
Memorandum 88-

%*Wwo, Paearcth Conti* do rochrch..
bte~shmitPocif powr 18 dilenee, pecitiqu

Maximum Ent ropy Criteria Applied to Signal Recovery

Robert F. MacKinnon and Michael J. Wilmut

D:LETI

f~-:::::I June 1988
AX.-

-~ftwach and Dweopment Branch
Department of Nastional Defence



Defence Research Centre de recherches
Establishment Pacific pour la defense pacifique

DEFENCE RESEARCH ESTABLISHMENT PACIFIC

CFB Esquimalt, FMO Victoria, B.C. VOS 1iBO

DREP Technical Memorandum 88-9

MAXIMUM ENTROPY CRITERIA APPLIED TO SIGNAL RECOVERY

Robert F. MacKinnon and Michael J. Wilmut

June 1988

Appr ,ved by.

%'- CHIEF

Research and Development Branch

Department of National Defence

CanadIa



XNXIM,~~~ =RIRIVIIRMK-VTlV1T-T

ABSTRACT

A method based on the minimization of cross-entropy is presented

for the recovery of signals from noisy data either in the form of time

series or images. Finite Fourier transforms are applied to the data and

constraints are placed on the magnitude and phase of the Fourier coef-

ficients based on their statistics for noise-only data. The minimization of

cross-entropy is achieved through application of well-established functional

minimization techniques which allow for further constraints in the spatial,

temporal or freauency domain. Derivatives of the entropy function are

obtained analytically and the results applied to the cases of correlated

noise and of signal perturbations about a mean. Demonstrations of applica-

tions to one-dimensional data are presented.
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I. INTRODUCTION

A common problem of data analysis is the reconstruction of a signal

from noisy data. The objective is to obtain as true a representation as the

noisy data will allow without having exact knowledge of the event giving

rise to the signal or of its consequences.

Usually some knowledge of the signal is available. For example if

the data consist of a radar image of the ocean surface and the signal sought

is an internal wave pattern, then a great deal is known about the physical

properties of such waves. In some cases independent sea-surface measure-

ments are available which allow estimation of wavelengths, amplitudes and
I.u

velocities. The reconstruction of the wave pattern will be deemed unsatis-

factory unless it conforms to the background knowledge. What is desired ir '

such cases is a method of incorporating prior knowledge in the signal

recovery process while maintaining a degree of flexibility consistent with

the state of that knowledge and the reliability of the data.

In this paper a method of signal reconstruction is described which

evokes the principle of minimum cross-entropy, a generalization of the prin-

ciple of maximum entropy, and which incorporates prior knowledge in the form

of constraints on the solutions to minimization problems. The method uses

the finite Fourier transform and constraints may be applied in either the

spatial or frequency domain. The solutions described herein were obtained

u.si 'g a general purpose minimization routine and were restricted to one-

dimensicrnl data. For two-dimensional data, a faster special-purpose

routine has been developed based on the same principles [i. In discussing

the method, reference will be made to image processing since it was this

application for which it was envisioned. Analytical results given for the

one-dimensional case can oe extended easily tu Lwo-dimensions.
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II. ENTROPY AND THE WIENER FILTER W

A digital time series, or image, which is the resilt of a

stochastic process can be considered as a set of values, d(x), of limited

extent and accuracy which are assigned to a discrete set of locations

xi,i=O,l,...M-l. The values are required to be non-negative and are taken

to be representative of intensities. The individual intensities can be con-

sidered to be the proportion of the total available intensity which is

assigned to a particular location. The problem at hand is to arrive at an S

estimation of the signal values, s(x), when the data could be fitted equally

well by many estimation sets.

Given that this problem is ill-posed in the Hadamard sense, various

schemes are available for defining an associated problem which is well-posed

[2]. However, no method can be said to be optimum in the wide sense, so the

selection of a particular method depends on the nature of the knowledge

available as well as on the experience of the analyst. When noise is known

to be a major component of the data, a desirable feature is the availability

of a related measure of statistical significance which ideally manifests

itself as a parameter defining a family of solutions.

Entropy optimization is a powerful, general technique which provi-

des solutions which possess many desirable properties [3] [4]. Maximum

entropy implies "maximally smooth" and sometimes "maximally likely" as well.

