PN RN L N R ROT R ey

'l | ¥ UNCLASSIHIED . . m F,l E (‘,(}P‘f

SECURITY CLASSIFICATION OF THIS PAGE (When Dll:LEnterad)‘

T I R S e Al W\ PP UIA C RA AN AT N T o SO R I R R T O R
i A'e 2 "

7 READ INSTRUCTIONS
N . REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
[- 1. REPORT NUMBER 2. GOVY ACCESSION NO.{ 3. RECIPIENT'S CATALOG NUMBER
-gt
.:. AFIT/CI/NR 88- 96 i
A:: m TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED ') ‘
- Q) ToGeEw: TowARD Av AUTOMATED Tool EOfL MS THESIS ’
. O ProducTion oF MELIABLE ANY yALID TEsT X
4' 6. PERFORMING OG. REPORT NUMBER -
" SVITES . l :
i:. 8 AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(s)
)
N - MARK ALLAN MofMAN
;;. < PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
|’ | AREA & WORK UNIT NUMBERS
, Q AFIT STUDENT AT: ANy 2OMA STATE UU\VI’.M:TY
) < '
‘N . CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE : :
1988
1l:‘: ' 13. NUMBE§ OF PAGES '
:'. 14, MONITORING AGENCY NAME & ADDRESS(If dilferent from Controlling Oflice) 1S. SECURITY CLASS. (of thia report) '
i AFIT/NR UNCLASSIFIED
¥ Wright-Patterson AFB OH 45433-6583
1Sa. DECL ASSIFICATION/ DOWNGRADING
N SCHEDULE

. DISTRIBUTION STATEMENT (of this Report)

“

; .
D DISTRIBUTED UNLIMITED: APPROVED FOR PUBLIC RELEASE D' I lc

R,

ELECTE

a

[

: 17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report)

W®

e SAME AS REPORT ;
- ib N
o7 7“
K 8 SUPPLENENTARY NOTES ppproved for Public Release: . IAW AFR 190-1
B LYNN E. WOLAVER ()m&,»a Au}j) 174 .
4 Dean for Researcha rofessional Developmen)
" Air Force Institute”of Technology »

Wright-Patterson AFB OH 45433-65%83

19. KEY WORDS (Continue on reverse side il necessary and ldentify by block number)

20. ABSTRACT (Continue on reverse side if necessary and !dentify by block number)

*- ATTACHED

v,

:

: fﬁg)

‘.'

B

W

)

A DD ,‘:23"73 1473 Eo0tTION OF 1 NOV 65 15 OBSOLETE U”CU\SSIHEQ ‘

h bt S oo 1] .

3 SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) :

P » 'x Er o . “....‘ 4
t

O, ¥ W VL M,) . ot A e m A k- .t A -,-.'.'"\' N
1 Tttt Wi e TN R RGN At Y R I AT R A T s, SR T L A GRS RGO ‘3“"“-"'\-,'.'9."‘ %

¢

RREMNCEP Sy

O Th e RT) SN e

RN AR

N

el

B AN RN MARSARE RN AR XY N, AL A R R R T R A R R R X Y IO

v

1&/ Abstract

This thesis addresses enhancements to a technique for
generating test cases and modifications to an automated
system implementing the technique. This system, I0Gen,
generates input/output pairs for the Common APSE Interface
Set (CAIS) and for Ada programs in general. Ada language
topics for which symbolic execution and I0OGen do not address
are discussed. The detailed design for an enhanced I0Gen
system is presented. A case study shows that modifications
to I0Gen enhance its error detection capability. Finally,

current and future areas of research for I1I0Gen are

presented. {){_‘,’AA’:A FARIRRZE B i, o, ‘.:z , -

Accesion For ‘j_——
NTIS CRA! ~ IR
DTIC Tab 0 ‘
Unananaa.ed CJ l
Justfeuwron ‘
By .. S
Df‘.‘“'b'i oy 1
e]
— T T
Diot | 3, ein

A,l | i |
L i]

iii

N O ‘\- Fr e ™ "“f"’d“’:f." -';!‘T'— 3V "‘\‘;’ ot "'"-’” ‘.’Q‘.‘“ .-f-.-’..' -"“-l‘\q'-‘\v’.'v'\ "\ “‘J"'u"“v‘"c""l‘“f‘-“ \U‘\
B KT RTINS TV RIS Dl PA AL 200 ACLALL B LR L A A S) S A R L A AN e, ol Sy N L Y

h‘-\f\-‘

v .,\

-

T LA SN vy

x_a

L ¢ 4

SAANIY NI LA

NS A AT I LA US U AT U U RO BN XN NN VWAL ADRIER L) v <Y NN NV US U R SR Ky W A R RE NN NION ' - M VR

;) N
t (
3 v i
s
3
)
" ;
N !
.D
i. 3.
2
K
' [3
. IOGEN : TOWARD AN AUTOMATED TOOL FOR PRODUCTION
f OF RELIABLE AND VALID TEST SUITES
by
. Mark Allan Norman ..
d
W
W
1. r
s “
L :]
s
: 3¢
4 ¢
4 5

s >
[} \
B, ¢
‘l
b f
\ A Thesis Presented in Partial Fulfillment
z of the Requirements for the Degree
Master of Science
1 g
s]
s ;
? P

R
&,

' ARIZONA STATE UNIVERSITY 1
. .

': May 1988 '
¥ g
'. .‘
i)

A h
iy S
M \
A §

A e R T M M o P P 4 MO o W SO O AL WAL i Vi o P el g w0 Pt i o T,

P AR, W S I W TP T WO MY Vi NN Y. AN) -8 820 W20 D28 Uad ol A= Sa0 Uod Hal 0oh’ Ral Beg" 9 AR Vul okt Oulh ol Gad 08 000 0oh L AR 0 ¢y TOTIITCT Oy

L .

IOGEN : TOWARD AN AUTOMATED TOOL FOR PRODUCTION
OF RELIABLE AND VALID TEST SUITES '
by)

Mark Allan Norman

\
1
$
has been approved
May 1988 :
N

/ﬁ/;fzizwvs

/,w oo, "
M/@@_ S Tss |

Superv1sory Committee

ACCEP

L) 2y
Vi

P n o o o 8 n"'.-!“ et e T e e R T e T e e S T N

AR R R R R U U R A WA R U A U S A WU WU A U WU SR OO O O O O N G Y U TR O U OV TR U UV TN DR OV T OV ORY

¢ Al
. . n

L= . -

Abstract

-

This thesis addresses enhancements to a technique for '
N generating test cases and modifications to an automated
system implementing the technique. This system, 10Gen,

generates input/output pairs for the Common APSE Interface by

g Set (CAIS) and for Ada programs in general. Ada language By
' topics for which symbolic execution and I0Gen do not address
are discussed. The detailed design for an enhanced I0Gen ;
:
system is presented. A case study shows that modifications &
to I0Gen enhance its error detection capability. Finally,

-

current and future areas of research for 1I0Gen are

\
byt
presented. b
.

Dedication

To my wife,

o

and my son, Brian.

-

- -
e e)

[\
w

(1

el a sl ald & 2l o ey

F A R P

v, 1,

Py

! \) AN(A ¥ 2.7 04 AP VA ¥ Dt Ty W n D T T T T T N R R P R U SRR B LR S I S) §
S N M RO O S X O A O P X e et M T SRR -'1"(’*’(.* "

R

3y Wt Wt BaT Nt B Wa¥ ARt wpd F O a0t 0t 6t 0 e a abat d3tafe? 00t 0y Ant o 0at 0e

Acknowledgement

I would 1like to thank Dr. Timothy Lindquist for his

guidance, enthusiasm, and support in the preparation of this

thesis. 1 extend my thanks and appreciation to Dr. Kathleen
Mutch and Dr. Paul Jorgensen for their participation as
committee members. Last, but not least, I would like to
thank Vickey Wood for her hours of explanation and

assistance in educating me on ALEX and AYACC.

P
LI AL SR Y B ¥ ¥ B

W J..A’.l’.. .l‘.'l'.". Ms W, l’ ‘ 1 e o " ‘. o ‘ » .-.o‘al l‘. " 'u Lt .a'. t‘.“o 'o a0 o.l'o! o oY oS .0".0. " W0

G S e A7 AT A 0% At AT e e A Y Y 4 R g AL Rt tah ta At VAt Ra) ea e i 0 e A SRR A AR TE At el B I TR 8- SNV AT QN N P RV gV AL ol ot

H
?‘ *
¥ »

- .
W -

P
P Py

Table of Contents

-
‘0». -‘

-
PP B =

List of Figures ittt e e e e e e viii

-

Chapter
1. Introduction i, 1 -

1 2. Symbolic Execution and IOGen 5

? 2.1 1/0 Pairs Generation 7
2.2 Assignment Statements 8
" 2.3 If Then_Else Statements 8

¢ 2.4 Looping Constructs 11

v 2.5 Case Statements 15 3
N 2.6 Procedure Calls0iiuuiuinnunnan. 15 :
o 2.7 SUMMATLY &ttt v e ettt e e te ettt e it 17 b,
3. Ada Language Extensions For Symbolic Execution .. 18
K 3.1 Overview e 19
) 3.2 Boolean Expressionsc.c.cuouuuuu.n. 19

3.3 Arithmetic Expressions 24

3.6 AcCCeSS TYPeS . i ittt it ittt ettt et e 28

3.7 Undefined Variables 29

vi

- -
"‘-’
-

t
'l

.tj,\.-""f ., -; AN \r._-_‘v(- \,.-., " 4._‘1’ " ORI \(; ._‘:\ -‘.\-:\i‘..'-"\-’ \J' ._-‘ Lo
)

c3 e - A

e A e v W T W T T T
. l."'.' ‘ h"‘ Y NN, l\' K c'. -. W &

PO

- -

4
\

J .
OU RO XN

Chapter

3.10 Subtypes e e 32

3.11 Variant Records 32

3.12 Remarksttt e e 33

3.13 SUMMALY ..ttt it it e e e e e e 33

4. Symbolic Execution Tree Package 35

4.1 OVervVieWwttt ittt et 35

4.2 Design of the Tree Package 37

4.2.1 Assignment Statements 39

4.2.2 If Then Else Statements 41

4.2.3 Looping Constructs 47

4.2.4 Case Statements 51

4.2.5 Procedure Calls 54

4.2.6 Design Wrap-Up 56

4.3 SUMMATY . ¢ttt ittt ittt et ettt ts e e e emaneeanns 57

5. Case Study e e 58

6. Current and Future Research for IO0OGen 61

7. Conclusion i e 63

References e 65

Appendix

A. Sample Ada Program and I/0 Pairs 66

vii

B o G N O e A A

R T R T L L T T O I T S Y N S R WO T R A R T e RS N KNI K X ala

x ¢ v}

: LY
»
3 . . ‘:
' List of Figures :
; :
8 b
; Figure ;
1. Function IS POSITIVEttt ittt et e e et 9 o
2. Symbolic Execution Tree: Function IS_POSITIVE 10
3. Function TOTAL_POSITIVESt iiiinnin.. 13 :
4. Symbolic Execution Tree: Function TOTAL_POSITIVES .. 14 X
v
5. Case Statement 15
6. Symbolic Execution Tree: Case Statement 16
»
7. Boolean Expression Input Conditions 21)
B
8. I0Gen System Configuration 36 ‘
9. Data Structures e e 37 \
\
10. Package ProCedUreS . . vt vttt it tnr e enensenenes 38]
S
11. Procedure Assignment_Statement 40 ﬁ
12. Symbolic Execution of an Assignment Statement 41 :
[}
13. Procedure Generate New Nodesc.ivu.... 43 ”
. 14. sSymbolic Execution of an If Then Else Statement 47 P
4
{ ’
> 15. Procedure For LOOD ...t ittt it tmn ittt e etieeeaeenn 48 2
“ (
16. Symbolic Execution of a For Loop 49 ,
N
Y 17. Symbolic Execution of a While Loop 50 N
y, 18. Procedure When ClauSeo'uuiiinemennenennnnnn 53 .
19. Symbolic Execution of a Case Statement 54 ’
K ¢
20. Procedure Procedure_Callsc.uuuiueuuiueoon. 55 .
E] ‘
5 \
B viii A
A .
' -
' I-.‘
) .
[{
)
4
: '
T T R e O N R O S Ao

Nyt ig®

AR R R A A A L R O RN P RN AN R R R N e

LY

o
\{'v

h

“»

Chapter 1
Introduction

The United States Department of Defense (DoD) has
sponsored the development of the Ada programming
language. In addition, the DoD has also developed
requirements for programming environments called the Ada
Programming Support Environment (APSE). The APSE
environment provides a set of tools to support all aspects
of the Ada software lifecycle. A number of low-level
package interfaces to the underlying machine resources is
the Common APSE Interface Set (CAIS, pronounced as case)
[1]. The primary motivation for the development of the CAIS
is environment tool and data transportability. Currently,
research 1is being conducted at Arizona State University to
produce an Operational Definition of the CAIS (CAISOD) [11].

The APSE Evaluation and Validation (E&V) Team was
formed by the Ada Joint Program Office to initiate the
development of technology for validating the conformance of
APSE's to relevant standards and to evaluate the performance
of APSE components. Adopting CAIS as the basis for APSE’s
implies other supporting needs which include a CAIS
standard, conformance policy, validation capability, and
evaluation capability. Currently, work is being conducted
to develop a CAIS Implementation Validation Capability

(CIVC) for the Standard CAIS.

T e e R A A e T A N e R A A B L R A A RS

~Tw v 5 _r !

9
.
.
<
.

