Title: Determination of Kinetic Parameters from Steady-State Microdisk Voltammograms

Authors: Z. Galus, J. Golas, and Janet Osteryoung

Abstract:

Equations are derived for the voltammetric response of an irreversible system in the steady-state regime at a small electrode. Voltammetric data for oxidation of Fe(II) in 0.1 M H₂SO₄ at circular platinum electrodes of radius 5 and 12.5 μm are analyzed by a semilogarithmic technique and by reciprocal plots analogous to treatments of rotating disk voltammograms. The resulting values of kinetic parameters are standard rate constant $k = (1.5 \pm 0.2) \times 10^{-2} \text{cm/s}$ and anodic transfer coefficient $(1-a) = 0.67 \pm 0.01$. This technique compares favorably with others for determining rate parameters in the same range by virtue of technical and mathematical simplicity.
Determination of Kinetic Parameters from Steady-State Microdisk Voltammograms

by

Z. Galus, J. Golas, and Janet Osteryoung

Published in

J. Phys. Chem.

State University of New York at Buffalo
Department of Chemistry
Buffalo, New York 14214

July 1988

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
Determination of Kinetic Parameters from Steady-State Microdisk Voltammograms

Z. Galus, J. Golas, and Janet Osteryoung

Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14214
(Received: July 31, 1986; In Final Form: July 28, 1987)

Equations are derived for the voltammetric response of an irreversible system in the steady-state regime at a small electrode. Voltammetric data for oxidation of Fe(II) in 0.1 M H$_2$SO$_4$ at circular platinum electrodes of radius 5 and 12.5 μm are analyzed by a semilogarithmic technique and by reciprocal plots analogous to treatments of rotating disk voltammograms. The resulting values of kinetic parameters are standard rate constant $k_0 = (1.5 \pm 0.2) \times 10^{-3}$ cm/s and anodic transfer coefficient $\alpha = 0.67 \pm 0.01$. This technique compares favorably with others for determining rate parameters in the same range by virtue of technical and mathematical simplicity.

Very small electrodes have received increasing use in kinetic studies. Bindra et al. applied concepts of nonplanar diffusion to distributions of mercury droplets on carbon to measure the rate of the reaction Hg$^{2+} + 2e^- \rightarrow 2$Hg.1,2 Howell and Wightman have made use of the low IR drop at small electrodes to carry out cyclic voltammetry at very high scan rates (~103 V/s). Under these conditions standard heterogeneous rate constants with values exceeding 1 cm/s can be determined.3 Scharifker and Hills4 have made use of the increased rate of mass transport at smaller electrodes in studies of the kinetics of the reaction Fe(CN)$_6^{3-} + e^- = Fe(CN)_4^{2-}$. Russell et al.5 have employed thin rings for kinetic studies.

Consider the limiting processes which control voltammetric current. In the absence of chemical complications both mass transport and charge transfer may affect the current. In order to determine the charge-transfer rate from current measurements, the rate of charge transfer must be sufficiently small in comparison with the rate of mass transport. For example, if mass transport occurs by diffusion with diffusion coefficient D over diffusion layer

thickness δ, then generally values of $k_h < D/\delta$ can be determined, when k_h is the forward rate constant for the heterogeneous charge-transfer process.

Suppose that the voltammetric experiment is chronoamperometry at a large planar electrode in quiet solution. Then $\delta = (\pi D t)^{1/2}$, and for $D = 9 \times 10^{-4} \text{ cm}^2/\text{s}$, $k_h < 2 \times 10^4/\sqrt{t}$. For a routine experiment $t = 20 \text{ ms}$ and $k_h < 0.01 \text{ cm/s}$, whereas for a technically demanding experiment $t = 200 \mu \text{s}$ and $k_h < 0.1 \text{ cm/s}$. Corresponding scan rates for cyclic voltammetry are 1 and 130 V/s, respectively, and corresponding rotation rates in rotating disk voltammetry are 430 and 43,000 rpm, respectively.

