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ABSTRACT

#n eighteen-node, three-dimensional, solid element with 54 degrees of
freedom is presented for the finite element analysis of thin plates and shells.
The element is based on the Hellinger-Reissner principle with independent
assumed strain. The independent strain 18 divided into higher and lower
order terms. A modified stress-strain relation decoupling 1nplane and normal
strain is used to model thin shell behavior. Xumerical results demonstrate
that this element is effectively free of locking even for very thin plates and
shells. In addition, the element is kinemitically stable. In fact, the
stiffness matrix associated with the higher order independent strain is a

stabilization matrix.
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ABSTRACT

Title of Tnesis: Finite Element Analystis of Snell Structures with an
Ei1ghteen-Node, Three-Dimensional, Solid flement
Based on & New Mixed Fornylation

Michael Frederick Ausserer, Master of Science, 1987

Thesis Directed by: Dr, Sung W, Lee

Associate Professor
Department of Aerospace Engineering

An eighteen-node, three-dimensional, solid element with 54 degrees
of freedom is presented for the finite element analysis of thin plates
and shells, The element i{s based on the Hellinger-Reissner principle
with independent assumed strain, The independent strain is divided
into higher and lower order terms, A modified stress-strain relation
decoupling inplane and normal strain is used to model thin shell
behavior, Numerical results demonstrate that this element is
effectively free of locking even for very thin plates and shells, In
addition, the element is kinematically stable., In fact, the stiffness
matrix associated with the higher order independent strain is a

stabilization matrix,
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Chapter 1
INTRODUCTION

In recent years numerous finite element models based on the
degenerate solid shell concept [1] have been proposed for the analysis
< of thin shell structures [2-4], A distinct advantage of the degenerate
solid shell concept is that it can be used for finite element modeling
of arbitrary shell geometries without resorting to a specific shell
theory. However, when used in an assumed displacement formulation, the
performance of a degenerate solid shell element deteriorates rapidly as
thickness decreases. This phenomenon is called locking and results

from the inability of an clement to represent a zero inplane and

. v ¥ X X%

transverse strain state without disrupting the bending behavior [5].

One popular method used in an attempt to alleviate locking is

reduced/selective integration [6-11]. However, reduced/selective
integration has had limited success. In some elements the locking
effect is not completely alleviated [12]. More commonly, when the
order of integration is reduced sufficiently to alleviate locking,
spurious kinematic or zero strain energy modes are introduced to the
element stiffness matrix, These kinematic modes can be suppressed by
adding a stabilization matrix to the stiffness matrix calculated using
reduced integration [13,14].

An alternate method suggested by Lee and Pian [5] is to use a
formulation with assumed independent strain based on the
Hellinger-Reissner principle. A nine-node shell element based on this
approach performed very well on a variety of thin shell test problems

1
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[15]. This formulation provides a rational mathematical basis for the
reduced integration scheme [5, 16, 17],

Recently, Rhiu and Lee successfully developed nine-node and
sixteen-node degenerate solid shell elements using a new mixed
formulation {3, 4] which is also based on the Hellinger-Reissner
principle with independent strain. In this case, the assumed
independent strain is divided into a higher order and a lower order
part. The new mixed formulation provides a rational basis for
introducing a stabilization matrix to the reduced integration displace-
ment model,

Another approach to the finite element analysis of shell structures
that also allows for the mcdeling of arbitrary geometries without
invoking a specific shell theory is fto use a three-dimensional,
eighteen-node, solid element. In fact, a solid element is more
convenient than a degenerate solid shell element since it does not need
rotational angles to describe the kinematics of deformation,

However, when used in a conventional assumed displacement finite
element formulation this eighteen-node element performs poorly, It
experiences the same inplane and transverse shear locking that
degenerate solid shell elements do. In addition, there is a normal
strain locking due to the inebility of the element to represent the
condition of zero normal strain. The use of reduced integration
results ir spurious kinematic or zero strain energy modes in the finite
element model, Hence, the global stiffness matrix may be kinematically

unstable, Although many kinematically unstable elements can be used

with care, they are of little value for general purpose use.

2
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Therefore, in this study a new mixed formulation with assumed
independent strain [12] is applied to the eighteen-node solid element
to improve element performance., After a brief discussion of geometry
and kinematics of deformation, a new mixed formulation for solid
elements is presented, Next, the selection of assumed independent
strain is discussed in detaii. This is followed by a brief discussion
on the modified stress-strain relation. Finally, the performance of

the element is tested by solving several thin plate and shell problems,
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ﬁ Chapter 2

