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ABSTRACT e

This thesis explores the possibility of designing an KA
electronically steerable phased array antenna system using a o

LC impedance matching network and sections of transmissiom h]

line as an interconnection medium between pairs of radiating

o

.,
-

.

elements. This interconnection network would be used to

Yy
»

PN

control the direction of the array's radiation pattern.

'7'.1,‘1
b e, )

Adjustments of the parameters of the LC network would attempt

to enforce a desired current distribution on the elements of

229"

the array, resulting in the desired radiation pattern. g&
Two design procedures have been investigated and are ?’
discussed with presentation of results and sample radiation %_
patterns obtained. The first design method uses a Taylor's h;
series expansion to linearize the network equations :ﬁ
describing the array. The other design method utilizes an :;
optimization routine to systematically adjust the parameters &

of the impedance matching networks until the desired current

@ 2%

2

distributions are realized as closely as possible.
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I. INTRODUCTION

An antenna is a device used in the transmission

and reception of electromagnetic energy. Sometimes, as is

Lou s
.

the case with most broadcast radio stations, transmission

»

£ s

is done most effectively and economically with a single

-

radiating element. However, when an application requires

SO T r A

highef gain, directivity, steerability, or other

characteristics that a single element cannot provide, an p

antenna array consisting of several radiating elements may

be necessary to satisfy one's requirements. In the field

of amateur radio, phased array antennas are used quite E

frequently to provide the user with the type of radiation {
Y

pattern desired. Also, the military has used large antenna

<,

arrays for defense against ballistic missiles and in the

s

surveillance and tracking of objects in space.
Another group that has recently become interested
in the use of phased arrays is the air traffic control

community. Since World War II, simple mechanically steered

AT SN AN

antennas have been used for air traffic control, ‘but with

RO

the enormous increase in the number of takeoffs and

landings, types of aircraft, and increase in their speeds,

[ 4

the potential use for computer controlled phased arrays is

quite evident.l

In an antenna array consisting of a single type of
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DAL

T e, S L S e AT AT RARTATL LS
A A A A MG S AN G S AL o o

L3

B

e

o - A

Eadi a2 1y

Lk

L4



AT UN WA USTU S VAT U UV AU LN DY USCL W LR LN W WG R LY WG S R L0 A0 O R T TR R T S T T e o oG Y R e pa¥

[§
Q
-

-
-

.
N
[

x

R

radiating element, there are generally four parameters

.
-

that can be adjusted: the number of radiating elements,

the spatial distribution of the elements, the amplitude,

w> o

and the phase of the currents used to excite the elements.

P X B

When considering the synthesis of a phased array

-~
]

antenna system, there are two basic requirements that must

be met. First, determination of the current distribution

(R 2% AV 4

on each element of the array that will produce the desired

e - -t

radiation pattern must be done. The second task, which is

extensively explored in this thesis, is the determination

[
[ S L -

of the proper impedance transforming and phase shifting

L A

networks needed to produce the desired current
distribution on the array. Traditionally, in the simple
arrays found in broadcast and amateur radio, the impedance
transforming and phase shifting medium is a transmission K
line connected between the individual array element and

the transmitter.

In this thesis, a method for calculating the iy

>
x

current distribution for a desired radiation pattern was o

-

used as a starting point for the development of the

-
»
v

. interconnection networks.2 This procedure allows a user

-
i s e Tt

! to specify a direction of maximum radiation (main lobe)
and one or more directions with a minimum amount of

radiation (nulls). This method of beam steering was

adapted to the triangular geometry of an array consisting

hY
"w
n
.h
| e\
Y
.-
-“

of three equally spaced radiating elements as shown in

"'\-.’-s.' ."-..-.~ \s-.-\\--.,-. -. . .\-.\"f- \".’,‘f."- R S T R L

--------
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Figure 1. The number of steerable nulls is dependent upon

the number of elements in the array: the number of nulls

is equal to half the number of elements. Therefore, the

radiation patterns in this thesis will be specified by one B

R xy.

null direction and a main lobe direction.

As an example of the beam steering procedure, a

radiation pattern and the corresponding current excitation

BN, Kol
s X Cwr g ¥ n

on the elements is presented in Figure 2. This pattern

was generated from an input of §, = 180 degrees for the

T wegailk

) direction of maximum radiation and O, = 320 degrees for

the null direction. The radiation pattern shown in Figure

3 was generated by a 5 element array with the direction of

maximim radiation at 50 degrees and the two nulls

specified at +180 degrees and 270 degrees.3 Note that

additional nulls may be produced in unspecified

directions.

This thesis will explore an unconventional method

of enforcing the desired current distribution on the

) array. The elements are interconnected in pairs, using LC

impedance 1 .tching networks and short sections of

transmission line as an interconnection medium between

The LC impedance matching

pairs of radiating elements.

network is in *l.e form of a PI network which is assumed

lossless. This PI necwork has capacitors in the two -

parallel branches and an inductor in the series branch, as hy

shown in Figure 4. Figure 5 shows the 3 radiating p

- -

-

-

~
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FIGURE 4 - Pl Network of Phased Array Antenna System

' v
x
!
¥
| L
‘ ]
;
)
e
Q
X x
1
Y,
: a
+ &
| >
b
b
[}
J
&
¥
)
¥,
]

v MR A N Ry o™ e P P M T A T A ATA T At AN TR e " T PR AN D S IR
‘.?l'."‘.' COMORLOU DTN LAl CACALAINS -‘l'o‘l’u PONAY T A e .“n WA, l..'tb. * ,‘ (> ‘0- .*""( ", ". -"\‘. X \J*' 'A\h. ~ i'.\ ‘



G G §at gal 2% Be¥ fo®

X I -2 B R LA 0.t
-I -
-
-‘"
L
v
o
e
.,
g
-.

[} c‘l

D A SN PR N
RS SRR, S A

ol v S S
‘- et m N ‘!‘*‘ .\-
N po =

o

hd (%4

£
e
/
AN
N >‘- :
\\
~4 I A ‘.r.- * %-'\ ".R.'!{‘!I

&,
F
I
L
AN
\ N\,
N,
AN

P

o

£ # quowaig 1 quawa

g o,

8

P R AT AT R L A R R LR R U A Ly R A o LR LR VR I R LY Y N NI e s e

oY
050

‘,‘!".,



Lt ¥ 030 a® CuY 03¢ 12t Ua¥ 2,0 a%ath¢ 1020 04V B Sa% (a¥ fa% Gat 00% ¥at §at (a8 §of fat §o0 pab Aov g, ¥ 408 o G2t oV ot TR "N

H
'
L
L

k)

elements and the proposed interconnection medium which

%
ety

together define the phased array antenna system to be

analyzed and designed in this thesis.

Two independent design methods for determining the

parameters of the matching networks have been developed.

The first method developed is based on solving a set of

nonlinear design equations by an extension of Newton's

The word "design" as used in this

root-finding method.

contéxt means that the current distribution on the

elements are given, while the parameters of the Pl

networks are the unknown values that need to be

calculated. Since the design equations are nonlinear, a ¥

Taylor's series expansion procedure is used to linearize

the set of complex equations. The Taylor's series

.
expansion is performed about an initial guess for the 3

nonlinear variables and the linearized equations are then ?

PR A

solved using matrix inversion techniques. A new

approximation to the desired solution results from the

first iteration of this process; this new approximation is

then used as the starting point for the next iteration.

This process will be referred to from now on as the A

iterative matrix solution method.

AR

The procedure described above is similar to

) Newton's Method for finding a root of f(x)=0, where an

AN

initial guess is used as a starting point for what one

T

hopes will be a convergent sequence approaching reasonable

- AR AR )
TN ISRV Y

r'.'v'.) -, 'l,'

"'v'"'.f"
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values for the root in question.4 A graphical
representation of Newton's iterative root-finding
procedure is shown in Figure 6. If the iterative matrix
solution method converges, it does so very quickly, as is
the case with Newton's Method. Newton's Method can
diverge if the initial guess is not fairly close to an
acceptable solution and this is also true with the
iterative matrix solver routine. Considering the system
of equations to be evaluated Figure 6, is quite
misleading; it misrepresents the complexity of the
equations actually being dealt with in this thesis. The
24 complex equations that describe the phased array system
of this thesis are presented in Chapter Four.
Consequently, extensive use must be made of large-scale
computational techniques and resources.

The second design method presented in this thesis
is based upon the quantitative "analysis" of the phased

array system of Figure 5 with the reactive parameters of

the PI networks being given, while the current

distributions on the array become the unknowns to be

calculated. Since the nonlinearity in the first design

method was caused by the parameters of the PI networks
being unknown, the set of analysis equations are linear
and the current distributions can be solved for directly
(again, because of the number of equations being dealt

with, computer implemented matrix methods are used).

’ n T v . [ R VT N Y R R ™ DN N T L N T N T N AN 15 % ™ [ S0
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However, since a particular radiation pattern corresponds

to a specific set of relative current distributions, a

method for finding the parameters of the PI networks that

will in fact produce the desired current distributions

must be developed.

A direct search optimization procedure which

adjusts the value of the parameters of the PI networks

until the element currents are as close as possible to

their desired values was developed as a solution to this

Initial guesses for the PI network parameters

problem.

are used to solve the system of complex linear equations

describing the equilateral triangular array. Three of the Y

unknown complex variables in this set of equations are the

current distributions for each element. The difference

between these current distributions and the given

(desired) current distributions becomes the criterion upon

which the optimization procedure bases its decisions.

This difference is then squared and is designated the hill

The procedure is a type of feedback

height magnitude.

enforced optimization routine where the present values of

the current distribution on the antenna elements are

continually fed back to the decision module of the

optimization routine in order for the .I network

parameters to be adjusted accordingly.

-

The unique direct search optimization method used

in the constrained "analysis" design method of Chapter

s | 3 LA ¥ L") LS. 7% W s
T I A i S A e e 5L




Seven was developed in this thesis as a possible tool for

solving the nonlinear and linear equations describing the
equilateral triangular array. It was developed out of
discussions with the author's thesis advisor concerning
multivariable optimization techniques.5 This routine will
adjust the value of the variables of any function
dependent upon the magnitude of the function. Since the
function's present value is based on the current values
(within the procedure) of the variables, these variables
will progress in whatever direction will lower the
magnitude of the function. The routine is adaptive; it
has the capability of increasing and decreasing the step
size of the variables. This gives the routine the power
to move the variables in small or large increments. Also,
this routine is able to detect when a variable is close to
a possible solution. A variable is close to a possible
solution when the routines decision module begins to
periodically adjust the variable's magnitude above and
below the particular magnitude that has (up to this point
in the process) resulted in the best solution. When this
oscillatory behavior is detected, the magnitude of the
changes in the variable's step size is reduced.

Early development of the first design methci was
performed in APL on a IBM PC computer, but once the
computation burden of the iterative matrix solver problem

went beyond the capabilities of the IBM PC, developement

LY
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14
of the procedure was moved to FORTRAN code on a VAX 11/780

computer system. The second design method was completely

developed in FORTRAN on a VAX 8600 cluster. The linear

equation solver LEQ2C in the standard library subroutines
from the IMSL scientific subroutine package was used to
solve the matrix equations of the analysis.

In Chapter Two, the basic principles of radiation
patterns are discussed. The particular characteristics
used to determine the radiation pattern in a phased array
are listed and reviewed. The interaction of the radiating
fields from each element in the array is demonstrated and
a procedure for its calculation is presented. Chapter Two
is completed with an in depth evaluation of a method of
beam steering which allows a user to specify directions of
maximum and minimum radiation.

The methods using reactive networks for impedance
matching an antenna driving point impedance to the
characteristic impedance of a transmission line are
discussed in Chapter Three. The numerous ways of
impedance matching are listed, as well the factors used in
deciding which method is best ‘suited for the particular
application. Specific examples using PI and TEE impedance
matching networks are presented with calculations. A two
element vertical phased array is matched using PI networks
in an extensive presentation of the calculations involved

in the analysis of this simple array.

Lo 5] W A r:'-‘{

e R i

x

L oI i

F3Fd ,}-}‘

.’(:,;Y'
v o]

...‘_
¢ a7

R e P

‘,1.5‘.',"‘\' e



SNy it Aa® (AR B RaC et (a8 AT gt 20 tat gat gat- g O R TR O e ) " g PV G0 0a® 0ot 00 020 b 0a® 3 0 et Rat Ga® R Bat R0t 00 B0 0 B0 i ‘B

R R R

15

In Chapter Four, a detailed description of the i

physical and electrical characteristics of the proposed Y

phased array system of Figure 5 will be presented. The

R
equations that characterize the transmission lines, the PI §
networks, the antenna mutual impedance relations, and Y
Kirchoff's Current Law are reviewed. The quantitative ;;
analysis of these 24 equations, which result in a solution a?
for the currents on the radiating elements, is performed a
at the end of Chapter Four. ::p:",

)
Presentation of a interconnection network design ’:
procedure, using an extension of Newton's Method for )
finding the roots of a quadratic equation, will be fl
demonstrated in Chapter Five. Developement of the éf
procedure entails linearizing a set of 14 nonlinear design {
equations using a Taylor's series expansion about the }{
initial guesses for some of the complex unknown variables. 5
This linearization process is shown in detail and the Ls
resulting linear equations are listed. This chapter E'
concludes with example designs and the patterns produced {
by those designs. ;‘
Chapter Six is an in-depth discussion of the ?
unique direct search optimization method developed by the E‘
author as part of this thesis. The fundamental decision E:
control procedures are explained using a quadratic ;
function of two variables as an example. This method has gs
been developed into a n-variable optimization routine in ’;
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the form of a FORTRAN subroutine. Example functions are
shown along with the results generated in attempting to
minimize the magnitude of their hill heights.

The direct search optimization routine is
utilized in Chapter Seven where it is applied to a
constrained "analysis" design technique. The design
technique of Chapter Seven uses the analysis equations
that describe the equilateral phased array to try and
enforce a desired current distribution on the array
elements. Since solving the analysis equations results in
a current distributions on the elements of the array, this
design technique will use the optimization routine of
Chapter Six to adjust the choosen PI network parameters
until the desired current distribution is realized.
Sample runs of this design technique and the resulting

radiation patterns are presented and discussed.
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II. BEAM STEERING IN PHASED ARRAY ANTENNA SYSTEMS

-
'

The electrical field produced by an array of

radiating elements can be determined by vector addition of

) 3
) d

o :

) the fields produced by each individual element. Phased .
b array antenna systems produce a pattern with directivity 5
R when the fields from the elements interfere constructively -
a‘ Of
. in the direction of interest and cancel each other out in )
N )
' the remaining areas (null directions). From a theoretical '

and computational standpoint, this can be done very

»

easily. However, from a practical point of view, the

Lt iy

pr kil L

potential performance of the phased array can only be

" approached. There are four items in a multi-element

(
]
phased array that determine the radiation pattern of the )

) ‘

'

! array as a whole. These itens are:6 E

»,

g 1. The relative displacements between each of the :

. individual elements. {
2. The amplitude of the current flowing into each iy

; element.

| 3. The phase of the current flowing into each ~
) element. ;

b 4. The radiation patterns of each individual -

: elements.

\“ L%
' ot
' ot

: In this thesis, items 1 and 4 are assumed fixed, \

and attention is focused entirely on the production of -
r
feed currents with appropriate amplitudes and phases. 3

AR R
-
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The method for radiation pattern control used in 2"‘

this thesis allows a user to manually input the pattern :.
desired by specifying directions of maximum radiation (Gm) Eﬁ
and minimum radiation (8 ), and receive as output the :".:
complex currents required on each element to produce the "‘
desired pattern. Of course, even if the proper current '
distribution is on the array, the prospects for production i:‘t'
of exactly the desired pattern are marginal at best. The 2:
inaccuracy of the self and mutual impedance values are ;;
Vo

caused by a non-infinite ground plane. The inaccuracies f‘_
associated with the measurement of the elements' input !'
~"

current also contributes to the degradation of the :E
radiation pattern. ;N
When evaluating radiation patterns of vertical :

phased arrays, one considers the radiating elements to be )
isotropic point sources. Looking down upon a single E.r
element radiating in free space one sees an 3
omnidirectional pattern in the horizontal (azimuthal) '55
plane. The field intensity in any direction from the t
element can be represented by a vector R@ , where R is 5’
the magnitude of the field in the direction & (see Figure L"-;
7). The angle@ is defined as the angle the vector R "?
makes with the positive X axis in a counterclockwise f,a.
direction. E‘t
Y

When two or more vertical elements are configured .-“'

in a geometrical pattern or array and powered from a th
3

N
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common source, the combination of each element's radiation
results in more radiation in some directions (constructive
interference) and less in others (destructive
interference). A radiation lobe results from constructive
interference while a null is caused by destructive
interference. Also the radiation pattern is directly
dependent on the time delay resulting from the physical
separation between the elements of an array. It is this
time delay which causes the phase shifts and leads to
constructive/destructive interference.

This time delay is also referred to as a geometric
phase shift and an equation defining this effect can be
derived using some geometric principles. Figure 8 is a
representative drawing of two radiating elements in the XY
plane and from it one can observe quite clearly the phase
shift from a infinite observation point. From Figure 8 it

can ' hown that the angle equals

¥i
¢)= Tan™1l —-:-L— (2.1)
Xi
where
-b-o
or

w

W0 W W, 1l ~

o
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¢ Yi
' 49= Tan~l ——— - 6 (2.2)
Xi

Y From both elements in Figure 8 there extends
. dashed lines which represent the line of observation from
infinity to each of the elements. Through the element #2
located at (X,,y;) and the line of observation from
element #1 there is an imaginary plane of reference which

is perpendicular to both lines of observation. This plane

Y XX

LY

of reference is used to determine the electrical distance

between it and element #l1. This distance represents a

o "

K. time delay and indicates that the EM radiation from
element #1 is behind or lagging the EM radiation from

element #2. The distance can be defined as

Py XX

.