Such solutions are said to be the simplest possible result containing the

bare minimum of structure needed to fit the constraints imposed by the data

[5]. Furthermore it has been shown that optimum generalized entropy solu-

tions possess uniquely certain properties of consistency in cases where the

given data are supplemented subsequently [6]. Although the methods of maxi-

mum tntropy and its generalization, minimum cross-entropy, may be subject to

various interpretations, the-P is merit in the ?pproach of Frieden [7] based

on information theory since this provides a useful context for analyzing

attempts at signal reconstruction. A brief summary follows.

I
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The classical (Shannon) definition of the information, I(A,B), con-

tained in a message A about an event B is given by

I(A,B) = ln[P(BlA)/P(B)1 (1)

where P represents the probability density function.

The event B may be taken to be a process which produces a con-

tinuous variable intensity, s, and the message A may be associated with a

set of measurements, d, of the consequences of the event. The entropy, H, S

of the event is defined as

H(B) = - f P(y) lnP(y)dy. (2)

The performance of a measuring device is difficult to characterize

in general. In practice often it may be considered to be band-limited,

linear in response, and noisy. A common model describing its performance is

d(x) = s(y) x g(y) + n(x) , (3a)

where d represents the data

s represents the signal

n represents the noise, independent of s,

g represents the action of the instrument

and x represents the process of convolution through

which this action is accomplished.

A Fourier transform of this equation yields

D(w) = S(w) G(w) + N(w) r Y(w) + N(w) (3b)

where w represents frequency, either in a spatial or temporal sense, arid the

capital letters rppresent the Fourier transforms of the corresponding lower-

case variables.
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If restoration is sought through the multiplication of D(w) by a

weighting function, W(w), and a subsequent inversion of the resulting trans-

form data, it is well-known that the minimum expected mean-square error in

the restored signal is achieved by the so-called Wiener filter given by

W(w) = G-1(w) [r(w) / {1 + r(w)}I (4)

where r(M) = IY(w)12/IN(w)1 2, which represents the data signal-to-noise

power ratio at frequency w.

Frieden [7] demonstrates that this filter may be derived from

information-theoretic principles, in particular, through maximization of the

transinformation, I(Y,O), defined as the difference between the entropies

associated with Y(w) and N(w). These can be shown to be functions only of

the power spectral coefficients given by

H(Y) = 1 + ln(ffIlD 2) (5)

and H(N) = 1 + ln(ilIN1 2)

under the assumption that the noise is Gaussian of zero mean and independent

of the signal.

The maximum possible I(Y,D) is termed the channel capacity, C(w),

and is a measure of the potential for restoration of the signal component at

frequency w under the given noise conditions. It can be shown that

C~M) = ln(l+r(w)) (6) V

so that W(w) = [I - exp{ - C(w)]/G(w).

In the present paper the main concern is noise reduction, so G(w)

may be taken to be unity. In this situation the Wiener filter approach is

to apply weights to the Fourier coefficients, thereby reducing those coef-

ficients where the signal-to-noise ratio is expected to be low (low channel

capacity) while leaving relatively unaffected those coefficients whose

I.
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signal-to-noise ratio is expected to be high. Phases are preserved at all

frequencies whereas some loss of signal power can be expected on average,

the cost of the improvement in overall signal-to-noise ratio.

III. RESTORATION IN THE FOURIER DOMAIN

When a signal has undergone a convolution process it is convenient

to treat the data after Fourier transformation. Even if, as herein, the

major concern is not deconvolution, there are good reasons for frequency

domain processing. When noise-only samples undergo linear transformation,

the resultant coefficients are often nearly independent Gaussian distributed

as a consequence of the central limit theorem [8]. Therefore, amplitude and

phase statistics are well approximated by well-known distributions

regardless of the noise distribution in the spatial domain. In other words,

frequency domain processing tends to be robust. %

Wiener filtering is widely used for restoration [91, even when

knowledge of the signal spectrum is inexact. The analyst must accept less

than optimal results, which may or may not be satisfactory. Often crude

approximations to the signal spectrum are sufficient. For unknown signals

some property may be chosen as characteristic of a desirable solution to

serve as a basis for a criterion of optimality. Candidate solutions are

constrained to conform within limits based on the noise statistics. Methods

of least squares constraints seek solutions for which the estimated error

variance matches that of the noise.