% GEOMETRY AND KINEMATICS

A Figure 1 shows the isoparametric representation of a three- !
0

dimensional, eighteen-node element, There are three displacement degrees
v
|
- of freedom at each node., Shape function polynomials are quadratic in 2
i h
:‘ parent coordinates £ and n, and linear in ¢. The linear coordinate g )
%
. is in the thickness direction of a thin structure.
lﬁ In addition to a global Cartesian coordinate system with )
¥ ;
N coordinates X, Y and Z, local orthogonal coordinate systems are used to ,

incorporate shell behavior into the finite element formulation as will
1% \
5‘ be shown later. In particular, local coordinate systems are defincd at )
b4
ﬂ' numerical integration points, This enables the use of the stress-
M)
fr

strain relation as well as strain components defined with respect to
Yo

the local coordinate system, For a local coordinate system, the three

J

¢ axes x, y and z are parallel to local orthogonal unit vectors 2, "
l». .!
o)
‘ 3, and a3, respectively. Local coordinate vector a, is chosen to be .
;l' ’
i parallel with either £ or n. These coordinate systems are chosen so
ot
| that the element stiffness matrix is invariant for a given element
W

geometry. The technique for choosing coordinate systems at integration
2 .
A
Y points is discussed in detail later. %
\
d Given these coordinate systems, the position vector X in the global |
) ~ .
n‘

coordinate system of an arbitrary point is
4y X 9
1 18
X X=9Y = )‘ Ni(E,U,C)Ei (1)
) i=1

z

1) ()
b 4
: ;
0. ¥
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A
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where N, is the three-dimensional Lagrange shape function at node i and
li are the values of X at node i. Similarly, the global displacement

vector U of the same point is

where U. is the vector of nodal displacements,
In matrix form, the linearized engineering strain vector EG with

respect to global coordinates is

[ v,

Voy
Wy
Yy * Vo

Vag + U,y

LU,Z + w,x)
where the comma (,) denctes differentiation, For a finite element

formulation, the relationship between EG and the nodal deygrees of

~

freedom vector g, can be written symbolically as

e =pfg, (4)

where gG is a matrix relating ¢

to g,. The strain vector in the local
coordinate system is found by transforming the global strain vector as

follows:

(5)
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‘ha et g
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WX
e=L
B=1

- —
®xx €yy €2z €xy €yz ®zx

8

G

In Eq. (5) T is a 6x6 transformation matrix and the superscript T

denotes the transpose.
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Chapter 3 t:
»
FINITE ELEMENT FORMULATION E;
b
Assuming small displacements and no initial strains (such as Y
thermal strains), the functional " for the Hellinger-Reissner )
principle is ‘l
'o
. Teo_ 1.0 3
el (e Lemge Celdly - W (6) o
€ »
where z&
= (T ¥
£ = Ley yy €2z €xy Syz €zx- (7) o
o
is the independent strain vector, No is the applied load term, Ve is [,
the volume of the element, C is a 6x6 matrix of elastic coefficients b;
—_ O
and ¢ is the local strain vector derived from the displacement field 5
given by £gq. (5)., The summation sign indicates assembly of all ‘
N
elements, o1
As proposed in reference 12, the independent local strain vector is i
e
divided into two parts as follows:
o
o
- - I
ETE Y Ey (8) :'
~
where ¢ and g, are the independent, local strain vectors with lower L
order and higher order assumed polynomial terms in £, n and g, Zél
respectively., Substituting Eq. (8) into Eq. (6) and expanding yields ;ﬁ
the following functional: g‘
o
W
-
A
[
),
7 \
\
H::t
k
oy
=

»
g
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In the present eighteen-node element the lower order independent
strains are assumed to be trilinear in g, n and . They are expressed
in terms of displacement-dependent strains evaluated using a 2x2x2

point Gauss quadrature rule, Specifically,

i(£.n,2)B(g4,n5,25)g,  (10)

where Ni is the trilinear shape function such that ﬁi=1 at sampling

point i of the 2x2x2 point integration rule, g; is displacement-
dependent strain evaluated at sampling point i, and €, Nj» &y are the
values for £, n and ¢ at sampling point i, Symbolically, the relation

between ¢ and q, is rewritten as

g = B(e.n,z)g

~

E(Esn)C) = 1 1 N1(EsnaC) E(E])n1ac])

The higher order cstrain vector is assumed to have higher order

RS REAMN

terms in £, n and g, and is written as

ey = Ble,nyz) g

N ‘ ‘ . . e ;- . . ‘
LA L R0, BTy OO AR A MR MR M AN DO o b OO e O (VI M LA LA W



-
'.‘-'!

— .
P

CE L Oy

-

'

-
P

h
g

\

IEEANTIN CRIARAR TR "

where P is the shape function matrix of higher order assumed strains
and a is a vector containing element strain parameters.
Introducing Fgs. (5), (11) and (12) into Eq. (9) yields the

following expression:

_g LT 1 1T T
=l (79 K Se*s 89, -7 Ha-g, Q) 2
where
K = JE cB+B CE-F LB av, (13a)
G =/pTcpav - fpl cB av (13p)
~ ~ ~ o~ e A~ ~ - e -
.
Ho=J2 CRav, (13c)

and Q, is the element load vector.
Taking §mp=0 with respect to g for each element yields the

following relationships:

GG -Hg=20 (14a)
and
-l
a=H"8g, (14b)