B T T I L S TN R R T T R R s R T R RO A RO RO AN A IO AV VAV s N R N T U Y N Uy N Y I OIS G o".‘

:‘c.
7
'
: >
v
2 v
:a
The CAISOD will be used to aid in the construction of F
the CIVC. Together with the CAIS specification, the CAISOD :
will provide a software basis for creating and testing the ‘%
'
validation set. The source code for the CAISOD can be a
analyzed using static testing techniques to identify _f
necessary validation tests. I0Gen [8] was <created to ﬂ
.
perform this static analiysis using symbolic execution [7]. f‘
Jenkins and Lindquist {9] also describe how I0Gen can be J
LY
used to generate tests in a structured approach to program gf
o
testing. ;
G
10Gen was designed by Jenkins as her master’'s thesis at '1
Arizona State University [8]. 10Gen performs a static l
:~
analysis of an Ada source routine and develops a set of .
i
S
input/output pairs which represent all of the execution :j
-
paths through the routine. These 1/0 pairs are determined o
-
through a symbolic execution of the routine. After removing :
t
implementation dependencies from these pairs, they could i
A
then be used to validate/test (in a black box fashion) =}
different implementations of the CAIS (and eventually the B
CAISOD). N
~ Y
I0Gen is composed of three parts: a scanner, a parser, -
and an I/0 pair generator. The scanner recognizes legal Ada T
]
tokens from a stream of characters. It assumes that the Lj
f-.
input stream of characters originate from an Ada source >
R
routine which has successfully compiled with no syntax ~
h]
\,
'
("
&)
4
I
i

o

- %1

1 ’ 5. TS L W AN R L TR TR PO LU PP LT Y RS LY n AT AT e W A a ()
FINTNRIP R A Tk o By " b T N a MM BT 0 el O L i T NS A G A VNN et YNNG

3
errors. The parser analyzes the tokens and builds a
symbolic execution tree. The I/0 pair generator traverses

the symbolic execution tree and generates the 1/0 pairs.

The scanner removes extraneous blanks and comments and
produces a set of legal Ada tokens. The original 1I0Gen
scanner would not recognize all token types of the language.
Current research work on I0Gen will replace the scanner by
ALEX [10] so that the user need not modify the source code.

The parser 1is the major component of I0Gen. The
original I0Gen parser is a one pass, top-down, left-to-right
parser. An LL(l) grammar (a subset of Ada syntax) is all
that this parser could accept. This parser is also being
replaced by AYACC [10] (a parser generator that accepts an
LR(1l) grummar) so that I0Gen will be able to accept the
entire Ada syntax. The output from the parser is the
symbolic execution tree which represents all of the
execution paths through the source routine.

The I/0 pair generator traverses the symbolic execution
tree and produces one pair for each terminal node in the
tree. For each 1I/0 pair, the input that caused the
particular execution path is matched with the resulting
modifications along the path to form the pair. These I1/0
pairs are the output from the I0Gen system. Any information
that is dependent on the implementation of the Ada

environment is removed from the 1/0 pairs resulting in

y s - L R - v I‘ 1 L} - L) - » - - - - - L] " - -} - - -, -q.- - - -
'."?"'.f".' W, "' "‘.' '.'"-) ‘."l" s Wy 8% 'ﬁ AL S S AT A U P sy a 'f ahby o.m"i. v < VP * 0 n. 1 J. e *.X h

Mo P X N

AR

52

Mg Xy Ry A WY C

WS

- o o
-

.,.;“-.‘,:-.- d - -

n ¢ T
Rl s

T

-
[

Y
[y

L g

- &

- e e

B
o’

by ol >

X

- - -
L W -,

Fat

PR

20a9 Al AL A L Pa ettt P4 o VAT) a N ol 4 u Sata Uatuliaba bt et gt Sa@Bat o by d R XX

v, .

validation/test suites for +the source routine. These
validation/test suites could then be executed by the Ada
source routine.

This thesis discusses some extensions to symbolic
execution with respect to the Ada programming language.
Chapter 2 covers a general overview of symbolic execution.
In Chapter 3, the extensions for symbolic execution with
respect to several Ada expressions and constructs are
presented. Each extension involves the manner in which a
program statement or expression is represented by symbolic
execution. Theoretical and practical methods for the
symbolic execution of each extension are discussed and
analyzed. The detailed design of a symbolic execution tree
package for I0Gen is the topic of Chapter 4. A case study
in presented in Chapter 5 jillustrating the enhanced error
detection capability the design of Chapter 4 affords.
Nther areas of research involved with I0Gen are briefly
discussed in Chapter 6. Finatly, Chapter 7 provides some

conclusions about the thesis.

¥ T m T m T ™

; g - - . eV - e T T TN . W T T ¥ L TN
o AT T e T AT A R B e W S AT AT T e T T T T s T T A TN AT T TN N
a . Y ol i K A A X X "

e
~

x

LSRN

MW RN AN

- oo

g o ap_ i o dry

WTITNIAPANN

¥ dPaR v,

AN AU Pl A A US A USER RO R U W T o W W K RO TR VR Y MR PN RRR TR W e) pt

Chapter 2
Symbolic Execution and IOGen

One of the major goals of the software development
process 1is verifying that the end product, the computer
program, behaves according to its specifications. Symbolic
execution 1is one method of program verification and is the
theoretical basis upon which the I0Gen system was originally
built.

Hantler and King [7] provide a method of specifying the
correct behavior of a program by use of input/output
assertions and describe one method for showing that the
program is correct with respect to those assertions. &N
input assertion is represented as an ASSUME statement and is
inserted at the beginning of a routine. This ASSUME
statement places constraints on all inputs for the routine.
An output assertion is represented as a PROVE statement and
is inserted immediately before the return from a routine.
This PROVE statement represents the expected relation
between the inputs and outputs. A routine is said to Dbe
correct (with respect to its input and output assertions) if
the truth of its input assertion upon routine entry insures
the truth of its output assertion upon the routine’'s exit.

In a proof of correctness for a program it is necessary
to verify the program correct over all possible inputs.

Hantler and King [7] propose using symbolic values to

R

3”2 7K]

LN X%

E P -

P U T a0 R A N A W N Vs T "'MﬁMM{JJJ”‘*

PR N R R A R O RO O R R R R o o R N N O A o T T T e T e U T I O T TR o o Py v YOIV WOWOWY)

LXK Ry~

6

-

-

represent arbitrary program units. By doing this, variables

take on symbolic values of their particular type. The .}
symbolic values can be represented as an elementary symbolic Q

variable or expression; an arbitrary string chosen to

represent a variable, or an expression in numbers and .:
arithmetic operators. In this thesis, each symbolic value :
is represented as a =ingle lower case letter. X
When a routin. is symbolically executed, the input $
parameters are assigned a symbolic value upon routine entry. ﬁ
As the symbolic execution continues, each occurrence of each '

variable is replaced by its symbolic value. In the case of
assignment statements, only the variables in the right hand 2

side are replaced by their symbolic values. The left hand
side then is assigned the resulting symbolic value of the f
right hand side. The symbolic execution of routines that ¢
¢

contain iterative and conditional constructs results in a
symbolic execution tree which contains branches. Each path 3

through the tree represents an execution path through the

routine. Attached to each path is a predicate, called a
path condition (pc), which describes the conditions that
cause the path to be executed. The pc is initially given a
value determined from the input assertion of the ASSUME 3
statement at the beginning of the symbolic execution. As
branches are encountered in the symbolic execution tree, the

pc is modified to reflect the particular conditions causing

G e A Ny L e,

UMK RPN IN LY O U DN U U U A A U SR U U DG R A A MU RO U AN KN W O O X UN LR PURY OO OO SOUoo RTIX YR

- o

o w e -

T)

"

PR o

S D -

S

Ry

ol

S S

e - -

O A AN T AT RN M0 M i WM 0, L X M MO NN (3 AN M DTN DRV S M N W SO

7
each path by use of an AND operation. The remainder of this
chapter describes input/output (I/0) pair generation using
symbolic execution for several Ada constructs.

2.1 I/0 Pairs Generation

The CAISOD serves as the input for symbolic execution
[8]. Symbolic execution is used by the I0Gen system as a
means of generating I/0 pairs rather than as a means of
proving a program correct. A few modifications to Hantler
and King’'s method are incorporated into IOGen in order to
facilitate the generation of 1/0 pairs. One modification is
the removal of the ASSUME statement as the input assertion
is always true at the beginning of a routine. Also, since
the CAISOD has Dbeen validated and can be assumed to be
correct, the PROVE statement has been removed.

The execution tree generated is used to develop a set
of I/O0 pairs. The input portion of each I1/0 pair is
determined from the path conditions at the bottom of each
execution path (or "leaf") in the execution tree. The path
condition describes a set of constraints on the inputs of
the program which cause a particular path to be executed.
Using these constraints, a set of test data can be generated
for each execution path through the program. This test data
may be used to establish initial values for global variables
or input parameters.

The output portion of each I/0 pair is generated

e PN

Rt atar Y

e e

A 3 R

r o of ¥

‘--* nw !"‘

- L ad)

“"I‘i‘ﬂ'Y'I“"|"""‘l"‘l‘i'".‘I‘l""""l'!'l‘.!' A 8% 87070 070 A A0 R 0 08 0l f 87 20700 0. 08 Baf 8 12t W RS R Gt DB BC bt g

o - 5 -

el - -~

8

[,

according to actions taken along its respective path in the
execution tree. The actions taken represent modifications

of global variables and output parameters. The following

PR R Y

sections discuss symbolic execution for several Ada
programming constructs.
2.2 Assignment Statements

Assignment statements are executed by extracting the
values assigned to each of the variables in the right hand

side of the expression, evaluating the right hand side to

-
A e W

reach a particular value, and finally, assigning this wvalue

to the wvariable in the left hand side of the expression.

e

Symbolic execution replaces the variables in the right hand

- a
X

side with symbolic wvalues. Since this resulting expression

|
)

contains symbols (not actual values) it is left unchanged.
This resulting expression then becomes the new value for the
left hand side variable.
2.3 If Then Else Statements

If then _else statements are one form of conditional
branching statements. Symbolic execution of if then else
statements begins by replacing all variables in the boolean
expression with their symbolic values. Two boolean
expressions are formed using the symbolic boolean
expression. One represents the true boolean condition. The
other represents the false (negated) boolean condition.

The if_then_else statement causes a two-way branch in

%

Y
AV " R A A A T N A _ \
"‘ ‘O\‘ [r‘n...l . * L) C.A.l v AN ATy, .v‘... ..-.-. 0 5 ~‘) l 3 S 1) c't‘-'l‘.‘l.. ; .. P ~ & '~ ‘c"‘-\ Ll n" L) ~ ‘-‘ \ h 0 ~ !‘I‘!’I‘!'l » .Jl B .'n .'l‘!‘t“'.‘

R S S A SR ML WU S WL M

e b=

e

e

- W -

o~ -

ATl eI e

9
the symbolic execution tree. One branch represents the path
taken when the boolean expression evaluates to true. This
becomes the “then” path. The other branch represents the
path taken when the boolean expression evaluates to false.
This becomes the ‘else” path. Eventhough the actual
execution paths may rejoin at some later point in the
program, they will never rejoin in the symbolic execution
tree.

The path conditions for the two paths are formed by

ANDing the current pc with each of the two boolean

expressions. The “then’ path’s pc becomes the current pc
ANDed with the symbolic boolean exXpression. Symbolic
execution continues with the "then’ statements. The “else’

path’s pc becomes the current pc ANDed with the negation of
the symbolic boolean expression. Symbolic execution
continues with the “else’ statements. 1If the statement does

not contain an else clause, negation of the symbolic boolean

function IS_POSITIVE (num : in integer) return boolean is
{1] begin

[2] if (num >= 0) then
(3] return true;

[4] else

(5] return false;
(6] end if;

(7] end IS _POSITIVE;

FIGURE 1. Function IS_POSITIVE

! "~ ¢ Iy N N . " * “y it e et "‘l'f"l",r.‘I.'_u‘l'{"l‘,)l‘.,n‘ T W W A e
B e T L L R N e S R S A SR L B S i AN

*

RN

y e e e b

-

PR X X _X_]

R)

b
3
3

0 LS .J LAY r".' D b« -NE‘\ K“ “"' 'F"“. T*"

UMUK NN Y M

SOV U WU WG VWA AR SO AN AR A X TN VXA TN AN DR TR Y OV DR OO O oo VIR T WO WO YU VO Y

10
expression 1is not necessary. Symbolic execution for both
paths continues with the instructions following the

if then_else statement.

Initialization:

pc <- true

num <- n
| |
P2 |
\ |
1 J
/ \
/ \
pc <- (n >= 0) / \ pc <- !(n >= 0)
/ \
_/ A N
| | ! |
return true 13 5 return false
i ! ! !
--- 1/0 Pairs ---
I1: (num >= 0) I12: ! (num >= 0)
0l: return true 02: return false

FIGURE 2. Symbolic execution tree: Function IS POSITIVE

Figure 1 presents an example of a function which
returns a boolean value depending on whether the input
integer is positive. The symbolic execution tree for this
function is shown in Figure 2. The symbolic wvalue 'n’
represents the variable num. Figure 2 presents an example
of symbolic execution for the if_then else statement and
highlights the separation of paths with their corresponding

path conditions.

o W,

= t
s

FL2e

»

P o v B RSCI I
A .

'

Y B e D i |
2, >

Sl

AT AN Y A Lo o P NV T O I, D\ B N ol]
() ¢l . - A & 0\) - » () 2Py) . £ Lhd) s P L B AR

._g'.-" “... '_‘..V"'l ‘.'Q~ .' ATURTORN K).'.. ‘ v, ¥ Q("'I"n‘ (WS 'Y |'¢.-Q K] tv CTY “a'e ald a¥@ _g¥h o¥

TG

WYX TFF

F i A0
Py .

- -

R Y

-

b < . ; 3l)] ;W W P s W | %, 0% b T B0 AA LS L AL S BN NI
LI AN St T SR I AL i'..‘ DUZUR N R MM i pL N e MR bt N X Iv-l.....\.. A X n 8, ,vf gy - - YRR

11
2.4 Looping Constructs
When a loop is encountered in a routine, it is possible
for the symbolic execution tree to be infinite [12]. It is
obvious that routines which contain non-terminating 1loops
have infinite execution trees. Furthermore, even when the
loops do terminate, the symbolic execution tree may become
unmanageably large. Substituting symbolic values for the
actual variables during symbolic execution introduces
another problem when encountering looping constructs as a
unique symbolic value must be generated for each actual
variable.
Hantler and King [7] solve this problem by using a form
of induction. At the beginning of a loop an inductive

assertion is inserted. Each loop is symbolically executed

once. This symbolic execution acts as if the loop is a
routine all by itself. The path condition upon entrance to
the loop 1is assumed to be true. After symbolically

executing the loop once, if the path condition is still true
based upon the inductive assertion, then the loop is assumed
to be correct for any number of iterations of the loop. In
this way, the problems of infinite symbolic execution trees
and unmanageably large trees are eliminated.

I0Gen takes a similar approach in dealing with looping
constructs. 1/0 pairs are generated for looping constructs

based upon only one symbolic execution pass through a 1loop.

