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ABSTRACT

Electrochemical impedance results are presented for 550
day exposures of organic coated carbon steel samples.
Coatings consisted of translucent pigmented and unpigmented
epoxy and conventional opaque epoxy polyamide systems.
Coating thicknesses ranged from 20 to 185 microns. Specimens
were exposed under freely corroding conditions and at two
cathodic polarization levels (-850 mV, and -1250 mV
versus SCE) in ASTM artificial ocean water. The objective
was to identify impedance parameters which measure subcritical
coated-metal system property changes at early exposure
times that are indicators of significant long term coating
deterioration. Impedance data developed at early times,
including coating resistance, coating capacitance, the
increase in frequency associated with the coating's
resistivecapacitive (RC) 45 degree phase angle, and low
frequency impedance data, are compared to the coating
system's performance evaluated after 550 days exposure.
Coating performance at 550 days is visually evaluated
using ASTM Method D-610, and a modification of ASTM
D-714. In particular, coating resistance, 45 degree coating

phase angle frequency data, and low frequency impedance
magnitude data determined at exposure times ranging from
2 to 200 days were found to predict the 550 day coating

performance. Relative increases in the electrochemically
active surface area were correlated with the frequency at
which the coating R-C phase angle was equal to 45 degrees.

ADMINISTRATIVE INFORMATION

This project was supported by the DTRC Ship and Submarine Materials Block

Program under the administration of DTRC Code 0115. The program coordinator is

Mr. Ivan Caplan. The work described was performed under Work Unit 1-2803-137-

02 and satisfies milestone CT6/3. The work was conducted at DTRC in the Marine

Corrosion Branch, Code 2813, under the direction of Mr. Terry Morton.

INTRODUCTION

The electrochemical impedance technique is capable of probing the

electrochemical interface of an organic coated metal, providing information

concerning the influence of corrosive environments on protective coatings and

metallic substrates [131. Impedance methods have advantages over DC electrochemical
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methods, including the ability to measure electrochemical impedances despite

large organic coating resistances, the non-destructive nature of the test, and

the capability to provide spectrographic coated metal impedance data when a

sufficient frequency bandwidth is utilized.

However, it remains to be established whether measurements of coated metal

system property changes can be made early in the degradation process which

correlate with long term significant coating deterioration for relatively slowly

deteriorating coated metal systems where visually detectable damage is modest

at early exposure times. In order for a predictive capability to be feasible,

the impedance parameters providing the best correlation must be determined.

The objective of this research is to identify key electrochemical impedance

parameters whose behavior early in the exposure period give advanced indication

of significant coating deterioration determined after a one to two year exposure

duration.

Electrochemical impedance results are reported for long term (550 day)

exposures of various translucent epoxy, opaque epoxy polyamide, and opaque primer

and top-coat epoxy polyamide coated carbon steel samples. Specimens were exposed

in AS174 artificial seawater. Translucent coatings were specially developed

so that visual signs of corrosion attack could be monitored more reliably at

earlier exposure times than possible for opaque coatings. Four thicknesses of

epoxy polyamide primer were tested so that the variation in coating thickness

could be correlated with impedance paramaters. Epoxy polyamide primer and

topcoat panels were studied at open circuit, -850 mV, and -1250 mV versus Standard

Calomel Reference Electrode (SCE) to include the effects of cathodic polarization

on the deterioration process.

2



MATERIALS

Cold rolled low carbon steel panels (SAE 1010; 1/4 hard) with a 15-25

micro-inch ground surface were utilized in all tests. Steel panels (5 by 7

inches) were degreased with xylene and coated with either epoxy polyamide or

translucent coatings by a dip application method as in ASTM Standard D-823 [4].

All coatings were fully cured prior to exposure. Coating thicknesses ranging

from approximately 20 Pm to 185 Pm were investigated. These coatings are

nominally defect free but may contain many latent discontinuities. Details

for each coating type are given below:

1. Epoxy Polyamide Primer Coatings of Various Thicknesses: These coatings

were applied using the MIL-24441 series epoxy primer with ethylene glycol

monoethyl ether solvent. Final thicknesses ranged from 20 microns to 185

microns. Coating thicknesses are given in Table 1.

2. Epoxy Polyamide Primer/Top Coat Coating Systems: These panels were

coated with epoxy MIL-24441 series primer and topcoat coatings to total

thicknesses ranging from 145 to 160 microns. Coating thicknesses are given

in Table 1. These coatings contained the glycol monoethyl ether solvent, as

well.

3. Translucent Coatings: These coatings were formulated with the same

ingredients as the MIL-24441 epoxy except for the substitution of finely

divided quartz (Cabosil) for the normal pigments. A second translucent

coating was formulated from the same materials but with no particulate

added. Coating thicknesses are given in Table 1. -
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EXPERIMENTAL PROCEDURE

EXPOSURE CONDITIONS

Panels from all three categories were exposed under freely corroding conditions

in ASTM artificial ocean water at room temperature with aeration provided with

gas bubbling (6 ppm dissolved oxygen concentration). Panels from

category 2 were also cathodically polarized to -850 mV, and -1250 mV vs SCE

during the full exposure period using mini-potentiostats.

INSTRUMENTATION AND TESTING

Impedance experiments were conducted using a Solartron 1250 frequency response

analyzer, Stonehart BC 1200 potentiostat, and Tektronix 4052 computer. The

impedance of the electrochemical system was probed using a swept sine voltage I
perturbation with data obtained using a correlation method of analysis. Impedance

data was collected at frequencies ranging from I mHz to 65 KHz at voltage

amplitudes ranging from 10 to 300 mV rms about the open circuit potential or the

protection potential. For very good coatings, where no stable open circuit

measurement was obtainable, a 300 mV amplitude was utilized. Samples behaving

in this manner were potentiostatically polarized to -400 mV and -600 mV vs.

SCE for these measurement. Results were identical in either case. For coatings

where open circuit potentials were measurable but where the low frequency (10

mHz) impedance magnitude maximum was greater than 107 ohm-cm 2 , a 60 mV amplitude

was applied. For coatings with both a stable open circuit potential and low

frequency impedance of less than 107 ohm-cm 2 a 10 mV amplitude was applied.