X = RCosyU

B where

4 \/ 2 2
o R= VX; + 7Y (2.3)

and

S R R e S i s S I SR e i
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2. Provided the necessary phase shift. "

)

3. Provide the desired current. o

WYy

)

4. Provide the desired power. N

I::

" 54

R, and R, are the input impedance to the PI network and A

they are purely resistive. The desired phase shifts

across the two networks are By and By:; I and I, are the o
)
driving point currents at the base of each antenna, and ;;
|
A gt
Z;, and 2y, are the driving point impedances. The driving e
3 N
point impedances for this two element array can be g
'
calculated using the mutual impedance equations E
()
]
characteristic of this array.19 The mutual impedances w
Syt
. equations for this array are N
{
2
v .
: 171121, + 1,2, (3.7) ]
V2=11222 + I2Z21 (3.8) '
i N
With quarter-wave spacing of quarter-wavelength verticals -3
over an infinite infinitely conducting ground plane, the :
\ self-impedances (le,zzz) and the mutual impedances E
L)
W
X (212'221) have the following complex values,20 N
:
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.: 1
4 located at points in a horizontal plane defined in XY %
A
, coordinates. The field intensity F at a distant point in o
(]
R the direction 6 is the sum of fields E; Jgenerated by each b
1 J
. element, 10 5
!
¢ '
:3 3 3
‘ F=|) E (2.5)
4 i=1 it
Y h
; where N is defined to be the total number of radiating :
L
N elements in the array, and Ej 1S given by ]
;i :
R 2 2
» E; = V(Eg;) + (Eyi) (2.6) 3
4 \
" - N
. where N
I g:
D
L) )
& N .
- Ex = . Ai COS( ee + Qg )
1 i=1
4
s
A N 2
! E, = ) a; Sin( 8, + 6y ) 3
i Y Tz 1Rt Pe g X
I v
» . !
o with N
v Be = electrical phase R
L 8g = geometric phase N
] =
. N
: The amplitude of the ith element's current is A, and 9, is .
\)
;: the phase of the ith element's input current. Bg is the )
1
N )
LA 0

LIS R S ]
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geometric phase shift caused by the elements location in
the xy plane and is defined by equation (2.4).

The magnitude of the field intensity is based in
part on the location of the elements but more importantly
on the angle of observation. Therefore the radiation
pattern at any point around the array can be computed by
calculating the total field magnitude F as a function of
(the observation angle). The calculation implied by
equation 2.5 is easily implemented in FORTRAN; a computer
program named HILPAT will calculate and plot the radiationA
pattern of N vertical antennas spaced at any desired
locations in the XY plane with arbitrary excitation
currents is given in Appendix A. This program assumes the
antenna placed at the origin (0,0) in the XY plane is the
phase reference (§_; equals 0 degrees).

By definition, a null in a radiation pattern is a
11

direction in which the field intensity equals zero.

Thus a null in the direction 6, occurs when the net field

intensity F satisfies

=0 (2.8)

Since each Ej is a complex quantity, the above

equation implies that
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™Mz

Aj Cos(Bg + 64 ) =0 (2.9)

and

]
o

N
i}; A; sin( B, + Oy ) (2.10)

1

Therefore a single null in direction O, can be produced if
equations 2.9 and 2.10 are satisfied.l2? The 2N unknowns
(Ai, i=l to N and eei' i =1 to N) in this nonlinear
transcendental set of equations can make solving them
quite difficult.

Solution of equations (2.9, 2.10) can be greatly
simplified if the phases B4; are known, for then (2.9) and

(2.10) become two linear equations in the variables A,

For an N antenna system with a given set of phases Ogaji’

N/2 null directions can be produced in the radiation

pattern by solving N linear equations for the current

amplitudes Ai'l3

Since one is also interested in the specific
direction of the "main lobe"” of the pattern (particularly
when the antenna is being used for transmission), it also
Wwill be necessary to find a set of phases that will
produce as much radiation as possible in the desired

direction. The current amplitudes A, are constrained by
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4
the linear equations describing the null direction and can ;,
not be directly adjusted to provide the desired "main '
lobe" direction.l4 However, the A;'s depend on the Fei' Sy :5
which allows some measure of indirect control over the f
main lobe. y
The method for maximizing the radiation pattern in EE
a specific direction O, uses a direct search optimization a;
routine. This optimization routine was used to adjust ;
phases 43 t0 whatever values would provide maximum E'
radiation in 8 under the constraints imposed by the E:
specified ©,. Starting values for the phases Bg; 2af® i,
input by the user and after a specified number of xf
iteration the phases that produce maximum radiation, in g;
conjunction with the current amplitudes defined by en, E;
will be output and may be used in the plotting of the ;'
resulting radiation pattern. }
The described beam steering procedure was adapted L
to the three element equilaterally spaced triangular array I:
in Figure 1. A computer program (NULL) was developed to it
'
solve equations (2.9) and (2.10) for the Aj (Appendix A) if
and a direct search optimization routine (MAX HC) was 5
utilized in the constrained amplitude, phase maximization F‘
procedure described in the previous pziagraph. Since f
there are only three (N = 3) elements i- the equilateral %
triangular array, only one null direction can be specified %!
along with a direction of maximum radiation. This g’

« o
1 .( .c_;._!.e ".t.. -.‘1.-‘ .r}.m.m \‘.A"' "‘.f" ..'.-l'.r
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direction of maximum radiation is of interest to a user

Knowing the

for both transmitting and receiving purposes.

direction of maximum signal strength allows one to

determine the direction of the signal being sent out or

received.

The program developed for determining radiation

patterns for the 3 element array of Figure 1 was run with

varyingegm and O, inputs and some resulting patterns are

s

shown in Figures 12 and 13. The main program MAX RAD uses

3 the subroutines NULL and MAX HC to generate those ]

resulting radiation patterns an are listed in Appendix A.

The specified null directions must be kept a reasonable

number of degrees away from the desired main lobe in order

for acceptable patterns to result. Null and main lobe ;

seperation angles of greater than 25 degrees provide

patterns having the best main lobe maximization results,

with the specified null always being present (because the

null locations are treated as constraints that the direct

search optimization procedure has no choice in adjusting).

The current amplitudes and phases resulting from

this beam steering method are used as input for both of

the design procedures developed in this thesis. In the

the current amplitudes

design by linearization procedure,

and phases for a particular pattern are used as the given

current distributions for the array elements with the

solution of the nonlinear equations resulting in values
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A
for the unknown PI network parameters. The current as
distributions are used in the constrained "analysis" ?h
design procedure of Chapter Seven as the given (desired) ﬂ:
solution to the linear version of the equations describing hg
the test array. Since the PI network parameters are the ;w
controlling components in this design method, they will be |$
adjusted by the direct search optimization routine of ES
Chapter Six until the desired current distributions are #ﬁ
realized. :::':‘:'
The beam steering procedure or the means of E%
determining the current distribution for a desired ‘F
radiation pattern is of primary concern during the early gﬁ
phases of designing a phased array antenna system. ?ﬁ
Networks that will in fact produce the desired pattern-are %ﬁ
in themselves a separate topic the designer must consider Eﬂ
once the current distributions for the array elements are ;”
known. An approach to designing the phasing networks is -
the primary concern of this thesis. The beam steering g:'g
procedure described above was simply adapted to the Ets
author's three element triangular array in Figure 1. %f
This chapter has provided the reader with a g;
brief introduction into the theory behind the radiation 3?
patterns generated in phased array antenna systems. The %ﬂ
following topics were discussed: the four principle ‘5
determinants of a phased array's radiation pattern, the Er‘
derivation of the equation describing the geometric phase 5?
5
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shift, and the use of the direct search optimization
routine to maximize the radiation in a specified direction
(©,) while maintaining the constrained direction of

minimum radiation ( §,). The programs used to implement

the calculations and plotting of radiation patterns for .

the equilateral array were also discussed.
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III. FEED NETWORKS FOR FIXED PATTERN

PHASED ARRAYS: PRIOR ART

When designing an antenna system, in addition to
calculating the current distributions corresponding to
the desired radiation pattern, one must construct a
network or system of networks that supplies these desired
current amplitudes and phases to each element.
Traditionally this is done using impedance matching
networks connected to the base of each antenna. These
networks produce a desired phase lag or lead to each
particular antenna while also matching the driving point
impedance of the antenna to the characteristic impedance
of the transmission line.

There are many different methods one could use to
match the antenna driving point impedance to the
transmission line supplying the current. The decision to
use a particular method depends on many factors. Some of
the factors that need consideration are: the element
operating currents and voltages, the frequency of
operation, the degree of initial impedance mismatch, the
equipment available for measurement and construction of
the system, the required bandwidth, the available area for

operation and construction, and economics. The most
15

commonly used methods are:
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1. Design of load and feeder to have equal
impedance.

2. Use of coupling reactance networks.

3. Use of tapped transmission lines.

4. Using a series section of transmission line as an
impedance transformer.

5. The use of a stub section of transmission line as
a reactance in parallel with the power source
at a point where the impedance at that particular
point will be equal to the lines charactersitic
impedance.

6. The use of a reactance component in place of a
stub line and electrically equivalent to it.

7. The use of a coupled section of line in parallel
with the power source with the length needed to
reflect the correct amount of reactance into the
main power source at the point where an impedance
match would occur.

8. The use of a tapered transmission line as a

broadband impedance matching transformer.

A vertical antenna of fixed frequency is used most
often at broadcast radio stations and is usually matched
using a coupling network of reactances in series with the
coaxial transmission line from the transmitter. Also, an

amateur radio operator interested in only one frequency of

N AR I
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LY
operation would probably find this method of impedance ’:
matching most practical.
)
4
U
A. Impedance Matching Networks iyt
"
',‘!‘
3
With this in mind, an example of an impedance ;
matching network designed to match the 50-ohm coaxial A
).
transmission line from a transmitter to an antenna having ]
¢
a purely resistive impedance of 100 + jO ohms is shown !'
below. A phase difference of +30 degrees, between the 5‘
transmitter current and the current flowing through the k
¥
element is incorporated into this design. Therefore, the
phase at the output lags the phase of the input by 30
degrees. A PI network, as shown in Figure 14, will be A
‘A
used as an example. :
Since we are assuming the network is ideally 5
N
reactive with zero losses the components of the network .
Zp, 2Zg, and Zr- can be directly computed from the formulas L
pelow:® 2
_ R, Ry, sin B ]
Z2p = 3 (3.1) e
Ry, Cos B - Ry R, &
. \r
R; Ry Sin B 0
Zg = ] (3.2) :
4
R1 Cos B -~ Rl R2 :
b))
N
\J
20 = J Ry R, Sin B (3.3)
)
]
t
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N
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B is the phase difference between the input and output !'
terminals of the PI networks, while R, and R, are the ?
. s §

image impedances with R; = Ry, and Ry = R- The driving k’
D

point impedance is a more specific term for the image -
V]

impedance and it is defined as the impedance at the base :ﬁ
of a radiating element (vertical antenna). For our lﬂ
example, )
l;|

i

Y

100*50 Sin(30) ]

Zp = 3 = j157.31 ]

50*Cos(30) - 100*50

100*50 Sin(30.0) o

ZB = J = -j91.21 '..',
50*Cos(30.0) - 100*50 .ﬂ

W,

ZC = j 100*50 Sin(30.0) = 3j35.36 <

||‘<

)

and the resulting network is shown in Figure 15. 3
{

If a TEE network as shown in Figure 16 is used in .

‘-;F

place of the PI network, the following equations would :a
apply:17 N
‘\‘(

R

R =

CosB - R; R

7, = -3 1 1 2 (3.4) ﬁt

SinB 2

Ry Cos3 - R; Rp <3

SinB W

"

S

N

R, R =
. 1 ™2 ]

VA = - ——— (3.6)

3 SinB "§:

o

» ]

o

-

~»
X
D]
]
\

h Nl v SP AR Py
\*zﬂﬂl'ﬂ XA AN R ATANYS X l.l.“l-.




. ..,., . :
- . - . »
SAS RPN S LAEPN I KA el

R A
-
Y

- % i - . g " " e Y % Y S T o X, X X .v.. 4 K h e & 2y
= PN o ) PRae e R P 2 ,.u..i.&. s m.l......_,w...wa. L ARG o £,

~

v
PR
LA
~

WV WL
41
L et

¢
N

AL W TR

DOl=2H 0G=lY J0j >JOM1aN |d Bujainsay - G 34N

= -:'f -'F \

",“"‘*

Sod

AT

vesl —— LE'LGL

N X

B
I’.
>

he 1 d

89e'GE(

‘
s 4
b
(<
* 53
*; A
L.
o
»
; Y
- <
s )
.' -
. -
s .
¥
> Y
s, <
-
. 5
w- .‘
"
<
‘.
’ "
s .
- ]
A
» -
LD wi
>,
roy
: !
- »”
; !
-~ [
K
E
-
;
»

‘u A,




O RN A A A A A A A U I AT A U N T U WY LN U VR DXL R L T T T T R T R TR PO X P O R S

" f

<<—AHfp

(A

e

-

SN0 ox

@ LA
4 2

K
o
- Y

¥
”

FIGURE 16 - General Diagram of a TEE Netwark

L3

i
e
2




SR R NG WU WU

Vam

.~
—- -

-

oo oy

-
-

e - -
- - -

5007 1% 0P 0o Ea A galond 020 Y ¥ AR b0 b et §a® §a8 gt e ¥ hed Rt a s ) XY O I T T TR ™ RO ™R T " N T r m 8

and the resulting reactances being

j54.82

S
[ aaud
]

-3j31.78
7y = -jl41.42

N
i

with the resulting network shown in Figure 17.

Usually in the design of PI or TEE matching
networks the desired input and output impedances as well
as the phase shift are known and the network components
are the unknowns.

Another design example will be presented with the
desired input and driving impedance being given as %, = 75
- 330 and Z, = 600 + jl50. The phase shift of the
network will be the difference between the phase of the
input current of the network and the phase of the base
current of the antenna of a positive 60 degrees (phase
lead). Since the B in equations (3.1-3.6) represents
phase lag, a negative B will be used in the calculations
in order to keep the signs of the network components
correct. For the PI network of figure 14 the following
values were calculated using equations 3.1, 3.2, and 3.3
after transforming the complex series input and load

impedances to their parallel equivalent circiuts.

ZA = +j155 {a 155-ohm inductor)

ol A R I A e, T T AT A T TN T A AT AT A NSV A
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30 M "

»
N
]

-3j113 (a 133-ohm capacitor)

]

. Zo -j108 (a 108-ohm capacitor)

and the resulting network is shown in Figure 18

-

(remebering that the required network is lossless).

e >

Application of the PI network to a specific phased

g

array antenna system will show how these networks are used

¥ by an array designer to provide efficient impedance

-

! matching with the desired phase shift in all transmission

lines leading from the transmitter to the array elements.

-

B. Conventional Phased Array Design

A two element vertical array with impedance
matching networks is shown in Figure 19. The following
design approach is most often used by radio broadcast
stations and amateur radio operators in the LF to HF
frequency ranges using vertical antennas positioned above
- the surface of the earth (non-infinite ground plane). The
g transmitter will supply power to both elements and

trerefore a PI network will be placed in series with the
transmission lines leading from the transmitter to the

antennas.18 The PI networks must accomplish four things:

' 1. Provide an impedance match between transmitter
and the antenna.

v
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s 5 .
2 2 1 Yi
X = \/x. + Y. Cos | Tan~ (———> -0 (2.4)
1 1 Xi .

The distance X is expressed in wavelenyths and can be
converted to radians by multiplying by 277/ ).

Classical examples of basic radiation patterns
producible by such simple arrays are the endfire and
broadside configurations. The broadside configuration
consists of two vertical antennas fed in phase yielding a
radiation pattern as shown in Figure 9.7 The endfire
array also has two verticals (with the same spacing), but
they are fed 180.0 degrees out of phase. The radiation
pattern produced by this arrangement is shown in Figure
10.8

The endfire array can be varied in spacing and
phase in such a way as to produce unidirectional patterns.
When fed 90 degrees out of phase the direction of maximum
radiation is always in line with the two verticals towards
the direction of the antenna receiving the lagging
excitation. A classical example of this phenomena is the
cardiod pattern shown in Fiqure 1ll. This pattern was
produced with two quarter wave verticals spaced a gquarter
wave apart and excited 90 degrees out of phase.9

We now proceed to analyze a vertical phased array

consisting of N antennas. The vertical elements are
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Ty, = 2y = (20.4 - jl4.2)

o o -

The driving point impedances of each antenna are

o

! v
1
! 2, = —— (3.9)
g I
' V
4 pA = —2_ (3.10)
L2
{ I,

and the power delivered to each of the elements can be

defined in terms of the driving point currents or voltages

using
)
¥ P. = .. ” (3.11)
! i = Real(Vi I, ) .
\
bt or
‘s
H
: 2
P, = |13 Ry (3.12)
\
.
' where (i) defines the particular element in question and
; RLi is the resistive component of the ith element liiving
)
: point impedance.21
‘ Assuming each PI network will consist of

purely reactive components, the input power to the ith

network equals the output power (Pi) of each network. The

- o' d e

r. rl
¥
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total input power to the array can then be expressed as

(3.13)

o
=
N
[N
Mg -
o
[

S.nce one would want the input impedance to the array to
match the characteristic equation of the transmission

line, we have

and by using 50-ohm coaxial line the the expression for

the input power becomes

Pp = ——— (3.15)

with Vin being the voltage from the transmitter.22
The input power of the ith network can be used to
find the input impedances for each network by defining the

phase of the input voltage (V;,) 28 0.0 degrees. Equation

3.15 then takes the following form

N
Vi, = soéglp. (3.16)
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F

)t

'n

or p,
'
4

2 o
P; = Real lvinl (3.17) .