Equation (14a) or (14b) represents the compatibility equation for each
element in discretized form, Using Eq. (14b) in Eq. (13) results in a

familiar expression for LI follows:
Ko 90 - 95 Qg) (15)
Ke 92 - %e Qe

where the element stiffness matrix Ko 1s given by

Ke = K * K (15a)
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,': :
: and the stabilization matrix K. is given by :
N 14
Ks =6 W6 (15b) 1
[
: :
: After assembly over all elements, Eq. (15) can be rewritten as 4
.. J
Ly
' 1 T T
, =73 Kg-9Q (16) b
; ]
i where K is the global stiffness matrix, g is the global displacement N
4 ~ ;
4
' vector and Q is the global load vector, Setting §ng = 0 with respect Q,
| to g gives .
b)
: Kg=249 (17) o
4 3
which can be solved for g. Thus, g, is known, and the local strain i
( vector is determined as follows: ‘
) 1 :
! £ g tRHTGg, (18a) ;
<
[
; Stress g is determined by using the stress-strain relation and the by
)
. strain in Eq. (18a) as follows: i
)
g=C¢ (18b) :
4 3
h »
; As will be demonstrated in the next section the K matrix in Eq. :;
A ~
(13a) has spurious kinematic modes, The kinematic modes occur because "
\ .
' only lower order terms of assumed strain are used in constructing K- N
: When higher order assumed strain is properly chosen, the 55 matrix :
4 .
N,
plays the role of a stabilization matrix and the element stiffness X
matrix will be kinematically stable. Eﬁ
K A
Refore discussing the selection of higher order strain a few §
comments on numerically integrating the expressions for L in Eqgs. )
S
10 A
W
. \
b
s
\I
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(13a-c) are in order. Since g is quadratic in € and n, and linear 1in
¢z for an element with regular parallelepiped geometry, and L is
assumed to be trilinear, then £q. (13a) is integrated exactly with a
2x2x2 point Gauss numerical integration rule. In this case Eq. (13a)
reduces to

= gcre, (19)

where the subscript L. on the integral sign indicates a 2x2x2 point

integration rule. In other words, the K matrix in Eq. (13a) is

L
exactly the same as the stiffness matrix for the assumed displacement
model with a 2x2x2 point reduced integration rule. DNetailed
discussions of the equivalence between reduced integration and nixed
formulations are in references 12, 16 and 17. Assuming ¢, is at most
quadratic in ¢ and n, and linear in g, Lq. (13c) and the first integra)
in Eq. (13b) require a 3x3x2 point inteygration rule for exact
integration of the same regularly shaped element, The second integral
in Eq. (13b) is integrated exactly with a 2x2x2 point rule. Although
these rules are only exact for an element with rectangular geometry,

the same integration rules are adopted for elements with distorted

geometries,

11
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Chapter 4 3

HIGHER ORDER ASSUMEDN STRAIN

The criticai step in the present formulation is the proper choice
of assumed strain, Generally, the assumed strain should be as simple

as possible to avoid locking, However, an exceedingly simple assumed

strain field will trigger spurious kinematic modes that do not produce :
strain [3]. These kinematic modes are of two types; compatible and :
incompatible, Compatible kinematic modes persist even when two or more %
elements are assembled. In other words, compatible kinematic modes are E?
?q
modes that will show up in the global stiffness matrix. On the other '
hand, incompatible kinematic modes are suppressed when two or more E
elements are e sembled. Since incompatible kinematic modes have no 3
adverse effect on the global stiffness matrix, assumed strain can be ;
chosen to suppress only compatible kinematic modes in the element §
stiffness matrix, In addition, assumed strain terms must be chosen ;’
carefully in order to avoid reintroducing the locking effect, .
~
4.1 Local Coordinate System )
The typical result of choosing assumed strain as simple as possible ?:
is an incomplete set of shape function polynomials in P. In general, i
this leads to an element stiffness matrix which is not invariant, ;
Although invariance is not always important, it can be enforced by ;‘
assigning a specific local coordinate system for a given element L
)
geometry [18]. For an arbitrary thin elenent, two unit vectors ¥y and E'
¥, are defined at £ = n =g = 0 so that y, is parallel to £ and y, is N
'
12
™

[

l('

e T AR N e e e T AN

SO ‘-',"-c'\-’vf_s-,-\-:\ -




AU KT

€0 b a'h s’ 0 ‘O 008 47008 Yat Sad b ‘b L") ot Pl tas gt caa oo aly‘alh alo A tat o ale-at g0y gte-

parallel to n. The angle 8 between v and vy, is given by

l

8 = cos™? (¥y + v)) (20)

If 6 is less than or equal to 90°, then the a; unit vector in the x
direction of the local coordinate system is chosen parallel with g,
Otherwise 2, is chosen parallel to n. Next the ay vector normal to the
g-n plane is determined, Finally, unit vector 2 is found by taking
the cross product between a5 and a,. Based on the value of & for the
element, vectors 31, 3 and a3 can be computed at any point in the
element. In particular, they are calculated at each numerical
integration point. This definition of 3;» 3, and 23 guarantees a
unique set of local coordinate systems for a given element geometry,
and thus a stiffness matrix independent of choice of global coordinate

system,

4.2 Spurious Kinematic Modes

As discussed in Chapter 3, the KL matrix in Eq. (13a) or (19) has
kinematic modes which can be suppressed with the proper choice of
higher order assumed strain, Thus, when P is chosen properly, the 55
matrix piays the role of a stabilization matrix. In fact, for the new
mixed formulation the higher order assumed strain is chosen specifi-
cally to suppress kinematic modes [12]. Therefore, the kinematic modes
must be known before the higher order strain terms are selected.