Voltage amplitude was increased in order to improve gain and allow for a decrease

in the current measuring resistor utilized. However, potentiostat phase shifts

in the frequency range of 10 Khz to 65 Khz were still obtained for high impedance

4



coatings producing possibly greater than 50% measurement error [5]. This

precluded utilization of the impedance data over this frequency range.

0

CELL DESIGN

At the time of impedance measurements, panels were momentarily removed from

seawater tanks, surfaces were dried, and cylindrical PTFE cells containing ASTM

artificial ocean water were positioned on panel surfaces. This cell contained

a platinized screen auxiliary electrode oriented parallel to the painted metal

surface. An aperture in the screen contained a glass lined Ag/AgCl tipped

reference electrode which was positioned between the painted surface and the

counter electrode along the center line of the cylindrical cell. This arrangement

minimizes a variety of frequency and orientation related current non-uniformity

effects on the impedance results and minimizes other edge effects from the

panel [5]. The Ag/AgCl/0.6 M C1- reference electrode system in ASTM

artificial ocean water is +8 mV vs. SCE at 25 C. The Ag/AgCI electrode was

chosen to minimize high frequency phase shift of reference electrode origin by

lowering the reference electrode RC time constant to a value below that usually

associated with glass frit reference electrodes.

METHODS OF ANALYSIS

THE ELECTROCHEMICAL IMPEDANCE OF AN ORGANIC COATED METAL

The electrochemical impedance of a defect free organic coated metal exposed

in aqueous sodium chloride solution will initially behave as a capacitor.

Impedance will vary inversely in proportion to frequency of the applied voltage

signal. At frequencies near 1 mHz, the resistance of the organic coating phase

both perpendicular to the plane of the surface and tangential will likely be

quite large for a well coated sample in exposure for a short period of time.

5
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Consequently, the rate of any electrochemical reactions occurring

on the metallic substrate will be very low. However, many organic coated metals

contain latent discontinuities or defects which give rise to ionically conducting

low resistive paths perpendicular to the coated surface which may penetrate to

the metallic substrate. The resistivity of these paths, according to a direct

concentration dependent degradation mechanism [6), will decrease as a function

of exposure time as H20 and oxygen are transported through the polymer and as

anionic and cationic species permeate the pathways in the organic phase [6].

At this time, low resistance paths tangential to the metallic substrate may

form. Such pathways of tangential ionic conduction are usually followed by the

initiation of underfilm corrosion reactions. For organic coated steels in

neutral or alkaline environments, the high frequency resistive capacitive (RC)

relaxation of the coated metal system usually becomes distinguishable from

intermediate and low frequency relaxations owing to the differences in the

interfacial and coating RC time constants once the coating resistance decreases.

That is to say, the RC time constant of the coating becomes smaller than that

of the pseudocapacitance-faradaic resistance time constant for the metal

electrolyte interface. This allows direct determination of the coating

capacitance, Cc, and the in phase (phase angle approaching zero) perpendicular

coating resistance, Rp, from high frequency impedance data. If this deterioration

process were to continue to proceed in a strictly homogeneous fashion with no

localized corrosion, the impedance of the electrochemical interface could behave

in general as depicted in the equivalent circuit shown in Figure la, where Zm

describes the general impedance of the metal/electrolyte interface. Zm may

include terms associated with the solution/metal interfacial or double layer

capacitance, charge transfer processes and diffusional processes. Several

models have been developed to describe these as shown in Figure lb (7-121.

6
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definitions for all symbols and terms are given at the end of the text).

However, the corrosion processes at latter times usually result in anodic and

cathodic site separation as evidenced by rust spots, cathodic blistering,

decohesion, and delamination which occur in a very heterogeneous fashion. The

near DC (below 10 mHz in frequency) impedance of, particularly, a coated, but

even an uncoated electrochemical interface is usually, therefore, considerably

more complex.

Theoretically, the low frequency impedance of bare steel corroding in

aerated alkaline chloride solution can be described by a Nernst diffusion layer

diffusional impedance or heterogeneous pore diffusional impedance since the

cathodic reduction of oxygen is diffusion controlled. The slope of the logarithm

of the impedance modulus as a function of the logarithm of frequency would be

-0.5 and the phase angle 45 degrees over the appropriate low frequency range

[7,8]. However, such impedance behavior cannot be attributed to diffusional

impedance over a similar frequency range for a thick coating on steel in alkaline

or neutral sodium chloride where diffusion through the coating phase is

considered. For these conditions the primary diffusion limited reaction at open

circuit is still the cathodic oxygen reduction reaction but molecular diffusion

of oxygen through the coating must occur before oxygen reduction can occur at

the coated metal interface. Under this assumption, the diffusional time constant

concept utilized by Buck [13] and modified by Dawson and John [121 illustrates that

1-100 mHz impedance data is not strongly influenced by this diffusional impedance.

By setting the thickness of the diffusional boundary layer equal to the coating

thickness (100 um), and the diffusivity of oxygen through the coating as equal

to 5xO - 8 cm2/sec [141 (the range given in reference 14 is I0-10 to

I0-8 cm2/second), the frequency, w, at which the finite imaginary (diffusional)
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impedance reaches a maximum is given by:

w-5.081/r (T)
0

where T - 2d2/D, d is the coating thickness and D is the diffusivity for oxygen

in the coating. For a 100 um coating, Zd", the imaginary component of diffusional

impedance, reaches a maximum at less than 0.25 mHz. A lower diffusivity such

as given in the range above would result in an even lower frequency. An applied

frequency of less than I mHz is, therefore, required in order for diffusional

impedance to strongly influence the measured low frequency impedance modulus.

Instead, the heterogeneous deterioration of the polymer/metals system is most

accurately simulated by a transmission line as illustrated in Figure 2, were Zm

is replaced by "n" unit cells, each containing an interfacial R-C process [3].