Ri ‘,A ..
el

With the phase of Vin equal to 0.0 degrees, the input *;
resistance to each networks must be F
A

o

)

2 o

R; = |Vin (3.18) .:
Py ,‘
oY

)

The PI networks must be able to match any complex E

I
driving point impedance Z;; at the base of each antenna §.
with any input resistance R;. By using the PI network in it
]

this example, one can utilize equations (3.1-3.3) to o
calculate the components of the networks once the driving $
‘:

point and input impedance that result from a given current R
excitation have been calculated using equations (3.12) and >
"t
(3.18). The network must also produce the desired phase n@
shift. ?
Ry
ol
)
" N

-

C. Feed Network Design Example }

The design method discussed will be used in the #
N ]
N
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O
following specific example. In Figure 20 there are two :“
quarter-wave vertical antennas spaced a quarter wave apart 3
%
"
above an assumed infinite ground plane. The base currents s
!
I, and I, are given as desired values and in phasor form S
they equal h
Ny

"
o
)
=14 =1 I =140 =il o
EXH

&
(N
4
With these currents the driving point impedances, using %'
the mutual impedance equations 3.7 and 3.8 and equations {;
3.9 and 3.10, are found in the following manner; ' oy
I ]
By = Zqq + Zyg — (3.19) bty
L1 T “11 12 I it
1 4
¢
= 36+j21+(20.4-314.18)(31) "
\
= (36 + 14.2) + j(21.0 + 20.4) ;:

w

211 < 50.2 +j41.4 Mgt
2.

oy
I Y
o
ZL2 = 222 + z21 (3.20) ':‘

12 "-

‘A
=(36 +3j21)(-j1)+(20.4-914.18) s,
= (21.0 + 20.4) - j(36 +14.18) Ef

- 3 l"_u

Z, = 41.4 - 350.2 ,
o
o b
o
The power for the each antenna is then solved for using kf
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equations 3.13 and 3.14 in the following manner;

- 2 = =1* =

P, = |I]J Ry =1*Reall[Z;;]=1*50.2=50.2 watts (3.21)
2
P, =|I, Ryp=1*ReallZ;,]=1%*41.4=41.4 watts (3.22)
Once the power to each network is known the input
resistance to each antenna can be found using equation
3.18 as shown below.
2 2
Ry = \Vin| Ry = | Vin|
Py P,

where

Vin =+/50%(P, + p,) =4/50%91.6 = 67.5 (3.23)

So

Rl = 91.235 ohms Ry, = 110.628 ohms

The phase shift between the input and output port
of the PI networks can be calculated by converting the
complex values for Z;, and Z;, into phasor form. The
driving point impedances are now

ATy
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3 3 L 4L
=\(51.2) + (41.4) /Tan”
Ll 51.2

2 2 51.2
2 SV(41.4) + (51.2) /Tan™!
41.4

with

Z,1 = 65.8 /39.5 Z;, = 65.8 /50.4

From the previous calculations the values for Ry-

Rz, Zyy+ %5, are now known. The load impedances are

converted into their equivalent parallel circuits and the
parallel resistance components are be plugged into
equations (3.1 - 3.3) for R, in order to solve for the
reactive components of the PI networks. The parallel
reactive components are coupled with the parallel branch
of the PI networks and the resulting reactance becomes the
value of the particular parallel branch on the network.

Substitution of R, and 2Z;; for R; and R, of equations 3.1,

3.2, and 3.3 results in

(91.2)(124.01)s8in(39.5)

ZAl—

(124.01)(Cos(39.5)) =~ (124.01)(91.2)
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B2 e i 2k T
LR Pold

1"\

(91.2)(124.01)Sin(39.5)

i 4

g ey

(91.2)(Cos(39.5)) - (124.01)(91.2)

o x

fren

”,

Z0 j (124.01)(91.2) sin(39.5)

T
_‘\"lf
-

U5,

upon completion of the computations above

{® s

XA
o]

e

-j674.98

.

N
il

-3302.46

467.65

s

L L LA T OGNS
-‘

O

The substitution of R2 and Z , of the other PI network for

Rl and R2 in equations 3.1, 3.2, and 3.3 take the

following form

kR P
S

o
)

£

(110.6)(69.56)Sin(50.4)

|
e

Zpy = 3

N

(69.56)(Cos(50.4)) - (69.56)(110.6)

P S
T,
>l W6 M,

(110.6)(69.56)Sin(50.4)

10

LNy

B2

(110.6)(Cos(50.4)) - (69.56)(110.6)

Pl ¥ 2 |
AN

Zoy = j (69.56)(110.6)Sin(50.4)

e
o

-
-

The above computations result in

Zpp = ~3136.67
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‘ -j259.56

j67.58

N
I

- o oo

The inductance and capacitance values
h corresponding to calculated reactance values for the
paramaters of the two PI networks can be found assuming a

frequency of 7 MHz with the following equations:

P

1 X

C = L = L
‘ wxc w
{
)
!
\ where
A
* Xy, = a positive j( ZA or ZB or ZC)
)
: Xc = a negative j( ZA or ZB or ZC)
. w=2T£f ( £ = frequency)
K
y
D
b Therefore, the PI network parameters for the two networks

are
)
)
!
L)
2 Cyal = 33.68pF Cza2 = 166.7pF
¥
LZC]. = 1.53uH ch2 = 1.53uH

and the networks are shown in Figure 21.
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D. Conclusion

This chapter listed many of the currently
acceptable methods used for impedance matching in phased
array antenna systems. Discussion of PI and TEE matching
networks was presented in some detail for two reasons: PI
and TEE networks are an often used form of impedance
matching, and the PI network will be used in the
equilateral array studied in this thesis as the circuit
for controlling the radiation pattern of the array. A
simple two element array with series Pl networks was used
to correctly match the antennas feed point impedances with
the impedances being seen from the transmitter side of the

network looking towards the individual element.
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IV. ANALYSIS OF A THREE ELEMENT PHASED ARRAY

A three element equilateral triangular phased
array antenna system was chosen to test the two design
methods developed in Chapters Five and Seven because of
the comparatively small number of radiating elements
involved. In this chapter the analysis of the three
element triangular array will be presented.

The "analysis" procedure to be demonstrated in
this chapter, as well as the "design" procedures of
Chapters Five and Seven, can be extended to larger arrays.
Figure 22 shows an NxN element array typical of larger
designs.

The three elements of the equilateral array used
throughout this thesis are quarter-wavelength vertical
antennas spaced a quarter-wavelength apart. The coaxial
transmission line connected between the pairs of elements
and in series with the PI networks has a characteristic
impedance of 50 ohms. The array is excited by a 50-ohm
transmission line from the transmitter to element #1.
Parameter3s of the PI networks are assumed to be purely

reactive in all calculations.

A. Transmission Line Eguations

60
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Coaxial transmission lines are inherently lossy. :”

The physical characteristics of the lossy transmission N
J

Y

lines can be described as follows:2% wl
N

>3

“»

= i .1 )

Vg = V Cosh~/2ZYL + I,2,5inh,/2ZYL (4.1) 8

Ig = 1,Cosh/ZYL + Sinh4/ZYL (4.2) TR

Z e

o )

::,_(‘

. . o)

Z = R + jwL (series impedance per unit length) N

Y = G + jwC (shunt admittance per unit length) »

o

v, = receiving-end voltage (load) N,

Vs = gending-end voltage (generator) W

I, = receiving-end current (load) e

I_ = sending-end current (generator) 3

R = reactance L = inductance -

C = cpacitance G = leakage o

RS

Y

P,

2

o

However, for some communications applications in the &ﬂ
amateur amd broadcast radioc fields, the transmission lines 3
L3

can be assumed to be lossless because the actual losses in ey
the lines are quite small. For lossless transmission £
lines, equations (4.1 and 4.2) take on the following -
form:23 Y,
o

:} 5

.J‘

.I‘

Zo = Characteristic Impedance = 50+3j0 ohms (4.3) :’

BAN

' o ¥

27TL 29T L :.r“
V.=V Cos —— + JjI_Z Sin —— 4.4 Ny

s r X Jitrdo X ( ) o
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27T L v 2TTL
+ 3 Sin (4.5)

)\ Zo A

=~
]

s IrCos

Equations of the above form will describe each segment of

transmission line used in the interconnection networks.

B. Mutual Impedance Egquations

An antenna with current flowing in it will induce
a voltage in any other antennas in the nearby area. The
antennas will behave as though they were coupled to each
other and the induced voltage in a second antenna divided
by the current flowing in the excited antenna represents a
mutual impedance. Denoting the mutual impedance between
elements 1 and 2 by 2, 2an alternative form of equation

3.7 can be written as

\Y I.2

1 1411

Zig = — - (4.6)
I2 Iz

where E, is the induced voltage in the second antenna and
I is the excitation current in the first antenna (see
Figure 21). The mutual impedance is expressed in terms of
the current at the base of the first antenna and the

voltage (induced by the current in the first antenna) at

the base of the second antenna. This mutual impedance

between two elements also varies with the geometry of the

o
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antenna and geometry of the array. The voltage and c

i current relationships in arrays of elements can be ¢
J

represented by summing the voltage generated in the nth ‘

antenna caused by currents in all n antennas (extension of

equations 3.7 and 3.8), as follows: .

P

Vi = 13211 + IpZ)p ----- InZin (4.7)

o ;

b Va = 11213 + 13223 ===-- InZ2n (4.8) 4

[J -

' » * L . ..
&

N It

3 2

*

; Vo = InZin + 1222 -=--- InZnn (4.9) .

3 M

. v

where

&,

3 >,

A 4

{ V, = voltage applied to the base of element n. -

[} ‘

I, = base current flowing in anterna n.

¥

1{ 2, = self impedance of element n. 3

EN Ly

Zij = mutual impedance between antennas i and j. :

Y The mutual impedance (le) between two antennas is ;

. defined as the ratio of the voltage at the base of the i

‘ second antenna to the current flowing at the base of the .

y first antenna. The self and mutual impedance values :

X representing the elements of the equilateral triangular .

array are calculated from theory, using an assumed current

K excitation on elements of the same geometry and spacing as .

) al

: ’

‘. :

K

N

N

. N
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the array.26 Mutual impedance measurements are difficult,

as they are easily affected by the surroundings in the
area of the array and the conductivity of the earth's
surface. Therefore, these values should not be assumed
accurate and measurements should be made at the actual
constructed array with the measured values being used in

the re-evaluation of any calculations.

C. PI Network Equations

The PI network shown in Figure 4 is the form to be
used in the interconnection medium of the phased array
antenna system of Figure 5. The PI network is connected
in series with two short sections of transmission line
between each pair of elements in the array. Kirchhoff's
Voltage Law is used in the analysis of the PI network

where

1 1 -3 1
= = , with Xo = ——
sC jwC wC wC
sL = jwL = jXi ' with X; = wL
L = inductance C = capacitance
X, = reactive inductane in ohms
Xc = reactive capacitance in ohms

A e N L R D B SR R e e e e o
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The KCL equations at nodes #1 and #2 then can be written

as

\Y

o = 1A .
L3R (1/3Xqq3)
I _ V3 +
31A = -

(1/3Xc3y)

(v - Vaa)
1A~ 3A (4.10)
JX113
(V3p - Via)
(4.11)
X113

After transferring X,,3 and Xc3) to the numerator of the

second component, equations (4.10) and (4.11) become

I3a

= V;a(3%c13)

+

31A = V3aliXe3y) +

(v - Vaa)
1A 3A (4.12)
X113
é (4.13)
IX1,13

The currents (Il3A and I,;,) and voltages (Vy, and

V3A) in (4.12) and (4.13) are complex quantities, but the

impedance representations for the inductor and capacitors

are only shown with the imaginary components (‘ijl3'

jxc13, jxc31) because the real components are assumed to

be zero; that is,

considered here.

only lossless networks are being

Combining the transmission line equations, the

nraahis
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effects of mutual impedance between the elements, the
Kirchhoff's Current Law equation at the base of each
antenna, and the PI network equations yields a set of 24

complex equations describing the entire array as follows:

Mutual Impedance equations:

Vi = 132y + 1527, + I32;3 (4.14)

Vo = 1129y + 13295 + I3Z33 (4.15)

Vi = 17237 + 13235 + I3Z233 (4.16)

Transmission Line equations:

p=(27TL)*3/2, L=1/8, 20=50.0

V] = VipCos(p) + jzoIp3aSin(p) (4.17)
j 13
o}

V3 = V3pCos(p) + jZ I3;pSin(p) (4.19)
j 13

I3 = I31ACOS(P) + ——Z— V3A31n(P) (4.20)
o

Vy = VypCos(p) + jz,I;,55in(p) (4.21)
j . '

I,9 = IlZBCOS(p) + _E_ V1351n(p) (4-22)
o

N U NG OOy
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Vo = V,ygCos(p) + jZ,I,,gSin(p)

3
I, = I,;gCos(p) + —;— V,gSin(p)
o

Vo = VyeCos(p) + jZ I,30Sin(p)

J
I,3 = I,3cC0s(p) + — V,Sin(p)
O

V3 = V3cCos(p) + 3Z,I3,0Sin(p)
j

I32 = I32CCOS(P) + —z- V3CSin(p)
(o]

Kirchhoff's Current Law (at base of each antenna):

Il+IlZ+Il3=IT
Iz+121+I23=0

I3 + 131 + 132 =

PI Network equations:

. A V3a
Ii3a = VyaldXgy3) + —m——
X113
(Vona=V,,)
_ 3a~Via
I3;4 = V3a(3%Xe3;) # T
JAL13
o M N NI A T T o S T o S

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)
(4.31)

(4.32)

(4.33)
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(V;5-V2g) ;
Ti2p = VipliXc12) + — (4.34) :
JX112 \
[n
¥
(Von-Vqin)
2B~V1B
I218 = Vap(iXc21) ¥ ————— (4.35) :
12 >
(Vae-V3c) >
I23c = VacliXe23) + : (4.36)
3Xp23 3
'
3c™V2cC ‘
Iypc = V3C(ij32) + (4.37) 9
K23 ;
In order to simplify the implementation of these -
-
equations into FORTRAN code, the transcendental components ﬁ
J
of the transmission line equations are (from this point 3
on) represented in the following form:
{
27TL 27TL 27TL "y
K, = Cos K, = Z.Sin K, = Sin _
1
)\ 2" N 2 3
0
‘.
%'
o
The variables in this se* of 24 ccmplex equations
)
are labeled on the equilateral phased array diagram in ;
)
Figure 5. The variables Vl' V,, V3 are the voltage at the §
base of each of the three elements of the array. I, Iy
Y
I3 are defined as the current distributions (current .
N
~
R I e A S e A A N R T
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flowing through each element). The variables Viar Viar
Vigr Vagr Vocr Vsc are the voltages at the ends of the
transmission line sections that are not connected to the
base of the antenna, but to the PI networks. The 15,
Io1, Iy3s I3pe Inz. I3z variables are the currents flowing
from the array elements through each section of
transmission line towards the PI networks. The currents
flowihg at the end of the transmission line sections

connected to the PI networks are the variables Ij3p, I3jp¢

I,58: I218r Iz3cs I3pc. The last variable of this set of

equations is Ips which is defined as the input current
from the source of power for the array and is input at
element #1 of the array.

In the "analysis” of the equilateral array the
reactive components of the PI networks are given as known
values in the set of equations describing the system. The
currents flowing in the elements of the array become the
unknown variables to be calculated. Upon close
examination of this linear set of equations the
possibility of substituting one of the groups of equations
into one of the other groups of equations is realized.
Substitution of the mutual impedance and PI nastwork
equations into the transmission line equations was
performed to bring about a reduction in the number of
equations as well as in the complexity of the set of

equations needing to be solved. Upon completion of the
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above mentioned simplification measures for the "analysis"

situation, the 24 complex equations (4.14 thru 4.37) take

the following complex linear form:

Iy + 15 + Iy =

I11271+12212%+13213.Vp K1‘K2Xc13+x

I13-Vi1a|K13Xc13 - + 3K3 |- V3a

I)231+13235+13233-V iy —— + V3, (K + -KyXc3/~0

- V3A[%ljx032 - +jK3 (=0

I1211”2212*13213-"13{Kl‘szcm+

I,3-Vip|{K13Xc12 + JK3|- Vyp

11251+13275+13295-Vi + sttK1+

LIPS

------- P A PR N I
SO AR ARG RN )

(4.38)

(4.39)
(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)
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Ky _ Ky )
I31 - Vi - Vap|K13Xg21 - +ig3|= O (4.48)
Xp13 X112
K2 -K
11Z31+13292+13223.Vc |K1-KaXc23+ + V3c —— =0 (4.49)
23 X123
. Ky , 3Ky
I13-Vac|KiiXea3 - + JK3|- V3¢ =0 (4.50)
X123 X123
. -K K
2 + 2 KaX~qs=0 (4.51)
1,231+12235+13233-V¢ + V3c|Ky -KoXc32 .
23 X123
. 3Ky _ 515 R
31 ~ Vac = V3c|K13Xe32 - +3K3|= 0 (4.52)
X123 X123

Therefore in the analysis case the unknown variables are

In2, I21+ Iy3. I3y. Ip3. I32, Vipr V3ar Vipe Vap: Vac

Vic: 11, I3, I3

and the known variables are

Xc120 Xc21+ Xc13+ Xc31r Xc23+ Xezze I
X120 Xp13. X123

The above set of linear (since the network

parameters are given) equations can be solved using matrix

techniques for solving a set of linear simultaneous
equations of the form Ax=b. Here A is a 15x15 complex

matrix consisting of the coefficients of the unknown
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variables, and the complex matrix b consists of the only

constant in the system (the array input current IT)- The
PI network parameters are known but they are coefficents

of the variable voltages at the ends of the transmission

line sections connected to the PI networks (VlA' ceer V30)
in the 15 linear equations (4.38 thru 3.52).

| A FORTRAN subroutine was written which solves

equations 4.38 thru 4.52 using a linear equation solver
routine (LEQ2C) located in the IMSL subroutine library
available on the VAX 11/780. This analysis subroutine
ANAL_DESG returns to the user the complex current
distributions of the array elements after being supplied
the array's input current (IT) and the complex PI network
parameters. The source code for this subroutine CURR and

the main program ANAL DESG are listed Appendix B.