Kinematic modes for the K matrix can be determined analytically

L
for an element with reqular parallelepiped geometry. For a cubic

element with sides along x = #), y = #1 and z = t1 and the global and

13
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)
local coordinate systems coincident, the displacement field can be ;
1
written as
4
V o2 . - . g
Vi = | by by by big | M (21)
W €0 ¢ ¢33 -« - Cg :
where v
o 2 2 2 2 22
M=L1 x y x xy y Xy xy° x7y
2 2 2 2 2 2 T Y
z zx zy zx" zxy zy" zxXy zxy" zx"y" | 4
The local displacement-dependent strain vector is determined by
introducing Eq. (21) to Eq. (3). The displacement field corresponding "
\J
to zero strain is found by setting the local strain vector equal to "
y
zero at the 2x2x2 integration points, Specifically, "
‘l
€ (£1/V/3,£1/V3,£1//3) = 0 (22) ’
Equation (22) represents 48 homogeneous equations with 54 unknown
variables. Sclving these equations gives the following displacement y
field for zero strain:
2 2 2 2.2
U= a; *+ a3y + a2 +a2x(1 - 3y°) + a4(x + y° - 3x7y%) ‘
+ allz"“ - 3.V2) + 3131("2 + .Y2 - 3X2y2) (23a) :
»
2 2 2 2 2 r
V=b1-a3x+bloz—azy(l-3x)+b4(x +y° - 3x"y")
- allzy(l - 3x%) 4 b13z(x2 + y2 - 3x2y2) (23b) i,
X
’
14



r=

e
g

» - v,‘..;

PPt

[ X ¥

W= Cl - alox - bloy - 1/3al3x '1/3b13y

+ c4(x2

The underlined terms in Eqs. \”3a-c) are rigid body modes. The

terms represent spurious kinematic modes,

4.3 Assumed Strain

+ y2 - 3x2y2) + cloz(l - 38 - 3y2 + 9x2y2) (23c) 3

other .

The strain terms corresponding to the kinematic modes in Eqs. (23a-c)

are

(24a)

(24b) ;

(24c¢)

(24d) p

(24e) :

- 2 2
Ty = (1 = 3y%) + ap(2x - 6xy®) + apy2(1 - 3y%)
+ a13z(2x - 6xy2)
o= a (1l = %) + b,(2y - 6x%y) - a;,z(1 - 3x%)
Yy 2 4 11
+ b13z(2y - 6x2y)
Zzz = °1o(1 - 3 - 3y2 + 9x2y2)
€, = ag(2y - 6x7y) + by(2x - 6xy?) + a,,2(2y - 6x°y)
Xy 4\’ 4 Y 1324¢Y Y
- 2
+ b13z(2x - 6xy”)
= 2 1 2 2 2 2
€y = - apyy(l - 3x%) + byzl- 3+ x" +y - Iy )
2
+ C4(2y - 6x7y) + CIOZ(' 6y + 18x2y)
-sz = apx(1 - 3y2) + a13(~-% + X%+ Yo - 32y?)

+ c4(2x - 6xy2) + ClOZ(' 6x + 18xy2)

(24f)

Higher order assumed strain terms are chosen by examining Eqs.

(24a-f).

For example, the kinematic mode represented by
15
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Exx = a4(2x—6xy2) is suppressed if xy2 is added to the higher order
assumed strain shape functions for (exx)H. Since the kinematic mode
represented by a, can also be suppressed by including an x2y term in
(Exy)H’ there must be a logical basis for deciding between

the options. The general rule is to minimize the total number of terms
in the assumed strain that contribute to locking. For a three-
dimensional element applied to a thin structure this means that the
polynomial terms independent of z (thickness) should be kept as simple
as possible. Kinematic modes corresponding to ay and a;, need not be
suppressed since they are incompatible and disappear for the assembly
of two or more elements.

Even with the general rule there are still two reascnable alternate

sets of higher order strain. One option is to minimize the total

number of terms in the higher order strain field as follows:

2 2
(exxdyy = agxy” * ayxy'z

Ceyyn
(e, ) = acx’y?
zz’'H 5

2 2
= azxy + agx yz

(Exy)H
(eyz)H = asx y
2
(e )y = agxy
In Eq. (25), @), Gy, a3, a4, Gg, Ag, Gy are unknown strain parameters.
Note that only one term is needed between (eyz)H and (sz)H to suppress