Now consider a similar experiment at a small electrode for which nonplanar diffusion predominates. For the sake of simplicity we describe the diffusion-limited current, i_L, at a spherical electrode of radius r_0.

$$i_L = nFAD_0C_0^* \left(1/(\pi D t)^{1/2} + 1/r_0\right)$$

where n is the number of electrons transferred in the reduction of substance O at bulk concentration C_0^*. D_0 is the diffusion coefficient of O, A is the electrode area, and F is the value of the Faraday. The radius r_0 formally corresponds to the diffusion layer thickness for spherical diffusion, and at sufficiently long times a steady state is reached. Again assuming $D_0 = 9 \times 10^{-4} \text{ cm}^2/\text{s}$, the times 20 ms and 200 μ s correspond to electrode radii of 7.5 and 0.75 mm, respectively. At the present state of technology, it is possible routinely to make robust electrodes with sizes on the order of 3 mm. Thus, one can use these electrodes to enhance mass transport and therefore determine rate constants by using very simple experiments on relatively long time scales and employing very simple analysis of data.

Specifically, this approach makes it possible to determine rate constants without special expertise, instruments, or mathematical skills and thus makes these measurements readily accessible as tools for characterizing chemical systems. Such simple suggestions often conceal problems with accuracy or precision of data or employ mathematical techniques for analysis which are dangerously self-justifying. To our knowledge there is no published example which presents the equations on which this method is based and subjects suitable data to alternative ways of analysis. In the present paper we derive equations for two ways of analyzing voltammetric data obtained at small electrodes and illustrate how to verify that the voltammograms are in the appropriate steady-state regime. These procedures are applied to determine the rate of oxidation of Fe(II) in 0.1 M H$_2$SO$_4$ at platinum microdisk electrodes. This disk geometry provides a surface which can be polished and has been described theoretically for reversible systems. The Fe(II)/Fe(III) system has been studied previously, and values of the rate parameters are available.

Experimental Section

Staircase voltammometric measurements were carried out by using a three-electrode system with a platinum microdisk, saturated calomel (SCE), and Pt wire as working, reference, and auxiliary electrodes, respectively. An EG&G PARC 273 potentiostat was used as the source of applied potential. A Keitlhey 427 current amplifier connected to the auxiliary input of the PARC 273 was used to measure the currents. These two devices were controlled by a PDP 8/e minicomputer. Staircase scans were of 4-mV step height with varied step width. Two Pt microdisk electrodes of 25- and 10- μm diameters were used. They were made by first sealing AESAR Johnson Matthey (25 μm) and Goodfellow (10 μm) wires under vacuum into small 1-μL glass capillaries (Drummond Scientific). Electrical connection was made by bonding to a larger wire with silver epoxy. The cross section of the sealed Pt was polished gradually, starting with a Carbimet paper disk and continuing with alumina powder going down from 1 μm (particle size) through 0.5 μm to 0.05 μm. Then the electrodes were rinsed with water in an ultrasonic bath, and the quality of the surface was checked before each series of experiments by using an inverted (Leitz DIAVERT) light microscope with 500 X magnification. Examples of typical steady-state cyclic voltammograms for the oxidation of Fe(II) are shown in Figure 1. Note especially that the voltammograms are substantially free of background current.

The characteristic parameters of voltammetric curves (i.e., limiting current, half-wave potential, and slope of the semilogarithmic dependence log (iL) vs E were determined by three-line graphical analysis with the aid of the computer.

The formal potential of the system Fe(II)/Fe(III) in 0.1 M H$_2$SO$_4$ was determined by potentiometric measurement using a large Pt wire indicator electrode and SCE reference electrode. The value obtained of $E^\circ = +0.435$ V was then used to calculate the reversible half-wave potential (eq 14) assuming $D_0/k_b = 1.21$. The resulting value, $E_{1/2} = +0.440$ V, was used in all calculations.

All reagents were of analytical grade. Ferrous sulfate solutions in 0.1 M H$_2$SO$_4$ were prepared freshly each time and purged with argon before measurements.

Results and Discussion

Theory. We begin by deriving equations which describe the voltammograms. In the case of a quasi-reversible reaction

$$O + ne \xrightarrow{\Delta} R$$

the total current is given by

$$i = nFAD_0C_0(0) - k_{ih}C_0(0)$$

where $C_0(0)$ and $C_0(0)$ are concentrations at the electrode surface, while k_h and k_{ih} are cathodic and anodic heterogeneous rate constants for the cathodic and anodic process, respectively, at some given potential E. By eq 2, we are assuming uniform current density and surface concentrations. When the electrode is small and the step width is relatively long (i.e., $r_0^2/(Dt)^{1/2} < 1$, where r_0 is the radius of the disk), steady-state current-potential curves are obtained with the limiting current equal to

$$-i_L = 4nFAD_0^{1/2}C_0^{1/2}$$

assuming that the reduced form only is present initially in the solution. Using eq 4 and assuming a linear concentration profile in the diffusion layer, we may express $C_0(0)$ and $C_0(0)$ as

$$C_0(0) = (i_L - nFAD_0^{1/2})$$

The linear assumption is a good one based on the following ar-
Oxidation of Fe(II) in H₂SO₄ at Pt Electrodes