D. Results

An example run of this subroutine is shown below;
it was supplied with constant magnitudes for all the PI

network parameters and a value for the input current IT'

Xp13 = 1 Xc13 = =50 Xca1 = 260

C21

e A s e s e s e e e
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XL23 = 100 Xgp3 = -25 Xc32 = 73
I, (input current) = 1.0 + jO
Resulting Magnitude and Phase
Mi; = 1.0 M, = 0.28 M3 = 0.28
PHyr; = 0.0 PHyp = 95.6 PHy3 = 95.58

The values for the PI network paramters in the
above example were choosen arbitrarily and thus do not
necessarily result in current distributions that
correspond to an useful radiation pattern. The radiation
pattern corresponding to the current distributions found
above (Il1,12, & I3) is shown in Figure 23.

Below is a list of two more examples showing the
given PI network parameters and the resulting current

distributions.

X113 = 100 Xop3 = -50 Xc31 = =500
X;1p = 100 Xc12 = =5.67 Xco1 = =50

IT (input current) = 1.0 + jO
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..........

h*

WA

‘."'v,'r. [ ] r:'& 5}3 AN

‘it
"t' 4

r, : )

Ay,

4

L
[

ARk

'-’.-'t W
«

»
«f

o LA
o

g
ey

o

B
S

A T

MY X% VY
[ < ", {‘. <

LIRS

A
B

CRSr

s

-l:’l.(l.' -:t. -,

AL
Qg.- -."l"‘ J

SR

[ SRR o
i

WO



g7, ‘
o S A A PR A R L A NN A O e

S3tnsay stsAleuy wodj udajjed — €2 3IHN9OIS

\J
/

ot

o

Ctaemes e
AT

()

PRI

I\('('

R AT R AT,

“’Nr!.v..t LS ART S
o B AE,

..f.‘l,;l~f‘;f';f.‘-~f_ AT R S AN

1,-,-,: ;,-



L 00 B SB35 4 0¥ 6 75 A AWREA/C AR AR AT OAS ¥ A RS S0 Na® g e v il aft Sl bt} B a0 et 2000 A G b L 'R 08 0k %a A% Ve §8 R %2 VoV T UVIVTUV AL Y

1]
&
¢
5

h
: 76 ¢
’ -
K i
! Resulting Magnitude and Phase Y
:
= = 0. = 0.28 X
MIl 1-0 MIZ O 28 MI3 :
b

1
f C
: Xp13 = 10 Xc13 = -5 Xc31 = 9 By
w N
; _ _ _ 3
Xle = 15 XC12 = —0.01 XC21 = —lO g
. Xp23 = 20 Xcp3 = -0.02 Xc3z = 73 ;
¢ K
. 3
A IT (input current) = 100.0 + j45 ;
1
- (%
> \'
. Resulting Magnitude and Phase e
A "~
<
MIl =1.0 MIZ = 0.11 MI3 = 0.28 $
PH;; = 0.0 PH;, = 80.67  PHyj = 85.72 N

o
E. Summary R
: This chapter has demonstrated that the phased y
: a
array antenna system represented in Figure 5 can be -
analyzed by solving the 15 linear simultaneous equations )
)
. X
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that describe the system. The current distribution for
each element of the array are the three variables of most
concern resulting from the solution to equations 4.38 to
4.52. However, these resulting current distributions are
as arbitrary (useless) as the corresponding PI network
parameters specified by the user.

Therefore, in order to design a phased array
antenna system based on the interconnection medium
illustrated in Figure 5, the 24 complex equations that
describe the physical and electrical characteristic of the
system must be solved using specified (desired) current
distribution. These current distributions will correspond
to a desired radiation pattern. This idea is explored in
Chapter Five.

Presentation and analysis of the equations
describing the physical and electrical characteristics of
the three element equilateral triangular array was the
main theme of Chapter Four. The2 substitutions of the
mutual impedance and PI network equations into the
transmission line equations was accomplished and the
resulting set of 15 equations was presented in their
complex linear form, with the known and unknown variables
Clearly indicated. All of the necessary equations and
theories has been discussed and the stage is now set for
developement and discussion of the PI network design

procedures to be presented in Chapters Five and Seven.
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V. INTERCONNECTION NETWORK DESIGN

o~ LN &R

BY LINEARIZATION: AN EXTENSION

OF NEWTON'S METHOD

This chapter will present a detailed explanation

of a procedure capable of solving the equations that

describe the unique phased array antenna system of Figure

5 in the "design" situation. As mentioned in the B

introduction, the design process pertains to the situation

where the currents on the radiating elements are

classified as given (known constant complex quantities),

while the PI network parameters are the unknown variables

L g ‘{’

of interest. Therefore, the "design" of interconnection

b

networks for the array is just the opposite, where the

A

variables of interest are concerned, of the "analysis" of

E AR I

interconnection networks that was presented at the end of

Chapter Four.

To a potential user of the equilateral array

Z IS A

proposed in this thesis, the "design" situation would be

;4

of most interest. The user probably already has

calculated the current distributions on the elements of

the particular array (discussed in Chapter Two) and wouli

need only the proper PI network parameters to realize the

desired radiation pattern. The design procedure of this

chapter provides these Pl network parameters given the

current distributions on the elements as input.

(50 M0 0
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(4
o
)
"
The discussion will begin with an explanation of N
the substitutions made among the 24 equations describing ?g
the array (equations 4.14 thru 4.37), justification for EF
' .‘
- . 14,
giving some variables a constant value, and why one of the .
Kirchhoff's Current Law equations was disregarded (not b
™
used) as an equation describing the array in this design &ﬁ
procedure. The nonlinear equations are presented in their ;“
compiex form and a detailed discussion of the *é
linearization process performed on these equations vﬁ
follows. The linearized set of complex design equations H
and the results of an implementation of this design method E:‘
s
. . . R
on the equilateral triangular array, with XCl2 and Xcp3 ;i
being the unknown variables, is shown as an example. i
o
In this design method the parameters of the PI &f
I'._
networks are unknown values. The desired current for each 2:
-
~
element in the array will be input as known values from
)
the program MAX RAD (discussed in Chapter Two and listed -
in Appendix A). Reducing the amount of equations and the ;:T
A
number of unknown variables by substitution of the mutual 3
5‘n"
impedance and PI network equations into the transmission 357
line equations was done in order to simplify the Q:
.
computational procedure. [‘
Substituting the mutual impedance equations into '?i
e
the tansmission line equations for the variables V;, V,. fg
and V3 and the PI network equations for the variables ]
P .
. o,
Iy3ar I3iar Ii2p I2ipe I23cr and Igpc vields a set of 12 N
'
"
ALY
]

P
4 % !
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equations. Together with Kirchhoff's Current Law (KCL)

the number of equations now describing the

equations,

The voltage at the base of

system has been dropped to 15.

each antenna (Vy, V,, V3) are constants for this method

since the input currents I,, I,, and I3 are given and the ey

- o

\]
self and mutual impedance values Z;;, Zj3, and Z;3 are a
&4

also known values. Thus, equations (4.7-4.9) give Vi, Vo,

and Vj directly. In order to solve these 15 equations

(4.38 thru 4.52) simultaneously there must be the same

number of equations as there are unknowns. The current

flowing into the array from the transmitter (IT) is an

unknown variable that must be disregarded in this design

So eguation 4.38, which is the KCL equation at

procedure.

K the base of antenna #1, is taken out of the system in 5‘

b )

K order to balance the number of equations with the number E

\

5 of unknown variables. Thus, equation 4.38 is assumed %
E‘(

non-existent and is not included in the set of 14

nonlinear design equations describing the array. There

remains 14 equations with 21 unknown variables.

In order to make the 14 equations solvable, seven }3

of the nine PI network parameters were assigned specified

values and so they become knowns, yielding 14 nonlinear

complex equations in 14 unknowns. The PI network

parameters that were not given a value become the unknown

variables of interest. For the example shown in this

chapter X.;, and Xnp3 are the unknown network paramaters.

[T .-~ e AP R MR IR MR
~.. ~_‘.'_ . \.'\. ‘-"n"\"\-'.\' O \.f - \‘\-' o,
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A. Design Equations

The 14 nonlinear complex equations have been

81

arranged in a form that is compatible with the linear

equation solver routine (LEQ2C) of the IMSL subroutine

library. The design equations are listed below in this

form:

Iy1 + Ip3 = -1
I3; + I3 = -I3
K -Ko
Via Ky = KXcp3 + + Vz3p — =V
13 Xr13
L , Ky , 3Ky
13-Via|K13Xc13 - + JK3| =~ V3p =0
Xp13 ] XL13
-K2 e K
v Vag Ky + - KX =V
1A + V3p Ky 2%c31| = V3
X113 X113 |
JKy _ | ST .
I3;-Via - V3a|K13Xc31 - +JK3|'
L13 X113
- K2 —K2
Vig|Ky - KpXci2 + + Vg —m— =V,
X112 X112
. 3K, ] Ky o
L127ViB|K13Xgyo - + 3K3|‘ Vag < =
] XL12 L12

” Iffd‘-"-f‘ o, AT AT TN CPCIE es v - et AR e
AN f" ) L A .v..l- ~~ ™ N J\.o 0 VI\' J .\ Ni"" .....

(5.1)
(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

P

L5

A;J;J,",)T- f'
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} ]
! 0
g =Ko Ko
. V1B *+ Vap|Ky + - KoXga1 (= V2 (5.9) '
Y Xp12 XLi12
N )
) b
N I21-Vim - Vop|K13Xcay - +iK3|= 0 (5.10)
? XL12 Xp12
L)
L K -K )
: v 2 2 _
. 2C Kl - K2XC23 + + V3C — = V2 (5.11)
; X123 X123 h
' Y
) . o
JK jKy - 3
N . 1 . 1 _
! 123-Vac|K13Xc23 - + JK3| - V3¢ =0 (5.12) A
23 X1,23 «
) d
o v ~Ko Ko \
2C + V3C Kl + - KyXep32 1= V3 (5.13) 3
X123 X123 :
L%
3K, _ Ky :
I32-V3c = Vac|Kid¥c3z - T 33T 0 (5.14) 2
XL23 123 q
t
; <
N Since the unknown PI network parameter are Xsy, and Xcgj33 %
o Y
N the unknown variables of the design equations listed above y
: ,
are: -
: :
; Iy2e I23s I23. I3pe 1330 I3y Viar V3ar Vigs Vape '
: Vacr Vier Xc12¢ Xc23 y
.
. ",
and the known variables are P
) V., V,, V I 4
! 10 Vae V3o Iyv Ipe 130 Zyy0 2390 2130 2210 2330 ]
) :
N e o e o T e e AN g e e P NP S VS N N NN

af
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,

223¢ 231+ 232+ 233 Xp12¢ Xc210 X113/ Xc130 Xc31

X123 Xe32

The K,, K,, and K3 terms are defined as they were
in Chapter Four on page§9.

Upon observation of the 14 design equations one
can see the nonlinearity is due to the occurrence of

crossproducts between the unknown phasor voltages and the

unknown PI network parameters. For instance, since X¢12

e e o

is an unknown network parameter that needs to be found, an

example of a nonlinear component is the VigXci2 term in
equations 5.7 and 5.8. Also the component ViaXc13 is
nonlinear in equations 5.4 and 5.5 if the Xc13 network

" parameter was an unknown capacitor of interest.

B. Taylor's Series Expansion

In order to solve the 14 design equaticns exactly,
one must use a linear equation solver routine which
utilizes matrix algebra techniques (Ax=b). Therefore the
nonlinear equations must be liinearized. The method used
, to do this is a generalization of Newton's method for

=0.27

finding the roots of f(x) The generalization

involves extension to the multivariable, complex variable

case presented by the solution of equations 5.4 thru 5.15.

Wne '-l"'.( 'vr X e 'w.;f eI - " - ¥ N ‘*_-ﬁ‘-‘“' -.1- " .-:..r ¢ "*‘-\"*.‘-.'.‘-"‘-‘ ‘.)-‘.h")‘.h.u -' N
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The extension is as follows.
Transposing all terms of equations 5.4 thru 5.15
to the left of the equal sign, the design relations may be

written as

fi(Xl’..o'xn) = 0 i=ll ...,n (5.16)

where fi(xl,,,,,xn) is the complex left hand side of the
ith equation and 0 denotes the complex number O + jO.

x = (xl"°"xn) denotes the complex (Real + jReal) problem
unknowns, whether voltages, currents, or parameter values.
Expanding £; in a complex n-dimensional Taylor's series

about an initial (complex) guess X, and retaining linear

terms, one gets

n
fi(xl,...,xn)=fi(xl°,...,xno) + Z (jfl (XJ - on) (5-17)
=1 %5 | xg

Equating the right side of equation 5.17 to 0+j0 (complex)

yields

=0 (5.18)

fi(xlo""'xno) + z: (jfi (x. - x.

or
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n
fi(xlo,...,xno) + ;;l<ji% . (Xj)
Jl=0
L
- -y Jh (%55) =0 (5.19)
3=1 lej X0

leading to a set of n simultaneous complex linear

equations

n

f.
‘Zl‘g—_}. ( Zl gf (xjo) -£f. (XIO,--.,xno) 1 1,...n (5 20)
]= Xj = X3

Equation (5.20) maybe expressed in complex vector/matrix

form as

where C(Eo) is an nxn matrix of complex coefficents

dependent upon X =(xy,,..., X,o) as the point of

linearization, where

ofi i,5=1,...,n (5.22)

C. -(x ) =
1j'=0 ldx io

S5

.

and Q({o) is a complex n-vector whose elements are also

dependent on Xt
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) i=1,..,n (5.23)

n
f.

no
oy
From an initial complex vector guess X, = b“
N
(X1or -+ -+ Xpo) 2t the root of 5.16 may be solved via ﬁ
complex matrix inversion with ;L
m
1 A
x = (x;,...,x)=C"" (%5)d(xy) (5.24) &
1]
q
representing the approximate vector "root” of the original “:
)
set of design equations 5.16. >
A
Utilizing the approximate "root" as a new v
e
linearization point for the Taylor's series expancion, an v
)
iterative process determining a sequence of approximations w7
b
A\
to the solution of 5.16 is obtained: :‘
~3
.\
1 \
Xy = [C(x) 170 dlx) (5.25) Yy
.
e
where the elements of C(x) and_d(x) are as given above. o
1}
©ssentially, the algorithm is a vector/matricized ;
K4
generalization of Newton's method to the ﬁi
multi(complex)variable case. ;"
Any of the 14 design equations containing the two 2?
"
unknown PI network parameters must be linearized using the E
)
»
N,
L
-~
)
1.\

N,

......................

7

a & Le
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A, .- n
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procedure discussed in the previous paragraphs.

b The abstract explanation of the linearization %
. b
; given above is complemented by a listing of the A
|
- linearization steps performed on the nonlinear equation 4
) (5.7). )
’ 'v.
» +4
L F=vV,_1 z
18{K) + Ka/Xp12) - VigXc12Kz - Vap(Ka/Xp12) i
) The Taylor Series Expansion begins with the step below. u
‘ A
; CjF F O/F !
_ Fo + — (V1B-ViBo) + (Xc12-Xc120) + — (V2m-V2Bo) %
! JViB Xc12 O'Vas -
or "
) N
h b
3 F,+A+B+C=1vV N
I

after the partial derivatives are performed For A B, and ’
X
: C become o
N )3
: 1"
9 3
3 A= (K + Ky/Xe1y - KpXe120) (Vip = Viso) 2
1 B = (-VipoKa) (X 2 = Xc120] -3
3 - »
C = (-K3/Xp12) (Vg - Vapo) »

Fo=V1Bo(K1 *+ Kp/Xp12) - VipoXc120K2 - Vapo(Ka/Xp12)

y Adding all the terms toge ‘her (with a substantial number
of them cancelling each other out) the remaining terms E
N .
LY
y take the following form g
d
N

.
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+ sz
X112 Xp12

v

1B[ K1 = KXo +

+

Xc12(-V1poK2) = Vi = Xgj26V1B0K2

Upon completion of the linearization process on the 4
nonlinear equations, the 14 design equations take on the

following form:

V1a(K)-Kp*Xc13+Ka/Xp13) + V3a(-Kp/X)3) = V) (5.27)
I13-V1a(K] 3Xe13-3K) /Xy 13+3K3) -V3al 3Ky /X 3) = O (5.28)
Via(=Ka/Xp13) + V3alK)+Ky /X1 3-Ka*Xo31) = V3 (5.29)
I31-Vial3Ry /Xy 3)=V3a(R) 3Xe3y - 3K /Xy 3+3K3) = O (5.30)
K, K,
Vip|K1 — KpXeyp + " + Vap N
L12 | L12
+ Xc12(-VipoKa) = Vi - XgpaoVipoKa (3-31)
1 Vo q Ky 3% %2 +'K.1 v, L
12 - Vi |[®13%c120 ~ J83{ = V2B
X112 J Xp12
+ Xcy12(-3K Vigg) = =3VypoXey20Kt (5.32)
Vi{-Ka/Xp12) + Vop(K +Ky/Xp15-Ko*Kep)) =V, (5.33)
I31 = Vip(3Ry/Xp ) -Vpp(K 3Xop = 3K /X p+3K3) = O (5.34)

" ‘ W o oW o A W W L A WL T Y R
GDUN .‘v.- oYl ' fraliats 1 X WX m"i.‘o.‘ A 'l R U L e
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K, “K,
V2C Kl-Kz*Xc23 + + V3C
23 X123
+ Xe23(=VaooKa) = Vo - Xca3oVacoKy — (5-35)
, Ky 3Ky
I23 - Va¢{KiiXc23 - + K3l - V3¢ ——
23 X1,23
L

+ Xc23(=3K1Vae0) = -3VacoXc230 (5.36)
V2C(-K2/XL23) + V3C(K1+K2/XL23-K2*Xc32) = V3 (5.37)
= 0 (5.38)

I3y - VacliKy/Xp23) - Vac(KjiXe3z-3iKy/Xp23+3K3)

The coefficents of these 14 design equations are
calculated using the known values, and these coefficents
make up the matrix A in the formula x = A-lp. Any

resulting constants are put into the b matrix.

c. Results

The design equations have been incorporated into a
program named DESIGN which calculates the values for the
X012 and Xc23 PI network design parameters. The program
has been run with a range of input currents calculated
using the beam steering method of Chapter Three and is

listed in Appendix C. The input current distribution
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corresponding to a set of 6, and §, (max and null)

directions were calulated using the programs discussed in
Chapter Two and stored in a data file. The design program
is able to read in these currents and calulate the

corresponding Xap, and Xgp3 Values.