In this model, the low frequency impedance behavior is most accurately depicted

by a series of "n" RC unit cell processes, where Rc describes the unit cell

faradaic process, shorted together by a series tangential coating resistance,

R, representative of ionic conduction paths parallel to the coating metal

interface. Rp, the perpendicular coating resistance has its usual meaning. In

the particular model shown, the transmission line gives rise to a w
- 0 . 5

frequency dependence at intermediate frequencies, and frequency independent

impedance at low frequency (for Rc greater than R tangential). For organic

coated steels in aerated neutral or alkaline sodium chloride environments the

slope of the logarithm of impedance modulus versus logarithm of frequency

behavior in the context of this model can be rationalized to behave in any one

of the following manner at frequencies well below those given by I/R C :pc

1) Vary from -0.5 to 0 with decreasing frequency as the transmission line

model described in reference 3 and shown in Figure 2 for finite values of R,

and R less than Rc such as with thick coatings.
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2) Contain a slope of -1, over a range of frequency, and approach a slope

of near zero at low frequency. For low resistivity coatings, with corrosion

occurring homogeneously, R may be much smaller than Rc and approach the

tangential resistance in an electrolyte with no coating. In this case the

net interfacial resistance and capacitance for "n" unit cells may be replaced

by an appropriate single RC parallel circuit analog for one lumped unit

cell.

3) Behave as in (2) but contain a frequency dependent pseudocapacitance

yielding a slope which varies as a function of frequency.

4) Show almost no slope at all at frequencies below 1/RpCc when the

tangential resistance, R, is much less than Rc and Rc is almost equal to or

less than Rp.

Given the complex range of behaviors possible, rigorous quantification of the

terms described above was not undertaken in this study. The deterioration

process is, instead, quantitatively characterized by the use of the following

parameters:

S

COATING RESISTANCE

The in-phase magnitude of the coating resistance was determined from Bode

magnitude and phase information as a function of exposure time. Adequate

separation of the coating RpCc response from that of the metal/electrolyte

interface was observed. Coating resistance was determined from the phase minimum

observed at intermediate but lower frequency than the near 90 degree shift

associated with the coating capacitance. Rp data was reduced to a scale of 0-

10 for direct comparison with 0-10 ASTM visual rating systems. The following

9
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formula was utilized in order to convert such data:

Numeric Rating = 10 - log (108 ohm-cm 2 /Rp ohm-cm 2 ) (2)

The 108 ohm-cm 2 value was representative of the maxium initial in-phase impedance

value obtained for well coated systems.

IMPEDANCE MAGNITUDE

The magnitude of the complex imedance was determined from Bode magnitude

data as a function of exposure time at I mHz, and 10 mHz. The similar numeric

scale as shown was utilized:

Numeric Rating = 10 - log (109 ohm-cm2 /ZT 1 mHz) (3)

or:

Numeric Rating = 10 - log (I09 ohm-cm2 /Z 1OmHz )  (4)

The 109 ohm-cm 2 value was representative of the maxium initial near DC impedance

value obtained for well coated systems.

COATING CAPACITANCE

This approach is contingent on the presence of a region where impedance is

dependent on ur- over a range of high frequencies. The coating capacitance is

calculated directly from the known complex impedance and frequency:

Z = -j/W Cc (5)

Where Z is the impedance in ohm-cm 2 , w is the frequency in radians/second, and

Cc the coating capacitance in farads/cm2 . The coating capacitance may by

related to the volum of electrolyte absorbed by the coating [151:

Xv - log (Cc/Co)/log 80 (6)

where Xv is the volume fraction of water, Cc is the coating capacitance at a

10
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given time, and CO is the estimated dry coating capacitance based upon the

dieletric constant and coating thickness. Co is given by:

C0 = : /d (Farads/cm2) (7)

where E is the dielectric constant (3.8 for epoxy), d the coating thickness,

and co the permittivity of free space, 8.85 x 10- 14 farads/cm.

In order to convert capacitance changes to a scale of 0-10 for direct comparison

with ASTM visual rating systems, the following formula was utilized:

Numeric Rating =10 - Cc/C o  (8)

DETERMINATION OF THE ELECTROCHEMICALLY ACTIVE AREA

Determination of the percentage of area actively undergoing electrochemical

processes can be undertaken using several approaches. Two approaches are

dependent on the existence of a relationship between specific interfacial

capacitance per unit area and a electrochemical capacitance term determined

from the impedance experiment:

Area = Cmeas./Cx (9)

where Cx is an area specific capacitance (in this case, for the underfilm

electrolyte-metallic interface) in farads/cm 2 while Cmeas is determined by one

of the following methods:

S
Method 1: This approach is derived directly from either of the breakpoint

frequencies, fb, for the case where the interfacial process Zm shown in Figure

I behaves as a simple parallel resistive capacitive (RC) process:

Area 1 1/(27r fb Z Cx ) (10)
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The breakpoint frequencies, f1b, and f2b, or frequencies associated with a 45

degree phase shift, are defined as the frequencies where at fib: Z= Rp + RQ

and Z also equals 1/27 flbC, or at f2b Z = R + Rp + RQ and Z also equals

1/2W f2C. In these expressions R is the faradaic resistance, RQ is the solution

resistance, and C is the interfacial, double layer, or pseudocapacitance.

Rearrangement of these expressions in terms of C and substitution of C in

Equation 9 for the measured capacitance yields equation 10. Since a 45 degree

phase shift may be near the maximum phase shift shown for the transmission

line model such data does not satisfy equation 10 derived for a system containing

a simple RC process. Therefore, this method is usually not possible except in

the most ideal circumstances.

Method 2: This approach is derived directly from data from the low frequency

transmission line unit cell RcC process:

Area = T/(Rc Cx ) (11)

where T=RcC, where T is the time constant for the "n" unit cells in the

transmission model, Rc is the faradaic unit cell resistance and C is the

interfacial, double layer, or pseudo capacitance. Rearrangement of the time

constant expression in terms of C and substitution of C in equation 9 for the

measured capacitance yields equation 11. Since T and Rc must both be determined B

as well as Cx, this method is inherently difficult.