the kinematic mode represented by Cqe The second term is added to

avnid introducing a directional imbalance to the element stiffness

16
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"
f matrix., The model using this choice of assumed strain is designated
' U
! New Mixed Solid, 18-node version, A (NMS13A).
L
K The other alternative is to replace the x2y2 term in (ezz)H with
5; 2 2 . . .
g x“yz and xy“z terms in (eyz)H and (sz)H’ respectively. Once again
LA
only one term is needed to suppress a kinematic mode (in this case
. CIO)’ but the second term is added to avoid introducing a directional
P imbalance. In this case, the total number of terms is increased by one
to eight, but the new terms are expected to have a proportionally
B Yy
. smaller effect as the thickness becomes smaller., This proposal is ’
. tested numerically in the next section, This formulation is designated 3
) NMS188.
n .
" For completeness, all modes are suppressed by adding to the NMS13B .
[} .
1 .
(X . 2 2 2 2 .
; version y~ and y“z terms to (exx)H and x° and x"z terms to (eyy)H ]
to suppress the a, and a)y incompatible kinematic modes. As in the
8
~§ other formulations, only one term is needed to suppress each mode, but ;
L ‘
) two terms are used to avoid introducing a directional imbalance. This
l“ ’
) formulation is designated NMS18C,
'“ For an element with arbitrary geometry, £, n and ¢ are used in
|} .
4 place of x, y and z in Eq. (25). Therefore, with the local coordinate Z
) system defined previcusly, the higher order assumed strains for the
N eighteen-node solid element are chosen as follows:
)
N g4 =Pa (26) ]
5 2
; where for NMS13A -
A ,
! g
M g
[}
4 17
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i g = Loy, ap, a3, ag, ag, a5, a7
x)
x‘

for NMS18B

W B
" f ¢zf 0 0 O 0 0
» A
n 0 0 g zg 0O 0 0
) o o o o0 0 0 O
) p={0 0 0 0 0 0 O

O 0 O 0 g zg O
p O 0 0 O 0o f
o T | N

2 a1, Gps @3, Gy, Gg, A, 07, Qg

"
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d
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and for NMS18(C

f———
r zr f ¢f 0 0 0 0
0 0 s zs g zg
0 0 0 0 0 0
P=]0 0 0 0 0 0 o0 O
0 O 0 O 0 0 0
0 O 0 0O 0 0 0
L
—
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
zg 0 0
0 f ¢f
T _ L
S al) 0'29 039 a4! 059 a6’
a7, ags g, %10y &)y, O)p ] (29p)

For Eqs. (27a), (28a) and (29a), f, g, h and i are chosen as follows:

(1) if x or 3 is parallel to ¢ (6 < 90°)

f = €n2

g = Ezn
L2
r=n
2
s =&

19
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(2) if x or 3 is parallel to n (6 > 90°)
f = Ezn
g = En2
ro= g’
s = n’

4.4 Modified Stress-Strain Relation
The stress-strain relation for an isotropic, three-dimensional
solid can be modified to incorporate thin plate and shell behavior by

assuming that first the effect of 0,, ON € and ¢ is small and

XX Yy
second the effect of Oy x and °yy on €, is small, Then

€ =1 (o - va,,,) (30a)
xx ~ F ‘xx yy

B o (300)
yy E yy XX

e _ = 1 g (30c)
2z T 2z

where E is Young's Modulus and v is Poisson's ratio. The relations

between shear strains and stresses remain unchanged as follows:

Exy © é’oxy (30d)
e =1lg (30e)
yz G "yz

1
€ax “ T 92x (30f)

where G is the shear modulus.
Inverting Eqs. (30a-f) gives the modified stress-strain relation as

follows:

g =LC ¢
~ rvf“N

20
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Note that if the third row and third column of the matrix in £q. (31)
are eliminated, the resulting 5x5 matrix of elastic coefficients is

exactly the same as the one used for degenerate solid shell elements.
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i Chapter 5 3
G NUMERICAL TESTS Y
D

¥ :
5 Several plate and shell benchmark problems were solved to test the h
W ll

performance of the eighteen-node element based on the new mixed
formulation, For each problem, the results using the NMS18A and NMS18B
formulation are compared to the results for the eighteen-node assumed
displacement element (designated DISP18). Results for the NMS18C model
& are included for only the ring probiem which demonstrates that this .
; model locks for increasing radius to thickness ratios. Results using f
the three-dimensional and modified stress-strain relations are compared

for plate and ring displacement problems. In addition, analytical or

other independent solutions are presented if available. All

computations were done in double precision Fortran on the UNIVAC

¢ 1100/92 machine at the University of Maryland.

-
£ AT X % °

5.1 Simply Supported and Clamped Square Plates

A square flat plate under uniform pressure is a good starting point
for testing any finite element that is to be used for shell analysis.
Effects of element geometry, boundary conditions and length to o
thickness (L/t) ratics can easily he compared to analytical solutions.

In addition, the performance of the C and Lm Mmatrices is easily tested.

b N e e P Y

¢ The deflections of a square plate with simply supported and clamped
edges were calculated using uniform and distorted meshes. Due to

symmetry only one quarter of the plate is modeled., Typical elastic

YN N LA

properties for aluminum, E = 107 psi and v = 0.3, are used.

g

22
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Evenly divided 2x2, 3x3 and 4x4 uniform meshes were used for both
cases. Distorted 2x2 and 4x4 meshes were adequate for the simply
supported plate, but 3x3 and 6x6 distcrted meshes were also used for
the clamped plate to check convergence. The 6x6 distorted mesh is
formed by bisecting each element edge in the 3x3 distorted mesh.
Figures 2a and 2b depict the four distorted meshes. Results for L/t
ratios of 102, 10° and 10" are presented,