Figure 24 shows the radiation patten of the

equilateral array when S, = 0 and 6, = 90. The current

distributions corresponding to this pattern is used as
input into this example of the linearization design

method. The initial guesses for the variables V

2Co’ ViBo:
Xc120¢ and Xga3o WOre
Voco = 1.0 + 31.0 Vipo = 1.0 + 1.0
Xcp3o = 1.0 + 31.0 Xo1g0 = 1.0 + 31.0

The magnitude and phase of the currents flowing
in each element of the array, the seven constant PI

network parameters input by the user, and the resulting

two designed parameters Xpj, and Xgp3 are given below:

Magnitude and Phase of Desired Current Distributions

M{; = 1.0000 PH;; = 000.0000
Mi, = =-0.5600 PH;, = 120.0000
My = 0.45 PH 3 = 023.000
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Given PI Network Parameters R
3
‘Ii

- U

Xp13 = 10.0 Xgy3 = -1.0 Xc31 = 2.0 0

2

X112 = 10.0  Xgp; = ~1.0 Xc12 = Unknown :
= )‘

XL23 = 10.0 XC32 = 5.0 XC23 Unknown ?

%

¥

Unknown Parameters for Ten Iterations :’

Wy

‘:

; o

I =1 Xcpp = (3456.3+3j234.6) Xgp3 = (00234.3-3485.2) )
¥

I =2 Xy, = (0008.6~3005.1) Xca3 = (~0.0001+3.1098) P
"I
I =23 Xcy2 = (-.0018+3j0.114) Xca3 = (-0.0001-3.1099) 3

I =4 X55 = (0.0-3.1103) Xcp3 = (-0.0001-3.1099)

b

I =5 Xcpp = (0.0-3.1103) Xop3 = (-0.0001-3.1099) f
A

I =6 ZXc2 = (0.0-3.1103) Xcp3 = (=0.0001-3.1099) ;
. RN

I =7 Xcpz2 = (0.0-3.1103) Xgoa3 = (-0.0001-3.1099) -
y

I =8 Xup = (0.0-3.1103) Xop3 = (-0.0001-3.1099) ‘
)

0

The design program was run on a wide range of

current distributions. The following results are the

-

designed Xcjj and Xpp3 and corresponding Q's for §p and 6

values ranging from 6 = 0 to 360 in steps of 90 deyiress

and 6, = 0 to 360 in steps of 45 degrees. Several of
these runs are showns below with specificem and 9n

values, corresponding current magnitudes and phases, the

designed PI network parameters and corresponding Q values.

’,n.s.«, - g '\-ﬂ\‘fv -(-‘,-"{‘.‘,{"
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?3
6p = 0.0 en = 45.0 A
X
MIl = 1.00 PHIl = 21.0 h
¢
MIZ = 4.24 PHyp = 11.0
"y,
My = -4.57 PHyy = 22.0 ]
..;
4
Xc13 = (3.50E-7 + jO.1103) Qc13 = 314658.1 )
X = (9.64E-7 + j0.1105 = 1141.9
c23 = j ) Qc23 A
]
3
'
A
— - - é\
6y = 0.0 6, = 225.0 2
).b‘
?
MIl = 1.00 PHIl = =3.0 !
M., = -0.97 PH., = 33.0 3
I3 I3 ;}
4
Xc13 = (2.15E-6 + j0.1103) Qcp3 = 51158.1 5.
Xcp3 = (5.18E-5 + j0.1104) Qo3 = 21321.9 =
"wA
)
>3
4
3
|I\
N
:
Bp = 90.0 B = 135.0 :
3
_{‘
:
M12 = "0.71 PHIZ = -3.0 :
Y
M = -0.35 PH = 43.0 .
LW §
N
o

g
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Xc13 = (8.77E-6 + j0.1103) Qcp3 = 12574.0

Xop3 = (-4.02E-4 + j0.1105)  Qup3 = 275.9

From the above example it is obvious that the required
capacitative reactances are complex. Therefore the Q's of
the designed capacitors are non-infinite.

In order to check the results of this example, the
given and calculated PI network parameters are input into
the analysis program of Chapter Four. The current
distributions resulting from the analysis subroutine are
used to plot the radiation pattern. As indicated in
Figure 25 the pattern produced by the analysis run is
exactly the same of the pattern desired (Figure 24).
However, if the resistive components of X¢12 and Xcg23 3re
assumed zero, the currents produced by the analysis
subroutine no longer result in the exact same pattern (see
Figure 26). The figure shows that the null at en = 90 is

not as deep as it was previously.

D. Conclusions

Surprisingly (given the complexity of the physical
situation under discussion), the method usually converges.

As seen in the above examples, if it is going to do so, it
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Pattern with Zero Resistance
In the Designed Parameters

FIGURE 26
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converges to single precision accuracy in about four
iterations, yielding virtually instantaneous response on a
multiuser VAX 11/780.

The main objective of th's chapter was to supply
the reader with the essential components of the extended
Newton's Method linearization design method for solving
for the parameters of the PI interconnection networks.
The 14 design equations were derived from the 24 complex
equations describing the array and their source of
nonlinearity was clearly indicated. The linearization
process, which resulted in an iterative Newton's Method
type procedure, was examined quite closely. This method
converges for a majority of the patterns it is ask to
produce.

This design procedure's biggest draw back is the
fact that it only designs two of the nine PI network
parameters. Also, if the given parameters are specified
with magnitudes larger than 10.0 the design routine will
not converge. However, the fact that this method works
for any PI network parameters is in itself an achievement.
This procedure has proven (at least in theory) that it is

possible to use the interconnection networks of this

thesis in a phased array antenna system.
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VI. A Direct Search Optimization Method:

Developement and Testing

This chapter presents a detailed examination of a
unique direct search optimization method developed by the
author. The developement of this direct search
optimization method was undertaken as a possible
alternative technique for solving the nonlinear "design"
equations of the equilateral array described in Chapter
Five. There is definite application of this method in a
proposed design technique based on the constrained
optimization of the current distribution on the array's
elements by adjustment of the PI network parameters in the
"analysis" equations of Chapter Four. This design
technique will be discussed in Chapter Seven.

A brief discussion of the generalities of direct
search optimization methods begins this chapter. A
detailed explanation of the various blocks of decision
control for the direct search optimization method
developed here is presented next. The operation of each
of the separate procedures that are performed on the
variables of the objective function are clearly explained.
As an example, the various procedures of the optimization
method are discussed in reference to a two variable

quadratic equation. This chapter concludes with sample
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optimization trials on several quadratic and

' transcendental multivariable objective functions.

- e e

¥ A. General Operation of the Hillclimber

v =

-
[

Direct search methods ( hillclimbing methods) of
X optimization base their operation on a finite number of

\ evaluations of trial solutions to an objective function

L% % Sxwowra o

e called the hill height. Comparision of subsequent trial

1

v solutions is the basis for further evaluation of the -

.
L

particular problem. The methods involve evaulations of "
> the objective function starting with a given initial point A
: in the particular n-dimensional space. This initial point

) is some arbitrary value of the variable vector x = (xl.

B Sl e o0 0 J

ey xn)T containing the arguments of the function under

consideration. These optimization methods usually only

require objective function evaluation and do not use

N R AP Pt

partial derivatives (as in the steepest decent

s optimization methods). Information accumulated as the ?

. search proceeds is used by some techniques in support of X
directional movements in the variables.

A two variable quadratic function of the form

2 2 3
f(xlrxz) = (xl - a) + (x2 - b) (6-1)

. T
i
\ '):
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will be used to help explain in detail the direct search
optimization method to be discussed in this chapter. This

optimization method will be referred to as the

hillclimber throughout the following discussions. x; and

X, define the axis of the two dimensional x;x, plane. The

a and b represent the location of the minimum of the
simple quadratic function given in equation 6.1. Figure
27 shows the x;x) plane and the level curves of the
function represented by equation 6.1.

The hillclimber's basic operation, in relation to
equation 6.1, is the adjustment of the variables X; ang x,
(starting from some initial point (x;,,%3o) in the plane
until the minimum of the objective function is realized.
The variables are adjusted one at a time, in alternating
sequence, with the magnitude of the objective function
being calculated and evaluated after each adjustment of a
variable (see Figure 28). The magnitude of the objective

function is defined as the hill height of the function.

For the two variable function of equation 6.1, with the
minimum defined at a=1 and b=2 at an initial location

X10=5 and x,,=5, the hill height equals

2 2

HH (Hill Height) (5-1) + (5-2)

= 25

The hillclimber adjusts the variables of a

100
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function in the following manner. The first variable of a
multivariable sequence ( X34 «eees X, ) is moved in a
positive direction equal in magnitude to a present step

size S$;. In other words, the initial given value <10 for
the variable x; is replaced by x;, + s;*d; where s; is the
step size and d; js the direction of the variable x;; d;

is either +1 or -1. The hillclimber has moved the

location of the variables of the two dimensional function

of equation 6.1 from (xlo,x2°) to the new location (x;4 *
S1*d), x35). The hill height of the function is
calculated, and by the comparision of the new hill height
HH; to the previous hill height HHy (the hill height
calculated from the initial values of the variables) the
hillclimber routine is able to make basic adjustment
decisions as to new values for x; and x, - hopefully
closer to the new location of the minimum.

At some point in the optimization process
(sometime during the first adjustment sequence through all
of the variables of the objective function) the hili
height becomes the hill height of least magnitude to date.
The hill height of least magnitude becomes the previous
hill height upon which the basic adjustment decisions are
made. This previous hill height will be referred to as

the lowest hill height to date (HHltd).
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B. Hillclimber's Fundamental Control Procedures

Comparision of the present and the lowest hill
heights to date logically can result in three possible
situations as a result of a change in one of the X;: the
hill height could have increased (HH; > HH;.4)s it could

have decreased (HHl < HHjp4q), or it could have stayed the

104

L

. we—

v ey

CNwIE T -
e

same (HH, = HHltd)‘ What the hillclimber does in each of v
\

the above situations will be discussed next. iy
{

l;

First, let us assume a new hill height has been C
o«
calculated and the magnitude is not lower than the least 2
]

hill height to date (HH; > HHj.q): The decisions of the Q
v

hillclimber are as follows: since the value of the hill )
~

height is now greater than it previously was (because it e
-
moved further away from the desired value), the variable )
x; shall be returned to the previous value x;, and the iW
direction d; shall be changed to the direction opposite to ]
what it was previously. These two decisions constitute &
the first fundemental block of decision control code and L
are shown more clearly in the notation below: ;
8

~

)
IF (HH) > HHy,4) THEN 7
— ."k

1. x; = x; - s;*d; (returned to x;) h
2. 4 = -1*q A

When the hillheight Hj is less than the least hill e
9

|

y

W,

:.4-
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height to date HH, ; (HH, < HH;.4), the variable x; is
allowed to retain the new value (x;+s;*d;) and current

direction while the succeeding variable X, is immediately

adjusted to the new value x,+s,*d,- This is shown below

in notation form as

IF ( HH; < HHjpq ) THEN
1. x; = xj + si*dy

2. X(j+1) = X(i+1) * s(i+1)*d(i+1)

In situations where the present hill height equals
the current least hill height (HH; = HHj.q) the variable
X, is returned to the previous value and the present
direction is maintained. The succeeding variable x, is
immediately adjusted using the current step size and
direction. 1In notational form these decisions constitute
the third fundemental block of decision control code and

are

IF ( HHl = HHltd) THEN

1. xi = xi

- 8;%dy
X(i+1) = X(i+l)o * S(i+1)*4(i+1)

- *

C. Hill Height Not Changing (HHi— = HHi)

-------
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Another block of fundamental decision code is used
to handle situations where adjustment of the variables of
the objective function does not change the magnitude of
the hill height. 1In other words the hill height is not
being changed within the word length of the computer
making the calculations. This can happen when the
variables being adjusted have reached values that are too
large or too small to have any effect on the objective
function, or whenever the surface is flat. This problem
is detected by continually comparing each new hill height
(there will be one hill height for each iteration of the
process) with the hill height immediately previous.

An example of the operation of this block of
decision code is shown by defining (I) to be the iteration
counter of the optimization process. I=0 corresponds to
the hill height calculated from the given initial values
for the variables. 1In a.two variable optimizaton process,
I=7 corresponds to the fourth adjustment of the first
variable x;. Therefore, HH, is compared to HH; and for
the remaining iterations HH(i-l) is compared to HHj
inorder to detect when the adjustment of the variables is
not effecting the magnitude of the hill height. If this

condition is detected the following action is initiated:

IF (HH(i_l) = HH,) THEN

= - .*q. .
1. x4 X4 s;*d; (returned to xl)
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¢
o
2. . = . . . oy
i+1) = X(i+1) * S(i+1)*9(141) 4
= L * .
3. S{ = 8§ 10.0
¥
. %
Now that the four fundamental blocks of variable %
(3

adjustment decisions have been discussed, the two variable

optimization process referred to in that discussion will &f
be continued in some what more detail. éf
Using these four fundamental decision blocks the .ﬁ

two variables of equation 6.1 will continually be moved Jé
towards the desired values (X;=a, x,=b), resulting in a t%
hill height of zero magnitude (see Figure 28). The ?’
optimization process will continue the sequence of S:
i

alternating adjustments until one of the variables makes a .

move in a direction that is further away from the location

AR

of the minimum (HHi > HHltd). Then the hillclimber

o

reverses the variable's direction di as shown in the ?#

preceeding paragraphs. ﬁ‘

G

\v

9

b

D. Periodic Pattern Detection E:

b

K

. ~

Figure 29 shows this happening to the x, variable 4

as it moves below the minimum b to an increased hill fﬂ

(

height (HH; > HH;.4). At this point, the x, variable will 4!

be moved back to the value it had just prior to the step bl
»

that increased the hill height and the direction d,

...........................
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is multiplied by -l. x; will continue to be moved in the

same direction because it still can move much closer to
the minimum coordinate (a) by maintaining this direction.
The x, variable will now step in the direction d, and from
Figure 29 one can see that this step will also be

retracted because the hill height was not reduced below

the lowest to date (HH,, .). The x, variable will now

begin a sustained sequence of back and forth steps on each

side of the hill height of least magnitude to date. This

back and forth sequence will consist of three x, variable
magnitudes;: the X, pagnitude corresponding to the lowest
hill height (HHj.q)., an x3 magnitude corresponding to a
hill height lower in magnitude than HHltd' and an x,
magnitude corresponding to a hill height greater in
magnitude than the HH, .. Detection of this periodic
sequence of steps above and below the present best
variable magnitude constitutes the most important block of

decision control within this optimization routine: the

reduction of step sizes upon detection of oscillatory

behavior in the adjustment of the variable's directions

and magnitudes.

The periodic behavior described in the above
paragraph happens because the size of the steps being
taken in the positive and negative directions are too
large. For instance, if the current best magnitude found

for x, was 50, the desired or minima value (b) equals
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4
54.3, and the step size s, Was equal to 10 then the b
"y
routine would continually jump from 50 to 60, from 60 back )
Wit
to 50, and then from 50 to 40 and back to 50 again. With oy
v,
an $, of magnitude 10 maintained, the routine would ?
2
forever repeat this pattern. This periodic pattern of .
.}.
movements is shown in Figure 30 for both X; and x, {
A
arguments. However, the routine is able to detect this &%
periodic behavior in both arguments and adjust the step ﬁw
t
size accordingly. 5:
For the two variable example being discussed, the ,
step size s, Will be decreased from its initial value of &1
&
‘
10 to a value of 1.0 and the routine will begin to move ~3
from the best magnitude 50 in the positive direction '\‘
toward 54.3. But, once the X, variable reaches the Y
magnitude of 54, a periodic movement above and below this
new best magnitude for x, will begin again. s, will again N
be reduced by a factor of 10 to equal 0.1l. The routine b,
will continue movement towards the minimum and will :‘f
A%
gquickly find the desired value since the routine is taking !
steps in the decimal limits of the minimum (0.1). This %;
periodic behavior will happen on the x, variable as it &
s i
nears the minima (a) and s, will also be decreased to the =
]
decimal accuracy of the minimum. !
(
The periodic pattern detection procedure uses an ol
f
v i
array containing the previous values of the variables ‘
)
choosen by the hillclimber during the progression of the o
)
e,
w
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routine. The length of a periodic pattern is twice the
number of variables. If (I) is defined as the iteration
counter of the optimization process then the periodic
pattern detector compare~ the 2xN (where N is the number
of arguments in f(x;)) sequential values Xj(1.7) thru

X;i(1-4) of a variable with the next 2xN set of sequential

values xj(1-3) thru xj() after each iteration of the
optimization routine. If there are two variables in the
function being optimized a periodic pattern four
iterations in length can occur. Detection is accomplished
by comparing the the present value of the variable and its

previous seven values. If Xx; jis the variable being

observed the comparisions are as follows:

Does X)(1-0) equal Xj(1_4)
Does X)(1~1) equal Xj(1-5)
Does X1(1-2) equal X (1.¢)
Does X1(1-3) equal Xj(1-7)

If the four statements above are true then

-

.