Method 3: In this method, the frequency at which a 45 degree phase angle is

obtained in the coating high frequency RC relaxation process is monitored over ' _

the time of exposure as discussed by Haruyama [16]. This frequency (the

breakpoint frequency) is utilized to follow the relative rate of increase of
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electrochemically active surface area. The coating break point frequency is the

frequency at which Rp equals the impedance magnitude, Z=l uLc=Rp. The advantage

of this method lies in the ability to clearly separate the high frequency break

point from the remainder of the impedance spectra, particularly the complex

behavior occurring at lower frequency. This is usually possible for coatings

containing latent defects. It is assumed that the intrinsic bulk volume coating

resistivity changes little during certain stages of exposure, i.e. when localized

areas of the coating perpendicular to the coated metal interface become highly

defective. Decreases in the average measured coating resistance with time

reflect increases in the percentage of highly defective areas instead of changes

in intrinsic volume resistivity. These areas will most likely develop into

areas of increased corrosion activity. The following expression relates this

break point frequency with such an area increase:

f45 = K (At/Ao) (12)

and K = (1/27pe Eo)

where At is the time dependent defective area, Ao is the fixed total specimen

area, p is the intrinsic coating resistivity, r is the dielectric constant for

the water laden coating (whici approaches 80 compared to 3.8 for epoxy), and V

co is the permittivity of free space. When electrolyte penetrates the coating,

c decreases by an order of magnitude while p increases similarly. This offset

makes K a constant compared to f4 5 which may increase by several orders of

magnitude with defective area growth. The relative increase in area can be

determined from the increase of f4 5 w.th exposure time. The method is not

contingent on determination of an area specific capacitance and was utilized in

this study. In order to convert the relative increases in the defective area
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to a scale of 0-10 for direct comparison with ASTM visual rating systems, the

following formula was utilized:

Numeric Rating = 10 - 2xlog(f4 5 ) (13)

where f4 5 is the frequency (Hz) associated with a 45 degree phase shift and

the factor of 2 is used to give ratings from 0 to 10.

ASTM METHHODS FOR VISUAL COATING EVALUATION

ASTM Standard D-610, and a modification of ASTM D-714 were utilized to

visually evaluate the state of deterioration of the various organic coated

steel panels [17,18]. ASTM standard 610 contains a rust standard rating scale

which converts the percentage of area rusting to a scale from 0 to 10 [17].

This scale is reproduced on Table 2, and in Figure 3. ASTM Standard D-714

employs photographic reference standards of blister size on a numerical scale

from 0 to 10 [18]. The lowest numeric rating corresponds to the largest blister

size. The density of blisters at each size are given by dense, medium dense,

medium and few. D-714 was modified to create a scale of 0 to 10, where 0 to 10

now corresponds to the percentage of area blistered regardless of blister sizes.

Thus the same area percentages as in D-610 are utilized. These techniques could

be used more efficiently with the translucent coatings since rusting at the

metal/coating interface could be visually detected prior to rust or blistering

at the coating/electrolyte surface.

RESULTS

EPOXY POLYAMIDE PRIMER COATINGS OF VARIOUS THICKNESSES

Figures 4 and 5 show selected Bode magnitude and phase data at various
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exposure times for 20-26 micron thick epoxy polyamide coatings. Initial impedance

values are below 105 ohm-cm 2 at all frequencies. Low frequency phase angle are

present at early exposure times indicative of the development of corroded areas.

The high frequency phase information shifts to higher frequencies with exposure

time as the coating resistance decreases and the areas of corrosion increase.

The time dependent behavior of the coating resistance is shown in Figure 6.

ASTM D-610 and D-714 ratings are directly annotated on Figure 6. The frequency

at which the high frequency phase angle is equal to 45 degrees is greater than

105 hz at all exposure times indicative of the presence of large electrochemically

active areas. Figures 7 and 8 show 1 and 10 mHz impedance data and open circuit

potentials as a function of exposure time. The low values of impedance are

indicative of early rapid corrosion as are electronegative open circuit 1

potentials. Figures 9 to 11 show extensive corrosion visually confirming the

impedance data since blistered and rusted areas are observed at early exposure

times.

Figures 12 and 13 show selected Bode magnitude and phase plots for 54-55

micron thick epoxy polyamide coated steel. Initial impedance values are above

105 ohm-cm 2 but decrease with time. The low frequency phase angle peaks both

increase and broaden with time as electrochemically active areas develop. The

high frequency phase angle peaks shift to higher frequency with exposure time

as the defective areas in the coating increase. Figure 14 shows coating

resistance data as a function of exposure time. ASTM ratings from D-610 and

D-714 are annotated directly on the plot. Visual evidence of corrosion is not

observed until after 50 to 100 days but impedance decreases are observed at

much earlier times. Figure 15 illustrates a comparison of coating resistance

data for 20-25 micron thick epoxy polyamide to 54-55 micron thick coatings.
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For both systems widespread corrosion is observed when the coating resistance

is below 104 ohm-cm 2 . Figures 16 and 17 show coating resistance and coating

capacitance data for 54-55 micron thick epoxy polyamide coated steel. Increases

in coating capacitance are observed as a function of exposure time. Capacitance

was determined from impedance data above 104 Hz and therefore are considered

questionable in this case. Figures 18 and 19 show 10 mHz and 1 mHz frequency

impedance data and open circuit potentials as a function of exposure time. Low

values of impedance and electronegative potentials indicate active corrosion.