Normalized maximum deflections for uniform meshes are in Tables 1
and 2; distorted mesh results are in Tables 3 and 4. 1In each case the
maximum deflection at the centroid of the plate is normalized with
respect to the analytical solution obtained from thin plate theory
[20,21]. The NMS18A and NMS18B formulations give numerical results
that are very close to the analytical solution over a wide range of L/t
ratios when uniform meshes and the modified stress-strain relation are
used, NMS18C results are not reported, since for plate bending NMS13C
is essentially the same as NMS188., This is because the two models
differ only in inplane strain terms and there is no inplane locking for
the plate problem. When the regular stress-strain relation is used,
results range from 17 to 20 percent below the analytical solution.
This is due to normal strain locking, the inability of the element
to represent accurately the condition of zero normal strain. Results
for the simply supported plate with distorted meshes and the modified
stress-strain relation are very good. The clamped plate is more
sensitive to distorted meshes than the simply supported plate,
However, when the distorted mesh size is increased to 6x6, results for
the clamped plate with the modified stress-strain relation show good

23
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agreement with the analytical solution., Even when L/t = 10“, which is
beyond the practical range, the solution differs by less than 2.5% from
the analytical solution. The new mixed formulation performed better
than the assumed displacment element in every case. The assumed
displacement formulation element is extremely sensitive to increasing
L/t ratio and distorted element geometry. Finally, it should be noted
that for the plate problems, the NMS18A and NMS18B elements give
virtually identical answers.

Table 5 lists the nondimensional bending moments for a 4x4 uniform
regular mesh evaluated at the integration point nearest to the centroid
of the plate. The computed values are normalized with respect to the
analytical solution at the plate centroid using thin plate theory
[19,20,21]. Although the sampling point is not exactly at the
centroid, the results are insensitive to changing L/t ratio. This
indicates that for the plate case the new mixed formulation elements

are reliable for stress analysis,

5.2 Pinched Circular Ring

As shown in Figure 3, a circular ring is pinched by a concentrated
load P at opposite points on the ring. Due to symmetry only one
quarter of the ring was modeled with meshes of 4, 8 and 16 equally

divided elements. Material and geometric properties are E = 10’ psi,

v = 0.3 and R/t = 60, 100, 500.
Table 6 lists the nondimensional displacement at the load point
normalized to the analytical solution [5] for the NMS18A, NMS18B and

NMS18C versions using the reqular and modified stress-strain

24
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relationships. No results for the assumed displacement model are
shown. This is because the global stiffness matrices resulting from
the assumed displacement formulation were ill-conditioned and could not
be solved using a Cholesky decomposition scheme, The NMS18A and NMS18B
formulations give accurate results for all mesh sizes when the modified
stress-strain relation used, The results for the NMS18A and NMS188
mcdels converge to a value about 9.5% below the analytical solution
when the regular stress-strain relation is used. NMS18C exhibits
locking as the R/t ratio increases. In addition, it performs more

poorly than NMS18A or NMS18B for the 4 and 8 element meshes.

5.3 Pinched Cylindrical Shell
5.3.1 Diaphragmed Ends

A pinched cylindrical shell with diaphragmed ends is a good deep
shell test problem since an analytical solution is available for
comparison, The cylinder is pinched by a concentrated load P at two
opposing points on the circle at the midsection. Due to symmetry and
loading only one octant of the cylinder was modeled (Figure 4).
Uniform and refined 4x6, 5x7, 6x8 and 7x9 meshes were used. The 4x6F
(refined) mesh is formed by dividing the elements along lines BC and CD
of a 3x5 (uniform) mesh, The 3x5 and 4x6F méshes are shown in Figure
5. The meshes illustrated in Figure 5 are on the stretched plane of
octant ABCD of the cylinder, Refined meshes are more effective in
modeling the steep gradients of deflections and stresses near the con-
concentrated load. Material and geometric properties are £ = 1.05x107

psi, v = 0.3, R = 4,953 in,, L = 2R and R/t = 100, 500,

25
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Tables 7 and 8 list the nondimensional displacement WE = -wCEt/P at
the load point for the DISP18, NMS18A and NMS18B models with the
modified stress-strain relation, Results using the regular stress-
strain relation are not reported since the plate and ring problems
demonstrate that when it is used locking occurs., Since the NMS18(C
formulation performed poorly on the ring problem no further results for
it are reported.

Analytical solutions were calculated using 100 terms in each
direction for the double Fourier series expression givenr by Fligge [22]
and reported in Reference 19, For comparison, the results for a new
mixed formulation degenerate solid shell element are reported., The
element is the SHELIN element that was first investigated by Rhiu [19]
and examined in further detail in References 12 and 18, The SHELSN
element has nine nodes with three displacement and two rotational
degrees of freedom at each node. Therefore, SHELIN has 45 degrees of
freedom versus 54 for the present eighteen-node solid elements.