Hunt [10] developed a method for which the critErion of optimality

was the miqimization of the square of the Laplacian - a smoothness criterion

iaiiplyino that the signal was basically low frequency in content. Gull and

Daniel [i] employed another criterion for smoothness - maximum entropy -

combined with a measure of expected error. Their method seeks solutions

which minimize Q(X) defined by
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Q(X) = - fjlnfj - X IY(w) - D(w)l /o2(w) (7)

where fj represents intensity of the j-th location

X represents a positive Lagrangian multiplier

Y represents the estimated transform

D represents the data transform

a represents the noise standard deviation

and the sum over w is taken over a set of preselected frequencies. S

The solution is obtained by an iterative procedure, the correct

value of X being that for which the sum over w achieves its expected value.

Candidate solutions can be assigned confidence levels based on the noise

statistics.

Direct subtraction of noise power in the frequency domain is a

simple method of noise reduction, perhaps best described by Lim [12]. The

estimated signal Fourier coefficient, Y(w), is defined by

lY(w) 12 = ID(w)1 2 - a o2(w), if positive (8)

= 0 , otherwise.

The phase of Y(w) is taken to be the phase of D(w). If D(w) equals

S(w)+N(w), then jD(w)1 2/a(w) is well approximated by a noncentral chi-

squared distribution of mean IS2/a2+2 and variance 41S12/a2+4 [13].

Normalization of Eq. (8) yields

IY(W)1 2 /o 2 (W) = ID(w)12/o2(W) - a (9)

where the left-hand side has a mean-shifted noncentral chi-squared distribu-

tion. If a > 2, the expected value is less than 1S1 2/o2 , so some loss of

signal power results on average. On the other hand, the larger a, the more

likely that the residual power is due to the presence of a signal at the

given frequency.

..l .... . . . ... ... .



-7-

The loss of signal power under these circumstances may not be cri-

tical since it is the phase spectrum which determines the general features

of an image [14]. Acceptance of the phase spectrum of the data implies

acceptance of these general features which, in turn, suggests a high signal-

to-noise ratio. The accuracy of the phase estimate is a function of the

signal-to-noise power ratio and therefore of the channel capacity at a given

frequency. It is shown below that cross-entropy is a function of the phase

when prior spatial information on the signal is introduced.

For the method proposed in the next section, constraints are

applied in both the spatial and frequency domains while Fourier magnitudes

and phases are allowed to vary independently. Obviously constraints may be

sen so that no solution exists. A trivial example would be the case

in which only a single frequency component is allowed while the signal is

required to be zero over a certain interval. Furthermore, it is well-known

that if a signal is known to satisfy certain constraints, that signal may be

specified uniquely by partial Fourier domain information such as the trans-

form magnitude [15] or phase or even the sign of its real part [16] . These

issues of existence and uniqueness are a subject of continuing research [2].

IV. A CONSTRAINED MINIMUM CROSS-ENTROPY NETHOD

In this section the proposed method is described. Assume the data

are a set of intensities denoted by dj,j=O,1,2,....M-l, which are the sums

of a signal component, sj and an independent noise component, nj. It is

desired to find a representation of the signal which is consistent with the

data, given estimates of the means and variances of the noise power spectral

coefficients and the phase spectrum at frequencies wj,j=O,l,..(M/2)+l. (The

phase data are expressed best in terms of the arctan of the estimated phase
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which tends to be normally distributed [8]). The proposed method of solu-

tion is as follows. Obtain the finite Fourier transform of the data. O(wj).

Let S(wj) represent the estimate of the Fourier coefficient of the signa] at

wj. Select as a first estimate of IS(wj)l the value of ID(wj)I -

IN(wj)l', if positive, otherwise assume it to be zero. The first estimate

of the phase is the phase of D(wj). Place bounds on the subsequent estima-

tes of magnitude and phase using the prior knowledge of the noise spectral

properties. Now seek a solution which minimizes the generalized entropy.

This process is either the maximizatici of entropy or the minimization of

cross-entropy, as appropriate. It is assumed that the sum sj is equal to

a given constant and that the signal components are all positive.

To achieve a solution a genera1 niirnnc- quasi-NLwton minimization

routine was chosen from the NAG library [171. If nt, ,ounds on the fre-
quency domain variables are "tight", this implies that the signal-to-noise

ratio is high and the solution is required to conform closely to the data.