Figure 20 shows the frequency at which 45 degree phase shift occurs in the

coating R-C process as a function of exposure time. ASTM visual ratings are

annotated directly on the plot. Increases in frequency indicate increases in

electrochemically active area as confirmed by ASTM ratings which drop to 4.5/4.5

after 400 days. Figures 21 and 22 show development of blisters and rust areas

after various exposure times confirming the validity of this frequency data in

predicting the actively corroding area. Bode magnitude and phase data for 115-

120 micron coatings were similar to data illustrated above except that initial

impedance data was capacitive in behavior over a four decade range in frequency

(6.5 Hz to 65 KHz). Selected impedance magnitude and phase data are illustrated

in Figure 23. A second low frequency R-C process was obtained at 44 days

signifying the onset of corrosion. Localized areas of corrosion were not visually

observed until greater than 100 days. Figures 24 and 25 show coating resistance

and coating capacitance data as a function of exposure time. Two order of

magnitude decreases in coating resistance are evident. Capacitive data, however,

does not change systematically. Figures 26 and 27 illustrate low frequency %

impedance changes for duplicate coated panels. No stable open circuit potential

could be measured from 8 to 50 days for one panel. In all cases when the low

frequency impedance decreased to below 106 ohm-cm 2 an open circuit potential

became measurable. Figure 28 illustrates the frequency at which a 45 degree
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obtained for this panel increased slightly with time (Figure 35) but did not

exhibit the large systematic increases in electrochemically active area as

observed for thin coatings. ASTM ratings confirmed this findings as shown in

Figures 35 and 36. ASTM ratings of 8/9 are obtained in the test area even

after over 300 days of exposure.

Figure 37 shows a comparison of coating resistance data for all of the

epoxy polyamide coatings of the various thicknesses discussed above. Epoxy

Polyamide Primer/Top Coat Coating Systems Freely Corroding 146 to 160 micron

epoxy polyamide primer and top coat systems were exposed both under freely

corroding conditions and at two cathodic polarization levels in ASTM artificial

ocean water. Bode magnitude and phase data were similar to data illustrated

for thich coatings described above in that initial impedance data was capacitive

over a five decade range in frequency (.65 Hz to 65 kliz) but changed to a

multi-time constant process when localized corrosion began. Coating resistance

data for three replicate samples exposed under freely corroding conditions are

shown in Figure 38. Coating capacitance data showed only very slight increases

with exposure time and is not shown. Initial coating resistance values were

greater than 108 ohm-cm 2 , but decreased over two orders of magnitude with

time. ASTI ratings have been annotated directly on the coating resistance

versus time plots. There was no visual evidence of corrosion even after 400

days of exposure. Fluctuations in coating resistance are observed after 50

days and this behavior is believed to reflect the transient development of

microscopic localized areas of attack. As with the 180-133 micron coatings

discussed above, when impedance values were high no stable potential or

electropositive potentials were measured. When impedance values decreased,

electronegative open circuit potentials were measured. This behavior is shown

17



in Figures 39-41. Figure 42 shows the frequency at which a 45 degree phase

shift is obtained. This frequency increases with exposure time, but to a lesser

extent than for thin coatings discussed above, consistent with ASTM visual

ratings of 9.7/10 as shown in Figure 43. Figure 44 shows a comparison of coating

resistance data for 146-160, 54-55, and 20-24 micron thick epoxy polyamide

coatings on steel.

Cathodically Polarized

145 to 159 micron thick coated panels were cathodically polarized to -850

and -1250 mV vs. SCE. Bode magnitude and phase data were similar to data

illustrated above in that initial impedance data was capacitive in behavior

over a five decade range in frequency but changed to a multi-time constant

process at much greater times when localized blistering began. Figures 45-48

show coating resistance, capacitance, and the total accumulated cathodic charge

foe the -850 and -1250 mV polarization conditions. Coating resistance data decreased

from greater than 107 ohm-cm 2 to belol 106 ohm-cm 2 . Low frequency impedance

data behaved in a similar manner. Coating resistance data was more sensitive

measure of deterioration than coating capacitance which increased only slightly.

However, coating capacitance did indicate cathodic polarization since coating

capacitance increases for cathodically protected panels exceeded coating

capacitance increases for the three 146 to 150 micron thick epoxy polyamide

coated exposed under freely corroding conditions. This is shown in Figures 49

and 50. Figure 51 illustrates the increase with time in the frequency at which

a 45 degree phase angle occurs, indicative of an increase in the electrochemically

active surface area. Visible signs of blistering were still quite limited at

315 days as indicated by ASTM ratings directly annotated on Figure 51. ASTM

D-610 and D-714 ratings of 10/10 were obtained at 315 days. However, by 345
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days one of the panels cathodically polarized to -1250 mV vs. Ag/AgCl developed

large blister areas. Smaller blister areas became visible on other cathodically

polarized panels (Figures 52 and 53).

TRANSLUCENT UNPIGMENTED COATINGS

68 to 74 micron thick translucent epoxy coating systems were exposed under

freely corroding conditions in ASTM artificial ocean water. Bode magnitude and

phase data were similar to data illustrated above in that initial impedance data

was capacitive in behavior over a five decade range in frequency. This data

remained capacitive over a large frequency range for a period of time greater

than 400 days for 201 and 202, suggesting limited localized corrosion attack.

Coating resistance and capacitance data for three samples are shown in Figures

54-56. Coating capacitance data showed only very slight increases with exposure

time. Initial coating resistance values were near 108 ohm-cm 2 , and in two

cases decreased over one order of magnitude with time. One sample (206) was

anodically polarized to -200 mV vs Ag/AgCl for 8 hours, initially, and this

sample showed large decreases in coating resistance and the greatest increases

in coating capacitance. Figures 57-59 illustrate low frequency impedance data

and open circuit potential data for the three specimens. Fluctuations in

coating resistance, low frequency impedance, and open circuit potential are

observed. This behavior is believed to reflect the transient development of

microscopic localized areas of attack. Localized corrosion product development

may increase the resistance of the coating in very small defective regions. As

with 146-160 and 180-183 micron thick coatings discussed above, when impedance

values were high, no stable potential or electropositive potentials were

measured.When impedance values decreased, electronegative open circuit potentials

were measured. Figures 60 and 61 show the frequency at which a 45 degree phase
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shift is obtained for 201, exposed at open circuit, and for 206, the anodically

polarized sample. For 201, this frequency actually decreases after some exposure

time consistent with the increasing impedance data presented above. The

anodically polarized 206 had a more systematic increase in the 45 degree

frequency and in electrochemically active area. These findings are confirmed

by ASTM visual ratings which are annotated directly on Figures 60 and 61.

Photographs of these panels are shown in Figures 62 and 63. Note the grind

marks still visible beneath the translucent coating 201 after 476 days. Panel

206, which was anodically polarized, shows significant more underfilm staining

at this time.