ER (NP RERE R AN AN AN BRE X DM AN ORAN U SR R AW PN WU W WA WY S Gavoppv 0aY §a o 0a? 0a® 0at Aav 0av St Ng'a¥a" FOW o W R W <% ga’ a g

12 d
This may not be sufficient for the generation of I/0 pairs
b for programs that contain looping constructs. Jenkins warns

that additional tests may be necessary for programs

R X A%

containing looping constructs [8].

3 The syntactic form of the nontrivial Ada looping
'y

2

y constructs involve a boolean condition. The trivial loop is

one in which there is no boolean expression and behaves as a

5 simple sequence of statements. The statements of the)
¢ :
-: trivial loop are symbolically executed as if there was no !
K}

¥ loop.

! As with symbolic execution of the if then else

statement, a two-way branching occurs in the symbolic !

n execution tree for nontrivial loops. One branch represents

5 a single iteration of the loop. The pc at the beginning of)
- the loop is formed by ANDing the current pc with a true loop f
L boolean condition. The other branch represents the :
? execution path around the loop. The pc for this branch is ;
2 formed by ANDing the current pc with a negated loop boolean h
g condition. Once the symbolic execution for the loop has

a completed one pass, the pc at that point is ANDed with the 1
; false loop boolean condition and the symbolic execution for |
3

N this path continues with the statement following the loop. -
$ Figure 3 presents a function with a looping construct.

; This function, TOTAL_POSITIVES, counts the positive integers

in an array and returns this value. This function calls the

- -

el -

§
b
(]

& "
IO OO0 OO OO A O OVD

U AR RN AR A TN SR AR AN RN O RN AN R P N U K I W R RV NG VA Y FUNKXUR U LY VY LW 20 AN st tal, tatys b ot VAR VIR LT o

13]
function IS_POSITIVE which is presented in Figure 1. The =

symbolic execution tree for this function is shown in Figure ‘

4.

type table_type is array <> of integer;
index : integer;

function TOTAL_POSITIVES (table : in tabletype; !
length : integer) return integer is h

total : integer := 0;
pos : boolean; \

[1] begin
(2] while index <= length loop
. [3] pos := IS_POSITIVE(table(index));
. [4] total := total + pos;
(5] index := index + 1;
\ [6] end loop;
[7] return .otal; ‘

[8] end TOTAL_POSITIVES;

FIGURE 3. Function TOTAL_POSITIVES

The symbolic execution tree in figure 4 is an example
for the while loop. Symbolic execution for the for loop is
identical to the while loop. One branch in the for 1loop 3
tree represents one iteration of the loop followed by an ‘
out-of-range index on the loop. The other branch simply Q
represents an out-of-range index on the loop. The exit when
construct is handled a little different from the while and
for loops. One branch from the exit when represents

termination of the loop and execution continues after the

loop. The other branch is taken when the loop is not being

e)‘é'!th't LEXA)
A
L)
K
‘-.

T

"

TN T S PR T L I I R OO KA UK WY AN Ml @b et Ba¥ tat: PN W Na o Mo Wia X

14
exited and execution continues with the next statement in
the loop. Again, once the loop has been iterated once,

symbolic execution continues with the statements following

the loop.
initialization:
pc <- true ! !
length <- r b2
| |
| |
/ \
/ \
(index <= r) / \ !' (index <= r)
/ \
S N\
i | I i
IS_POSITIVE(t(1l)) | 3 | b7 return 0
| 1 | |
| 1 1 |
/ \
(index <= r) & / \ (index <= r) &
(t(1) >= 0) / \ ! (t(1) >= 0)
/ \
/S N\
| : : !
pos <- 1 37 i 3" | pos <- 0
i | | !
| |
I [}
| 1
[} 1
) |
|]
_ —_— —
| | | |
return 1 Y A 17"} return O
| | ;
--- I/0 Pairs ---
I1: (index<=length)& I2: (index<=length)&
(table(1)>=0) !'(table(1)>=0)
01: return 1 02: return O

I3: !(index<=length)
03: return O

FIGURE 4. Symbolic execution tree: Function TOTAL_POSITIVES

Y 1.0 B B LAV BB --!y-'q'u---yv'-\.‘\-\"..\‘.-"i'\J.l“x‘
Q‘Q ;‘0‘..!_ ") o.m .l‘n., '. "‘, ‘I e .'..‘, VRS .' 'l o b

TR

(4
U
1
i

D W T R e W N Ty I 2 L e T T PO T R S R SR O R RO I O K TR 1O
Y
¢
X
'
.
M

15 Y

4 .

2.5 Case Statements ;'

Symbolic execution for the case statement is very h

.'"

similar to symbolic execution for the if then_else +

¥ o
) -
statement. The difference is that the if then else ~

statement provides a two-way branch, while the case :

"

; statement provides an N-way branch in the symbolic execution iﬂ

b .,

1 tree. The pc for each branch (except for the others choice) :‘
"

is formed by ANDing the current pc with the expression %

i

; case_selector = “choice’. The pc for the others choice is h

h

b

y formed by ANDing the current pc with the negation of every 2

-

other path choice. Execution for each branch follows the

&

statements in the respective choices and then continues with

v B v e v s
i
!

the statements following the case statement. Figure 5 shows :
W

a sample case statement and Figure 6 presents its symbolic Ry
execution tree. L[
— e %
[1] case NUM is !
(2] when 0 => temp := 0; J
[3] when 1 => temp := 1; B
[4] when others => temp 1= -1, 3
[5] end case; 5.
FIGURE 5. Case Statement &
U N . '~
-~
2.6 Procedure Calls 2
A

There are two general approaches to handling the -

]

symbolic execution tree generation for procedure or function :
LSt
calls. One approach is to act as if the procedure body was :f
placed in-line with the code of the calling routine. This N

“~

by
N
b
)

L]
A

P X, |

-

(o X

-
-

o T T Tt 2 3

)
'\'* S B L AT PR e ¢
A 2y L N "'V Al . A

W W W L WU N N S W M DL e W ST St WL WA RO PO O T SO Y X 4 gat" 0% § 4" 20 % 0% "4, - D% e

16
involves a macro-like expansion into the symbolic execution
tree [5]. One potential problem with this approach is that
care must be taken not to confuse variables local to the
procedure with variables i. the calling routine. Also, this
approach requires symbolically executing the procedure or

function each time it is called.

initialization:

| i
1 1
NUM <- n o1
| i
| 1

ie)
Q
A
1
o)
Q
g}
™~
7~
g
Q
A
1
i ng
Q

--- 1/0 Pairs ---

I1: NUM = O I2: NUM = 1 I3: (NUM = 0) & !'(NUM = 1)
Ol: temp = O 02: temp = 1 03: temp = -1

FIGURE 6. Symbolic execution tree: Case Statement

The other approach designed by [5] recommends that the
symbolic execution tree be built in a bottom-up fashion.
The called procedure or function is symbolically executed
and the I/0 pairs for that procedure are generated. At the

point where the procedure is called in the main routine, an

A AT A A T A e x\"\':-."
A (ot} »

-

\-"\-f‘.._(.::.-f L2l P A aNE N e o o
Y]

"

NU

A AR i it RSN,

-

17
N-way branch is constructed corresponding to the N I/0 pairs
from the procedure. The pc for each branch is constructed

by ANDing the current pc with the pc input part of each I/0

pair from the procedure. This new pc for each branch is
expressed in terms of the symbolic values corresponc o)
the actual parameters. So, the formal parameters are

substituted by their corresponding symbolic value.

Figure 4 presents the symbolic execution tree for the
function TOTAL_POSITIVES. Figure 2 presents the I1/0 pairs
necessary for the call to function IS_POSITIVE. The two I/0
pairs generated cause a two-way branch in the symbolic
execution tree of TOTAL_POSITIVES at the point of the
function call. Correspondingly, the pc’s for each branch
are formed by ANDing the current pc with the pc of each
branch. The I/0 pairs generated from the cal' to function
IS_POSITIVE are:

I1: (index <= r) & (t(1l) >= 0)

I2: (index <= r) & !'(t(1) >= 0)

2.7 Summary

This chapter has presented an overview of symbolic
execution as described by Hantler and King [7] and as
designed into the I0Gen system by Jenkins [8]. This method
of generating I/0 pairs has been applied to several Ada
constructs to illustrate symbolic execution as implemented

through I0Gen.

LRI KN RN VUK R AN PR AR WA WS gt %0 g A 0.0 R 1’V "0 0 Vb 6.0 vl €t Tak b uat tpd o val TALY IR O N UNITTNIYY T Y TR P R T I R R KA TP TN

Chapter 3
: Ada Language Extensions For Symbolic Execution
Iy,
a Symbolic execution, as described by Hantler and King
\0

{71, provides for path coverage testing of a source program.

! The 1I0Gen system developed by Jenkins [8] is based upon

[y Hantler and King’'s research. Consequently, IOGen is a tool
C

N

¥ which assists in the path coverage testing of an Ada source
; program.

K,

¢ The primary goal of software testing is to provide as
»

3 much assurance as possible that a program behaves in
. accordance with its specification. While path coverage

testing provides some assurance that a program is correct,
8 it 1is still possible for errors to remain undetected. A

much stronger level of testing is multiple condition

S

coverage testing [4]. Multiple condition coverage testing

e e

not only encompasses path coverage testing, it also provides
coverage for all the possible input combinations that can
W cause the various paths to be executed. A program that
passes a multiple condition coverage test has a higher level

of assurance of its correctness than if it only passes a

d

w path coverage test.

o«

b The next logical step to take with I0Gen is to enhance

o{ it so that it provides a set of test cases that constitute a

) multiple condition coverage test. This is the primary

" motivation for this thesis. The purpose of this chapter is

'i

(¥ '
|.

' L}
l'

l'

R I L N TP T 0 o T e T a T aTa a e T T AT AT T AT AT A A -
‘o "" ’ t Lt B " \f'- .‘ -. AT \ N N “ LK “ X o .

e

R RS RN AN R XY RS

T A L e N N N B S Y,

R R O R R A A R RN RO OO WA RN OO O LY.

19
two-fold. First, it provides a basis upon which I0Gen can
be enhanced into a multiple condition coverage testing tool
for the Ada language. Second, it extends the theory of
symbolic execution for the Ada language in general. These
extensions will make symbolic execution a more powerful
method of assuring the correctness of Ada programs.

3.1 Overview

This chapter is divided into ten sections based wupon
expressions, statement types, and Ada constructs that
require extra consideration. The categories are: boolean
expressions, arithmetic expressions, arrays, attributes,
access types, undefined variables, input, discriminants,
subtypes, and variant records. One assumption of the I0Gen
system is that the Ada source program must compile with no
errors. This same assumption holds throughout this thesis.
The symbolic execution extensions described in this chapter
apply only to the run time environment of the program and
not to any syntax or type checking errors that may exist.
3.2 Boolean Expressions

Boolean expressions occur in several statement types in
order to provide a program the ability to make decisions and
act accordingly. Boolean expressions are composed of
boolean variables and simple relational expressions by
connecting them with logical operators. Boolean variables

can take on only the values true and false. Simple

Py

A
Eate

v

M N

3

- ‘u \- ;

R A SR R A S R R K R X R A M ML R LA K Rk MW R MR LN UL VR AN RO

20
relational expressions compare two expressions to each other
or a variable to a value. An example of a simple relational
expression is (num >= 5). Simple relational expressions
also evaluate to either true or false. In this example, if
num is 5 or greater then the expression is true. Otherwise,
the expression is false. By connecting boolean variables
and relational expressions, rather complex boolean
expressions can be constructed.

The logical operators in the Ada language are: AND, OR,
XOR, AND THEN, and OR ELSE. The AND operator evaluates to
true only when the boolean values on both sides of it are
true. The OR operator evaluates to false only when both
boolean values are false. The XOR operator evaluates to
true only when exactly one of the boolean values is true.
The AND THEN operator performs the AND operation only if the
left boolean value is true. Otherwise, it evaluates to
false. Similarly, the OR ELSE operator performs the OR
operation only when the left boolean value is false.
Otherwise, it evaluates to true.

For a boolean expression that contains only one
boolean variable or simple relational expression, there are
only two possible input combinations for the expression.
These, of course, are true and false. However, if the
boolean expression contains more than one boolean variable

or simple relational expression, then there are more than

P O ol o LA P ey »"
‘h”'- I h.ln ve e 0 V.. ,.0..14 (N T > N

TR A O I IO I O R TN M OO N I N VI Y WY UTIN NN YUY U 4 [*s D% P §

21
two possible input combinations to the expression. Since
each boolean variable and simple relational expression has

two possible values, the number of input conditions on a
boolean expression is a power of two. This power is just
the number of individual boolean variables and simple
relational expressions in the boolean expression. Figure 7
shows an expamle of a boolean expression with three boolean
variables A, B, and C. The table shows that there are eight
possible input combinations. This agrees with the formula

of two raised to the third power.

Boolean Expression : ((A OR B) AND C)

>
w

((A OR B) AND C)

DR RN R RS

RN RS ECR RS T
M e m e

mmmEma A

——————— e o ——— ——— — ———————————— ———

Figure 7. Boolean Expression Input Combinations

Path coverage testing of the boolean expression in
Figure 7 requires that only two sets of inputs need to be
considered. One set would represent a true value of the

boolean expression and the other set would represent a false

¢ 10 AT xR ~ . Lo v % Y .« Y S ¥ - "
“ ’ \ l‘-l-. WP LS U A OO Y Y w0 > .|'!.:.. I, I, .‘~ “0. ™ o ~~ \

e OO OGO
L ALS A o ! N

MY, <

h PP ‘

o
.'(f{qvf

,".‘:‘ r

4

P o 7
Pt

.’5"-"' "v"r':"-":‘;:;?- ?1,1,‘_,1.4,,4 ?'

- o e v

v
o--

-~
SA0 1 5K 55

s

R R R R R R O o N L O T T T Y TS T T T T T TR LY U TR TR U U UV WY,

22
value. Normal symbolic execution of this example, would L
result in six sets of possible input conditions that would]
remain untested. This means that it is possible for {
undetected errors to remain for six out of eight sets of
input conditions. For more complicated boolean expressions, 3
the potential for undetected errors increases. ‘
Multiple condition coverage testing requires that all =

eight sets of input conditions from Figure 7 be considered.