Once again, the assumed disptacement model performs poorly,

especially for the larger R/t ratios. For R/t = 100, both the NMS18A
and NMS18B results are close to the analytical solution and compare
favorably with SHELIN. When the R/t = 500 case is examined, it becomes
clearer that the NMS18B formulation is superior to the NMS18A

formulation, In fact, the NMS18B results are virtually identical to

the SHELIN answers,

5.3.2 Clamped Ends
For this test case the cylinder of the previous example is used,

26
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but the ends are clamped instead of diaphragmed. Results for two
degenerate solid shell elements, one a triangular element [2] and the
other a nine-node element based on a conventional mixed formulation
[15], are presented for comparison. Nondimensional deflections at the
load point C are listed in Tables 9 and 10 for R/t = 100 and 500,
respectively. As before, the assumed displacement element performs
poorly. And once again, while answers for NMS18A and NMS13B are very
close at R/t = 100, NMS18B is much better at R/t = 500, 1In addition,

Figures 6 and 7 show inplane force N and moment M  per unit length

y
along line BC for a 9x7 mesh with NMS18B elements. The results in
Figures 6 and 7 show excellent agreement with reference 4. The finite
element used in reference 4 is an accurate, cubic degenerate solid

shell element. Results for this element are not shown to avoid

cluttering.

5.4 Hemisphere under Alternating Point Loads

A hemishpere under directionally alternating point loads at the
free edge is shown in Figure 8. Due to symmetry only one quarter of
the hemisphere was modeled, In order to use only eighteen-node
elements, a 0.1° cutout was made at the pole and inplane displacements
along the resulting edge were constrained to zero. Both uniform and
refined 4x5, 5x6, 6x7 and 7x8 meshes were used. For the uniformn meshes
each element subtends equal angles in the longitude (¢) and colatitude
(8) directions, For a refined mesh the row of elements nearest the
pole are divided equally in the colatitude direction., In this way a

4x5F (refined) mesh is formed from a 4x4 uniform mesh., Figure 8 shows
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a 4x4 uniform mesh divided to form a 4x5 mesh., For convenience the
cutout is made after the mesh is formed. Material and geometric
constants are £ = 107 psi, v = 0.3, R = 10 in., P = 2 and R/t = 250,
500.

Nondimensional displacement WA = DNA/PR2 at point A is reported in
Tables 11 and 12 for R/t = 250 and 500, respectively., The symbol D
represents bending rigidity. As expected, the assumed displacement
model performs poorly. For R/t = 250, NMS18B converges more quickly
and both NMS18A and NMS18B give answers close to Morley's analytical
solution [23]. Morley did not consider the R/t = 500 case, but a
converged finite element solution using a sixteen-node element similar
to SHELIN is presented for comparison, Results for the three

formulations are very close,
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. CONCLUSIONS K
Q' -
k .
The numerical tests demonstrate that the NMS18A and NMS13B mixed *
L)
formulation elements with the modified stress-strain relation give
;: reliable solutions for thin plate and shell problems. In the present
L]
' formulation, the assumed strain in conjunction with the modified
LY
stress-strain relation effectively eliminates inplane, shear and normal
' -
1y strain locking. Overalil, the NMS138 version performed better than the X
.}
A Y
= NMS13A version, thereby supporting the proposal that higher order N
; strain terms with a thickness coordinate are less likely to reintroduce
' locking than other terms. Rotn the NMSi8A and NMS13B formulations are
)
! kinematically unstable at the element level, but are stable when two or
more elements are assembled. The NMS18C formulation, although kinema-
;: tically stable at the element level, performed poorly for curved N
o - v
) geometries. Thus, a judiciously chosen higher order strain has .
successfully suppressed compatible kinematic modes without
X reintroducing the locking effect., Finally, the kinematics of .
N deformation are more easily described with the eighteen-node solid A
element than a degenerate solid shell element., Therefore, to make the
:: most of this advantage, the present formulation should be extended to :
Cd .
: geometrically and materially nonlinear problems. :
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Figure 1

Eighteen-node element
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Figure 2a Distorted 2x2 and 4x4 mexhes for one quarter
of a square plate
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Figure 2b Distorted 3x3 and 6x6 meshes for one quarter
of a square plate
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Figure 3 Pinched circular ring
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) Table 1

W

f~ Normali.ed maximum deflection of a simply supported square plate

"

' under uniform pressure (regular meshes)

.

¥

)

3 L/t Type 2x2 3x3 4x4

'!

:'u .g Em E Em E Em

EN

)

I DISP18 .7815 L9573 .8024 .9830 .8095 ,9918
K 102 NMS13A .8145 1.0031 .8170 1.0033 .8133 1.0040
ﬂ

W NMS1838B .8145 1,0031 .8169 1.0033 .8183 11,0041
]

’ DISP13 .7802 .9557 .8008 .9810 .8077 .9895
£

, 103 NMS13A .8135 1.0018 .8153 i.0012 .8159 1.0008
b NMS18R .8135 1.0018 .8153 1.0012 .8159 11,0008
\(

N DISP18 .7850 .9585 .8034 .9846 .8099  .9919
5

e 10" NMS18A .8135 1.0013 .8143 1.0003 .8147 .9986
(- NMS138B .8134 1.0013 .8143 1,0006 .B148  ,9992
|
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Table 2
Normalized maximum deflection of a clamped square plate

under uniform pressure (regular meshes)

Cn Cn

Sn

DiSP13 78717 .9084 .9511
NMS13A 1.0129 1.0041 1.0026
NMS138 1.0129 1.0041 1.0026

DISP18 .7807 .9018 .9443
NMS18A 1.0111 1.0024 1.0009
NMS138 1.0111 1.0024 1.0009

DISP18 .7812 .9027 .9454
NMS18A 1.0111 1.0022 1.0004
NMS188 1.0112 1.0023 1.0005
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Normalized maximum deflection of a simply supported square plate

under uniform pressure (distorted meshes)