If the bounds are 'loose" the solution may depart significantly from the •

data values, now assumed to be noisy, and will tend to conform to the prior

knodledge.

Additional constraints may be applied on a point-by-point basis in

either domain, so prior knowledge can be incorporated into the solution with

ease. If, for example, it is known that the signal has a certain minimum
total power, the solution may be constrained so that this requirement is
fulfilled. If the signal is known to decrease in amplitude as j increases, I

this may be translated into a decreasing upper bound in the original data

domain.

Any initial estimate of S(wj) is acceptable provided only that it 0

lies within the prescribed range. Generally, Wiener filter solutions pro- 4o

vide initial estimates closer to the final solution than do those obtained .
from the noise subtraction process described above. This is to be expected
since the Wiener filter is based upon an exact knowledge of the signal

spectrum.

% a,.
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S

It should be noted that constraints in the frequency domain can be

applied to the real and imaginary parts of the transform coefficients rather

than to their phase and magnitude. Results presented elsewhere [1] wre

obtained in this manner. The domain of acceptability is not the same for

the two methods.

Examples of the application of the algorithm to one-dimensional

simulated data are given in Section VIII. The next three sections present

analytical results which provide some insight into the process and the solu-

tions expected.

V. ENTROPY DERIVATIVES

The quasi-Newton minimization technique requires knowledge of the

derivatives of the objective function with respect to the constraint

variables [17]. The derivatives of the entropy function with respect to

Fourier magnitude and phase can be obtained in a straightforward manner from

the properties of the finite Fourier transform. For a function, f, defined

at a discrete set of equispaced values fj,j=O,l,2,..M-l, its transform,

Fm(f), may be defined as

M-I
Fm (f) = fjexp[- i(27jin/M)] (10)

j=O

SM tamexp i~i

U M Eum+ iv]

#here am and m are thus defined in terms of the magnitude and phase of the
Fourier coefficients. Let the generalized entropy function, H, be defined
by 5

M-1
H = fjln(fb) 1) V.

j =0

5'.

S-.
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where the bj's represent the assumed values of the solution. For uniform

bj, H is the negative of the sample entropy, whereas in general H is the

sample cross-entropy. H and fi may be defined as functions of the am and

Om by applying inverse Fourier transformations to Eq. (10).

For m=l,2,...,(M/2)-l, by differentiation of Eq. (11) it can be

shown that

[aH/aln(am), 8H/AO,] = 2M- Fm(W) (12)

M-1

where wk fJln(fj+k/bj+k)

j=O

and where the quantities inside the square brackets represent the real and

imaginary parts of a complex quantity, respectively.

For i=M/2, the factor 2 is replaced by unity. The derivative for m

equal to zero is not required since the mean value of the fj is fixed.

Furthermore, from the convolution property of the transform, it follows that

F (w) = F*(f)F (ln(f/b)) , (13)m m m

where the asterisk denotes complex conjugation.

Generally, 8H/a8m is non-zero since the phase of Fm(f) will not

match exactly that of Fm(lnf/b), even if b is uniform.

The derivatives with respect to the Fourier coefficients are given

by

[aH/aum, aH/av] = 2M- F m(ln(f/b)), (14)

for m=1,2,..,(M/2)-1. The derivatives become zero when the transform coef-

ficient for ln(f/b) becomes zero, whereas the derivatives with respect to

0
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magnitude ana phase are zero also when Fr(f) is zero, independent of the

prior knowledge. For generali7-o entropy the so'ut' - sought are those f_

which the variations in f match those of b.

By definition wo is the cross-entropy with prior b. Otherwise wk

may be expressed in the form

M-1
w - f /b fjln(fj/f )] (15)Wk = L[jnfj/bj+k) _ .j(5)

j=O

The first term represents the cross-entropy for a shifted prior. The second

term is a sample "auto-cross-entropy" in which the shifted prior is replaced

by the actual value measured.

VI. ENTROPY FOR SIGNAL AND NOISE PERTURBATIONS

Suppose the data, fj, lie between zero and unity and may be repre-

sented as a mean value, p, minus small variations, zj, equal to the sum of a

signal sj and zero-mean noise, nj, independent of the signal. At the j-th

location, to order 62,

ln(fj/bj) = ln[(Ij - zj)/bj] (16)

= ln(p) - 26j - 26j2 - ln(bj)

where 6j n (sj + nj) /2p

It can be shown that, for m=l,2,..(M/2)-l,

< Fm(f)F (ln(f/b)J > = 4p <IFm(6)12> + 2p < F*(6) > F (ln(b)) , (17)
m mmm m

where < > denotes expected value.