R

As a result, the symbolic execution of the boolean

-

expression must accommodate all the possible input
combinations. Thus, in the symbolic execution tree for the
example, there is an eight-way branching from the node]
representing the statement containing the boolean :
expression. In general, the branching factor in the tree .
for boolean expressions must be the same value as the number y
of sets of input combinations. By making this extension,
symbolic execution can provide multiple condition coverage
for boolean expressions.]
One aspect of boolean expressions in the Ada language
that 1is not found in other languages is the ability to test ht
the equality of entire data structures. For example, a)
simple relational expression could be two arrays of the same
type being tested for equality. I1f every item in one array
is identical to the item in the corresponding position of -

the other array, then the simple relational expression

T W WL N P N O T N o W [N o Y W eV T W
A N R g T e S Ty A R LS £ A N A T Y

L p RN UW N TN TOwOwOC TR T Py U IRy r TR RV YUY G T WU N T RE RS R

- g

t

5 23 \

! :

" evaluates to true. Otherwise, the expression evaluates to :
false. Theoretically, the symbolic execution tree for this

particular situation should contain branches for every

LW ey

! possible combination of one or more array position wvalues

/ being unequal in addition to a branch for all being equal. 4

-~

i This same type of statement holds true for whatever data

“
o

-~
-

structure is being tested for equality. This combinatorial

K explosion of branching is also compounded by the extended

branching already discussed. For example, suppose a boolean

expression contained a mixture of equality tests of data .

structures and other relational expressions. The branching

R from this boolean expression would be a product of all the

possible branches from each relational expression. Clearly,

this theoretical method of branching is very impractical. .

A more practical solution to this situation 1is to

simply allow the equality or inequality of the expression to

evaluate to the values of true or false. If it is important

! to the source program that a certain pair of values in the

data structures be equal or unequal, this could be detected '
i using other analysis techniques, such as data flow analysis.
This solution, in effect, adds no other branching into the

symbolic execution of boolean expressions other +than what -

has already been discussed. N

Appendix A contains a sample Ada program which has at

least one error. This error occurs in a boolean exXpression

»
WA VL PV

hE DB G Dl 8

YN S A T Sl SR S S o SN NI R D N EIANLINDARS RGOS

v e =

3R

QL R R TR

& 06 00 8 T Bav Bab W fat v 80 st dav ¥ s ot W28 by dat et ot

- - - 4

25
coverage symbolic execution can provide additional branching
at arithmetic expressions for overflow and underflow.
Should the arithmetic expression contain a division
operation, another branch 1is required in the symbolic
execution tree to reflect the possibility of division by
zero. All of these branches are in addition to the standard
branch for normal execution without an error.

Mathematical functions that are discontinuous or are
undefined over a range of possible inputs are also potential
avenues for numeric errors. An automated symbolic execution
tool would be unable to to distinguish a wuser defined
mathematical function from any other user defined function.
In either case, the symbolic execution for the function call
would have to follow the normal method of branching
according to the 1I/0 pairs generated from the symbolic
execution of the function.

Symbolic execution could be specifically tailored to
accomodate predefined mathematical functions for a
particular programming language. The logarithmic function
is undefined for negative numbers. Inverse trigonometric
functions are discontinuous at periodic intervals. These
are examples of predefined functions for which symbolic
execution could be sensitive to a particular language. The
developer for a specific symbolic execution tool would need

to zompile a list of the predefined functions for the target

by gty gvh-gtit b i g gl ath gt 'R gt BN AN g B hd R)

K

K

et

Y
Pe

a4y

P A 4

+

-

v g X
PC BT,

-‘I

o

W e

'l- 'lh (l "

R

A In 7 bt

AR 'n.

’\’éf’{‘ff-]' -

R T N K T T R R N I U L T I R I R TR vy R UK XTRIVT R KA R RIURTT R KR X R W . A

v i s e e

RS

)

26

-

source language. Branching for the undefined and
discontinuous error possibilities could then be built into

the symbolic execution tree for these particular function

calls.

) 3.4 Arrays

® An array is a data structure that allows a related
group of data to be referenced by a common name. Individual
data items are stored into and retrieved from an array via
an index. Richardson and Clark [3] identify array indexing
: as one weakness in symbolic execution. If the array is

indexed by a variable, then there is no guarantee at run

N

time that the variable is within the bounds of the array.

PR
-

Hence, it becomes necessary to provide an additional branch
in the symbolic execution tree each time an array is
encountered for the possibility of an index out of range.

' In the case of an n-dimensional array, the number of

possible input conditions on the array indices is two to the

Tl

nth power. The input conditions represent whether the array
indices are within or outside the constraints for their
respective index positions. From a theoretical standpoint,

symbolic execution should provide a branch in the tree for

T -

each of these possible input conditions. From a practical

‘ standpoint, the symbolic execution tree would become very

-

large for even very small and simple programs. An actual

] implementation of this may benefit from creating only a two-

PN R s
B -

o
OO N e WP

.l) . . ‘ ”
N m;&'f.m.:.nu.u.‘u-_;.&" 2. "'"a" " '

q"‘\l M e I e T
-

Ny s Al EATRT SN

O Ce" 0008 B 3t YU T R O I R R R R R e S Legt Wt s hi% fnt 8am Rat vaY §i0 gat o Gat 9.t ¢

P i e v

N A

R
- -

- " ™

- - s

27
way branch at each array. One branch represents that all
of the indices are within their bounds. The other branch

represents the possibility that any combination of one or
more indices is out of the bounds on its range. For most
programs, having any one array index out of bounds would be
a logic error that would require correction. Having only
one branch to represent all of the error conditions on the
indices does not provice for multiple condition coverage.
But, it may end up being a practical method of implementing
array handling in symbolic execution.
3.5 Attributes

The Ada language provides a set of constructs called
attributes which can be used to determine certain properties
of types, objects and subtypes during execution [2]. These
attributes are formed by appending an apostrophe and the
attribute name onto the end of a variable name. The
attributes that are of interest in terms of symbolic
execution are SUCC, PRED, and VALUE.

These attributes are actually special functions in the
Ada language. SUCC returns the value of the next item of
its wvariable’'s type. For example, 1if the variable is an
integer with the value 6, then the SUCC attribute would
return a 7. PRED is similar to SUCC except that it returns
the previous item of the variable’'s type. The VALUE

attribute operates on a string of characters that match one

.« W .q - \-\q AR AN \r'\-“"‘_\.tl\q A \-.\{F.{\’\r\fﬁ-' \-‘_ < W,

AT T

SR AN AN L ORTANA LN S

Pl

-
-

o RPN

g,]

- -

i -
o

- T e gt

5 A

[Ay

LARPAN,

o, YA

Sl el

<7

¥

TOSTRTATCTY

TR YT R N I T YO T XK K PO R R T T W W T W P YT R o) R IO R R U R R U N LA W

28
of the items of the variable’'s type. When this string is
operated on by VALUE, it returns the item of the type the
string matches.

The possibilities for errors with the SUCC and PRED
attributes occur when the variable contains a value at one
of the extremes of its type. The SUCC attribute causes a
constraint error when the variable contains the last value
of its type. Similarly, the PRED attribute causes a
constraint error when the variable contains the first value
of its type. These errors are possible when the variables
are sybtypes or enumeration types. Once again, the symbolic
execution tree will contain an extra branch for the
possibility of these error conditions any time the SUCC or
PRED attribute occurs.

The VALUE attribute has a high potential for error. If
the string does not exactly match one of the items of the
variable’'s type, a constraint error occurs. As with the
other attributes discussed, the symbolic execution tree
needs to have an extra branch for this possible error
condition every time the VALUE attribute occurs.

3.6 Access Types

Access types are more generally referred to as
pointers. Access types are defined to either reference a
particular type of data structure or to contain a value of

null [2]. Assigning a null value to an access type may be a

) o . T T T I T e T T SR I SR N
B T T R I TR e A L T et S YL e o

RO A A A R A TR U U U M N W S R U e W O WU WU WU WL SR WU WU WO WUNS + gav_gav N L

t
g
U
’

-~ S W e ™l s

FF)

e S0 e e - .

‘-

:..‘I....l.!.l‘ » t‘t'.. ‘l.- AT, l.- 4 % ‘ . l'- {8 I.l ' .‘ o d l!l".. 0. v W

- o~ (*4 2"

29
desirable thing to do in many circumstances (i.e. signifying
the end of a 1linked list or a "leaf’ node in a tree,
etc...).

The potential for error in using access types occurs
when attempting to store or retrieve data when the access
type is null. This may oc¢cur in three different ways. When
an access type is created, it is assigned a default value of
null. An access type may be assigned a value of null within
the code of the program. Or, an access type may be
deallocated.

If two access types reference the same data structure
and one of them is deallocated, both access types are set to
null. This is known as a dangling reference [2] and it
represents one of the major problems with access types. An
attempt to store or retrieve data from an acccess type that
is a dangling reference causes a constraint error. So,
symbolic execution must be sensitive to this possibility for
a null access type (as well as the other two possible ways
access types become null) and provide an extra branch in the
tree for each occurance of an access type.

3.7 Undefined Variables

At any point within a program, a variable may be
referenced which has not yet been assigned a value.
Depending on the type of the variable, a number of possible

errors may oOccur. In the case that the variable is a

& 0e® Pad 4a? 0s® o

e

x W € v s

KRR AR AN A RN AN AN NN S AR N AN U RGN U N U U UR LN U L St tai vala vl tatyia) a0 a0 ¢ Kol N A R O T T I TR I UV a Y T e W

30
subtype, a constraint error may occur. While theoretically
symbolic execution should account for the possibilities of
these errors occuring, it would not be very practical.
Creating extra nodes and branches in the symbolic execution

0 tree every time a variable is referenced requires excessive
overhead. Keeping a table of every variable which has been
defined and then creating a hranch for each one referenced
that is not in the table has some flaws. For arrays, there
is a problem of keeping track of which positions have been
defined. For records, the data items of each record have
the same names. For these reasons, it is impractical to
implement a strategy for undefined variables into symbolic
! execution and requires another technique such as data flow
analysis.
i 3.8 Input
3 Data inputs into a program are another source of
potential errors. The Ada construct for reading data is the

GET or GET_LINE command [2]. In most situations, the data

- -

input into the precgram is what the program expects.
However, at times the input may be of a different type than
expected. Or, 1if subtypes are being used, the data may be
of the correct type but it may be outside the bounds of the
) subtype.

Symbolic execution for the GET or GET_LINE command

containing n variables requires a branching factor of three

-
2

A" PN W A e I T o AT T N e TR AT TN T R S PN NS T N T T T T DT T T AT T
- e 3 ® - » - « L) .

» . »
Rt

p iy g

-

v

R N O D T O T TN T g A A O T A T

31

raised to the nth power. This is due to the three possible
input conditions mentioned for each variable. A practical
method would be to generate a three-way branch in the
symbolic execution tree for GET or GET_LINE commands. One
branch represents that the inputs are all of the correct
type and within their respective constraints. The next
branch represents that at least one variable is outside its
range of constraints. The third branch represents that at
least one variable received data of the wrong type. This
method eliminates the branching explosion described above
yet it still addresses the error possibilities presented
here.

3.9 Discriminants

A discriminant in the Ada language appears as a
parameter in a record declaration [2]. It is wused to
declare records of slightly differing types. The difference
between the records is the value of the discriminant.

The problem posed here for symbolic execution is the
fact that it is possible for assignments to be made from cne
record to another of the same type which have different
values for their discriminants. If this happens during
execution, a constraint error occurs. Therefore, the
symbolic execution tree must provide an additional branch
for record assignments when the records are defined wusing

discriminants. This extra branch represents the constraint

P [K

e

5 S AT o X OGS 5

gl e

o
»

NN LT A LS e e PR S UL N
I, AR S B RGN, U S, e -

8.8 Naf 0B 0 0 00" s S, R R 000 R a0 o G082 G B 0 2 0l 6.8 0k Vah At R I S Yl hah g AR L AN s

32
error that is rnised if the discriminants are of different
values.

3.10 Subtypes

Subtypes have been mentioned in several of the
subsections of this chapter. This subsection is provided to
cover subtypes in general.

Subtypes in the Ada language allow for variables that
are defined for only a portion or range of another type
[2]. The Ada compiler allows assignments from a variable of
the parent type to a variable of the subtype. In some cases
the variable of the parent type may contain a value outside
the range of the subtype. When this occu»s, a constraint
error is raised. Symbolic execution can provide an extra
branch for the possibility of a constraint error each time
a value is assigned to a subtype variable.

3.11 Variant Records

Variant records are record types which contain
different variables depending upon the value of a case
variable in the record. This situation is similar to the
one described for discriminants, however, the error that may
occur here will do so for a different set of circumstances.
A constraint error will result from attempting to wuse a
variable of the record that does not exist due to the value
of the case variable. Therefore, the symbolic execution

tree must generate an extra branch for each reference to a

W ‘q‘,'.f-\._,\'_‘-_.*-_.'-,'.'--',\.;:‘;,‘.J,-._, BT A T

o« L s N {A:faig.ﬁ.hn.,m@@mmk » o

e P)

oy B BV €D W B R

-

!

fap o e X

P A X A

-,
)

. O N U N R R Y O R O O O P U T U O O N T W T o o U O e, R T L R R RO N TN U T T KN A A R TR AW T,

"

[

5

i 33
‘

! selected component of a record that may vary based on the
é case variable.

% 3.12 Remarks

? For each new branch, a path condition can be generated
g which is based on the prior pc and the condition causing the
% branch. This generated path condition characterizes the set
é of all initial states for the procedure that will cause the
Y error condition. A valuable extension to this approach
? would involve determining whether that set of initial states
g is empty. When it is, then the erroneous path is
S unreachable, and no test case needs to be generated.

. For a symbolic execution system to be able to recognize
B access types, subtypes, records using discriminants, and
': variant records, it will need to keep type and range of
0: value information for all of the data structures and
" variables in the source program. This will require even
8§ more memory utilization and execution time on top of the
o greatly increased size and manipulation time of the symbolic
™ execution tree. However, in order to increase the error
r detection capability of symbolic execution, this extra price
g must be paid.

o 3.13 Summary

j This chapter presented several Ada expressions,
E statement types, and constructs for which symbolic execution i
'ﬁ does not address. An analysis of each of these items was :
:

>

y

D N R N AN R S S e i

;&".- R TR R R R S I T e b %% 2 0wV ¢ IS R LY OO = R TV TR B wnl i) TaR Sa® Vol #ub ol Bt) V.9 .8 &

& 34
' conducted to provide a theoretical extension for them under
\ symbolic execution. The theoretical extensions for some of
W the items were found to be impractical. In these cases,
K more practical yet less comprehensive extensions to symbolic

execution were discussed.