0
"

si/l0.0 (step size is reduced)

L8]
"
I

i = X{hhi (xi is set to best wvalue)

where X,y .; equals the magnitude of the variable

corresponding to the lowest hill height found to date.
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If all four comparisons are equal, a periodic pattern has
been detected and X; jis oscillating around the best value

it can find with the present s; magnitude.

E. Prevention of False Pattern Detection

Because the variables are reset to the magnitude
corresponding to the lowest hill height found so far in
the process it is possible that the pattern detector
could, depending on the present magnitude or even the
minimum of the function, detect another periodic pattern
on the next adjustment of a variable x(i+1), This pattern
would be false because the routine had not been given the
chance to adjust the particular variable using the reduced
step size. Therefore a new periodic pattern could not
exist one iteration past the detection of a previous
pattern. Preventing detection until 2n+l iterations
beyond the detection of a previous pattern insures the

variable step sizes do not get reduced on every iteration.

F. Step Size Enlargement

Reduction of the step size magnitude is imperative

to finding the actual minimum of a function. On the other
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hand step size enlargements, while not an absolute
necessity of the optimization routine, do increase the
speed of convergence by allowing the variables to move in
larger steps towards the desired results. The step size
enlargement module depends on a user input constant Mdist,
which specifies the length of continuous movement in the
same direction. The word "length" means the number of
movements oOf a particular variable in the same direction.
The Mdist variable should usually be specified to be 10
steps in the same direction, but has been given other
values in test runs to see if there is any optimal length
the variables should be allowed to move in the same
direction before the step size is enlarged. For ihc

objective functions tested, values of Mdist anywhere

between 5 and 13 seem to perform equally well. A length

of 10 was chosen for all the examples in this thesis
because all other step size evaluation procedures base
their movements, reductions, and comparisons on the factor
of 10. This length variable can be input to a users main
program and passed into the optimization routine for the
purpose of tuning the hillclimber to the users particular

problem.

G. Step Size Boundaries
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There are two procedures in this direct search
optimization routine which prevent the step size of the
variables from becoming too small or from becoming too
large. These procedures are refered to as the step size
maximum and minimum. The user is able to specify the step
size range for all variables and the step sizes are
prevented from going beyond or below these limits. The
step size maximum procedure checks the step sizes against
the maximum magnitude allowed and resets them to a
magnitude of ten below the limit specified by the user.
Immediately after this step size maximum procedure, the
step size minimum module checks the step size of all the
variables against the minimum allowed. If one of the
variable's step sizes is at the minimum magnitude it will
be reset to a value that is a factor ten above the limit
and the particular variable in question is reset to the
best value found (to date). The step size can be
continually increased if the variable continues to move in
one direction. This can happen if the movements of the
variable have only a very small effect on the hill height.

The step size maximum procedure prevents this from

happening.
H. Basic Procedures Reviewed
'-u
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There are five distinct control modules for this

D N S (T L

optimization routine and they are as follows: )
)
\
d
1. Direction Reversal (due to increase in hill height) -
s 2. Step Size Reduction (due to periodic pattern detection) ?‘
1 .
3. Step Size Enlargement (to increase convergence rate) et
4. Step Size Maximum Limit (to prevent divergence) %'
5. Step Size Minimum Limit (to prevent divergence) ;3
y N,
This optimization routine is in the form of a 3
subroutine which is called by a main program. The main :
program is nothing more than a medium for inputing the N
initial values x;, and step sizes s;, and transferring )
(
them to the hillclimber. The hillclimber will call a user :f
-

created subroutine containing the function to be x
3

optimized. The hillclimber passes the current values of ~
1

the variables to the subroutine FUNC where the hill height w3
A

is computed. Appendix E contains a listing of the %
hillclimber subroutine HCSUBR, the objective function L
ol
subroutine FUNC, and the main program MAINHC. 3
3

)

I. Results ~

- b

o
Y
4

)

The hillclimber was tested on several quadratic

and transcendental functions of which a two will be shown
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below. The examples will present the form of the
objective function, the initial values of the variables
and their step sizes, the step size maximum and minimum
limits, along with the HH;.q and the corresponding
optimized values of the variables.

The first function tested has the form,
F(xy) = (x,2 - 78.7)2
with the hill height equal to

- 2 _ 2
HHi = (x; 78.7)

The initial values and other parameters of interest are

X = 10.0 s

lo max
1.0

1000.0
= 0.0001

S1o Smin

and the results after 67 iterations are

X11hh = 8.8713 HH; g = 0.00

The table of data shown below contains the value

for the argument x,; and the resulting hill height for the

first 20 iterations of the hillclimber on this first

example.
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I Xy F(xp)
1 10.0 453.69
2 11.0 1789.29
3 10.0 453.69
4 9.0 5.29
5 9.0 5.29
6 8.0 216.09
7 9.0 5.29
8 10.0 453.69
9 9.0 5.29
10 8.0 216.09
11 9.0 5.29
12 10.0 453.69
13 8.9 0.26
14 8.8 1.59
15 8.9 0.26
16 9.0 5.29
17 8.9 0.26
18 8.8 1.59
19 8.9 0.26
20 9.0 5.29

The second function used to test this hillclimber

is of the form
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F(x1,x2) = [x,2 - 20sin(0.05x,)3% + 0.1[x,2 + x,2]

The initial values and other parameters of interest are

xlo = 100. 0 x20 Smax

Slo 10.0 s2o0 Smin =

and the results after 200 iterations are

thh = 0.10 X2hh = 0.11 HHltd = 2.3E-2

J. Conclusions

For the relatively simple functions tested, this
unique hillclimbing routine seems to work quite well.
The initial guesses can usually be varied by the user
until an optimal solution to the function or functions is
reached. The step size enlargement procedure contains a
discretionary variable Mdist. This variable can be
specified by the user if desired and therefore creates
some uncertainity in this procedure. The author used a
value of ten for this variable. The four fundamental
blocks of decision control code and the periodic pattern
detector are the most important parts of this routine and

the logic behind them is quite sound.
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Since developement of this routine was only a part
of my entire thesis, further testing and refinement of the
algorithm is in order. This routine was use in the beam
steering procedure of Chapter Two and the results were
quite satisfactory. The radiation patterns always had the
main lobe fairly close to the desired direction. The

hillclimber is also implemented in a phased array design

procedure to be discussed in Chapter Seven.




O N
n; . -’ ..

VII. Interconnection Network Design:

Direct Search Optimization

of Constrained Analysis Equations

In Chapter Four quantitative analysis of the 24
complex equations describing the physical and electrical
characteristics of the three element equilateral array was
performed. The analysis of the equilateral array, given
values for all of the PI network parameters, results in
the current distribution on the array. The hillclimbing
technique presented in Chapter Six was developed
specifically for application in design of interconnection
networks for the phased array system of Figure 5. 1In this
chapter, the hillclimber will be used to adjust the PI
network parameters until a desired current distribution is
realized.

The discussion begins with an explanation of how
the calculated and desired current distributions are
defined. How the hill height is defined and calculated is
discussed next. All of the procedures of this design
method have been programmed in FORTRAN. An explanation of
the structure and interaction of the various subroutines
is presented. The subroutines of this design method are
pulled together in a main program which accepts inputs and

provides the resulting output. The output of this design
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method is the best current distribution found after a
finite number of iterations of the hillclimber. Sample
runs of this design method showing the resulting current
distributions and PI network parameters are presented at
the end of this chapter.

The design method of this chapter uses the
hillclimber discussed in Chapter Six to adjust the
parameters of the PI networks to whatever values will
result in the desired currents flowing in the elements of
the equilateral phased array of Figure 5. The
quantitative analysis of this system of antennas has been
placed in a subroutine CURR which is called by the
hillclimber subroutine CAP6HC. The subroutine CURR returns
the complex values of the current distributions on the
elements for the PI network parameters provided by the

hillclimber.

A. Hill Height Defined

The current distributions desired by a user
(corresponding to the desired pattern) are provided as
input to this design method and are part of the hill
height. These desired currents (Il, I,, and I3) are
normalized and used as the minima of the solution to the

linear equations describing the array. The desired
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)

:

current distributions of elements #2 and #3 are normalized S
to the value that corresponds to a current distribution on 4
..C

element #1 of amplitude 1.0 and phase 0.0 and take the 3!
l.‘

following form: '
4

1

0

J

(M

I Iz _ I3 )

Iin = I I2n = = I3n &

1 I I b

N

O

Y

!

The currents being calculated after each iteration ff
of the hillclimber (b;, b,, and by) are also normalized to 3’
values with respect to the current distribution on element r
R

#1 and are shown below. h;
X

£

)

. by . by b3 o

in © 3 2n < - 3n ¥

by by by N

N

L
~

The PI network parameters are loaded with the N

initial guess values (X;.) and passed into the analysis

subroutine. After the 15 complex linear equations are ;‘
o

solved, the analysis subroutine CURR passes the computed Y

‘-‘_

current distributions back into the main program where

-

they are normalized as shown above. The hill height is . d

defined to be the squared difference between the i

= Ry P ™ o XK Ny SR IR RN = R T T B R N TR N B LIREE P R LTSI I PR LM
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normalized desired currents (Iln' I, and I3,) and the

normalized calculated currents (by,, b,,, and by, ) and is
shown in equation 7.1. The hill height is calculated
after each adjustmént of a PI network parameter during the
progression of the optimization routine. The real and
imaginary components of these complex current
distributions are subtracted and the difference is then
squared. The resulting squared differences between the
currents real and imaginary components are then added
together and the sum is the hill height upon which the
hillclimber will base decisions. The hill height takes

the following form:

2 2
= [Re(Iy,)-Re(by, )] + [Re(Izn)-Re(bzn)]

2 2
(Re(I;,)-Re(by,)] + [Im(I;,)-Im(by,)]

2 : 2
[Im(I,,)-In(by,)] + [Im(I3,)-Im(bz,)] (7.1)

:

+

+

Using input statements in the main program the
variable vector x;: the iteration count I, the number of
variables in the objective function (Nvar), the variable's

intial step sizes si v and the range of the step sizes

s and s

max min; are all input by user. With these inputs

from the main program the hillclimber is able to evaluate
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the hill height magnitude and use any periodic behavior in
the variables in order to make the decisions necessary for
adjustment of the variables.

Upon completion of the specified rumber of
iterations the hillclimber returns the best calculated
current distributions along with the values of the PI
network parameters tﬁat produce these currents. These
best calculated currents are normalized and used as inputs
to a subroutine which will plot the resulting radiation
pattern for the triangular geometry of the array. Also
the hillclimber can be conveyed variables that allow the
user to observe the pattern being produced by the best
current distributions found to date, at whatever iteration
count, during the hillclimbers progression. Listings of
the program used in this design procedure are given in

Appendix E.

B. Results

With only minor changes in the programs listed in
appendix F the PI network parameters can be adjusted in
any combination and sequence. The programs listed in
appendix F are designed for adjustment of the six

capacitive reactances while the three inductive reactances
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y t
are held constant. The results to be presented in this .f
chapter will also include the problems of adjustment of i:
i
the three inductive reactances with the six capacitive
c“ {
reactances held constant and cdjustment of all nine PI P
network parameters. The specific data items to be listed eE,
>
.h"‘
for the three design problems being presented are the gﬁ
i
desired radiation pattern and corresponding current ;'
’3‘ 4
distribution, the reactances of the Pi network parameters };i
X
held constant, the initial magnitude and step size of the }::
.,-_.
parameters being adjusted by the hillclimber, the best :”
current distribution resulting from a finite number of Z:ﬂ
o X
iterations of the hillclimber and corresponding designed -:l
Gt
PI network parameters, and the resulting radiation ;
t\}- X
pattern. N
-]
The current distributions corresponding a Pk
>
. N
radiation pattern with §; = 60 and §, = 180 will be used
)
as input for the three design problems. This desired E:
;
radiation pattern is shown in Figure 31 and can be used to ﬁ:
-
W
compared with the radiation patterns produced by the three »
design problems to be presented below. ff
The £ rst example uses the hillclimber to adjust &H
the three inductive reactances of the three PI networks, ' ]
‘-
Cal
~
given constant values for the six capacitative reactances, :ﬁ
\‘-: .
until the desired pattern is realized. The resulting tﬁ
current distributions and corresponding designed z
3
inductances are presented next and the radiation pattern N
W
~ g
|
v
f...,.. _-.. .-\.-\.\._. ~,_,~J‘\I\-‘,_-'. \.-\.\-r_.-'\-'._.;:\--...\. .k_.'\.__.-_‘.-__.-&,&.\._ﬁ.-,’.:\.\.:\.-\.'\-'_\'.-\-' ) A '- ‘ ‘ X \ ;.’\' X ‘ i, .-'; -“
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is shown in Figure 32. i
0

"
bl
t
, R : o
NDesired Current Distribution in Magnitude and Phase i
M7; = 1.000 PHy) = 0.00 3
‘.

M;, = 0.8480 PHy, = -148.05 .
W

= = = Ky

Mr3 = 0.2593  PHpg3 42.15 :$

\' N

>

2

Given Capacitive Reactances >
7

<

Xc13 = -100 227 pF :r

X .'.n
c31 = -200 113 pF »
o

Xc12 = -300 75 pF .E

()

*,

XCZl = =400 57 pF :::

».

Xc23 = -500 45 pH !“

o

X039 = -600 38 pF :

%

N

AW

Initial Values and Step Sizes )
X113 = X3 = 100.0 S1o = 10.0 X
Xp12 = X3 = 134.0 S3o = 10.0 ’
X, oo = = = o
L23 = XSO = 23.0 850 = 1.0 _?
Ky

,

?

Hillclimber Parameters b

Y,

ol

Ah

\.

7

' = '-.,3, }--}-\.;w"y;,\'\.'\;,&"u' Mt A ;fr.'\'-.}.v-. n~ s.;_-. RO \*-’c v’."\‘x; e NI TN T fa -C:'
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I = 300 Smax = 10000.0 Spmin = 0.00001

Initial Value of Hill Height

| HH; = 2.331952

Calculated Currrent Distribution

M_ 1, = 1.0000 PH;, = 0.000
Mpon = 1.1239  PHypy, = -164.7

Mj3n = 0.2011 PHp3, = 23.08

Resulting Inductive Reactances and Inductance at 7 MHz

X1, = -85.375 266 pF

X[ 53 = 1650515 37.5 mH

The second design problem involves adjustment of
the six capacitative reactances, while the inductances are
held constant. After 500 iterations of the hillclimber
the resulting radiation pattern is plotted and is shown in
Figure 33. The following list of data is in the same

format as the first design problem.
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st
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§

i

=

'

Desired Current Distribution in Magnitude and Phase ?
'|

M;; = 1.000  PHy; =  0.00 e
M, = 0.8480 PHyp = ~—148.05 :ﬁ
\.

Mr3 = 0.2593  PHy3 = -42.15 N
l‘

5‘

)

o

Given Inductive Reactances ?f

W5

3

X713 = 100 2.27 uH b

= >

Xp1p = 5 0.1136 uH i

\

X;53 = 20  0.4547 uH "
Initial Values and Step Sizes b
3

\\

Pt

Xo13 = X3, = 12.0 S10 = 10.0 »
Nt

Xc31 = X20 = 34.0 S0 = 10-0 o
\J

= = = <)

Xc1p = X35 = 50.0 S35 = 10.0 3
Xco1 = Xg40 = 9.0 Sgo = 1:0 Ly
Xep3 = Xgo = 78.0 Sgo = 10.0 N
Xc32 = Xgo = 134.0  Sgo = 10.0 N
5
o4

=

Hillclimber Parameters

\v‘

o
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2

iy

'.’I

= = = ’
I =600 Spax = 10000.0  sp;, = 0.000001 "4
X

"

Initial Value of Hill Height et

"
HH, = 2.294484 oy

-

4

b

Calculated Currrent Distribution tﬂ

i

03l

\J

M1 = 1.0000 PHyp;, = 0.000 N

4

Moan = 0.9172 PHp,, = -143.9 3

= 0.1226 PH,,, = -58.9 iy

Mp3n b3n ]

4

Resulting Capacitive Reactances and Capacitance at 7 MHz %\
}

;'

‘)

‘,

Xc13 = 154022 0.147 pF

Xc31 = 0.2181 104 nF ;\;

‘v

- - e’

X1 = 9.59E-2 237 nF N

o

XC21 = 1.49E-2 1.52 uF "

= "~

Xoo3 = 4.5428 5.00 nF o

’

— '.~

Xna3, = 0.1136 200 nF :::

AN

}’\

-]

The final designed problem to be presented uses :‘
;}.

the hillclimber to adjust all nine variables of the PI :4

networks until the best approximation of the desired
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radiation pattern is realized. The resulting radiation

pattern is shown in Figure 34.