![Graph](image)

Figure 2. Calculated dependence of log \((i_{L} - i)/i\) on \((E - E'_{1/2})\) for steady-state microelectrode voltammograms. \(k_{f} = 10^{2} \text{cm}^{2} / \text{s}, D_{f} = 7 \times 10^{-4} \text{cm}^{2} / \text{s}, r_{g} (\text{cm}) = (\Delta), 10^{-2} (\Delta), 10^{-3} (\Delta), \text{and} 10^{-4} (\Delta)\).

The analogous problem for a sphere is readily solved exactly. With the restriction that \(r_{g} / (D r_{f}) < 1\), the solutions for concentration profiles at a sphere become identical with eq 5 and 6 when one employs in them the formula for the area of a disk. Using eq 5 and \(A = 4 r^{2}\) and the dependence of \(k_{h}\) and \(k_{m}\) on potential in the classical form

\[k_{h} = k_{h} \exp(-\alpha n (E - E^{*}))\]

(7)

\[k_{f} = k_{f} \exp((1 - \alpha) n (E - E^{*}))\]

(8)

where \(k_{h}\) is the standard heterogeneous rate constant, \(\alpha\) is the transfer coefficient of the cathodic reaction, and \(f = F / R T = 38.9 \text{V}^{-1} \text{at} \ 25^\circ \text{C}\), one obtains

\[(4 D_{f} / \pi k_{f} r_{g}) \exp[-(1 - \alpha) n (E - E^{*})] = \]

\[(i_{L} - i) / (i - (i_{L} - i) / f') \]

(9)

For a reversible reaction one can use the Nerst equation and eq 5 and 6 to obtain the current–potential dependence

\[E = E^{*'} + (1 / n f) \ln (D_{f} / D_{0}) + (1 / n f) \ln [(i_{L} - i) / f']\]

(10)

where \(f'\) is the reversible current at potential \(E\). Thus, the last term in eq 9 equals \((i_{L} - i) / f'\), and consequently eq 9 can be written as

\[(4 D_{f} / \pi k_{f} r_{g}) \exp[-(1 - \alpha) n (E - E^{*})] = \]

\[(i_{L} - i) / (i - (i_{L} - i) / f') \]

(11)

Here \(f'\) is the calculated reversible current and \(i\) the measured current for the kinetically controlled process at potential \(E\).

Equation 11 is appealing, for it emphasizes the point that the quality of determination of \(k_{h}\) and \(\alpha\) depends on the difference between the experimental system and a reversible system. For sufficiently large \(k_{h}\) or sufficiently positive values of \(E\), the right-hand side of eq 11 is zero. On the other hand, when \(k_{h}\) is small the last term of the right-hand side of eq 11 is negligible at potentials for which \(i\) has a measurable value. Equation 11 has a form similar to that of an equation proposed earlier by

\[\text{Malyzko}^{11}\] for calculation of kinetic parameters from rotating disk voltammograms. The effects of slow charge transfer and of electrode size on the current–potential are illustrated by plots of log \([i_{L} - i]/i\) vs \(E - E'_{1/2}\) calculated from eq 11 and displayed in Figure 2. For large values of \(r_{g}\) the reaction becomes reversibly, so the plot is linear with the slope predicted by eq 10. But for decreasing \(r_{g}\), mass transport is enhanced and charge transfer increasingly limits the current, which shifts the apparent half-wave potential to more positive values (for oxidations) and decreases the slope and linearity of the plot.

Equation 11 may be used in two ways for determining the standard rate constant, \(k_{h}\).

