 1 vert8
I horiz4l vert8 horiz8 vert8 horiz8 horiz4

Ivert8 horiz2l hoiz~oh4 horiz4horiz2 horiz2horWz
Ivert4 l vert4 verE4 vert4

vr2 vert2 vert2 verd

2vert2 yert yert 2yer
horiz8horiz4 horiz8 horiz8 horiz4

horiz2 horiz2lioriz4 horiz4hohz2 horiz2horiz8
vert8 vert8 vert8 vert8

vert4 vert4 vert4 vert4
3 et 3 v et 23 yert yert

*horiz8horiz4 Ihoizgl honiz8 honiz4
*horiz2 Ihoriz2horiz4l horiz4horiz2 horiz2honz8

*vert8 ivert8 l vert8 vertS
vr2vert2 vert2 vert2

4 et 4 v er2 yert vert2
*horiz8horiz4 vert4 horiz8 vert4 horiz8 horiz4

vert4 horiz2 Ihoriz2horiz4l horiz4horiz2 horiz2horiz
evert8 vert8 vent8 vert8

* Figure A- 15: DAC Matrix Multiply Port Names



01

110

itm aele, bele, cele, othera, otherb;
imt save4, save8;
sint i2, i4, i8, j2, j4, j8;

/* initialize *
cele := 0;
i2 :=PEi-1;
i8 :=i2/ 4 mod 2;
i4:= i2/ 2 mod 2;
i2 :i2 mod 2;
j2 PEj-1;
j8 :=j2/4mod 2;
j4:=j2/2 mod 2;
j2 := j2 mod 2;

N.. /* do the matrix multiply *I

*" gosub Compute8x8;

exit; f* end of program *I

/* Subroutines *I

Compute2x2:
/* send values */
vert2 <- bele;
horiz2 <- aele;
otherb <- vert2;
othera <- horiz2;
/* multiply */
if i2 = j2 then
cele cele + aele * bele + othera * otherb

else
cele := cele + aele * otherb + othera * bele;

return;

Compute4x4:
vert4 <- bele;
horiz4 <- aele;
if i4 = j4 then begin

gosub Compute2x2;
bele <- vert4;
aele <- horiz4;
gosub Compute2x2;

end else begin
save4 := bele;
bele <- vert4;



gosub Compute2x2;
aele <- horiz4;
bele :=save4;
gosub Compute2x2;

end,
return;

Compute8x8:
vert8 <~- bele;
horiz8 <- aele;
if i8 = j8 then begin
gosub Compute4x4;
bele <- vert8;
aele <- horiz8;
gosub Compute4x4;

end else begin
* save8 :=bele;

bele <- vert8;
gosub Compute4x4;
aele <- horiz8;
bele :=save8;
gosub Compute4x4;

end;
return,

end.

A.5. WAP Matrix Multiply

.J. This implementation of the Wavefront Array Processor matrix multiply algorithm

does not strictly follow the systolic paradigm. Instead, the data is contained in the

Aprocessors tosatwthDe data is then circulated using the torus connections to get

the same data flow as the systolic implementation. The remaining part of the algorithm

* is the WAP matrix multiply.

matmul.x

code matmul ( size)

trace aele, bele, cele, indx;

ports left, right, up, down;
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Figure A- 16: WAP Matrix Multiply Interconnection

t. ; ' !1 6 matmul 6 matmul 7 6 m'rfig8

7maunl6- mi

.N
8am m atm -6 mnilw 8-ing8

Figure A-17: WAP Matrix Multiply Code Names

S
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8up

left riht

Figure A-18: WAP Matrix Multiply Port Names

begin

int aele. bele, cele;
int size;

sint indx, PEn;

PEn := size;
indx :PEi;
indx :=O;
indx PEj;

/* start wave around */
4. ight <- aele;
4" down <- bele;

for indx := 2 to PEn do begin
if PEj >= indx then begin aele <- left; right <- aele end;

if PEi >= indx then begin bele <- up; down <- bele end;

end;

/* do the multiply */
for indx := Ito PEn do begin

* aele <- left;
right <- aele;
bele <- up;
down <- bele;
cele := cele + aele * bele;

end;

end.%.

mmrig.x

code mmrig ( size);
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trace aele, bele, cele;

Ports left, right, up, down;

begin

int aele, bele, cele;
int size;

sint indx, PEn;

PEn :=size;

1* start wave around *
right <-aele;