Table 3

o 301

.
Al

"

¢

o

L/t Type 2x2 4x4 4
DISP18 .9515 .9930 Y

10? NMS18A 1.0260 1.0129

NMS 188 1.0260 1.0129 ,

DISP18 .8757 .9670 5

10° NMS18A 1.0236 1.0089 :
NMS188 1.0236 1.0039 3

N

DISP13 .1690 .5119 ;

10" NMS 184 1.0234 1.0059 ,
NMS 188 1.0235 1.0061 '
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Table 4
[)
Normalized maximum deflection of a clamped square plate under
uniform pressure (distorted meshes)
‘b
¥
)
L/t Type 2x2 3x3 4x4 6x6
DISP18 .5666 .8394 .9046 .9727
! 102 NMS18A .9432 .9914 1.0062 1.0003
NMS 188 .9432 .9914 1.0062 1.0003
; DISP18 .0625 .1648 .6838 .9340
)
1 103 NMS18A 6117 .8978 .9551 .9935
i NMS18B 6117 .8978 .9551 .9935
1
h DISP18 .0007 .0020 .0433 .3815
10" NMS18A .3623 .8414 .8978 .9771
; NMS188 .3623 .8415 .8977 .9772
X
[}
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Table 5

Bending moment Mx at integration pcint nearest to the centroid

~ .

of a square plate normalized to the analytical solution at the centroid

-

-

(uniform 4x4 mesh)

@
‘ B NS S R

T Xy T2

Simply Supported Plate Clamped Plate

L/t NMS18A NMS138 NMS18A NMS138

10 .9982 .9982 .9909 .9909

-

10

AR RARAL X
SASSAN T

.9961 .9961 .9907 .9907

10" .9938 .9944 .9901 .9903 ®
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Table 6

Maximum deflection at load point for a pinched circular ring

(normalized to analytical solution)

R/t Type 4 elements 8 elaments 16 elements

He)

¢ o Cn o

NMS13A .8983 1.0016 .9157 11,0043 .9159 1.0046
60 NMS13B .9145 1.0029 .9156  1.0042 .9158 1.0045

NMS13C .6801 .8940 .8958 .9895 .9127 .99938
NMS13A .8895 1.0009 .9153  1.0041 .9157 1.0044
100 | NMS13B .9142 1.0024 9154 11,0040 .9156 1.0044
NMS13C .5426 .7648 .8688 .9648 .9106 .9920

NMS13A .8570 .9991 9146 1.0035 L9154 1.0041
500 | NMS13B .9134 1.0008 .9152  1.0035 L9154 1.0041

NMS18C .2958 .1785 .7089 .5542 .8865 .8874
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Table 9 \
Nondimensional deflection at point C (W;= -NCEt/P) for a ]
pinched cylinder with clamped ends (R/t = 120) :
t
Type DISP18 NMS18A NMS18B
U
Mesh Uniform Refined Uniform Refined Uniform Reafined
4x6 43,02 74,75 134.3 135,7 135,1 135.8
5x7 57.24 88.18 135.4 136.3 135.7 136.2
6x8 70.66 99,29 136.0 136.7 136.0 136.5 )
7x9 82.29 108.3 136.4 136.9 136.3 136.7 }
Reference 2 137.01 J

Reference 15 136.81
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Table 10
Nondimensional deflection at point C (W;= -cht/P) for a
pinched cylinder with clamped ends (R/t = 500)
Type pDISP18 NMS18A NMS188
Mesh Uniform Refined Uniform Refined Uniform Refined
4x6 49,37 136.0 784.2 932.1 894.5 963.4
5x7 72.59 201.8 859.4 946.4 928.6 964.0
6x8 101.5 271.4 906.0 958.4 949.4 967.7
7x9 135.3 338.5 933.1 966.1 960.,6 971.0
Reference 2 963,93
Reference 15 960.88
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Table 11

f’ Nondimensional deflection at point A (ﬁA=DHA/PR2) for a hemisphere

W under alternating point loads (R/t = 250)

¥ Type DISP18 NMS 18A NMS188

Mesh Regular Refined Regular Refined Regular Refined

oy 4x5 .0040 .0030 1767 1799 .1783 .1815

5x6 .0090 .0069 .1828 .1845 .1834 .1851
é 6x7 0171 .0135 1845 .1855 .1848 .1858
7x8 .0284 .0233 .1851 .1857 .1853 .1858

Morley [23] .1848
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Table 12

Nondimensional deflection at point A (WA=DNA/PR2) for a hemisphere

under alternating point loads (R/t = 500)

-
-
W

- a
-

K Type DISP18 NMS18A NMS18B

Mesh Regqular Refined Regular Refined Regular Refined

Cu_r s e

" 4x5 .0010 .0008 .1544 .1620 .1574 .1647
5x6 .0023 .0018 .1733 1774 .1743 .1785

]

6x7 .0046 .0036 1795 .1818 .1800 .1823

e N

7x8 .0080 .0064 .1818 .1832 .1821 .1835

"

; Reference 4 .182 ' b
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