The first method is based on the logarithmic form of eq 11

\[E - E^{*'} = 1 / (1 - \alpha) n f \ln (4 D_{f} / \pi k_{f} r_{g}) = \]

\[1 / (1 - \alpha) n f \ln \left[(i_{L} - i) / (i_{L} - i) / f' \right] \]

(12)

For a given value of \(r_{g}\) the first term of the right-hand side of eq 12 is constant, so a plot of \(\ln [(i_{L} - i) / (i_{L} - i) / f'] \) vs \((E - E^{*'})\) should be linear with a slope equal to \(1 / (1 - \alpha) n f\).

In the determination of the rate constant, \((i_{L} - i) / f'\) is calculated from eq 10 assuming that either \(E^{*'}\) or \(E'_{1/2}\) is known, while \((i_{L} - i) / f'\) is taken from the experimental steady-state current–potential curves. For \((E - E^{*'}) = 0\) the right-hand terms of eq 12 are equal, and thus knowing the value of \(1 / (1 - \alpha) n f (4 D_{f} / \pi k_{f} r_{g})\), one may easily calculate the standard rate constant, assuming \(r_{g}\) and \(D_{f}\) are known. The value of \(1 / (1 - \alpha) n f\) equals the slope of the plot of \(\ln [(i_{L} - i) / (i_{L} - i) / f'] \) vs \((E - E^{*'})\).

In the second method of calculation eq 11 is combined with eq 8 to give

\[i_{L} / f = 4 D_{f} / \pi k_{f} r_{g} + i_{L} / f' \]

(14)

Now experimental values of \(i_{L} / f\) should be plotted vs \(1 / r_{g}\). This dependence should be linear with a slope \(4 D_{f} / \pi k_{f} r_{g}\) which depends on the rate constant. By extrapolating the dependence to \(1 / r_{g} = 0\), one can obtain \(i_{L} / f'\) which can be calculated independently from eq 10. By constructing plots of \(i_{L} / i_{f} = 1 / r_{g}\) for different potentials, one gets a set of \(k_{m}\) values. The plot of \(k_{m}\) vs \((E - E^{*'})\) should be linear with a slope equal to \(1 / (1 - \alpha) n f\). This method of analysis is similar to that used in rotating disk voltammetry where the square root of the angular velocity is analogous to \(r_{g}\).

It should be mentioned that the above considerations are valid only for systems where reactant and product are both soluble in the solution phase.

Before calculating rate constants from experimental data, it is necessary to check whether steady-state assumptions are fulfilled under the experimental conditions. To do that, the theory elaborated by Aoki et al.\(^{12}\) is used. Using the electrode with 5-μm radius, even at the scan rate 4 V/ min, the measured current deviates only several percent from the steady-state one. In Table I are given the measured values of \(i_{L}\) and the values corrected by

The results of this calculation yield a range of values for the rate constant k_m, which is slightly higher. The second method of analysis based on eq 14 was used also. The results of this analysis for different potentials of the microdisk electrode are presented in Figure 4. Points corresponding to $1/\tau_0$ = 0 were calculated via eq 10. Two other sets of points represent the results obtained with 5- and 12.5-μm-radius electrodes at different potentials. At more anodic potentials the results obey fairly well the linear dependence predicted by eq 14. Also, the decrease of the slope of these lines with more positive potential is expected, since the rate constant k_m is becoming larger.

The logarithms of the values of k_m calculated from these slopes are plotted versus $(E - E_{1/2})$ in Figure 5. A reasonably good straight line is obtained with a slope leading to the transfer coefficient equal to 0.68, in agreement with the previous value. The rate constant calculated from this plot is equal to 1.8×10^{-5} cm/s.

Other measurements of this rate constant are a bit lower than this value. In HClO$_4$ solutions on platinum the rate constant does not depend on concentration of acid and is about 1×10^{-2} cm/s. In H$_2$SO$_4$ values in the range (3-7) $\times 10^{-3}$ cm/s are reported, but the value 1×10^{-2} cm/s is reported on gold. Values of the transfer coefficient are more variable. Most of the values reported for the cathodic transfer coefficient, α, are significantly greater than the value of 0.33 determined here. However, the values 0.42 and 0.46 (Pt, 0.1 M H$_2$SO$_4$) are quoted by Heusler. It must also be emphasized that the mechanism of this reaction is not well understood, so that it is not surprising that rate data obtained under different conditions and analyzed according to the simple model of eq 3 yield a range of values for the rate parameters.