W down <- bele;
for indx :=2 to PEn do begin

if PEj >= indx then begin aele <- left; right <- aele end;
if PE >= indx then begin bele <- up; cdown <- bele end;end;

/* do the multiply ~
for indx := I to PEn do begin

aele <- left;
bele <- up;
down <- bele;
cele :=cele + aele * bele;

end;

end.

mmlow.x

code mrnlow (size);

trace aele, bele, cele;

ports left, right, up, down;

begin

0 inc aele, bele, cele;
int size;
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sint indx, PEn;

PEn := size;

/* start wave around */
right <- aele;
down <- bele;
for indx := 2 to PEn do begin

if PEj >= indx then begin aele <- left; right <- aele end;
if PEi >= indx then begin bele <- up; down <- bele end;

end;
5%

/* do the multiply */
for indx := 1 to PEn do begin

* aele <- left;
right <- aele;
bele <- up;
cele := cele + aele * bele;

end;

end.

mmlr.x

code mmlr ( size);

trace aele, bele, cele;

ports left, right, up, down;

begin

int aele, bele, cele;
int size;

sint indx, PEn;

PEn := size;

/* start wave around */

right <- aele;
down <- bele;

-Ie C e L" " " - , -, , - I- ,
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for indx := 2 to PEn do begin
if PEj >- indx then begin aele <- left; right <- aele end;
if PEi >= indx then begin bele <- up; down <- bele end;

end;

/* do the multiply */
for indx := I to PEn do begin

aele <- left;
bele <- up;
cele := cele + aele * bele;

end;

end.

A.6. Contractions

As part of our study of contraction, we implemented two algorithms with two

different contractions. These contractions were compared with the analytical tools

developed in Chapter 1 and these implementations demonstrated that these tools gave

accurate predictions of their relative performance. (See the contraction sections in

Chapters 2 and 4.) The implementations are included here for completeness. Although

the timings given were for several different problem and machine sizes, we give only the

, ,,. implementation for 64 processes on 16 processors. The other sizes are straight forward

changes to the given implementations.

The tree contraction algorithm is maximum and the mesh contraction algorithm is

WAP matrix multiply given previously. We provide enough of the interconnection

structure, port names, and code names to be able to reconstruct the program.

A.6.1. Folded Tree Algorithm

root.x

• code root

trace max, Imax, rmax;
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Figure A- 19: Tree Folding Interconnection

0

mmm
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1 1 1 parent 2 3 1 4

left Paret
left

parem right paren

right right left left
3parent 1 3 prnt 2 3 paren 3 3 parent4

left right
right left

Figure A-21: Tree Folding Port Names

ports parent, left;

begin

int val[4];
int Ival, rval, Imax, rmax, max;
sint indx;

Ival <- left;
rval <- left;
if Ival > rval

then Imax Ival
else Imax rval;

if Imax < val[I then Imax val[l];
Ival <- left;
rval <- left;
if lval > rval

then rmax Ival
else rmax :=rval;

'". if rmax < val[21 then rmax val[21;
S-if Imax > rmax
* then max:= Imax

else max:= rmax;
for indx :=3 to 4 do
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if max < val[indx] then max:= val[indx];
parent <- max;

end.

internal.x

code internal;

trace Ival, rval, max;

ports parent, left, right;

begin

int val[4);
hant Ival, rval, max;
sint indx;

forindx := 1 to 2 do begin
/* left tree */
Ival <- left;
rval <- left;
if Ival > rval

then max:= Ival
else max := rval;

if max < val[indx] then max:= val[indx];
parent <- max;
/* right tree */
Ival <- right;
rval <- right;
if lval > rval
then max Ival
else max rval;

if max < val[indx+2] then max:= val[indx+2];
parent <- max;

end;

end.

leaf.x

code leaf;

trace indx;
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ports parent;

begin

int val[41;
sit indx;

for indx 1= to 4 do parent <- val~indx];

end.