Pt o K

e
=

&

+

SO

2A® LN RS

R 1 Sl bl

e - -
PO

n
S VA R VY Ry CF R Sl W DR Sl il Sl Tl Vgt L R N S PR TN ST N Mo ir S .v- ~ ~ .\ . "
;:.. N '5.",;,. TR TR A '__-,. ._,.‘_l._'.,._,., - .‘_.I.__,s - o~ -.J,__,', f ‘_-..J_\.’\ "'.a.r.-- - ‘, AN

KR O OO GO a NN RN X X OO R W N R R R K N T R G W o R o e I U O T R PO TR RO P PO KO PO R PO R

:“:-::

!

;

]

Chapter 4 ::

Symbolic Execution Tree Package .g:

The detailed design of the symbolic execution tree :4
package 1is presented in this chapter. This package along W
with ALEX and AYACC [10] will be the three major components ﬁ
of the I0Gen system. The symbolic execution tree package §§
requires some minor additions within AYACC and the compiler :2
procedure that drives ALEX and AYACC. '%
4.1 Overview 3
The basis upon which the symbolic execution tree &
package 1is designed is the CAIS list management environment gg
[11. The CAIS 1list management environment contains six %

packages of procedures and functions for list management. L
These packages are: CAIS_ List Management, CAIS List_Item,

CAIS Identifier_Item, CAIS_Integer_Item, CAIS Float_Item, fﬁ

- - -

and CAIS_String Item. Four of these packages are used in »
this design. The four are the first, second, fourth, and b
sixth packages listed. The symbolic execution tree k
structure is easily represented, built, and manipulated in a ?
list form. The advantage to designing the tree based upon §,

o

lists is the fact that the power and versatility of the

- Lo ¢
{AI‘.

CAIS list management environment is utilized.

The symbolic execution tree package designed in this

- "
SR

chapter includes the Ada programming constructs described in

Chapter 2 and the extensions for boolean expressions

AW o
g7

L4
nd

%

2

i

P¥.¢"% . o, v o ™ v LN PR T L A L W o W oy Wy W SV W W w e v A " LR L N %
N T S e Y P T S e T A A A T A G S A A D (AR LR AR Y

%)
o PPy

et

R R R I O Yy IR AR Q¥ i) 6980, Va0 %002 e 1V 4% 8 073,448,807 8.0 22t £at 250 ¥ oV fBa* 1ot Vg v a8 gt a4 g8, 0 R 908" OO

36 4

developed in Chapter 3.

| | characters | | tokens | ! ﬁ
| source |------—ee—ao >} ALEX |-------- >! compiler | K
| program | | ! I I ‘
! | | .
| | | :
! ! I1/0 pairs | symbolic | tokens | 5
| output | <------------ | execution |<-------- ! tokens)
| file ! | tree ! ! C
! ! | package ! v .
1 1 | 1
I i 1 i .
. ! AYACC |
I ___________ =_—= (
reductions a

Figure 8. I0Gen System Configuration

Figure 8 represents the structure of the major)
components of this design for IOGen. The compiler is the
main driver for the system. It calls the lexical analyzer,

ALEX, for tokens which are built of character strings from ¥

the source program. Based upon these tokens, the compiler
uses the tables in the parser, AYACC, to parse the prcgram.

AYACC is an LR(1l) parser which parses the program in a

AL .

bottom-up fashion. The symbolic execution tree package .

receives the tokens from the compiler as well as procedure

calls from the parser as productions are reduced. Once the

A v T B _#

entire program has been parsed, and the symbolic execution

tree is complete, the I/0 pairs are contained in the “leaf”

nodes of the tree. The tree is traversed to find the leaf

R W A e W 0

nodes and send the I/0 pairs to an output file.

RN PO U R R O A S TR i M S S T S D I AU VO I W AU WU WO WU WU WU WU WU WO T U s U G S T OO O OO O I T o)

N 37

4.2 Design of the Package

): The symbolic execution tree package is designed to)
t

‘1

g utilize the CAIS list management environment [1l] as well as X
B {
§ '
: token_stack : This is a stack of tokens from the source

" program. These tokens were built by the ‘

lexical analyzer and sent to this package by
the compiler.

" symb_ex_tree : The outermost 1list of the tree structure.
(’I

) leaf list : A list of the leaf nodes in the tree structure
& at a given point in the symbolic execution.

A

D current_list : The current active list. In most cases this '
o will be the parent node for which new
L children are being created and inserted
‘ into.

h

)

new_nodes_table : A table of nodes (lists) being created for
insertion into the tree 1list structure.
In many cases, several nodes are being
N created at the same time (i.e. for boolean i
L expressions).

o

. relations_table : A table of the simple relations that make \
\ up a boolean expression. These simple

. relations are used to generate the ’
o multiple input conditions on the boolean X
&f expression.
¥
" boolean_expression : A string variable that will contain a
p boolean expression from the source
- program. This will be used in the
4 boolean evaluation of the multiple
W input conditions generated from the
f relations table.
)

ﬁ statement_string : A temporary working area for various X
- statement fragments throughout the .
f package. i
b, Figure 9. Data Structures y
o

(%
o
N

"
b Y

.
(A

" h
K

[R N LS LI'E N NS 'R LS

{
) { B bd] ‘l_ !Qu ‘ l‘l .a’ ¥ (] h- " ‘ ." .' .‘I .' 0 D.O-I‘.".». 4. 970 A% N . 'r » I -.‘l..' "

DO DO A OO T e

o o

- -

VO R TR O T TUR PO U YO PUCRLT TN O O ZOR A e M RO P A KN N R RV Y NV, VL -4 AV 250 A1 LN N S WA ety Oacal, g, 2%

38
to interact with the compiler and parser. Figure 9 shows
the major data structures of the symbolic execution tree
package. All of the data structures except the token_stack
and the symb _ex_tree are local to each procedure. The
token_stack is a global structure that may be used by any of
the procedures. The symb_ex_tree represents the entire tree
structure and points to the root node.

The general structure of a node in list form is:

A(#_of_sublists,B(),...,N(),pc,oc).

‘B(),...,N()" are the sublists or children nodes, ‘pc’ is
the current path condition, and “oc” is the current set of
output conditions.

Figure 10 contains a list of the major procedures in
the package. They are only presented here as a consolidated
list of the procedures. The detailed algorithms are

presented in the following subsections.

Procedure Assignment_Statement
Procedure Generate New Nodes
Procedure For_ Loop

Procedure When_Clause
Procedure Procedure Calls

Figure 10. Package Procedures

The symbolic execution of several Ada constructs was

presented in Chapter 2. The constructs were: assignment

statements, if then else statements, looping constructs,
- - - g o m o at WL W y ._(_ LS. -'_-'_-‘- - q"_- 4 I.-’_-‘
WY l...l l.'.h M A V'..' Y l.. \r V\ k .mnd. \Ad:i..-l“i‘_ JA.C}ATK:‘. l‘ . \ " " \ \ \ it

-

e SR Ll

e Taralay T
P _x L -

v — ¢
-

RS

D)
- o

i l'—{ -’ 1".-') -

, O

»

PR
- -

o - o
- e A

PR

W e
e o,

-
b

=T

! T

e S "

prEEL

e

S - .
AR I S

-

’

1. gta”

IRMANAANR]

LR

PRI SO SN W 300 o0, YALUNIAN LN L, A A

39
case <tatements, and procedure calls. The symbolic
execution of these constructs is discussed again in this
section with respect to this design. This discussion will
center on the processing of each of these Ada statement
types from the point they are recognized in the parser until
the appropriate nodes have been built and inserted into the
tree.

4.2.1 Assignment Statements

The production in the Ada grammar [6] for an assignment
statement is:

assignment_statement ::= variable name := expression ;

When the parser reduces this production, an assignment

statement has been recognized. The action associated with
this reduction is a call to procedure
Assignment_Statement. The algorithm for this procedure is

presented in Figure 11.

Figure 12 shows an assignment statement with the before
and after versions of the tree 1list structure. The
assignment statement is x := 0 ; . List A contains only the
path condition (pc) and output conditions (oc) associated
with it prior to generating its sublist (child). List B is
the new node created for the assignment statement. List B
is assigned the pc from its parent list as the pc does not
change in this assignment statement. The oc is ANDed with

the result of the assignment statement and becomes the

TV S N Y Y Y B R I I e e W S G TR I
v et W Al B e AT A AZAE R D ENG o, e

90,608 va0.5a8.V a0 4V v WEN R W W BT R AN A W e ol N

MRAI RN AR LN

Fa A

v A

LR

AT W WA I IO N N N MU PO T S R O A TP, I RO M X, MO WU W IONC R TR LT R T R OO RIOCTR X RN XX KA VU R WU R

40 !

o K TP

'

i
Procedure Assignment Statement @

~ extract the assignment statement tokens off the
token_stack and rebuild the statement in the 4
statement_string. o

- create a new node using procedure Set_To_Empty List y
from the CAIS_List_Management package. y

- extract the oc from the current_list using procedure ;
Extract_Value from the CAIS_String Item package.

- AND the assignment statement in the statement_string ¥
with the oc.

- insert the new oc into the new node using procedure
Insert from the CAIS_String Item package. ¥

- extract the pc from the current_list using procedure
Extract_Value from the CAIS_String_Item package.

W e e N

- insert the pc into the new node using procedure
Insert from the CAIS_String Item package.

- -

- replace the pc and oc from the current list with an)
empty string using procedure Replace from the A
CAIS_String_Item package.)

- insert this new node into the current_list using
procedure Insert from the CAIS_List Item package.

- insert the wvalue 1 into the current list as the
number of sublists (children) is 1. Use procedure
Insert from the CAIS_Number_ Item package.

v vV v I _1_8%

- set the current_list to the new node using procedure
Make_This_Item_Current from the CAIS List Management
package.

&3

Figure 11. Procedure Assignment Statement %
4

output conditions for list B. List B is inserted into list v
A and the number of sublists, 1, is inserted into list A as

it has only one sublist. From this point the parsing of the d

¥l

AN A AT T L M ey W AR T Tt T N T A S N e N
R R r e Ty T Ty R o T I T S o it g T s e AT NS AR AT

N
N

-~

-

N e

-

.
’
1)

B T e £ 4 T T T R L

R A R o A T O S R R R T L T R G O O OO T W B D A T O OO OO

41
sourre program and symbolic executicn may continue with the

next statement in the source program.

x := 0 ;
A(pc,oc) -- before symbolic execution
A(1,B(pc,oc&x=0)) -~ after symbolic execution

Figure 12. Symbolic Execution of an Assignment Statement

4.2.2 1f _Then FElse Statements
The production in the Ada grammar for an if_then else
statement is:
if_statement ::= IF condition Then sequence_of statements
(ELSEIF_condition_THEN_sequence_of_statements)
/ELSE_sequence_of_statements\ END IF ; [6].
The nonterminal condition is a boolean expression and it 1is
the primary focus of this section and the section on looping
constructs. The nonterminal sequence_of statements is one
or more Ada statements. The nonterminal (ELSEIF_...) is an
optional construct that allows for an else if part of the
statement. This is another means of nesting if statements.
The nonterminal /ELSE_...\ is also an optional construct
that allows for a final else part of the if statement.
Previously, symbolic execution of boolean expressions
has only provided a two-way branching in the symbolic
execution tree. From the discussion on boolean expressions

in Chapter 3, it is apparent that the branching factor must

0 A OV W

LAt AL 1Y

TR TN SNV NI WUNY)

o o oL K

T

‘o

—~

»
>~
P

L

K
----- *mP el
‘f .\. ﬁ- "

.
o> g T4

-

-

g - M e

-y e -

- . - -

b

Dy A~ v A A A g %% e e - e el .
A A T N g o I O R N A N T L S N NP,

Cai s b VAR PV R R R

Iy

By 3p AVE AR 8% SIS ATE AT 907 R0 e 00 0o 0V Do8 0,8 B0 e e g Bat Sat o0 gyt A Pati’ 100 ath" ol e oS~ 0" gl gy i) gty

42
accomodate the multiple input conditions that can occur in
the boolean expression. In particular, this branching
factor was determined to be 2 raised to the nth power for a
boolean expression containing n simple relational operators.
In some cases, a boolean expression may have several simple
relations and the branching factor may get rather 1large.
However, in most cases, the number of simple relational
operators will not be more than two or three. So, the
branching factor will usually not exceed eight for a given
boolean expressicn. In light of this, modifying symbolic
execution to branch according to the multiple input
conditions 1is practical and will provide a higher level of
confidence in the correctness of a program.

Prior to recognizing the if then_else statement, the
parser will recognize its boolean expression. While the
parser is in the process of reducing tokens and nonterminals
to a boolean expression, it will recognize each of 1its
simple relational expressions. At the point that each
simple relational expression is reduced, the tokens for that
expression are on the top of the token_stack. When the
reduction occurs, the action 1is to place a copy of the
tokens for the expression into the relationsg_table. When
the reduction occurs for the entire boolean expression, all
of the simple relational expressions are in the

relations_table. At this point, all of the tokens that make

AT P S P
o &

3 &

e oo AL

‘ate

r e &

2 a_w_ -

o

e "‘ B AL

¥

b X R Lo

W AL

5,0 0al Gl U0 e e 6 U N 0 00 0 8 0 A a0 S et S8 a0 Attt "ot aiik ati oA el oPa-a 1A il oA N0 Ul AR i R" 8" "o 0 %ol U LV RO VO

- o
~_ -
.

=,

43

Procedure Generate_ New_Nodes

- remove the tokens for the boolean expression from the
token stack and place them into the boolean_expression)
string. ‘

- extract the pc and oc from the current_list using
procedure Extract_Value from the CAIS_String Item o0
package.

T X

~ generate the multiple input conditions based upon the
relations in the relations table. .

- for each set of input conditions loop : ‘

-- create a new node using procedure Set_To_Empty_List
from the CAIS_List_Management package. W

-- AND th2 pc from the parent list with the input -
conditions for the current loop. .

~-- insert the oc into the new node wusing procedure »
Insert from the CAIS_String_Item package. t
t

-- insert the new pc into the new node using procedure .
Insert from the CAIS_String Item package. ‘

~-- evaluate the input conditions against the
boolean_expression. If the value is true, place a
true marker into the new node. Otherwise place a
false marker in the new node. Use procedure Insert
from the CAIS_String_Item package.