The second term generally has an imaginary part, which introduces a phase

dependence to the generalized entropy. However, if the bj are uniform, then

< F*(f)F (lnf) > = P l[1 2 + IN 12] n M2 < amI > (18)

- m m r P
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where Sm and Nm represent Fm(s) and Fm(n), respectively.

To achieve maximum entropy the amplitude at each frequency is

reduced, on average, in proportion to the power at that frequency, which is

the total of signal plus noise power. This is consistent with Frieden's

analysis outlined above since ln(l+< am' >) is approximately < am2 > for

small perturbations.

If the b-function represents the signal component correctly to

within an amplitude factor c, bj equals V-csj, and

< Fr(f) F (ln(f/b)) > 4p < IF (6)12 > - 2U < F*(6) > F ln(p/b) (19)
m m m m

= -'[(I - ) [ Sm 12 + INm12]

Phase dependence is absent since the phase variations due to the

signal are matched to those in the prior knowledge. If the amplitude is

correctly estimated, c equals unity and the cross-entropy derivatives on

average depend on the noise power only, so minimization of cross-entropy

entails a reduction of the noise component while maintaining the signal corn-

ponent. If the amplitude is incorrect, then some loss of signal power is

expected, the amount depending on the degree of mismatch, so the minimiza-

tion of cross-entropy is equivalent to a reduction of power representing the

mismatch between the prior function and the data.

VII. ENTROPY DERIVATIVES FOR CORRELATEO NOISE MODELS

In this section it is shown that for correlated noise, entropy has

a phase dependency. Let Uj represent variables which are independent and

uniformly distributed over (0,1). From these a family of noise models can

be derived using the relationship

vj = auj +

where a is a parameter between 0 and and 0 represents -0.

." " ",V " " '." " ".,""." " " " .. ' , ' ," ' ........... " '
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The mean and variance of Vj are 1 and (a2 + B2)/12, respectively.

The correlation at lag 1 is a8/(a 2 + 2) and zero for greater lags. Through

straightforward integration, analytic expressions can be obtained for

< VjlnVj+ k >, denoted by qk(a), in order to calculate < Wk(a) >. In par-

ticular,

qo(a) = -5/12 - (5 a- 1ln - a- lncn)/6 , (20)

q1(a) = -3/4 + ct/a + alna(6a-3- c 2)/12B2 + lnO(a+3)/12a

qN-1(a) + q_l(a) = -7/12 + (B+a)/6c + alna(a-4)/126 + lna(2-4ac-a2)/12a2

and q(ot) q k(a) = N-k(a)

= -3/4 - alna/4a - 81nB/4ci

for k not equal to 0 or 1.

Furthermore, for m=l,2,....,(M/2)-l,

< Fm(w(a)) > = MQo(a) + (M-1)Q1((a) cos2nm/M (21)

+ i(M-1) Q2(a)sin2wm/M

where Qo(a) =q 1 (a) - q(a) ,

QI(a) = ql(a) + q Nl(a) - 2q(a)

Q2 (a)= qN-1 (a) - q1(a)

Qo, QI and Q2 are positive for 0 < a < and Q2 is small compared

to the other two. Also Q2(8)= -Q2 (a), whereas the other two functions are

symmetric. The imaginary part depends upon < xjlnxj+I > - < xj+llnxj >,

which reflects asymmetry with regard to the spatial coordinate direction.

S S US -.
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A related model for negatively correlated noise is given by

V. = -U + BUJ_ 1 + O, (22)

for which the correlation function of Vj at lag 1 is -O/(a 2 + B2). It can

be shown that

< Fm(w(-a)) > = MQo4(a) - (M-l)QI(a) cos2nm/M -i(M-l)Q2 sin2rm/M (23)

for 0 s as.