TRANSLUCENT PIGMENTED COATINGS

76 to 77 micron thick translucent epoxy coating systems were exposed under

freely corroding conditions in ASTM artificial ocean water. Bode magnitude and

phase data were similar to data illustrated above in that initial impedance

data was capacitive in behavior over a five decade range in frequency. This

data remained capacitive over a large frequency range for a period of time

greater than 500 days, suggesting limited localized corrosion attack. Coating

resistance and capacitance data for replicate samples are shown in Figures 64-

65. Coating capacitance data showed only very slight increases with exposure

time. Initial coating resistance values were near 108 ohm-cm2, and decreased

over one order of magnitude with time. Figures 66-67 illustrate low frequency

impedance data and open circuit potential data. Fluctuations in coating

resistance, low frequency impedance, and open circuit potential are observed.

Again, this behavior is believed to reflect the transient development and repair

of microscopic localized areas of attack. As with 146-160 and 180-183 micron
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thick coatings discussed above, when impedance values were high, no stable

potential or electropositive potentials were measured. When impedance values

decreased, electronegative open circuit potentials were measured. Figure 68

shows the frequency at which a 45 degree phase shift is obtained for one panel

exposed at open circuit. For this sample, this frequency increases erratically

with exposure time. This data is consistent with the impedance data presented

above. Photographs of these panels are shown in Figures 69 and 70. Virtually

no attack is observed after 110 days. Some underfilm staining is visible

after 475 days of exposure.

PREDICTIONS OF LONG TERM BEHAVIOR

In order for impedance parameters to be predictive, they must measure

subcritical property changes at early times that provide advanced indication of

more significant property changes to occur later.

Impedance parameters measured at 1-5, 20, 50, and 200 days were compared to

ASTM D-610 and modified D-714 visual ratings obtained at 550 days. A systematic

correlation between impedance results converted to a 0-10 scale and ASTM ratings

presented on a 0-10 scale indicates the extent of predictive capability.

Representative plots of ASTM D-601 and D-714 ratings versus coating resistance,

10 mHz impedance, and frequency of 45 degree phase shift are shown in Figures

71-74, 75-78, and 79-82, respectively. Bands of data are bounded by lines added

to aid the reader. Linear relationships on the 0-10 scale are generally not

obtained. In almost all cases impedance data is more capable of predicting the

performance of coatings showing 33% corrosion (2 on ASTM Scale) or greater after

550 days, or coatings showing 0.3% corrosion (7 on ASTM Scale) or less after

550 days. Impedance parameters are somewhat insensitive for coatings with 550

day deterioration ratings within the range from 0.3% and 33%.
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Figure 72 shows that a coating resistance of 108 ohm-cm 2 or greater

determined at 10 days ensures a 550 day corrosion area of 0.1% or less. However, S

a day 10 coating resistance of less than 106 ohm-cm 2 indicates that anywhere

from 0.1% to 50% of the coating may be corroded after 550 days. Figures 75-78

show that a 10 mHz impedance of 109 ohm-cm 2 determined over a 2 to 200 day

exposure period is required to insure a 550 day corrosion area of less than 0.3

percent. Figures 79 to 82 illustrate that a frequency associated with a 45

degree phase shift of 10 Hz or less determined over a period of 2-200 days (for

a 13 cm2 coated surface area) ensures a 0.1% corroded area after 550 days.

Table 3 summarizes all results. A good correlation is defined as data that when

plotted on 0-10 scales produces distinct bands of data even if this includes

portions of data of near zero or infinity slope when any 3-4 integer range is

considered on both the ordinate and abscissa. The term correlation is used

when bands of data are 4-5 integers wide on both scales over a range of data.

No correlation indicates that no bands could be drawn showing trends. For low

frequency impedance and coating resistance data the plot bands decrease in

integer width as the time of the measurement increases but the slopes are very

large indicating a sensitive range of impedances below which 550 damage was

great. For the 45 degree frequency data, bands are wide but the slope appraoches

1 if 0-10 data is considered on both the ordinate and abscissa. Low frequency

impedance and coating resistance data are somewhat more predictive at time

periods of ten days or greater. Coating capacitance information shows no

predictive capability at any time. Open circuit potential measurement, while

not predictive in a quantitative sense, qualitatively correlates with coating

condition in that well coated systems do not have measurable open circuit

potentials.
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DISCUSSION I
Impedance parameters determined over time periods from 1-5, 10, 50, and 200

days correlate to various degrees with the long term (550 day) visual evaluations

of coating damage obtained with ASTM Standards D-610 and modified D-714. Coating

capacitance changes tracked with water uptake rates but was unsuccessfully

correlated with eventual deterioration rates under all circumstances. Other

impedance data taken in the 1-5 day time period were slightly less successfully

correlated with 550 day deterioration assessments than impedance data taken at 0

later times. It remains to be determined why this is the case.

Deterioration of coated metal systems has been characterized by several

stages which must occur in series in order for corrosion reactions and loss of

coating adhesion to become possible at the coated metal interface. These stages

are water and oxygen permeation, sometimes called an incubation stage, cationic

and anionic transport, the development of anodic and cathodic sites, electrochemical

reactions, and catholyte and anolyte generation. Oxygen reduction at cathodic

sites and associated alkalinity have been cited as a strong factor in coating

delamination [6]. Alkaline metal cations have been cited to be a solution

concentration dependent factor in determining the nature of the deterioration

process, and the rate determining species in the overall process for polybutadiene

[6,19]. An important question relative to this overall process is the time

required for each stage. Since the first two stages involve transport of species

to the reaction site, the times required to complete those stages can be

examined.Water and oxygen are reported to be transported through coatings

rapidly in comparison with the transport of Na+ and CI-, even with consideration

of migration in an electric field as well as concentration gradient dependent

molecular diffusion 120]. The time necessary for molecular diffusion of oxygen
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through the coating to the coated metal interface, where oxygen is electrochemically

reduced, is given be the following expression:

t- 0.0653x(L)2/D (14)

where L is the coating thickness and D is the diffusivity of the species

considered.The constant 0.0653 corresponds to a condition where the permeation

flux at the coated metal interface is one tenth of the final steady state

permeation flux, assuming complete reaction of the oxygen at the coated metal

interface. Since water, Na+, and Cl- will accumulate at the metal/coating

interface, the appropriate expression is of a more complex form at later times

for these species. Nevertheless, use of this simple expression permits direct

comparison of the time required for initial permeation of each species to the

coated metal interface. Table 4 gives diffusivity values for exygen, water,

Na+ and C- in epoxy coatings compiled from various references [14,20-221.