Desired Current Distribution in Magnitude and Phase

M, = 1.000  pH;; =  0.00
M;, = 0.8480 PHy, = -148.05
M3 = 0.2593  PHy3 = —42.15
There are no Given Reactances
Initial Values and Step Sizes
Xo13 = X3 = 23.0 S10 = 10.0
Xc31 = X0 = 34.0 S20 = 10:0
Xc12 = X360 = 13.0 S3o = 10.0
Xc21 = Xg4o = 45.0 Sg0 = 10-0
Xc32 = Xgo = 78.0 Seo = 10:0
xL13 = X7o = 7.0 S7O = 1.0

Hillclimber Parameters
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I = 900 Smax = 10000.0 Smin = 0.000001

Initial Value of Hill Height

HH, = 2.295662

Calculated Currrent Distribution

My 1n = 1.0000 PHy;, = 0.000

Mpon = 0.8582 PHpy, = ~148.6

Mb3n

0.2918 PHp3, = -4.127

Resulting Capacitive Reactances and Capacitance at 7 MHz

Xg3y = 0.18658 121 pH

Xoy) = 0-54461  41.7 nF

Xogp = 611.242  37.2 pF

X;13 = =-32.495 699 pF

Xr12 © 6.09429 138 nH

XL23 = 698.966 15.9 uH
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Upon comparing the desired radiations pattern
(Figure 31) with the calculated radiation patterns
(Figures 32,33, and 34) one can see that for this
particular set of current distributions a fairly good
pattern was generated from all three types of problems.
The adjustment of the three inductive reactances resulted
in a radiation pattern with a null direction that is about
5 degrees away form the desired direction. The main lobe
direction is quite close to the desired direction and the
large beamwidth of the main lobe is quite evident.

The problem which holds the inductive reactances
constant while adjusting the capacitative reactances
performed better than the first problem. The null
direction was within 0.5 degrees of the desired directions
and the main lobe was clearly in the 60 degree direction.
The final problem's (adjustment of all nine PI network
parameters) results were nearly as good as the second
problems results (Figure 33) except that the null depth

was not as deep (see Figure 34).

C. Conclusions

The design problems above were all examined using

other input current distributions corresponding to other
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radiation p~tterns. The results were generally very good.
Excellent approximation to the desired pattern was
obsevered in about 50% of the patterns desired, rough
approximation was realized in about 30%, and about 20% of
the patterns desired were not able to be realized at all.
The complexity of these. designed problems, the use of the
unique optimization routine of Chapter Six, and the small
real components resulting from the design method of

Chapter Five leads one to believe that finding the desired

current distribution using purely reactive interconnection

networks is indeed a difficult problem.

TR

(ol



" oy PR - -

.

b et kig e ta 00l a YD s R a T e B Y Yatd’ 'Ry SRR T -‘v.- o '0- NON to"tn‘u o-l.l‘i !'.O'!‘ 4 3 “god ¥ (T

139
VIII. CONCLUSIONS AND RECOMMENDATIONS

The beam steering procedure presented in Chapter
Two worked quite well on all the radiation patteins the
author desired. The program MAX RAD listed in Appendix A
was run inside two Do Loops with one loop incrementing the
©p direction and the other incrementing the 6, direction.
Since the null direction is realized by solving a set of
linear equations for the current amplitudes it will always
be in the direction desired. However, additional nulls
can be produced in unspecified directions. n the other
hand, the current phases provide a means of controlling
the direction of maximum radiation.

The hillclimber of Chapter Six performed a
maximization procedure on the current phases of the three
elements in the antenna system of Figure 5. Since there
was just three elements in the array the potential degree
of maximization was minimal because the null is already
defined and the remaining radiation always had a vefy
broad beamwidth and was usually already fairly close to
the desired direction.

This beam steering procedure can be modified in
order to handle as many elements as desired. This
procedure provided the author with the current
distributions needed for designing the interconnection

medium of this thesis.
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The analysis of the phased array antenna system

proposed in this thesis was demonstrated in Chapter Four.

The reader was provided with the electrical and physical

“ -~ -

characteristic to be used by the author in his N,

-
-

investigations. As was shown in the results, after

assuming some reasonable constant values for the PI g

-,

-

network parameter and solving the linear complex equations .

pr—

describing the system, the resulting current distributions

on the array elements are of no use to a potential user

T Vel e e o

(see Figure 24). However, the idea of adjusting the PI

network parameters until a useful current distribution is

realized makes the analysis equations of Chapter Four the

basis for the design technique of Chapter Seven.

In the design of the phased array antenna system

of Figure 5 one assumes the desired current distributions

Ty .

is known through some form of beam steering technique as

demonstrated in Chapter Two. Therefore, the values of the

PI network parameters are the unknown variables desired by

the designer of the system. Chapter Five discusses the

X nonlinearity of the systems' equations in this situation

% %5t Crf

and demonstrated a linearization procedure and technique

-

for solving these linearized complex equations (see

_

Al

equations 5.27-5.40). The resulting PI network parameters

from this technique are not very practical. The designed .

S ol e

parameters contain very small real components and the

reactive components are also quite small. The capacitors
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that would correspond to the ohm values of these
reactances are very large at 7-Mhz.

Another draw back to the design technique is the
fact that one must chose seven of the nine PI network
parameters. This situation immensely limits this
techniques fexibility. Another problem with this
technique is that the seven PI network parameters that
must be specified by the user can be no greater in
magnitude than 10 ohms reactive. Any time this technique
is tried with parameters larger than 10 ohms in value, it
diverges ( no solution is obtained).

However, of all the radiation patterns this
technique was run with, using parameters of 10 ohms or
less, a 90% convergence rate was achieved in less than 5
iterations of the iterative matrix solver subroutine
DESIGN listed in Appendix C.

Chapter Six was completely devoted to the
development and demonstration of a direct search
optimization routine developed by the author for
application in a design technique discussed in Chapter
Seven. The hillclimber subroutine HCS.JBR in Appendix D
was developed to the point where it now functions as a
n-variable optimization routine requiring user input of
the initial guess and step size for each variable along
with the range of the variables step sizes and the number

of iterations desired. Also a user must create a
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subroutine containing the functions, inequalities, or
system to be optimized. An example of this subroutine's
form is shown in Appendix D under the name FUNC.

T+~ is the author's opinion that this hillclimber
performs very well, and with some refinement and continued
study, could become even more competitive with some of the
more traditional direct search optimization routines (
Simplex and Rosenbrock). This routine has been used on
gquadratic and transcendental functions of several
variables as well as in the beam steering procedure of
Chapter Two and the design technique of Chapter Seven.
From observation of the hillclimber's performance in the
design technique of Chapter Seven and on some of the more
complex nonlinear quardratic functions, the routine seems
to be dependent on a good initial guess for the magnitude
of the variables in order to reach an acceptable solution.

Chapter Seven developed and demonstrated a
promising technique for the design of interconnection
networks for the three element phased array antenna system
around which this thesis has evolved. This technique uses
the 15 complex linear equations of Chapter Four as the
system of equations that when solved result in the current
distributions on the three elements for a particular set
of PI network parameters. These current distributions
will be optimized to some desired magnitude and phase

using the hillclimber of Chapter Six. Basically the user
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inputs an initial guess for the PI network parameters and
the hillclimber adjusts these parameters until the desired
current distributions result from the solution of the 15
analysis equations.

The first form of this design technique to be
investigated was the six variable optimization of the six
capacitive reactances of the PI network parameters. The
idea behind this problem was the practical considerations
of using adjustable capacitors in conjunction with three
constant inductors if this proposed array was ever
constucted. The results from the investigation of this
problem were mixed. Given enough iteration, a reasonable
approximation of the desired pattern was achieved for
about 50% of the radiation patterns this procedure was
tried on. The author observed that if the Gm and 6,
directions were within 45 degrees of one another, the
hillclimber had problems trying to produce a reasonable

pattern. Also the hillclimber tended to adjust the

capacitative reactances to negative values which indicated

the system wanted an inductor at that point instead of a
capacitor. The author then put constraints on the range
of the variables to try and prevent this occurrence. But,
this caused problems for some examples in the number of
iterations needed for convergence. In other problems
these magnitude constraints even prevented some examples

that were converging before the constraints from producing
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usable patterns at all.

The design technique was tried on several

S X I I X

combinations of PI network parameters, besides the three

v

problems discussed in Chapter Seven, and the results were
quite similar to the results already shown. The design
problem which uses all nine PI network Parameters seems to
be of most promise from a point of flexiblitiy in the
systems choice of network configuration. Even though more :
iterations of the hillclimber are needed because of the
number of variables in the problem, the added flexibility
outweighs this consideration.

The author suggests further investigation of the
design of interconnection networks for phased array
antenna system in the following areas: formulating {
analysis equations for larger arrays to see how lossless '
reactive networks function as the interconnection medium
on a larger scale; investigation of a more suitable y
interconnection medium, possibly some form of reactive E
network where the parameters can function as both iﬁductor '
and capacitor; and the method of feeding this ungiue array
must be explored in further detail because how the system :

is powered is a very important consideration.
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCecceececee

Cc
c Program Array Pattern Plotter (Hl PAT )
C
C Version 2.1
Cc
c Written by: Joseph D.Downs 11 Date:May 1986
Cc
C
c This program allows a user to input (Nant) antenna elements
C at any locaion in the XY plane. The spacing between each antenna
C is also a variable that can be input by the user. The user is
C prompted for the excitation amplitude and phase for each element
(o and the resulting radiain pattern is plotted using a call to the
(o} module PPLOT.FOR.
C
dimension amp(50),ph{(50),x{50),y(50),xy(360,2),er(50),ei(50),Etot(360)
real k,d,p,length,Emax,db
integer nant
c open{unit=7,file="hilpat',status="'nev')
Emax=0.0
pi=2.0*asin(1.0)
k=2.0*pi

write(5,*)' Input length factor between elements (length)'
read(6,*)length

write(5,*)'Input # of Elements'
read(6,*)nant

do J=1,nant
write(5,*)'Input position of each element #',J
read(6,*)x(J),y(J)

end do

do J=1,nant
write(5,*)'Input amplitude & Phase (deg.) of element #',J
read(6,*)amp(J),Ph(J)
Ph(J)=Ph(J)*pi/180.0

end do

do I=1,360
Theta=float(I)*pi/180.0
do J=1,nant

1f(X(J).eq.0.0)then
fphi=sign(pi/2.0,Y(J))
goto 50

endif

fphi=atan(Y(J)/X(J3))
if(X(J).1t.0.0) fphi=fphi+pi

50 D=sqrt(X(J)**2.+Y(J)**2, ) *cos(fphi-Theta)
P={D/length) *K
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write(7,*)'bx1=",x(1),"' bx2=',x(2),"' bx3=',x(3)
write(5,*)'ampl1=',amp(1),' amp2=',amp(2),' amp3=',amp(3)
write(5,*)'bx1=",x(i),"' bx2=",x(2),' bx3="',x(3)

ph(1)=x(1)*pi/180.0
ph(2)=x(2)*pi/180.0
ph{3)=x(3)*pi/180.0

write(7,*)'END --Convergence'

151

write(7,*)'ocerr=',cerr,’' phi=',ph(1),' ph2=",ph(2),' ph3=',ph(3)

write(7,*)’
write(7,*)' The Real & Imag currents equal'

do 1=1,3
cur123(I)=amp{I)*cos(ph(1))+cj*amp{I)*sin(ph(I))
write(7,*)' The curr #,',I,' equals',cur123(1)

end do

write(7,*)' !

call patt3(amp,ph,kl,pi,length)

CLOSE(7)

STOP

END
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CCCCCCCCCCCCCCCCCCCCCCceCccecceceecccceccececceccecccecccccccececccccccecccee

C
C
C PROGRAM MAX_RAD
C
C THIS MAIN PROGRAM CALLS THE HILCLIMBER SUBROUTINE TO
C TO ADJUST THE ELECTRICAL PHASE OF THE ELEMENTS OF THE THREE
C ELEMENT ARRAY IN FIGURE 1 UNTIL THE RADIATION ON THE DIRECTION
Cc Om IS MAXIMIZED. THE HILLCLIMBER SUBROUTINE MAX_HC CALLS THE
C THE SUBROUTINE FUNC_MAX WHICH IN TURN CALLS THE NULL AND FFMAG
C ROUTINES, THE NULL MODULE CALCULATES THE AMPLITUDES OF THE
C CURRENT CORRESPONDING TO THE RADIATION PATTERN WITH THE DESIRED
C NULL DIRECTION On.
C
C
C
REAL x(3),dincrx(3),pi,THmax,THnull,acur, bamp?,bamp?2,bamp3
REAL amp(3),ph(3)
complex cur123(3),cj
integer time, IHOW
open{unit=7,file='max_rad’',status="new’)
write(5,*)'How long will iterations for this run (Int)’
read(6,*)time
c
c
cj=(0.0,1.0)
pi=2.0*asin(1.,0)
write(5,*)'Please input guesses for FPhase and step’
do ir=1,3
read(6,*)x(ir),dincrx(ir)
write(7,*)'Initial Guess and Step',x(ir),dincrx(ir)
end do =
write(5,*)'Input main lobe direction(THmax)' b?
read (6, *)THmax e
write(7,*)'The main lobe direction(THmax) is ',Thmax m
THmax=THmax*pi/180.0 "
write(5,*)'Input null direction (THnull)'
read(6,*)THnull
write(7,*)'The null direction (THnull) is',Thnull
THnull=THnull*pi/180,0
write(5,*)' when do you want output of iterations to begin?'
read(6,*) IHOW
c
c
c
CALL MAX_HC(THNULL,THMAX,X,AMP,TIME,DINCRX,IHOW)
write(7,*)'ampi=',amp(1),' amp2=',amp(2),' amp3=",amp(3)
’
o~
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er(J)=amp(J)*cos(ph(J)+P)
ei(J)=amp(J)*sin(ph(J}+P)

e P A o
OL

4
end do !’,:.-
fort
do J=2,nant .'
er(l)=er(l)+er(J) \5
ei(l)=ei(l)+ei(J) ‘

end do .
o
A
Etot(I)=Sqrt(er(1)**2,+ei(1)**2,) ‘ﬁk
if(Etot(1).gt.Emax)Emax=Etot(I) h
.,

55

end do

write(5,*)' Emax=',Emax

> )
N

do 1=1,360

Py o

Theta=float(I)*pi/180.0
xy{(1,1)=ETOT(I)*COS(theta)
xy(1,2)=ETOT(1)*SIN(theta)

Vel

\

end do

v s
s
2%a
Xy

';..l.(

call plot(xy)

ey

stop
end
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@

b b

SUBROUTINE MAX_HC

THIS SUBROUTINE IS THE N-VARIABLE VERSION OF THE
THE HILL CLIMBER OPTIMIZATION ROUTINE DEVELOPED BY THE THESIS
STUDENT, THIS IS THE MOST GENERAL PURPOSF. ROUTINE AND IT
IS USED FOR TESTING THE OPTIMIZATION PRUCCESS ON GIVEN
QUADRATIC, LOGRYTHMIC, AND TRANSCENDENTAL
FUNCTIONS, IT 1S USED FOR MAXIMIZATION INSTEAD OF MINIMIZATION.

I

g

onoOnOonNnnNOnNNNn

SUBROUTINE MAX_HC(THnull, THMAX, x,AMP,time,dincrx, ihow)

3® =

REAL OERR,ERR,what,acur,acurl0

real mlimit,mlimitl0,Merr(40000),Ediff

real arrx(10,40000),x(10),dx(10),dincrx{(10)
real xsml(10),x1rg(10)

real bestx(10),THnull, THMAX, AMP

integer ch,wait,wait2,nvar,nvar2,ixdir(10),idch(10)
integer te,td,time,mdist,ihow

INITIALIZATION OF COUNTERS

ACUR=0.001
MLIMIT=1000.0
NVAR=3
MDIST=10*NVAR

NN

ch=1
oerr=1.0E-10
1=0

K=0

J=0

L=0

M=0

x

I

i e ]
1.",:...}1_'-'1‘

oy

VARIABLES USED IN STEP SIZE RESTRAINT CODE

]
R
0K

(ST OE

mlimitlO=mlimit*10.0
acurlO=acur/10.0
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VARIABLES OF THE ROUTINE THAT ARE BASED ON THE NUMBER
OF VARIABLES BEING ADJUSTED BY THE PROCESS.
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nvar2=nvar*2
wait=nvar*4
wait2=snvar*2+1l
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c
[of INITIALIZATION OF A COUNTERS AND DIRECTION INDICATORS THAT DESCRIBE
C THE PARTICULAR STATE OF EACH VARIABLE DURING THE OPTIMIZATION,
c
do io=1,nvar
dx(io}=1.0
ixdir(io)=1
xsml(io)=0.,0
xlrg(io)=0.0
idch(io)=0
end do
c
c This begins the Hclimber by calling fuction to be optimized
c

100 Call Func_MAX(THNULL,THMAX,err,x,nvar,AMP)

c
c This is iteration counter used in Hclimber
c
I=1+1
C
C THE ARRAY MERR(I) CONTAINS ALL THE VALUES OF THE HILL HEIGHT.
Cc EDIFF IS THE DIFFERENCE BETWEEN THE PRESENT HILL HEIGHT AND THE
C PREVIOUS HILL HEIGHT AND OEDIFF IS THE DIFFERENCE BETWEEN THE
c PRESENT HILL HEIGHT AND THE HILL HEIGHT OF LOWEST MAGNITUDE FOUND
C TO DATE. i
c L
?y,
Merr(1)=err N
Ediff=abs(Merr(I)-Merr(I-1)) *,
OEdiff=abs{err-oerr) u
Ay
c - , S
c Printing option that prints out error,l, and Network prameters, ]
c NG

s
‘ .

if(I.ge.lhow)then
write(7,*)' °
WRITE(7,15)I,err,ch,ediff
15 Format(/' I= ',15,3x,'Error= ',E16.6,3x,'ch="',12,2x,'EQiff=',E16.6)
write(7,*)'

P
v

"
v
IS

vrite(7,17)x(1),x(2),(3) L.,
17 Format(' Xl= ',Fl6.6,3x,'x2=',F16.6,3x,'x3= ',F16.6) x
write(7,*)' ' Y
write(7,*)' Step Sizes ....ccco0eves’ F~
write(7,*)"' ' :N
"
c write(?,16)dincrx(1),dincrx(2),dincrx(3) »
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Format('il=',F10.4,2x,'i2=",F10.7,2x,'i3=",F10.7)
write(7,*)" !

write(7,*)' Direction ....covvuu..’

write(7,*)' !

write(7.19)dx(1),dx(2),dx(3)
Format.'dl=',F4.1,1x,'d2="',F4.1,1x,'d3="',F4.1)

write(7,*)'
endif
This loop loads the storage array with all values of variables through
out the iteration sequence.
do ix=1,nvar
arrx(ix,I)=x(ix)
end do
These two do loops determine determine when a variable needs to be
reduced in size when it has gotten relatively close to an answer
and begins jumping around it.
IF(I.GE.wait)then
do ia=1,nvar

J,K,L,M AND MM ARE USED TO COUNT THE LENGTH OF
A PERIODIC PATTERN,

o1+l
+ wait2

8 xw
0o

1
1
0
mm=0

do ib=1l,nvar2
THIS STATEMENT DETECTS THE PERIODIC PATTERN,

if(arrx(ia,j).eq.arrx(ia, k) )m=m+1
j=j+1
k=k+1

end do

THIS STATEMENT PREVENTS PERIODIC PATTERN FROM BEING
DETECTED ONE RIGHT AFTER ANOTHER.
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if(l.le.idch(ia))goto 1

IF PATTERN IS DETECTED THEN THE STEP SIZE OF THE PERIODIC VARIABLE
IS REDUCED IN MAGNITUDE BY A FACTOR TEN AND THE MAGNITUDE OF
THE VARIABLE IS RESET TO THE BEST VALUE FOUND SO FAR IN THE PROCESS.

if(m.eq.nvar2)then
idch(ia)=1 + wait2
x(ia)=bestx(ia)
dincrx(ia)=dincrx(ia)/10.0

write(7,%)'**x*xsxxxrkx*__yarigble is',ia
write(7,*)'Decreased increment of X,dincrx=',dincrx(ia)
write(7,*)'X= ',X(ia)
endif
end do
1=1+1

endif

This loop keeps the step size of the variables from going out of limit,

do if=1,nvar

if(dincrx(if).le.acurl0)then
dincrx(if)=acur

write(7,*) === e
write(7,*)'dincrxl has gone to low, increased it to',dincrxl

endif

end do

This block of code determines when to increases the size (mag.) of the
variable based on how far it has climber in one direction.

do ic=1,nvar

THIS STATEMENT CHECKS THE VARIABLES DIRECTION INDICATOR
AND COUNTS HOW MANY ITERTION THEY HAVE MOVED IN THE SAME
DIRECTION.

if(ixdir(ic).eq.1l)then
xlrg(ic)=xlrg{ic)+1
else
xlrg(ic)=0
endif




THIS STATEMENT DOES THE SAME AS THE ABOVE FOR THE f:
OPPOSITE DIRECTION.