In the present treatment, deviations from steady-state conditions are interpreted as an increased rate of charge transfer. We have shown above (cf. Table I) how to calculate the percentage deviation from steady-state behavior based on the value of p. One can also use the value of p to estimate the shift in $E_{1/2}$ value due to departure from exact steady-state conditions. This shift, $\Delta E_{1/2}$, establishes an upper limit for the resulting error in k_m, given by $\ln [(k_\text{m} + \Delta k_\text{m})/k_\text{m}] = \eta \Delta E_{1/2}$. In the present case, for example, a 2% deviation from steady state ($i_i/(i_i)_\text{m} = 1.02$) corresponds to $p = 0.16$ (\(\tau_0 = 5 \mu\text{s at } v = 1 \text{ V/min}\)) and a negative shift in $E_{1/2}$ of 2.4 mV, so the value of k_m derived from the foregoing treatment would be at most 10% high. Typically, experimental errors in the potential are of this order.

Estimating the effect of transient current on the derived value of α is less straightforward, because the equations describing the shape of the voltammogram are quite complex. For the analogous...
rotating disk case, numerical results have been obtained over a range of rotation rates, scan rates, and kinetic parameters. These suggest that for S-shaped (rather than peak-shaped) voltammograms, i.e., for \(p \leq 1.6 \), and for totally irreversible reactions, the shape of the voltammogram does not change with changes in \(p \). The maximum value of \(p \) used here was 0.45, and for most of the data, \(p \leq 0.28 \). Furthermore, there is no trend in the derived value of \((1 - \alpha) \) with changes in \(p \) over this range.

We conclude that for voltammograms with only modest contribution of transient current (\(\leq 5\% \)) the systematic error introduced by treating the voltammograms as steady-state ones is not larger than the usual experimental errors.

Finally, we examine the reasonableness of the assumption that the current density is uniform. In 0.1 M H\(_2\)SO\(_4\), the specific conductance, \(\kappa \), is ca. 0.04 ohm\(^{-1}\) cm\(^{-1}\), and the currents are in the low nanoampere range. Thus, concentration and charge-transfer polarization should predominate over Ohmic polarization, and the distribution of current should be uniform. Quantitatively, deviations from uniformity should be negligible for \(J, \Delta \ll 1 \), where \(J \) and \(\Delta \) are normalized exchange current density and average current density, respectively:\(J = \frac{iD}{sr} / \pi, \Delta = \frac{iD}{sr} / \pi \). For the present case \(\Delta = 2 \) and \(J \leq 0.003, \Delta \leq 0.002 \). We conclude that the assumption of uniform current density is reasonable.

The procedure is summarized as follows. Conditions of step height and step width (or scan rate) and electrode radius are sought for which S-shaped voltammograms are obtained, as illustrated in Figure 1. Data are obtained for a range of radius and step width (scan rate) to verify that the limiting current behaves according to theory and that the operating conditions are acceptably close to the steady state, as illustrated in Table 1. Voltammograms are then analyzed according to eq 12 (Figure 3) or eq 14 (Figures 4 and 5), making use of an independently measured value of \(E_{1/2} \) and the value of \(D \) obtained from the limiting steady-state current.

Acknowledgment. We thank John O’Dea for assisting with the instrumentation. This work was supported in part by the Office of Naval Research.

Registry No. Fe, 7439-89-6; Pt, 7440-06-4, H\(_2\)SO\(_4\), 7664-93-9

<table>
<thead>
<tr>
<th>Organization</th>
<th>No. Copies</th>
<th>Recipient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>2</td>
<td>Dr. David Young, Code 334, NORDA, NSTL, Mississippi, 39529</td>
</tr>
<tr>
<td>Attn: Code 1113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217-5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Bernard Douda</td>
<td>1</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code 50C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crane, Indiana 47522-5050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
<td>Dr. Ron Atkins, Chemistry Division, China Lake, California, 93555</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko, Code L32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Mr. John Boyle, Materials Branch, Naval Ship Engineering Center, Philadelphia, Pennsylvania, 19112</td>
</tr>
<tr>
<td>Attn: Dr. H. Singerman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>1</td>
<td>Naval Ocean Systems Center, Attn: Dr. S. Yamamoto, Marine Sciences Division, San Diego, California, 91232</td>
</tr>
<tr>
<td>Superintendent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 051B

Dr. R. A. Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. J. Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. B. R. Kowalski
Department of Chemistry
University of Washington
Seattle, Washington 98105