A.6.2. Leiserson Layout Tree Algorithm

Figure A-22: Leiserson Layout Interconnection

% Figure A-23: Leiserson Layout Code Names
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parent left right lpentright parent
left right I qaMMt tparen right

tpan left left
[T 1]2 22prn parent4

parent parent left

ref right lft right l gut rt

3parent 1 pr t7 7 left left pare

left

Figure A-24: Leiserson Layout Port Names

interl.x

* code interi

trace indx, max;

ports parent, left, right;

begin

* int val[41;
int max, Ival, rval;
sint indx;

max := val[1];

for indx := 2 to 3 do
if val[indx] > max then max:= val[indx];

right <- max;

max := val[4];
Ival <- left;
if Ival > max then max:= Ival;
rval <- right;

0 X
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if rval > max then max rval,'
parent <- max;

end.

inter2.x

code inter2;

trace indx, max;

ports parent, left, right, tparent;

begin

int val[4];
* mnt max, Ival, rval;

sint indx;

max := val[1I;
for indx := 2to 3do

if valfindxJ > max then max: valfindx];

tparent <- max;

max :=val[4];
Ival <- left;
if Ival > max then max Ival;
rval <- right;
if rval > max then max rval;
parent <- max;

* end.

* Ileafl.x

code leaf 1

trace indx, max;

ports parent;

* begin

irn val[4];
int max;

I0 q
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sint indx;

, 4. max := val[11;
for indx := 2 to 4 do

if val[indx] > max then max:= valfindx];
parent <- max;

end.

leaf2.x

code leaf2;

trace indx, max;

ports parent;

S begin

int val[4];
int max, Ival;
sint indx;

max := val[1];
for indx := 2 to 3 do

4' if val[indx] > max then max:= val[indx];

Ival <- parent;
Nif Ival > max then max:= Ival;

if val[4] > max then max:= val[4);
parent <- max;

end.

Ieaf3.x

code leaf3;

trace indx, max;

, ports parent, left;

* begin

%Q int val[4];

int max, Ival;

, U p
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suit indx;

max := val[1];
for indx := 2 to 3 do
if val[indx] > max then max:= val[indx];

Ival <- left;
if lval > max then max:= lval;
if val[4] > max then max:= val[41;
parent <- max;

end.

-. A.6.3. Coalesced Mesh Algorithm

matmul.x

code matmul;

trace a[1], a[2], b[1], b[2];

ports left, right, up, down;

begin

int aele[2,21, bele[2,2], cele[2,2];
int temp;

F

• Figure A-25: Coalesced Mesh Interconnection
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2 nmaul 2 marmul 3 2 mmnrig4

3 matmul 2 3 matmul 3 "3 mmrig 4

4 mmlow 2 4 mmlow 3 4 minr

Figure A-26: Coalesced Mesh Code Names

1up

left right

down

Figure A-27: Coalesced Mesh Port Names

int a[21, b[2];

sint indx, indxl, indx2;

/* start wave around */
mdxl := 2;
while indx 1 > 0 do begin

for indx2 := I to 2 do begin
right <- aele[indx2,indx 1];
down <- bele[indxl,indx2l;

end;
indxl := indxl - 1;

end;
for indx := 2 to PEn do begin

if PEj >= indx then
for indxl := I to 4 do begin temp <- left; right <- temp end;

if PEi >= indx then

0= _. '
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for indxl i1to 4 do begin temp <- up; down <- temp end;
endL

for indx :=lIto 2do
for indxl :=l1to 2do

cele[indx,indxl] :=0;

/* do the multiply */
for indx :=1 to 2*PEn do begin

for indxl :=I to 2do begin
a~indxl] <- left; right <- a~indxll;
bIindxlI <- up; down <- b[indxl],

end;
for indxl1 :=1 to 2do
for indx2 := I to 2do

* cele~indxi,indx2l :=cele~indxl,indx2l + a[indxl]*b[indx2l;
end;

end.

mmrig.x

code mnmrig;

n-ace mndx, cele[l,l], cele[1,2], cele[2,11;

ports left, right, up, down;

begin

mnt aele[2,2], bele[2,21, cele[i2,21;
int temp;

int al, a2, bl, L2;

* sint indx, indxlI, indx2;

/* start wave around *

ndxlI : =2;
*while ndxlI >O0do begin

for indx2 :=I to 2 do begin
right <- aele[indx2,indx 11I;
down <- bele[indxl1,indx2];
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end;
indxl I=indxI - 1;

end,
for indx := 2to PEn do begin
if PEj >= indx then

for indxl :=I to 4 do begin temp <- left; right <- temp end;
if PE >= mndx then

for indxl IIto 4 do begin temp <z- up; down <- temp end;
end;

for idx :=l1to 2do
for indxl :=l1to 2do
cele[indx,indxl: 0;

I* do the multiply ~
0for mndx :=I to 2*PEn do begin

al <- left;
blI<-up; down <- b1;
cele~l,l] :=cele[1,l] + al*bl;

* -a2 <-left;
b2 <- up; down <- b2;
cele[l,2] cele[l,21 + al*b2;

A.' cele[2,l] cele[2,lI + a2*bl;
cele[2,2] cele[2,2] + a2*b2;

end;

end.