- ja_w_=

-- insert the new node into the current _list wusing
procedure Insert from the CAIS_List_Item package.

Y gt
= -

- insert the number of new nodes into the current list
N using procedure Insert from the CAIS_Number_ Item
package.

VS5 .

Figure 13. Procedure Generate_New Nodes

~ o %
Co A

up the boolean expression are on the top of the token stack.

P

The action for the reduction of the boolean expression is a

D o
R B

call to procedure Generate_New Nodes. Figure 13 shows the

o 2o 2 S e

Yy

L, ", TN S G e A T R e N LA BN A A At S SN LA CRE N
zho.nn,a.‘.,o‘i-.,l.l... AT o o o o 20 Loy, o Py " S Iy

- i
ts, 10!‘- G0N,

PR BN A SR T Y

44

algorithm for this procedure.
As the parsing continues, the "then’ portion of the
if_then else statement is encountered. The next reduction

to take place in the parser that is of interest is for the
first statement in the then portion. The sequence of
statements that make up the then portion are symbolically
executed prior to the parser reducing then to the
sequence_of statement nonterminal. In other words, since
the parse proceeds left-to-right while the reductions occur
in a bottom-up manner, nested statements must be
symbolically executed prior to the symbolic execution of the
nesting statement. This implies a rather recursive manner
to the symbolic execution when one or more statements is
nested within another statement. In the case of the
if then_else statement, the boolean expression is reduced
and can be processed before the nested statements of the
then and else parts are encountered. So, the new nodes
created in procedure Generate_New_Nodes will exist when the
point is reached to begin symbolically executing the nested
statements.

The symbolic execution of these nested statements will
result in nodes with incomplete pc’s and oc’'s. This is due
to the fact that these statements are symbolically executed
without knowledge of which node would become its parent.

Upon the reduction to the nonterminal sequence of statements

L I'ulcb

" t 4 et

‘\.”" i’y) '\).‘\ '\-"y.ﬁw:n* IF.'F“""* AT IS T)

et I

ot

" %ty

CA R T A

'l

-
(]

T A AR RPAIN A L

AP
e Oy

s

DT IR A
LN e,

]
w

PR R R R A R R R R R O L O S R T I R S

I U Y

45
for the "then’ part, the sequence will be in a partially
completed list structure. However, this list structure will
not have a parent at that moment. For the case that thi.
list represents the then portion of an if then_ _else
statement, a copy of this list can be placed into each node
that has a true marker from procedure Generate New_ Nodes.
Copies of the list can be created by calling the procedure
Copy_List from the CAIS_List Management package. This
procedure will have +to be called for each copy that is
needed. The only remaining step to perform is to AND the pc
and oc of the node receiving the list with every partial pc
and oc in the list structure.

This same recursive process must occur for the ‘else’
portion of the if_then_else statement (if one exists). A
copy of the new list structure must be inserted into each of
the nodes containing a false marker. Then the pc and oc for
every node in the list structure must be updated as
described above. The true and false markers can be removed
once the list is inserted into the node.

In the event that the if then_else statement has an

“elseif” part, this represents a nesting of another if

statement in the else part of the outer statement. Again,
the same process applies to this nested if_ then_else
statement as before. The only difference is that each node

that evaluated to false at the outer 1level obtains as

» 9%, 978 2

45,00 8Y920%0,070 0V 070,070, 0°0.0 b iaat e &' RO R Y X TR R PR OO AR TS

R] o - AN e NN PR S A R -t N -‘"‘ ----- SRS V-v_-rn --.-‘h-*-.a
o .\.“t.l'u AN tc.t'-. Oy -..‘.‘l'c, s A% AR CR AR LR Y - o '(‘ 2 WAL,

\d

L@y

-~
!.{

SRS S

2ot]

i

7A@ b

PA R DX
e

-
%

*,
L

s

F

4

2

4\,
Z

LSS SAS|® s
& -

rilss

oo O

]

o

2 '.i “fa® ¢ ‘ Lu\.. ‘ oo

n

I gav el v ghad fod favo i Sae ¢ P ol T T T N

Nt LR Y St A SR A A A A F LA R BD AP AL AL Gp Vot A AR RS R R R A A 40 A wh i e i T R VIO RY

46
children a complete set of nodes generated from the symbolic
execution of the nested boolean expression within the
“elseif” part. This process repeats itself recursively each
time another “elseif” construct is encountered.

Once the final “else’ part is symbolically executed and
all the 1lists are inserted into their parent 1lists (with
pc’s and oc’s updated), the parser recognizes the outer
if_then _else statement and performs the reduction. From
this point, the parsing may continue on to the next
statement in the source program. Symbolic execution will
proceed for each leaf node in the list structure.

Figure 14 shows an example of an if then_else statement
with a somewhat complex boolean expression. Prior to
symbolically executing the statement, the parent is simply
the 1list A. The boolean expression contains three simple
relational expressions U, V, and W. Accordingly, these are
placed in the relations_table. From these three
expressions, there are eight sets of input combinations for
the boolean expression. All of these input combinations are
evaluated and new nodes are created for each set. The list
structure is shown for the completed symbolic execution for
the entire if then else statement. Lists B thru I are

sublists of 1list A but are shown outside of 1list A for

clarity.

S e
P AR
.) NI

.
T

N "l'-

PR

L gy SN o o8 o | &

ke
AT
o M W W

e ARA wa WA tn . BA" EAAYA " a WA aY A Ma B €2t e P PO YOS R P TUIT SO TOS SRS TR Sy Tl I Y YOIV R TOR L R w vy
re, ag'6.0 0 0% u 'e gt VWUWN C $;

b

;.t

. 47

N

i

:a If ((U AND V) OR W) Then -- if_then else statement

i X := 0;

N) Else

b X := 1;

2 End If;

'

A.

o

L A(pc,oc) -- list of parent before symbolic execution

b A(8,B(_),C(_),D(_),E(_),F(_),G(_),H(_),I(_)) -- after
B(1l,J(pc&U&VEW, oc&x=0)

3 C(1,K(pc&U&V&!W, oc&x=0)

;.; D(1, L(pc&U&!V&W, oc&x=0)

0 E(1,M(pc&U&!V&!W, oc&x=1)

2 F(1,N(pc&!U&VEW, oc&x=0)

- G(1,0(pc&!U&V&!W, oc&x=1)

. H(1,P(pc&!U&!V&W, oc&x=0)

o I(1,Q(pc&!U&!V&!IW, oc&x=1)

ul

R

¢ Figure 14. Symbolic Execution of an If_Then Else Statement

W

fj 4.2.3 Looping Constructs

"2

) The Ada looping constructs introduced in Chapter 2

e

f were: for, while, and exit_when constructs. The while and

z exit_when constructs both involve boolean expressions upcn

[}

5 which the decision to remain in the loop or leave the loop

¥

¥

[lies. The for loop does not involve a boolean expression

- but rather the number of +times the 1loop iterates 1is

'n

i determined prior to entering the loop.

} The production in the Ada grammar for the for loop

&: specification is:

A

, iteration_scheme ::= FOR loop_ parameter_specification [6].

A

™ When this production is recognized and reduced, the action

?

)

b,

N

- - N - - - - . - I R) - e R LI N L W L P
A e I A A e A R A S NN LHLRY

N

........ A af L

RTOR T YRR YO IO YO OOV IS L ™

Jag magmay-y—ar gy g K

AT N

. -

PV N u KL N N U N N RN U YU L W TUTYE 1;‘
l'|
(0
o
)
”
4
]
48 g
¢
taken 1is to call procedure For_ Loop. Figure 15 shows the)
algorithm for this procedure.)y
’[F .
Procedure For_Loop -
4 - extract the loop parameter specification tokens from the ;;
token_stack and place them in the statement_string. A
r
- create two new nodes using procedure Set_To_Empty List o
from the CAIS_List_Management package. :
- extract the pc and oc from the current_list using ﬁ
procedure Extract Value from the CAIS_String Item .5
! package. A
{)
- insert the oc into both of the new nodes using procedure -
Insert from the CAIS_String_Item package.
o
’ - AND the pc with "loop_variable = first_loop_value’ ﬁ
{
'
- insert this new pc¢ into one of the new nodes using %
procedure Insert from the CAIS_String Item package. i'
- AND the old pc with “loop_variable not in range’ ﬁ
"
- insert this new pc into the other new node using h:
procedure Insert from the CAIS_String Item package.
- insert both new nodes into the current_list wusing S
; procedure Insert from the CAIS_List_Item package. bt
- insert a 2 into the current_list using procedure Insert >
from the CAIS_Number_Item package. »
Figure 15. Procedure For_Loop L
. ",
3
; Procedure For Loop creates a two-way branch in the $
D Y
symbolic execution for a for loop as described in Chapter 2. f
Symbolic execution continues for the node whose branch 3
~
: enters the loop. The body of the loop is a sequence of f:
1Y
' statements just as the "then” part of the if_ then else 5
b
N
N
i N
™~

. _ - . - - - o~ o - . - . . o -
Y T i i T g v B i i S A O T "-.'.\'-.’-..'s."'\\':\. e AR AR WA,
Rt i N W » a L, » O ot o ot N A . P . .

.
fl A at™ g™\, o

N T T S ST L ST W P TR G O T T R ST O TR o T T P N R A Y MR W A M M A UN L YL

2%
4
X
3
49 o3
1::
statement contained a sequence of statements. This sequence »
"
is symbolically executed and the resulting list becomes a ?t
2
sublist of the node entering the loop. Upon encountering :ﬁ
]
the end of the loop, the grammar production for a 2
loop_statement is reduced. When this occurs, the symbolic ‘3‘
execution for both branches with the next statement ';
ok
following the loop. ;
Figure 16 shows a for loop with 1its corresponding ;i
before and after tree list structures. L'
!
"
For i := 1 to n loop ?{
X := x+1; n
End Loop; X1
&
A(pc,oc) -- before]
3
A
[
A(2,B(_),C(_)) -- after &l
B(1l,D(pc&i=1, oc&x=x+1),pc&i=1,0c) *
C(pc&i<>1l..n,oc) !n
n.::n
Figure 16. Symbolic Execution of a For Loop N,
N e _ 2
-~
Note that the branch node entering the loop, B, also ‘
contains the node for the assignment statement within the t%
-]
loop. This represents that the entire 1loop has been N
hY)
*
symbolically executed and the process may continue with the :ﬁ
next statement in the source program.):'
s
=, J
The production that indicates a while loop in the Ada :ﬁ
grammar is: o
]
Bttty
’ .‘0
1 4
o
,

BTN N3 Y SO YA M DOV B M T p W Y b By S B S e R

R O I R O mTm re 498 350 875 478 8% 0% F A AN AN A% % A0 2% ' A e 4 e AN, TSR Salday wah Bah oy vy

d
J
d
J
*

50 t

iteration scheme ::= WHILE condition [6].
Just as 1in the if then_else statement, the nonterminal r
condition is a boolean expression. When the boolean g
expression 1is recognized in the parser, the procedure
Generate_ New Nodes is called as described earlier.

Similar to the tlLen part of the if_ then else statement,
the sequence of statements in the while 1loop must be

symbolically executed prior to the parser recognizing the

'
N,
while loop body. The same nested process as described s
before must be undertaken. The list structure representing '
one iteration through the loop body must be copied and ‘
inserted into each node that evaluated to true. Again, all f
o
pc’s and oc’s in the list must be updated as described
earlier. Once this is complete, the parser reduces the loop
construct and symbolic execution may continue for every leaf ?
node in the tree list structure.
While (U AND V) Loop 3
X 1= X+y; :
End Loop ; "
A(pc,oc) -— before X
A(4,B(_).C(_),D(_),E(_)) -- after '
B(1l,F(pc&U&V, ockx=x+y),pc&U&V, oc) J
C(pc&U&!V, oc) <3

D(pc&!U&V, oc)
E(pc&!U&!V,ocC)

Figure 17. Symbolic Execution of a While Loop

LAt AWy o o, -r'"(\- “'l“\-'
I

(-
LT O AT Nt AT DN

TN AN T DRGNP W T Wy W Xk F i FUNAIRR AN

51
Again, note that the branch node, B, that goes into the loop
also contains a node, F, for the assignment statement in the
loop. Furthermore, the boolean expression contains two
simple relational expressions which require the four-way

branching of the loop.

The exit when construct is similar to the while 1loop
except that the exit condition (boolean expression) does not
necessarily occur at the bedinning of the loop. Following
the process for the exit_when construct presented in Chapter
2, the symbolic execution of the loop up to the exit_when
statement will proceed as if a loop has 10t been entered.
This 1is due to the fact that loops are only symbolically
executed once and there has been no branching due to the
loop structure to this point. Once the exit_when statement
is encountered, it is handled exactly as the while 1loop
except that the nodes whose boolean expressions evaluated to
false enter the loop. Those nodes whose boolean expressions
evaluated to true skip the rest of the loop. As with all
other constructs, symbolic execution continues for all
leaf nodes following the end of the loop.

4.2.4 Case Statement
The production in the Ada grammar for the case

statement is:

case_statement IS CASE expression IS

case_statement_alternative(case_statement_alternative)

4
Y
N
LS
’
Y
.
¥

v

T
oy ‘-'AO.}

P R R R T I A R N TIY I T, 0 . ~ -, At YA YA -~ YA
.1~ X --- f')' . WY !.,-. .,.i.',-“ _,2\1 - ylelatels ,f Ly '. A. -"_..\f\r\r\- ‘.v;. .'r-.- - - ' ».‘ ‘ '. ..' \

AP S W Uit a3 at N 8t g% atd ot i e lN B0 8 i g R AT B UB A Ul 0 a0 18N 5) VAl RS 00 el tut ik dad CRTUR IR R R R T RO RIVATRZUIUY RIGT R R AR R
’ D

. :
; g
by 3
N 52
¥ t
t END CASE ; [6]. z
E The nonterminal expression represents some type of variable h
é such as a simple variable, array position, record variable ﬁ
! etc. .. The nonterminal case_...(...) represents a sequence]
i of when clauses for the case statement. Y
; The first reduction of interest in the parser is the ;
Y reduction to the nonterminal expression. When this 9
b reduction occurs, the variable is taken off the token_ stack by
] and placed in the statement_string. This is used to update :
; the pc’s later in the process.
i The next reductions to occur are all involved in the ﬁ
E statements that comprise the body of the first when clause. j
Again, as in the if then_else statement, a recursive level ;
; of symbolic execution must occur to process the sequence of .
E statements of the when clause. This repeats for each when %
% clause encountered in the case statement. Once the sequence 4
: of statements is processed and the list structure is built, &
f the reduction for the individual when clause occurs. At }
: this point the action from the parser is to call procedure r
When_Clause. !
Figure 18 shows the algorithm for procedure E
5
: When_Clause. This procedure completes the symbolic ;
5 execution tree for one of the options in the case statement. ;
; It will be called once for each when clause reduced. Upon ;
) completion of the case statement, symbolic execution -

4

" T T TR AT ST AT W W TR, S S O R o i Y e i T N A e e ‘
S R R T T 0 At N el i g i e oty AT N o T T N o A A I AP A I NI AT AT A A T

ML, L WL Wh WU U DL W WA SRR O I P IO IO XY

Procedure When_Clause

extract the pc and oc from the current_list wusing
procedure Extract Value from the CAIS_String Item
package.

create a new node for this when clause using procedure
Set_To_Empty List from the CAIS_List Management package.

insert the oc into the new node using procedure Insert
from the CAIS_String_Item package.

extract the case option value from the token_stackl

append the variable in the statement string with an
equal sign and the case option value. If the value is
“others” +this will become a sequence of variable <> all
other option wvalues.