Figures 83 and 84 illustrate the relationship between permeation time and

coating thickness for Na+ , Cl-, H20, and 02. Figure 83 illustrates that 02 and

H20 are transported to the coated metal interface in less than one day for the

range of coating thicknesses shown. Figure 84 illustrates that from I to 10

days is required for Na+ to permeat to the coated metal interface depending upon

coating thickness and still longer times are required for CF-. Longer time is

required for sufficient Na+ to accumulate to support the cathodic reaction
0

process by maintaining charge neutrality. For polybutadiene [61 it has been

pointed out that the permeation rates for 02 and H20 are considerably in excess

of that required to sustain cathodic reduction of oxygen and cathodic delamination

and are therefore not rate determining. It was therefore suggested that the

transport of Na+ (the major ionic charge transport carrier in the coating) was

rate controlling in the corrosion process [6]. In the present study, Z1 0 mHz

impedance measurements conducted in the 1-5 day time frame were slightly less

24

L:11 1



O

capable of predicting 550 day degradation assessment. This time period corresponds

to the minimum time required for Na+ permeation for the thicker (100 Pm) coatings.

Z10 mHz impedance measurements conducted after 10 days were found to correlate

better with 550 day deterioration rates, and this corresponds well with the times

required to permeate Na+ to the coated metal interface. For 20 um coatings,

impedance results indicating significant later damage were obtained within the

1-5 day time period (see data points on Figures 75-78) corresponsing to a 550

day ASTM rating of 0). This is again consistent with the Na+ transport theory

since Figure 84 illustrates that less than one day is required for Na+ transport

to the coated metal interface in the case of a 20 Pm coating. Clions must

undoubtably be present at the metal interface to disrupt the passivity of the

carbon steel, but extremely small concentrations may accomplish this and these

may already be present at the interface.

Since all coatings studies permeated large quantities of H20 and 02 regardless

of thickness and eventual performance, coating capacitance data increased with

time but was not a discriminating parameter in assessing long term coating

deterioration. This shortcoming can be accounted for by the fact that increases

in coating capacitance indicate only water uptake. Water uptake alone is not

apparently a significant indicator of eventual coating deterioration for the

epoxy polyamide-steel systems studies. Since significant water uptake may

occur in days it is unclear why coating capacitance continues to increase after

hundreds of days of exposure. Deterioration of the coating with time permitting

a gradual increase in water solubility may explain this effect.

In regard to the frequency at which a 45 degree phase angle was determined,

this parameter does correlate well with increases in the relative electrochemically

active area evaluated with the ASTM standards. Localized areas of corrosion
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and cathodic delamination mechansim for "concentrated" alkali metal cation

electrlytes [19] applicable for the 0.6 molar NaCi concentration utilized. For

this method to correlate with active area, localized decreases in the coating

resistivity at defective sites are required (as opposed to bulk homogeneous

changes in the intrinsic volume resistivity of the coating) and this requirement

has been met.

CONCLUSIONS

Impedance parameters ZlOmhz, the low frequency complex impedance, and R,

the coating resistance, were found to provide predictive information on the

corrosion and coating deterioration of epoxy and epoxy polyamide coated steel

systems in ASTM artificial ocean water. Positive predictive correlations with

550 day corrosion damage were obtained only when these measurements were made

at times sufficient to permit permeation of specifically H 2 , 02, Na+, and to

a lesser extent CI-, through the coating to the reacting metallic interface.

In this regard, Na+ diffusion and migration may be rate determining in the

corrosion initiation process. Measurements of impedance paramaters ZlOmhz, and

the coating resistance, Rp, at exposure times less than the time required for

molecular diffusion of Na+ to the coating-metal interface were less successfully

correlated with long term coating deterioration rates.

Coating capacitance data was useful in monitoring the acceleration of water

uptake such as with cathodic polarization. aowever, coating capacitance was not

found to correlate in a systematic manner with eventual long term deterioration

rates for the coated metal systems studied.

Electrochemically active area increases based on the utilization of coating

45 degree phase angle frequency data correlated well with the percentage of area

visually identified to be electrochemically active by ASTM D-610 and D-714.
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This parameter is quite sensitive to the development of localized low resistivity

defects and, therefore, actively corroding areas and is a good predictive

paramater.

Finally, the electrochemical impedance methods is shown to provide a predictive

capability for assessing coating deterioration and the initiation of corrosion

on organic coated metals when appropriate impedance parameters and measurement

times are utilized.
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Table 1. Coating thicknesses and exposure conditions for
coated steel specimens.

Mean Coat Standard Exposure
Plate Thick Deviation Coating Type Conditions
No. (m) (0m)

Translucent
1

101 75.92 1.84 Quartz pigment Open circuit
102 77.03 1.67 Quartz pigment Open circuit
201 68.3 1.45 Epoxy only Open circuit
202 69.42 1.69 Epoxy only Open circuit
206 73.93 3.69 Epoxy only Open circuit

Epoxy Polyamide Primer

401 54.18 1.71 MIL-24441 Open circuit
402 55.03 1.23 MIL-24441 Open circuit
406 20.04 6.41 MIL-24441 Open circuit S
407 24.56 2.06 MIL-24441 Open circuit
326 182.87 2.70 MIL-24441 Open circuit
327 180.32 1.70 MIL-24441 Open circuit
331 120.79 2.12 MIL-24441 Open circuit
332 115.98 1.69 MIL-24441 Open circuit

Epoxy Polyamide Primer/Topcoat

316 159.73 2.80 MIL-24441 Open circuit
317 156.91 1.61 MIL-24441 Open circuit
318 146.47 2.08 MIL-24441 Open circuit 0
319 145.33 2.00 MIL-24441 -850 mV vs SCE
320 155.21 1.88 MIL-24441 -850 mV vs SCE
321 155.49 2.33 MIL-24441 -1250 mV vs SCE
322 158.6 1.74 MIL-24441 -1250 mV vs SCE
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Table 3. Correlation of impedance parameters with 550-day ASTM visual

evaluations for 20-185-m epoxy and epoxy polyamide
coatings on steel.