Dr. A. Zirino
Naval Undersea Center
San Diego, California 92132

Dr. George H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. S. P. Perone
Lawrence Livermore National Laboratory L-370
P.O. Box 808
Livermore, California 94550

Dr. M. B. Denton
Department of Chemistry
University of Arizona
Tucson, Arizona 85721

Dr. M. Robertson
Electrochemical Power Sources Division
Code 305
Naval Weapons Support Center
Crane, Indiana 47522

Dr. G. M. Hieftje
Department of Chemistry
Indiana University
Bloomington, Indiana 47401

Dr. Christie G. Enke
Department of Chemistry
Michigan State University
East Lansing, Michigan 48824

Walter G. Cox, Code 3632
Naval Underwater Systems Center
Building 148
Newport, Rhode Island 02840

Professor Isiah M. Warner
Department of Chemistry
Emory University
Atlanta, Georgia 30322

Dr. Kent Eisentraut
Air Force Materials Laboratory
Wright-Patterson AFB, Ohio 45433

Dr. John Eyler
Department of Chemistry
University of Florida
Gainesville, Florida 32611

Dr. B. E. Douda
Chemical Sciences Branch
Code 50 C
Naval Weapons Support Center
Crane, Indiana 47322

Professor J. Janata
Department of Bioengineering
University of Utah
Salt Lake City, Utah 84112

Dr. J. DeCorpo
NAVSEA
Code 05 R32
Washington, D.C. 20362

Dr. Ron Fleming
B 108 Reactor
National Bureau of Standards
Washington, D.C. 20234

Dr. Frank Herr
Office of Naval Research
Code 422CB
800 N. Quincy Street
Arlington, Virginia 22217

Dr. Marvin Wilkerson
Naval Weapons Support Center
Code 30511
Crane, Indiana 47522
Abstracts Distribution List

Dr. Manfred Breiter
Institut fur Technische Elektrochemie
Technischen Universitat Wien
9 Getreidemarkt, 1160 Wien
AUSTRIA

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 44106

Dr. R. Sutula
The Electrochemistry Branch
Naval Surface Weapons Center
Silver Spring, Maryland 20910

Dr. R. A. Marcus
Department of Chemistry
California Institute of Technology
Pasadena, California 91125

Dr. J. J. Auborn
AT&T Bell Laboratories
600 Mountain Avenue
Murray Hill, New Jersey 07974

Dr. M. S. Wrighton
Chemistry Department
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. B. Stanley Pons
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112

Dr. Bernard Spielvogel
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709

Dr. Mel Miles
Code 3852
Naval Weapons Center
China Lake, California 93555

Dr. P. P. Schmidt
Department of Chemistry
Oakland University
Rochester, Michigan 48063

Dr. Roger Belt
Litton Industries Inc.
Airtron Division
Morris Plains, NJ 07950

Dr. Ulrich Stimming
Department of Chemical Engineering
Columbia University
New York, NY 10027

Dr. Royce W. Murray
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. Michael J. Weaver
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Dr. R. David Rauh
EIC Laboratories, Inc.
Norwood, Massachusetts 02062

Dr. Edward M. Eyring
Department of Chemistry
University of Utah
Salt Lake City, UT 84112

Dr. M. M. Nicholson
Electronics Research Center
Rockwell International
3370 Miraloma Avenue
Anaheim, California

Dr. Nathan Lewis
Department of Chemistry
Stanford University
Stanford, California 94305

Dr. Hector D. Abruna
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. A. B. P. Lever
Chemistry Department
York University
Downsview, Ontario M3J 1P3
ABSTRACTS DISTRIBUTION LIST, 0518

Dr. Alice Harper
Code 3851
Naval Weapons Center
China Lake, California 93555

Dr. J. Wyatt
Naval Research Laboratory
Code 6110
Washington, D.C. 20375-5000

Dr. J. MacDonald
Code 6110
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Andrew T. Zander P1207
Perkin-Elmer Corporation
901 Ethan Allen Highway/MS905
Ridgefield, Connecticut 06877

Dr. A. B. Ellis
Department of Chemistry
University of Wisconsin
Madison, Wisconsin 53706

Dr. Robert W. Shaw
U.S. Army Research Office
Box 12211
Research Triangle Park, NC 27709