As a function of frequency the real part of < Fm(w(a)) > decreases

with m whereas that of < Fm(w(-a)) > increases. From the relationship given

in Eq. (12), it can be seen that to increase the entropy, larger decreases

in amplitude are made at low frequencies than at high frequencies when the

correlation is positive. The action is that of a high-pass filter. For

negative correlation, the opposite applies, so the action is that of a low-

pass filter. For uncorrelated noise, the derivatives are independent of

frequency which indicates a uniform decrease in power is required over the

flat spectrum.

In general the relationship between the auto-correlation function

and the auto-cross-entropy function is reflected in a relationship between

the power spectrum, and the entropy derivatives. If qk equals < fjlnfj+k >,

then

< F m(w) > = Mqo + MqM/2 cosm

M/2-1
+ [(M-k)(qk+q k ) + k(qM-k+q kM cos27rmk/M

k-1

M/2-l
+ i [(M-k)(qk-q-k + k(q Mk-qkM)A sin27rmk/M. (24)

k-I
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If Yk represents < (fj-11)(fj+k-U) >, where p represents the mean of
M-1

f, then the Fourier transform of < fj-')(fj+k-I.J > yie±c i the power

k=O M-1

spectrum in the form < IFm(f)I2 > = my 0+ MYM/ 2cosrm+2M Ykcos2-m/M (25)

k=O

This result m~y be obtained by replacing the q s in Eq. (24) by the

corresponding -y's and reducing the result through application of the con-

ditions of symmetry: Yk=YN-k=Y-k . A significant correlation at lag k, say,

will be reflected in a relatively large value for the auto-cross-entropy, 0

but the relationship is not simply stated because of the non-linearity

introduced by the ln-function.

VIII. ILLUSTRATIVE EXAWLES 0

In this section results are presented to illustrate the charac-

teristics of signal reconstructions under various conditions of prior

knowledge and constraints. The original data, the signal to be recovered,

and various solutions are shown in Fig. I. Because of its large steps, the

function is not particularly well-suited to Fourier analysis, on the other

hand, it is largely of low frequency content and is symmetric. The noise is

additive Gaussian noise of zero mean and standard deviation equal to the
size of the steps in the signal.

The signal is represented by one data set of 64 equispaced samples.

Noise-only data were available for 56 sets of this size from which sta-

tistics of Fourier phase and magnitude were obtained for each frequency.

This process was included since it simulated real situations in which noise

samples are plentiful. It is assumed that the mean value of the signal is 4

known.

For the maximum entropy solution, it is assumed that the signal is *

a constant, a condition of minimum prior knowledge, apart from the
constraint that the signal be positive. For the minimum cross-entropy solu-

tions, it is assumed that the signal is known exactly, so it is of the given
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DATA AND SIGNAL 
MAXIMUM ENTROPY SOLUTION

.... NW f - - -I.42

0- .42- 
z

0.30I I /0 .3 -

10 30 so SAMPLE NUMBER

SAMPLE NUMBER S L U

TIGHT CONSTRAINTS 
LOOSE CONSTRAINTS

0.42- - 1 -

S-'

10 30 so 19 30 s

SAMPLE NUMBER 
SAMPLE NUMBER

Figure 1. Plots of the original data and of signal representations obtained

under various constraint and prior knowledge conditions. The

true signal is shown in each plot.
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form unless otherwise indicated by the data. The aim of the recovery pro-

cess in these cases is not so much to obtain the assumed correct result as

it is to evaluate differences between the expected signal and that produced

from a particular data set.

The upper left quadrant of Fig. i shows the signal and the signal-

plus-noi, a data which served as the signal representation. The upper right

quadrant shows a maximum entropy solution with "loose" constraints, that is,

2onstraints in the Fourier domain which were chosen to represent several

standard deviations in the estimated noise power and phase. (A more exact

definition is given below). The solution consists largely of a single low-

frequency component. Sharp edges are not indicated in this "maximally

smooth" solution.

The lower right quadrant of Fig. 1 shows the minimum cross-entropy

solution for the same constraint bounds but with exact prior knowledge. The

peaks and edges of the reconstruction match those of the signal. The stan-

dard deviation of the error is 0.017 and the maximum absolute error is 0.051

whereas for the original data these values were 0.114 and 0.319. The noise

power has been reduced by a factor of 50.