AND this input condition with the pc from the parent
node.

insert this new pc into the new node using procedure
Insert from the CAIS_String Item package.

insert the list structure for the sequence of statements
into the new node using procedure Insert from the
CAIS_List Item package.

update the pc’s and oc’s in the inserted 1list as
described earlier.

Figure 18. Procedure When_Clause

continues with the next statement for each leaf node in the
tree list structure.

Figure 19 shows a case statement with the list
structure from both before and after symbolic execution.
Again, note that the list structures for nodes B thru D are

shown outside list A for clarity.

-
- e - o o~ e
el A T G A R S L A R AN N

T A e W

P

- -

-
-

- b S

-

- A e

XY

R O N I N T A T R O O R T U WU WU S "0 0 L A .8 .8 0 076 0 el B 8,0 Faf 5.4 0.8 Vol tpb pt - 0 Mgt

54

Case X Is

When O => flag := false;

When 1 => flag := true;

When others => flag := true;
End Case ;
A(pc,oc¢) -- before
A(3,B(_),C(_),D(_)) -- after

B(pc&x=0,oc&flag=false)
C(pc&x=1,o0c&flag=true)
D(pc&x<>0&x<>1,o0c&flag=true)

Figure 19. Symbolic Execution of a Case Statement

4.2.5 Procedure Calls

The Ada grammar production for a procedure call
statement is:
entry_call_statement ::= entry name/actual_parameter_part\ ;
The nonterminal entry name/...\ contains the procedure name
and a parameter if one exists. When the reduction for the
entry call_statement nonterminal occurs, the procedure
Procedure_Call is called. This procedure is shown in Figure
20.

The process of creating an n-way branch in the symbolic
execution tree for the n I/0 pairs from a procedure call was
discussed in Chapter 2. This results in a considerable
amount of time saved by not having to execute the procedure

each time a call to it 1is encountered. Rather, it is

A Sl

cyfe ds "Wy B N N T w A o, v T AT o W T g P W o r .-
e L e A AN o A AN ER RTINS NN O QO

I I T R L R M T R N R O e T R O R R R M R e R T R T A R ow LR W e Mg W oI et 0% Sg* gt Nt

o e A

55

Pl R A

Procedure Procedure_ Call P

; - extract the pc and oc from the current_list using
¢ procedure Extract_Value from the CAIS_String_Item)
package.

- for each 1I/0 pair from the symbolic execution of the
named procedure loop

-

-
-

-- create a new node using procedure Set_To_Empty_ List
from the CAIS_List Management package.

-

-- AND the oc from the parent node with the oc from y
N the I/0 pair.

R -- insert this new oc into the new node using
procedure Insert from the CAIS_String Item package.

~- AND the pc from the parent node with the pc from
the I/0 pair. i

PR

-- insert this new pc into the new node using
procedure Insert from the CAIS_String Item package.

-- insert the new node into the current_list (parent) ¢
using procedure Insert from the CAIS_List_Item
package. t

-

AL

- -
-

- insert the number of new nodes into the parent node :
using procedure Insert from the CAIS_Number_ Item .
package. J

A]

Figure 20. Procedure Procedure_Call

g

symbolically executed once, and the I/0 pairs are saved to ?

R E

an output file. When the procedure is called in the source

program, the 1list of 1/0 pairs is all that is needed to

expand the tree for the procedure call. Upon completing <

-
-

o

symbolic execution of the procedure call, the execution may

continue with the next statement in the source program as

- -

- "

W X
‘ -3
1

‘:'.I';\’n l.g / ' ! l’nl . 4% 0 . l‘ Q‘. f ") ‘1

Y B T N L R T T A
' ‘....’.‘ .h. .r.r J‘-FJ' .ﬂ -r(\..-.r.r.r.‘-v-.r o

R R T e T O N N R o R R R R R O T T O A T T T T i T e e ™
)
i
]
f - N

o e

-
-

56

-

before.

4.2.6 Design Wrap-Up

At the end of each subsection a statement is made

e v e e
-

about how the symbolic execution continues after the

2 statement was completes. In particular, the symbolic
E execution continues to the next statement for each leaf node
g in the tree list structure. The leaf_ list from the data
: structures in Figure 9 contains a list of the leaves in the ;
? tree list structure.
? Upon completing the symbolic execution for a given

statememt type, the leaves in the list structure are placed 3
: in the leaf list. As the symbolic execution for the next 5
4 statement completes, a copy of the subtree list is made for 2
N, each node in the leaf list. This can be accomplished using E
% procedure Copy_List from the CAIS_List_Management package. E
q Each copy must be traversed to update the pc and oc as
I\ described earlier for nested statements. As each copy is f
ﬁ being traversed, its leaves are saved in a new leaf list for E
4 g

the next statement symbolically executed. Once all the
copies have been traversed, the execution proceeds to the
next source program statement.

Finally, at the end of the source program, the pc’s and
oc’s of the leaf nodes make up the I/0 pairs for the N
program. These pairs are saved in an output file for

further use or to be printed out as results.

AN P R R el A D

S h T B
\

PN

-

-

- 0

[e s WS 4

R e pub)

NOUANNWY

A AR R, Mot Bad A0To02% 60" a1 a0 aVE 1 2% 2 8. 290 8 0,278 19,376,814 W8 V2l ot Yad ¥ 0 0at b B0 g%,

4.3 Summary

This chapter has presented the detailed design of the
symbolic execution tree package for the I0Gen system. The
major data structures and procedures for this package have
been described in detail as well as being presented in the
figures. Symbolic execution for all of the Ada constructs
discussed in Chapter 2 was covered along with the extension

for handling boolean expressions.

4t e g Ll 8, A 1T o T AT NN AT A AT AN S F A S e S I N e DN N L N S e St

¥ R0, By Big 4Va 4%

NS

rr

~—

A%

B A S

-
‘3

A—n‘.o’.

» e

-y

it out R §

P R I N

re il

LN

R I |

f

S

-

LY

PR R R

o -

L

‘@ - - .

T o

A 0.0 Tad Fal AR S8] . 4"t 0.0 vl MY LS RO R U SO OO SO U O RO RN =L OO RS)OO O OO

Chapter 5
Case Study
The sample program in appendix A was developed to
provide a case study in the improved error detection
capability of IOGen. Program triangle takes as input the

lengths of the three sides of a triangle in descending

order. It then determines the classification of the
triangle. In this case, the triangle classifications are:
equilateral, isosceles, acute, obtuse, and right. If the

lengths provided to the program are out of order or do not
represent an actual triangle, then the program returns an
invalid indication.

The triangle program has one error purposely inserted

to test the two methods of symbolic execution. The two
methods are embodied in the processing of the I0Gen system
before and after the design of Chapter 4. The error in the
program occurs in the third if statement. The statement
should read : If ({(A = B) AND (B = C)) Then...
An extraneous greater than side was inserted in the right
simple relational expression. The result is that in some
cases an isosceles triangle is incorrectly classified as an
equiiateral triangle.

From the path condition coverage symbolic execution
of the program, six I/0 pairs are generated. These I1/0

pairs are presented in the appendix along with a set of test

....................... W AT AT R ISR PO L DL
W %\". -.I-\.,\. .-.-\.~.’.\. e e Y A A A A 'h'-'\- ,., N\:}ﬁ\\ s'- \‘\

,’ N

l‘

E v B _A s = =

Ao

L R i

<, - - I\I‘.‘- .‘f'

59

derived from these pairs. One test set and its resulting
output from the program 1is shown for each I1/0 pair.
Clearly, it can be seen that it is possible for a rather
innocent appearing error to remain undetected. In this case
the error is not revealed.
X The 1I/0 pairs frcm the extended version of 1I0Gen are
presented next in the appendix. Upon creating branches for
! the multiple input conditions on the boolean expressions,
A there are 22 I1/0 pairs generated for the same program. One
D interesting item to note that has already been mentioned 1is
h that half of the I/0 pairs contain unreachable paths. This
means that input conditions for these eleven pairs are
) impossible to satisfy.
From the remaining eleven I/0O pairs that are possible
to execute, a set of test cases was developed. These test
; cases are shown following the I/0 pairs in the appendix.
The second test set reveals the error in the program. For
the inputs of 4, 4, and 3 (which represents an isosceles
triangle) the program indicates that the triangle 1is
equilateral. This is exactly the error described earlier.

So, by symbolically executing the program based on the

design presented in Chapter 4, the error is now detected.

b, This case study has illustrated the extra benefit
afforded by extending symbolic execution to cover the

1 multiple input conditions on boolean expressions. This

ARNERTL v

- rum . oy x ~ LR IR TENE T R T S I N L R T R I S] WO LN LT A W
R G B L T s T o N e s A N N A G A N A A e e’

X

10,8 Dal 0gh ot a8 829 Ra® a¥ AC® 640 Pig® Ua® 150 ANR 0 0°aTe a0 oty gt aUM OV A 70,0 000 Bad 0o Vot Wb eat gl Bab Bab v U VOV UV IV WOV I WA R IX

s .
LN 5

60

K

chapter has outlined the execution of the samfle program

VW . py
.

A

shown in Appendix A for two methods. This case study has

also raised one issue that warrants further analysis and

W X X
-

research 1in relation to boolean expressions. This issue
pertains to the generation of impossible input conditions

for a large percentage of the I/0 pairs. This is dicsussed

WX NTA

I3

in Chapter 6 in more detail.

e
-

CxA “._.- ‘-\,:‘ g -

“

PNIE)
(I)
4

3
L%]
Eands

B i e e~

by
»

TGgIv T

oy = e -
Iy)
¥ e v e s

- WV T TR Y

T 2RPREEE

r2EEL

-
o

F NS

)("

)

Fy

P . - »
AR NN MU UL MU NUNC W " 0% 0% et 0at Bat Iu"| a% el .h,“. _‘_ .

* fat e
- - - - - - - - -

et gt a0 gat- XYY RY . 92t fat
WL W W W - Wl VWA WL

-

- W

WO T W R, .

Chapter 6

Current and Future Research for I10Gen :;

LY

Other topics of research in relation to I0Gen presently :

3

(

being conducted primarily focus on exception handling and O
tasking. Exceptions can be subdivided into two categories. LYy
I~v]

~3

One category 1is implicit exceptions. These are the Qﬁ
]

exceptions raised by the Ada language environment when a run ;‘
¥

9 time error occurs in the execution of an Ada program. Some ?
4

of the discussion in Chapter 3 of this thesis touches on ::::.:
(]

this topic. The other category is explicit exceptions. '&
\ These are exceptions defined within the body of the source f:
program. These two categories of exception handling are the F:
basis of research for another thesis concerning IOGen. ;h'
The notion of applying symbolic execution to the Ada ;Q

o> !

Nt

tasking capability is the focus of another area of research. ~
o

LS 4

Symbolic execution is a static analysis technique. Tasking, ;
on the other hand, introduces parallel activity for a ;
program to perform. Needless to say, it remains a very 5g
difficult chore to extend the theoretical and practical ;
; basis of symbolic execution to accomodate the temporal f
information in tasking.)
One area of future research that occurs as a direct E‘
result of this thesis peirrains to simplifying the path 3
B
conditions for many of the nodes in the tree. In generating ;:
)

=

*

nodes for all of the multiple input conditions to boolean :
\ 3
e

.l
3

b

}

[

c\)

3

L1 o o o S AN A b T P P L s X g P 0 Wi e T T N T T 2 TN e ST T

A8 AT € 4% et A,

TR n, Y

W e W, e W . %
s T T Ao, O R W Vi R P N, P

Y - » - - v e "yl Y ¥R AT e
VL W U L\l ha® 0y St 60 Sis KU T A 5. AV AN oML N DR oV SN oSt ol - -

62
expressions, several of the resulting paths are logically
impossible to execute. From the sample program and its I/O
pairs in Appendix A, it can be seen that quite a number of
impossible paths are generated. If a mechanism were
designed into I0Gen to simplify and identify contradictory
path conditions prior to generating nodes for them, these
branches in the symbolic execution tree could be pruned out
of the structure. This would result in the savings of a
considerable amount of memory and execution time. An
extension that would save time and memory would be a
worthwhile extension.

This chapter has presented a brief summary of two
current areas of research related to the I0Gen system. Also,
one area of future research has peen suggested. This future
research could result 1in the streamlining of the 1I0Gen

system to make it much more time and memory efficient.

Ly 5 P RN R o R PRl G

Cle)

Sy, 0cn ¢

B2k Nt 0.3)

'

e AR

oy

e

facs

GNPl S

-.-
"

5 ﬁ]j:c")f_f I,"'.h.'

DITASANN N

Ans o
]IJ‘I.

P2

A d

WA

5

¥

i,

o

PR R o XN O TR T T O R I W WL 0 W N W PSRN A LA R R RA LS WK

NN

Chapter 7
\ Conclusion
S|
This thesis addresses extensicns to symbolic execution
[8] for the Ada programming language. The detailed design

for a new symbolic execution tree package is presented in

Chapter 4 and it includes the simple Ada statement types of

assignment statements, if_then else statements, looping
constructs, case statements, and procedure calls. The
extensions described for accomodating multiple input

conditions on boolean expressions are also built into the
design. The symbolic execution tree package wutilizes the
CAIS list management environment and the interactions
between the package and the environment were discussed. The
interaction between the package and the other two components
of the system, ALEX and AYACC, was discussed.