Dr. John Hoff som mer
Naval Surface Weapons Center
Building 30 Room 206
Silver Spring, Maryland 20910
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton S09 5H UNITED KINGDOM

Dr. Alan Bewick
Department of Chemistry
The University of Southampton
Southampton, S09 5NH UNITED KINGDOM

Dr. John Wilkes
Department of the Air Force
United States Air Force Academy
Colorado Springs, Colorado 80840-6528

Dr. Edward Fletcher
Department of Mechanical Engineering
University of Minnesota
Minneapolis, Minnesota 55455

Dr. R. A. Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. Bruce Dunn
Department of Engineering &
Applied Science
University of California
Los Angeles, California 90024

Dr. Janet Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. Elton Cairns
Energy & Environment Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Dr. A. J. Bard
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. Richard Pollard
Department of Chemical Engineering
University of Houston
Houston, Texas 77004

Dr. Steven Greenbaum
Department of Physics and Astronomy
Hunter College
695 Park Avenue
New York, New York 10021

Dr. M. Philpott
IBM Research Division
Mail Stop K 33/801
San Jose, California 95130-6099

Dr. Donald Sandstrom
Boeing Aerospace Co.
P.O. Box 3999
Seattle, Washington 98124

Dr. Martha Greenblatt
Department of Chemistry, P.O. Box 939
Rutgers University
Piscataway, New Jersey 08855-0939

Mr. James R. Moden
Naval Underwater Systems Center
Code 3632
Newport, Rhode Island 02840

Dr. Anthony Sammells
Eltron Research Inc.
4260 Westbrook Drive, Suite 111
Aurora, Illinois 60505

Dr. D. Rollison
Naval Research Laboratory
Code 6171
Washington, D.C. 20375-5000

Dr. C. A. Angell
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Dr. D. F. Shriver
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. Thomas Davis
Polymers Division
National Bureau of Standards
Gaithersburg, Maryland 20899
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Stanislaw Szpak
Naval Ocean Systems Center
Code 633, Bayside
San Diego, California 95152

Dr. Gregory Farrington
Department of Materials Science and Engineering
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. John Fontanella
Department of Physics
U.S. Naval Academy
Annapolis, Maryland 21402-5062

Dr. Micha Tomkiewicz
Department of Physics
Brooklyn College
Brooklyn, New York 11210

Dr. Lesser Blum
Department of Physics
University of Puerto Rico
Rio Piedras, Puerto Rico 00931

Dr. Joseph Gordon, II
IBM Corporation
5600 Cottle Road
San Jose, California 95193

Dr. Joel Harris
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112

Dr. J. O. Thomas
University of Uppsala
Institute of Chemistry
Box 531 Baltimore, Maryland 21218
S-751 21 Uppsala, Sweden

Dr. John Owen
Department of Chemistry and Applied Chemistry
University of Salford
Salford M5 4WT UNITED KINGDOM

Dr. O. Stafsudd
Department of Electrical Engineering
University of California
Los Angeles, California 90024

Dr. Boone Owens
Department of Chemical Engineering and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. Johann A. Joebstl
USA Mobility Equipment R&D Command
DRDME-EC
Fort Belvoir, Virginia 22060

Dr. Albert R. Landgrebe
U.S. Department of Energy
M.S. 68025 Forrestal Building
Washington, D.C. 20595

Dr. J. J. Brophy
Department of Physics
University of Utah
Salt Lake City, Utah 84112

Dr. Charles Martin
Department of Chemistry
Texas A&M University
College Station, Texas 77843

Dr. Milos Novotny
Department of Chemistry
Indiana University
Bloomington, Indiana 47405

Dr. Mark A. McHugh
Department of Chemical Engineering
The Johns Hopkins University
Baltimore, Maryland 21218

Dr. D. E. Irish
Department of Chemistry
University of Waterloo
Waterloo, Ontario, Canada
N2L 3G1
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Henry S. White
Department of Chemical Engineering
and Materials Science
151 Amundson Hall
421 Washington Avenue, S.E.
Minneapolis, Minnesota 55455

Dr. Daniel A. Buttry
Department of Chemistry
University of Wyoming
Laramie, Wyoming 82071

Dr. W. R. Fawcett
Department of Chemistry
University of California
Davis, California 95616

Dr. Peter M. Blonsky
Eveready Battery Company, Inc.
25225 Detroit Road, P.O. Box 45035
Westlake, Ohio 44145