The general appearance of this reconstruction is similar to that

obtained from the Wiener filter (not shown) with exact knowledge of signal

and noise spectra, except that the Wiener filter solution is slightly

aisplaced to the right and lacks edge definition. For the Wiener filter

solution the maximum absolute error is 0.058 and the standard deviation of

the error is 0.031 which represents a reduction in noise power by a factor

of 14. In this case the Wiener filter solution is a good initial estimate

to the reconstruction for loose constraints. The main improvement accrues
from phase shifts.

1, Val CU~)% 2 L *% w - * %
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The lower left quadrant of Fig. 1 shows the effects of tightening

the constraints in the Fourier domain so that more credence is afforded the

data relative to the prior knowledge. In this case a high frequency com-

ponent is evident. The standard deviation of the error is 0.059, which

represents a noise power reduction factor of 3.7.

Generally, Fourier components are reduced by the minimization pro-

cess to their lower bounds provided they are not otherwise constrained by

the prior knowledge or restrictions in the spatial domain. For the "loose"

constraints, the lower bound of the magnitude was zero unless the Fourier

magnitude squared was 7 times the noise power standard deviation. Since the

noise power at a given frequency is distributed as a chi-squared variable

with mean equal to a, the probability of a non-zero lower bound was roughly

I out of 1000. For the "tight" constraints this probability was roughly 1

out of 50. The sample noise power for the high frequency which is evident

in the solution for tight constraints was 6.8 times the noise mean. A peak

of this magnitude is expected to occur roughly once in 1000 cases. At this

frequency the tight constraints imposed a lower bound well above zero so

that this component appears as a part of the solution. For iocse

constraints, the lower bound was zero and the contributions from this fre-

quency were much reduced.

It may be thought that the data incorrectly indicate such a com-

ponent as being part of the signal, but in practice a better view to take in

this regard is that such a component is present at a certain level of con-

fidence. If the analyst were to have prior knowledge with regard to the

frequency composition of the signal, this knowledge should be incorporated

into the constraints. If the signal was thought to have no isolated narrow-

band components, then the bounds on the Fourier magnitudes could incorporate



0

-19-

several adjacent frequencies, perhaps through an averaging procedure, to S

reduce the standard deviation of the noise power estimates. On the other

hand, if narrow-band components are not only possible but also of interest,

then it would be incorrect to treat the components in groups in this manner.

Flexibility in the imposition of constraints is a major benefit of treating

data in the method proposed.

IX. CONCLUSIONS

It has been shown that a general purpose minimization method based

on quasi-Newton search techniques can be applied to the problem of recovery

of signals from noisy data when noise-only data are available for estimation

of related statistics. A finite Fourier transformation is applied to the

data and constraints applied to the Fourier coefficients consistent with the

noise statistics. By requiring that the data be positive, the target func-

tion can be chosen to be the generalized entropy. The method then yields

smooth solutions in the absense of prior knowledge (the maximum entropy
S

solution) or solutions which tend to conform smoothly to the prior-knowledge

solution (the minimum cross-entropy solution).

A major advantage of the method is the flexibility with which

constraints may be imposed in either the frequency domain or the temporal S

(or spatial) domain. This allows for direct application of prior infor-

mation to the process of solution. A second major advantage is the adap-

tability of the method with regard to the degree of credibility assigned to

the signal data. Tight bounds on the constraints yield solutions which con-

form closely to the data. Loose bounds yields solutions which resemble clo-

sely the expected results. Thus the analyst has a full range of solutions

from which to choose that which is most appropriate for the particular

problem. 0
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The selection of the appropriate constraint levels may be con-

sidered as a problem in statistical analysis and levels of confidence may be

applied to solutions. This was demonstrated by an illustrative example.

The minimization process requires the derivatives of the genera-

lized entropy with respect to the Fourier coefficients. These were obtained

analytically and results were studied for two cases of interest. It was

shown that phase is important not only for cross-entropy solutions but alsoI

for maximum entropy solutions when the noise is correlated. The analytical

results indicate that the minimization process tends to produce solutions

satisfying lower bounds for the power spectral coefficients. Thus it is

expected that solutions will resemble those obtained by the simple noise

subtraction method given by Eq. (8) unless otherwise constrained.

The examples given pertained to one-dimensional variables but the

results can be extended to images [1]. A major disadvantage of the method

is the computational time required. For this reason studies are proposed on

special purpose minimization processes applicable to a more restrictive

class of signal, for example, sevecely band-limited signals.

I
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