Mmlow.x

0 code mmlow;

trace mndx, cele[l,l], cele[l,2], cele[2,1I;

ports left, right, up, down;

begin

int aele[2,2], bele[2,21, cele[2,21;
- tnt temp;

int aI, a2, bI, b2;

smnt mndx, ndxl1, indx2;
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/* start wave around ~
indxlI:= 2;
while indxlI>O0 do begin
for indx2 :=I to 2do begin

right <- aele~indx2,indxl];
down <- belefindxi,indx2];

end;
indxl := indxl-l1;

end;
for indx :=2 to PEn do begin

if PEj >= indx then
*for indx 1:=I to 4 do begin temp <- left; right <- temp end;

if PEi >= indx then
for indxi IIto 4 do begin temp <- up; down <- temp end;

end;

for indx :=lIto 2do
for indx I :=1 to 2do

cele~indx,indxi] : 0;

/* do the multiply *
for indx :=I to 2*PEn do begin
al <- left; right <- al;
bi <- up;
cele[i,l] :=cele(i,l] + ai*bl;
a2 <- left; right <- a2;
b2 <- up;

cele[2,1I celef2,lI + a2*bl;
celejl2,2] cele[2,2] + a2*b2;

* end;

end.

mmlr.x

code mmlr;

trace indx, cele[ 1, 11, cele[i1,21, cele[2,l11;

* ports left, right, up, down;

begin

0
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it aele(2,2], bele[2,2], cele[2,2];
int temp;

int al, a2, bl, b2;

sint inix, indxl, indx2;

/* start wave around */
indxl := 2;
while indx I > 0 do begin
for indx2 := 1 to 2 do begin

right <- aele[indx2,indxl];
down <- bele(indxl,indx2];

end;
indxl := indxl- 1;

end;
for indx := 2 to PEn do begin

if PEj >= indx then
for indxl := 1 to 4 do begin temp <- left; right <- temp end;

if PEi >= indx then
for indxl I:= to 4 do begin temp <- up; down <- temp end;

end;

for indx := I to 2 do
for indxl := 1 to 2 do

cele[indx,indxl] := 0;

/* do the multiply */
for indx := 1 to 2*PEn do begin
al <- left;
bl <- up;
cele[1,1] := cele[l,1] + al*bl;
a2 <- left;

b2 <- up;
cele(1,2] cele[1,2] + al*b2;
cele[2,] cele[2,I] + a2*bl;
cele[2,2] cele[2,2] + a2*b2;

end;

end.
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A.6.4. Folded Mesh Algorithm

'The folded mesh algorithm uses the same interconnection structure and port names

as the coalesced mesh. Since- it uses the same code in all processors we do not give the

code names for the folded mesh.

matmul.x

code matmul;

trace indx, indxl, indx2;

ports left, right, up, down;

* begin

int aele[2,2], bele[2,21, cele(2,2];

* mnt aval, bval, temp;

sint indx, tindx;
sint count, indx 1, indx2;

/* do this for each "data point" *
indxl 1;
indx2 1;

VIfor coun:= 1to 4do begin

/* start wave around ~
* tindx :=2;

while tindx > 0 do begin
right <- aele[indxl,tindx];
down <- bele[tindx,indx2l;
for indx :=2 to PEn do begin

if PEj >= mndx then begin temp <- left; right <- temp end;
if PEi >= indx then begin temp <- up; down <- temp end;

end;
tindx tindx - 1;

end;

/* do the multiply *
for indx := 1 to 2*PEn do begin

11'it% RRS
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aval <- left
if PEj < PEn then right <- aval;
bval <- up;
if PE < PEn then down <- bval;
cele~indxl,indx2l :=celefindxl,indx2l + aval *bval;

end;

/* next item to work on1
if count < 2&indxl =1I then begin
indx I indxl +indx2;
indx2 1;

end el se if count >2 & indx2 =2 then begin
indx2:=indxl1+ 1;
indxl:=2;

end else begin
indx2:=indx2 +1;
indxl :indxl - 1;

end,

end;

end.
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