Impedance Parameter Time of Impedance Measurement
1-5 Days 10 Days 50 Days 200 Days

Low Frequency Correlation Good Correla- Good Correla- Good Correla-
Impedance tion tion tion

Coating Resistance Correlation Good Correla- Good Correla- Cood Correla-
tion tion tion

Coating Capacitance No Correlation No Correlation No Correlation No Correlation

Frequency of Correlation Correlation Correlation Correlation
45 Degree

Phase Shift for High Frequency Data

Open Circuit Poten- Weak Correla- Weak Correla- Weak Correla- Weak Correla-

tial tion tion tion tion

Table 4. Transport properties in organic coatings. S

Diffusion

Species of Coefficient Reference

Interest (cm2/sec)

02 10- 10 to 10- 8 Brandrup and Immergut
(Reference 14)

H 20 1.0 x 10- 8  Ruggeri and Beck
(Reference 21)

Na+  0.31 x 10- 10  Glass and Smith*
(Reference 22)

CI- 0.47 x I0- 11 Glass and Smith*
(Reference 22)

*Data for epoxy polyamide.
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GENERAL ELECTRICAL
EQUIVALENT CIRCUIT MODEL

cc where
C= COATING CAPACITANCE
R= COATING RESISTANCE

-- W-rRQ = SOLUTION RESISTANCE
RR Z ZM = GENERAL IMPEDANCE CHARACTERIZING ELECTROCHEMICALRP ZMREACTIONS AT METAL/COATING INTERFACE

Fig. la. General electric equivalent circuit model for coated metal system.
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Cd Zre RQ +RCT +0CO

ZIM =W1/ + 2o2Cd A. BARD

-E:1FT L. FAULKNER

RCT Z,, 0 n2F2AV'2 D0 /'C. DR/2CR/

c RdFT tanh (\fjp~)
Zd FI - 0 lip D. MacDONALD

-E p =W
2/13 M. cUR

R Z 6 = NERNST DIFFUSION THICKNESS

Cdl ~ , = Zn, + OZ, 0 = 8/1-0
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- RT 1I
Z, -Z= tanh (6 Vj;(-FD)

Zn 0Z,, flF 2Co V/J;3D K. JUTTNER

fl2F2C 1 tanh W (6w+W W* LORENZ

R W =RATE CONSTANT

tanh (Hw2)
Z= RPD M. KEDDAM

d2 e t. al.

Fig. lb. Diffusional impedance parameters utilized to model Z.
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GENERAL ELECTRICAL
EQUIVALENT CIRCUIT MODEL

c c  where _

Cc = COATING CAPACITANCE
Rp = COATING RESISTANCE

RQ Rs? = SOLUTION RESISTANCE
ZM = GENERAL IMPEDANCE CHARACTERIZING ELECTROCHEMICAL

Rp ZM REACTIONS AT METAL/COATING INTERFACE

ZM
10 1 1 AT 90

R TC

1 Rc CRc>>R

N-oo

0.01[- " 1,,,,, 1 1,,,,I d , I I , ,I In I " 1"111
0.01 0.1 1 10 100 1000

LOG (()

AT LOW FREQUENCIES =

ZM =R + -- +

2 4 1-wjRcC

FOR A COATED METAL SYSTEM AS w 0:

Z = RQ + Rp+ 2+ - + R

4 1-wjRcC

Fig. 2. Transmission line model for Zm.
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Fig. 6. Coating resistance as a function of exposure time for 2O-26-P.m-t1ick
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Fig. 7. Low frequency impedance data for 20-Ipm-thick epoxy polyamide
coated steel.
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Fig. 8. Low frequency impedance data for 25-jim-thick epoxy polyamide
coated steel.
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Fig. 12. Bode magnitude and phase data for 54-55-jim-thick epoxy polyamide
coated steel.

41

PL ~. %



1010

,T- 10
9

E ASTM OCEAN WATER
0 10O8 EPOXY POLYAMIDE 55.0±1.2pm

X CARBON STEEL
E 167  PANEL 402

Lu 10)6 68 DAYS

-- 1 DAY

~ in 281 DAYS 558 DAYS

~10

-j 10'2

10-3 1o-2  1o 1 10p 101 102 1 3 104  105

FREQUENCY (Hz)

85 IIIIj 11111 11111 11111 11111111 1 11111111 7Ill IIII I I IIII
80
75
70

Z; 65

0
,55

50
-J 45
Z 40

35 68 DAYS

302 68 DAYS 281 DAYS 281 DAYS/// DY

10 6

10- 3  10-2 10-1 100 101 102 103  104  1 o5

FREQUENCY (Hz)

Fig. 13. Bode magnitude and phase data for 54-55-jim-thick epoxy polyainide
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Fig. 18. Low frequency impedance behavior for 54-jim-thick epoxy polyamide
coated steel.
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coated steel.
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Fig. 25. Coating resistance and capacitance behavior as a function of
exposure time for 116-1Jm-thick epoxy polyamide coated steel.

50



1010 0

100 10 mHz IMPEDANCE ASTM OCEAN WATER -- 100
EPOXY POLYAMIDE 120.8±2.1ljm

*1 mHz IMPEDANCE CARBON STEEL

108 U ~OPEN CIRCUIT POTENTIAL -0

NSE NO STABLE POTENTIAL L

E 10 -30

Z 106 E40
4E

oe -50

10 -. 0D

103 -70

-7800

l0p 10' 102 10o3

TIME (Days) IN EXPOSURE

Fig. 26. Low frequency impedance behavior as a function of exposure time
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