A case study was presented to illustrate the improved

capability of the I0Gen system with the design from this

thesis. The case study introduced an Ada program with an
error in it. This error was not detected by the method
10Gen currently utilizes. Under the new design, the error

was detected.

Finally, two areas of current research related to the
same topic were briefly mentioned. Also, one suggestion for
possible future research was described.

This thesis provides a general framework for beginning

O A S P NN B IVON NN e e e N i e g g 4 TR
GOl S e AN o NPT N A W T SR)

AR AR A TR} o

5 ow g

RN D T N P

W E N e W
R AL A

*1

et x x" e

AP AL

w o}

. e e » LB R IR
’ "o DAL YRS
-

5 ¥ &

AN

VA LAY

\§~ W ~ ‘ ~"‘. .r“‘.n Y.

64

the enhancement of the IOGen system from one that only
provides assistance 1in path coverage testing to one that
assists with multiple condition coverage testing. This
system is still in its early stages of development. Upon
completion of several of the current and future research
issues related to I0Gen, it should prove to be an invaluable

aid to the testing and validation of Ada programs.

I, e e e N AR M AT AT N I L Th S R P e R

.'_ f\f\r\f -*

e

\ A

.
v
&

Tbd LA

"~ }ﬁ.ﬁ.;'v“r-?{'-"#_"' g

l‘. l‘ "*' ..

“, ‘v “v
- AN

.‘;‘{"- ..

K { X

!

-

A

AN

ooy
» ;l"',‘h

4’# LA RN

72l
Lo

TS 9
"'-l'-"'l_ '-

b

e m Ak e i a Rta Ata s vn gt 2% A a sl —ult walh ¥, a gt 2.0 420 o0 tal dall daf A B Cal Yut tl .8 h 8 L8 888,40 ' ¢°4. 0" 278 278" s'F 2% 288 s %¢ "1 F2 P """ . 0y’ ¢,
Yt ta® i Byt R T AN I KR SN M &, 3 ¥, ! 4 ¢, . URK CAY 4 "

[1] Ada Joint Program Office. Military Standard Common Ada
Programming Support Environment (APSE) Interface Set
] (CAIS). Department of Defense. pp. 419-490, 1986.

h
References %
|]
[]
"

[2] G. Booch, Software Engineering With Ada. Menlo Park, \
CA: Benjamin/Cummings, 1983.

‘ [3] D. Clark and L. Richardson, "Applications of symbolic NG
evaluation,"” in Journal of Systems and Software, vol.
5, no. 1, pp. 15-35, Jan. 1985. !

[4] R. Dunn, Software Defect Removal. New York: McGraw- 'r
v Hill, 1984. Ky

{ [5] J. L. Facemire and T. E. Lindquist, "Using an Ada-based ﬁf
abstract machine description of CAIS to generate %
validation tests,” in Washington Ada Symposium, !
Washington D. C., 1985.

[6] G. Fisher, "A LALR(1l) grammar for ANSI Ada,” in ACM Ada
Letters, vol. III, no. 4, pp. 37-50, Jan./Feb. 1984.

Rt

[7] 8. L. Hantler and J. C. King, "An introduction to
proving the correctness of programs,"” in ACM Computing
Surveys, vol. 8, no. 3, pp. 331-353, Sept. 1976.

Mo i @ o
. > &

KA

[8] J. R. Jenkins, "Automated generation of input/output
pairs for the CAIS validation test suite,” MS Thesis,
Department of Computer Science, Arizona State
University, Tempe, AZ. May. 1986.

- v s
2

1 [9] J. R. Jenkins and T. E. Lindquist, "Test-case
generation with IOGEN," in IEEE Software, pp. 72-79,
Jan. 1988.

[10] Jian, "ALEX, AYACC," MS Thesis, Department of Computer

Science, Arizona State University, Tempe, AZ. May.
1987.

i e

3 T

{11] T. E. Lindquist, "Research in Ada interface validation
and the CAIS operational definition," Research paper,
Department of Computer Science, Arizona State
University, Tempe, AZ. Sept. 1986.

_‘f'n‘{‘l

SAE AT

.)"“'ﬁ

; [12] A. D. McGettrick, Program Verification Using Ada. New
York: Cambridge University Press, 1982.

=g~ _a

"'

'

¢

. R —y -y L u - ‘N R RN kS v 239 = W P §

LTI RN MR b 0 AR ¥ i P 0 7 e a8 a8 R P N T 0 SR SR P AT o A, WA SN

VIR T S O Oy O O O R O O O T R U T Y I Y UV OV IV U A U U U U W W U WO IRV >

Ty
U
‘»I "
3 (
B * X
1 ~ ¥
) X
"l -
) *J
: 3
o) -3
. Appendix A ‘
B Sample Ada Program and I/0 Pairs 3
1 ,
’.
1 .
§
¢ L]
K, A
B LY
§ :
% ’)
’
: ~
K {
it
)
o \
;| ..
' by
c
oy)
D o
¥
{ .l.
3 A
X
y 3
5 3
: N
t
' "’
i 3
g
] y
: %
.
) ~
4| by
i N
. (]
']
7 N
) 3
: X
\ Ry
Pat
o\
b B
' LY
L) .
]
)
4
. .
')t
]
1' \l
3 "
!’ \

' , JOAT o O 0% W IO I SO0 : OO G PO P ity 0y R R P T L v
BTOA A0 A DAL DN AR A 000 o i I D D O MR M Mo Lo DT i L o S Y o

O TR P P B U T R T | AR T W W S

Procedure Triangle 1Is

A,B,C,D Integer;
Begin
Get(A);
Get(B);
Get(C);
If ((A >= B) AND (B >= C)
If ((A = B) OR (B = C))

If ((A = B) AND (B >=

Put("Equilateral");

Else
Put("Isosceles™);
End If;
Else
A := A*A;
B := B*B;
C := C*C;
D := B+C;
If (A /= D) Then

If (A < D) Then
Put("Acute”});
Else
Put("Obtuse");
End If;
Else
Put('Right");
End If;
End If;
Else
Put("Invalid");
End If;

End Triangle;

T T Y T O T L et W R A S R AR O P

67

AND (A < B+C)) Then
Then

C)) Then -- error occurs here

A L

v T o R S T e T A i€

C
-
|
e
!
-
-
>

»_ et

XL LA PN ITE

P

[0

- i Bl T A D e g N
222 ¥ B

"z -
L L

.vv':“x{‘,fr"_

T

. 7 7
P
-

w
3 il

vy 5
»
Sxts

,{ﬁ‘,ﬁ"‘v“‘l “¥

£
ay

&

&
S 5

-
-

2

»
x

I.I
LA

o Ty W -y -
AN }yﬁ

-

[ORLS UW USUAARAUA TN L LA S0 0 8 AN AT IR WL PR R S AV g R Y gN® ol e il “a SR piiate Quta S gt b ot 20 Bt Ryt d & 0a0 0,000 0 @ 1ta 0" 0 g '8 8% R 0" 021", ‘.\
¢
K
[]) 0
\“ 4
B v
K 68 '}
{‘ /
B I/0 Pairs from Path Coverage
i
ks Y
h I1: (A >=B) & (B >=C) & (A < B+C) & ((A = B) OR (B = C)) 3
X & (A = B) & (B >= C) s
! 0l: Equilateral
§
" I2: (A >=B) & (B >=C) & (A < B+C) & ((A = B) OR (B = C)) .
2 & '((A = B) & (B >= C)) \
D 02: Isosceles "
u I3: (A >= B) & (B >=C) & (A < B+C) & !((A = B) OR (B = C))
& (A*A /= B*B+C*C) & (A*A < B*B+C*C)
" 03: Acute
_ I4: (A >=B) & (B >=C) & (A < B+C) & !((A = B) OR (B = C)) h
B & (A*A /= B*B+C*C) & !(A*A < B*B+C*C) 3
¢ 04: Obtuse ;
N I5: (A >= B) & (B >=C) & (A < B+C) & !{((A = B) OR (B = C)) :
: & '(A*A /= B*B+C*C) "
. 05: Right "
[\ :: 4
- I6: !'((A >= B) & (B >= C) & (A < B+C)) ‘
06: Invalid 4
N ;
Test Cases
i Test Set Actual Output \
o 1. A=3, B=3, C = 3 Equilateral 3
f 2. A=4, B=4, C = 2 Isosceles
3. A=7, B=6, C=25 Acute
4, A=4, B =3, C =2 Obtuse
> 5S.A=5, B=4, C =3 Right 0
6. A=9, B=2, C=2 Invalid ;
W 3
L] 3
™ -
" The error is not detected .
: W
Ca)
Y)
. R
. ¥
)
' §
h)
Y Y
A 4
8
o {
DA, o R Tt et o o e T S o T I T T A T e o N A M S e e P e O

.,~v-“1‘“! g a¥ 4

I1:
01:
] 12:

02:

13:
03:
14.
04:
I5:
05:
16:
06:
17:
07:
18:
08:
19:

09:

I110:

010:

I11:

0O1l1:

v o
Qe 'c .""_‘w iy K A0 .n "

BN AL AN RN RSN UGN

NTRN TN TN "'.U" _‘ v ."

1/0 Pairs from Multiple Corn-ition

(A >=>B) & (B >>C) & (A < B+C) & (A

(A = B) & (B >= C)
Equilateral

(A >= B) & (B >= C) &
(A =B) & (B >= C)
Isosceles

(A >= B) & (B >=C) &
'(A = B) & (B >= C)

Isosceles

(A >= B) & (B >= C) &
'(A =B) & ! (B >= C)

Isosceles

(A >=B) & (B >= C) &
B) & (B >= C)

(A =
Equilateral

(A >=B) & (B >=C) &
By & '(B >= C)

(A =
Isosceles

(A >= B) & (B >=

(A = B) & (B >= C)

Isosceles

(A >= B) & (B >= C) &
'(A = B) & !(B >= C)

Isosceles

(A >=B) & (B >= C) &

(A = B) & (B >= C)

Equilateral

(A >= B) & (B >= C) &
B) & !'(B >= C)

(A =
Isosceles

(A >= B) & (B >= C) &

'(A = B) & (B >= C)

Isosceles

AU Ty

o, o

Y &' .-“ ".

00,0 0.4%,49,

C) &

(A

(A

(A

(A

(A

(A

(A

(A

(A

W AP LS

Coverage
= B) & (B = C)
< B+C) & (A = B) & (B = C)
Impossible
< B+C) & (A = B) & (B = C)
Impossible
< B+C) & (A = B) & (B = C)
Impossible
< B+C) & (A = B) & !'(B = C)
< B+C) & (A = B) & !(B = C)
Impossible
< B+C) & (A = B) & !(B = C)
Impossible
< B+C) & (A = B) & !'(B = C)
Impossible
< B+C) & !'(A = B) & (B = C)
Impossible
< B+C) & !(A = B) & (B = C)
Impossible
(A < B+C) & !(A = B) & (B = C)
o P T et e e

69

&

''''''''''

Lok 08

Fe Ll

Xy m-—

- ,.*—'r"‘v Tarx

A R ¥l on oz ol |
s 'y Yo K

e

re

A A ST

o _ o w0
]
LI

'I‘\ ‘i)"

"
3
)
»
'

"oy W a o

e o o

o

OO RO ¥

A}
[

XA RN

I12:
012:
I13:
013:
114:
014:
I115:
015:

I116:
016:

I117:
017:

118:
018:

I119:
019:

120:
020:

I121:
021:

122:
022:

OO KDDL OGRS Y X W RO TR AW ERAASA LA A E 074 2 4 2 A 0D 078 0 SV 00 oRR th ath oD g%]

70

(A >=B) & (B > C) & (A < B+C) & !(A
'(A=B) & !(B >= C) -- Impossible
Isosceles

B) & (B = C) &

(A > B) & (B >=C) & (A < B+C) & '(A
(A*A /= B*B+C*C) & (A*A < B*B+C*(C)
Acute

B) & !'(B = C) &

(A > B) & (B >=C) & (A < B+C) & !(A
(A*A /= B*B+C*C) & !(A*A < B*B+C*C)
Obtuse

B) & !(B

C) &

(A >=B) & (B >=C) & (A < B+C) & !(A
1(A*A /= B*B+C*C) & !(A*A < B¥*B+C*C)
Right

B) & !(B = C) &

(A >= B) & (B >=C) & !'(A < B+C)
Invalid

(A >= B) & !(B >= C) & (A < B+C)
Invalid

(A >= B) & !'(B >= C) & !(A < B+(C)
Invalid

'(A >=B) & (B >= C) & (A < B+C)
Invalid

'(A >= B) & (B >= C) & !(A < B+C) -- Impossible
Invalid

'(A >=B) & !(B >= C) & (A < B+C)
Invalid

'(A >= B) & !(B >= C) & !(A < B+C) -- Impossible
Invalid

- - - PO AL A O A S PR SR LU U R S PR o -’..I.-'--u’.-'
DU |. ' ,.M.A.‘u_, X, ""? -.. N L e N N T N A T AN A -

N

A B

d

2w

.
P

" £ 4" A

-

4% YT

\'r\"\':\':\'n\ \

PN YOI Y i YO PO Y0 W0 Y00 X0 TR R T R Y I R TGO T R T R R R T R e ¥ g ¥ 8a? 8e% Aa? e da® 020 B2V B g ba¥)% et gt be:

-
Y

[]
It A
[}

Test Cases

Test Sets Actual Output

-

Equilateral
Equilateral - NO!
Isosceles
Acute
Obtuse
Right
Invalid
Invalid
Invalid
Invalid
Invalid

- -

HFOQWOUONOUTWN -
ol e B B o B BB Bl
(I | T 1 | I 1 | O T A 1
NN OB IR W
solivelios BveliveRivsRve v llvs Bive Res)
S | | T T {1 0
W N b Wh WoW i W
aaaaaaaaoaann
| T 1 | I T | I TR
dwwuIhwdhbUuwww

[y

The error is detected.

! 0.'\'..\...‘.'u..‘ﬂ..l'ob..l.' . ' X '-* '.‘. oy 'u .-.*.l I‘t, gt . R T NI - W - .;'.‘;". ’,[

) > 0%, 895" B0 AT 00 W0 WP 070 0 0 0% 10 W0 00 0%, B lalal