)
NnOnnon

{ if(ixdir(ic).eq.0)then
xsml(ic)=xsml(ic)+1

; else b
D xsml(ic)=0 Py
; endif 5
A
! 3
1 c R
A C THE NEXT TWO IF-THEN'S INCREASE THE STEP SIZE OF THE :
! C VARIABLES IF THEY HAVW MOVED CONTINUOUSLY IN THE
C SAME DIRECTION.
. C ‘ﬁ
‘ "
i if(xlrg(ic).eq.mdist)then '

dincrx(ic)=dincrx(ic)*10.0

X Write(7,*) '############~-variable is',ic
Write(7,*)'Increased increment of X,dincrxs=

',dincrx(ic)

xlrg(ic)=0
' endif

if{xsml(ic).eq.mdist)then
dincrx{ic)=dincrx{(ic)*10.0

A c write(7,*)'###8##4444#4 --variable is',ic
" c write(7,*)'Increaesd increment of X,dincrx=',dincrx(ic)

.Y,

-

xsml(ic)=0
endif

F AN

enddo

IF THE STEP SIZE HAS GONE ABOVE THE LIMIT SPECIFIED BY THE USER
THIS LOOP WILL REDUCE THE STEP SIZE BY A FACTOR OF TEN.

nnon
> o2 A

do if=1,nvar

.?,.--

if(dincrx(if).ge.mlimit10)then

. -’7

dincrx(if)=mlimit

C write(7,*)'STEP SIZE GONE ABOVE LIMIT' :ﬂ
, c write(7,%*)' ' e
! endif G
) -~
) end do A
N
) c . D,
| c This block takes the first initial step in a positive incrmental 5
c direction for X(1). .
C *

o
v_1

IF(I.EQ.1)THEN

N
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x{1)=x(1) + dx(1l)*dincrx(1)
write(7,*)*
WRITE(7,*)'Initial HH =',err
if(err.lt.cerr)then
oerr=err

endif
GOTO 100

ENDIF

This block of code changes the variable back to its previous value

if changing it caused the hill height to increase. This block also
adjusts the variables based on the direction indicators and step size
magnitudes by evaluating the magnitude of the hill height.

do id=1,nvar

THIS OUTER IF-THEN STATEMENT PERFORMS THE VARIABLE ADJUSTMENTS
WHEN THE ROUTINE IS OPERATING ON THE LAST VARIABLE IN THE
FUNCTION.

if(ch.eq.nvar)then

THIS IF-THEN REDUCES THE LAST VARIABLE BACK TO IT'S
PREVIOUS VALUE IF THE PRESENT HILL HEIGHT EQUALS THE
PREVIOUS HILL HEIGHT. IT ALSO IMMEDIATELY ADJUSTS
THE FIRST VARIABLE TO ITS NEW POSITION. THE STEP
SI1ZE OF THE LAST VARIABLE IS INCREASED BY A FACTOR
OF TEN.

IF(EDIFF.eq.0.0)THEN

x(nvar)=x(nvar)-dx(nvar)*dincrx(nvar)
x(1)=x(1)+dx(1)*dincrx(1)

DINCRX{(NVAR)=DINCRX (NVAR)*10.0

WRITE(7,*)'ERR - PREVIOUS ERR LT lE-6,Bx=',x(nvar)
WRITE(7,*)'1=",1,"' id=',id,' step=',dincrx(nvar)

goto 70
ENDIF

THE SAME AS ABOVE IS PERFORMED WHEN THZ PRESENT
HILL HEIGHT EQUALS THE BEST HILL HEIGHT FOUND
TO DATE.

IF(OEDIFF.eq.0.0)THEN
x(nvar)=x(nvar)-dx{(nvar)*dincrx(nvar)

x{1)=x(1)+dx(1)*dincrx(1)}
DINCRX(NVAR)=DINCRX(NVAR)*10.0
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c WRITE(7,*)'Oerr and Err are = to e-6' [ ]
c write(7,*)'EEEERRRRRRRRRRR = 0OOQeeerrrr' o
c WRITE(7,*)'1=',1,' id=',id,' step=',dincrx(nvar) '“‘
)
goto 70 ¥l
\
ENDIF J
C .
(o IF THE HILL HEIGHT 1S LOWER THEN THE LAST VARIABLE :\:
C IS KEPT AT IT'S NEW MAGNITUDE AND THE FIST VARIABLE 3
C 1S ADJUSTED. &
c _J.;.,
)
if(err.gt.oerr)x(1)=x(1)+dx(1)*dincrx{(1)
c [ ]
oy
C IF THE HILL HEIGHT IS GREATER THE LAST VARIABLE ;&
C IS REDUCED AND FIRST VARIABLE IS ADJUSTED IMMEDIATELY. qy
c R
if(err.lt.oerr)then '.::
x(nvar)=x(nvar)-dx(nvar)*dincrx(nvar) ]
x(1)=x(1)+dx(1l)*dincrx(l) ,
endif “:
goto 70 d
endif :éi
c 0
C THE FOLLOWING IF-THEN STATEMENTS ARE FOR ALL OF THE ITERATIONS Iﬂ
C BESIDES ADJUSTMENT OF THE LAST VARIABLE ( IN OTHER WORDS
C MOVEMENT OF THE VARIABLES IN SEQUENCE 1,2,3,..... N, BUT !\
C NOT N. MOVEMENT OF THE LAST VARIABLE (N) IS HANDLED ABOVE, (H
(od CH TRACKS WHICH VARIABLE IS CURRENTLY BEING ADJUSTED. r?
C Tt
iy
IF(CH.EQ.ID .AND. EDIFF.eq.0.0)THEN ,,‘
TE=ID+1
x(id)=x(id)-dx(id)*dincrx(id) ~
x(te)=x(te)+dx(te)*dincrx(te) A
DINCRX(ID)=DINCRX(ID)*10,0 Y
I\ q
c WRITE(7,*)'ERR - PREVIOUS ERR LT 1lE-6,Bx=',x(id) ¢
c WRITE(7,*)'1=',1I,' id=',id,' step=',dincrx(nvar) "
goto 70 g;
.\
ENDIF -
™~
IF(CH.EQ.ID .AND. OEDIFF.eq.0.0)THEN oA
S
TE=1D+1
x(id)=x(id)~-dx(id)*dincrx(id) J
x(te)=x(te)+dx(te)*dincrx(te) T
DINCRX(ID)=DINCRX(ID)*10.0 (‘;\
"B
c WRITE(7,*)'Oerr and Err are = to e-6' W)
c write(7,*) 'EEEERRRRRRRRRRR = OOQOOeeerrrr' A
)
’ ™
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N
c WRITE(7,*)'I=',I,' id=',id,' step=',dincrx(nvar) 25
goto 70 oo
ENDIF ..!
oy
s,
IF{ch.eq.id .and. err.gt.oerr)then !
td=id+1 pe,
c if(id.eq.nvar)td=1

x(td)=x(td)+dx(td)*dincrx(td)

*

f:'

endif . %
X

If(ch.eq.id .and, err.lt.oerr)then ®
td=id+1l
x(id)=x(id)-dx(id)*dincrx(id) »
x(td)=x(td)+dx(td)*dincrx(td) s
o
endif Wt
end do ®
=g
c -Q
c This loop changes the variables direction based on the magnitude of ﬁ
c the hill height. 1If the variables adjustment causes the hill height ot
c not to be reduced below the current best hill height then the KN
c particular variables direction indicators are reversed so the variable A%
c can move in the other direction, ,
c o)
oAl
by
70 do ie=1,nvar ~
,‘-
if(ch.eq.ie .and. ixdir(ie).eq.l .and. err.lt.cerr)then }*‘
ixdir(ie)=0 'y
dx(ie)=-1.0 ﬁ
i goto 20 hah
endif %
. . e S
if(ch.eq.ie .and. ixdir(ie).eq.0 .and. err.lt.oerr)then
ixdir(ie)=1 gt
dx(ie)=1.0 Al
goto 20 ®
endif i
N
end do ?}
2
"
c a7
c This block keeps track of which variable is to be changed next. g
c .
N
20 if(ch.le.nvar)then :ﬁf
if(ch.eq.nvar)ch=0 o
ch=ch+l o
endif Y
®
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P
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as the Hclimber proceeds thru the climb.

oo

if(err.gt.cerr)then

write(S,*)'err=',err,' at I=',I
oerr=err

do ip=1,nvar
bestx(ip)=arrx(ip,I)
end do

endif

This tells machine to do another iteration

aoa

IF(I.LT.time)GOTO 100

write(?7,*)' '
write{(7,*)'HH (hill height) at end of run =',cerr

DO 1H=1,3
X(IH)=BESTX(IH)

ENDDO

return

end
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This block records value of the best variables and current values
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SUBROUTINE FUNC_MAX(THNULL, THMAX ,HILLH, X,NVAR, AMP)

REAL x(3),pi,THmax,HillH,THnull,Fmax,acur,amp(3),ph(3)

b integer nvar

complex cj,curl23(3)

. cj=(0.0,1.0)

: pi=2,0*asin(1,0)

b k=2,0*%pi
ph(l)=x(1)*pi/180.0
ph{(2)=x(2)*pi/180.0
ph(3)=x(3)*pi/180.0
call null(pi,ph,THnull,amp)
call FFmag(pi,amp,ph, THmax,Fmax)
HillH=Fmax

! RETURN
. END
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CCCCCCCCCCCCccceeccceeecececeecececceceeecccecccececccccececcceeeccccc

subroutine null(pi,PH,THnull,amp)

real x(3),y(3),ph(3),amp(3),p(3)
real kl,THnull,c?,c2,x11,x12,pi,x21,x22,denom

oo0oOo-—-00

kl= 2.0*pi/4.0

do 20 J=1,3
if(x(J).eq.0.0 .and. y(J).eq.0.0)goto 20

P(J)=kl*sqrt{x(J)**2.+y(J)**2,)*cos(atan2(y(J),x(J))-THnull)
continue

P(1)=0.0

Cl==-cos(ph(1)+p(1))
X11=cos(ph(2)+p(2))
X12=cos{ph(3)+p(3))
C2=-sin(ph{1)+p(1))
X21=sin{ph(2)+p(2))
X22=sin{ph(3)+p(3))

denom=X11*X22-X21*X12

if(denom.eq.0.0)then
write(5,*)' Denom equals 0.0'
goto 39
endif
amp(1)=1.0
amp({2)=(c1*X22-X12*c2)/denom
amp(3)=(X11*c2-C1*X21)/denom
return
end

CCCCCCCCCeceeeecececccceccecceececeecceccceceececcccccceccccecececcccceeccceccecccc

- q"- - - -\'~~l\\'

subroutine FFmag(pi,amp,ph,THmax,Fmax)

dimension x(3),y(3),ph(3),amp(3),p(3),er(3),ei(3)
real kl,THmax,Fmax,ptotal,pi
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2

e

-]
¥(1)=0.0 ’

Y(2)=0.8660254 (

v(3)=0.0 Y

Yo

kl= 2.0%*pi/4.0 /

o

do 30 J=1,3 e

if(x(J).eq.0.0 .and, y(J).eq.0.0)goto 29

P(J)=kl*sqrt(x(J)**2, +y(J)**2,)*cos(atan2(y(J),x(J))-THmax) oty

29 p(1)=0.0 M

it

er(J)=amp{(J)*cos(ph{(J)+p(J)) .s

ei(J)=amp(J)*sin(ph(J)+p(J)) X
]

30 continue Ry

i

'

do J=2,3 1t
er(1)=er(1)+er(J) ‘
ei(1)=ei(1)+ei(J) ’

end do ;:}

3

r

Fmax=sqrt{er(1)**2.0 + ei(1}**2,0)

call Powerin(amp,ph,ptotal)

oI S

Fmax=Fmax/ptotal
return ;:;
end ~
£
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCececceecccecececcceececcccececccecececce SF‘
¢
subroutine PowerIn(amp,ph,ptotal) ]
)
dimension amp(3),ph(3) il
complex ¢j,I11,12,13,v1,V2,V3,Zs,214,21,22,23 o
real ptotal,pl,p2,p3 0
I
cj=(0.0,1.0) i |
I1=amp(1)*cos(Ph(1)) + cj*amp(1)*sin(ph(1)) .‘
I2=amp(2)*cos{Ph(2)) + cj*amp(2)*sin(ph(2)) .
I3=amp(3)*cos(Ph(3)) + cj*amp(3)*sin(ph(3)) -
c
c ;?
214=(20.4,-14.18) A
Zs=(36.5,21.0) e
c "
c
Vi=I1*Zs + (12+13)*Z14 &;
V2=12%2Zs + (I11+13)*Z14 -
V3=13*2s + (11+12)*214 2
c "
C :.'_-
t:‘
> |
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pi=real{conjg(I1)*v1)
p2=real(conjq(I2)*v2)
p3=real(conjg(13)*v3)
write(?7,*)'pl=",p?,"' p2=',p2,' p3=',p3

ptotal=sqrt((pl1+p2+p3)/36.5)

Z1=Vi/11

Z2=V2/12

23=v3/13

write(7,*)'Driving point impedances equal'’
write(7,*)z1,22,23

return
end

X ., ) fﬁ'.“' '. "'l, . -'.‘; \ .' -;‘.‘. N .

”
+ WA

166

ARSI RE AR LA

R OAr X s

S A

D—"’—r"‘"'r' -

:- .

TS

e

s, !



»

~ o

R O A MM

A S

0% vy i g fa g ta’eh

L

a R

.

A

o

Cal

ey

APPENDIX B

167

T AR A
P 5

_'.‘..:r\r "ty o .\-1._- - ’,‘r\-\-. ~ .\ \ P \".\' '\".\‘-J‘-..\

x
-
O

-

2o

P

-
0

B33

L N XE

(0

o

| ol 4
ﬁ'--"
AL L

oo

s
L

q.o’{((r‘

'.‘611-
e T
X

&
o
-

.'_;‘.‘

I -
O Ry
LU

Vi@ -

=

.I .I

LAY 2P
Ay

-



- o - -

Pl o

- -

AR DRI

: et Vgt tg* e ¥ aTy b a4 avy 2804 0 0.00.8 8"V, 8 Sal Sad tad Yat: 9.0, %8, 0 p uay ag e iay sad tay cay s ) PTYOTRO b et a IR MU —

168

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcceccecceccccccccce

PROGRAM ANAL_DESG

THIS PROGRAM SOLVES THE 15 LINEAR EQUATIONS DESCRIBING
THE PHASED ARRAY ANTENNA SYSYTEM OF FIGURE 5. THE VALUES FOR
THE PI NETWORK PARAMETERS AND THE INPUT CURRENT ARE PASSED
TO THE ANALYSIS SUBROUTINE CURR WHICH RETURNS TO THIS PROGRAM
THE CALCULATED CURRENT DISTRIBUTIONS FOR EACH ELEMENT OF THE
ARRAY.

[sXsXeXaskeKeXeNeXaNaNs!

complex ckt1(3),ckt2(3),ckt3(3),B(15),It,ITT,curr1(3}),Itdesign
complex bd(14),crr1(3)

real amp{3),ph(3)
open{unit=7,file="anal_desg ,status-'new')
pi = 2.0*asin(1;)
0.0,1.0)

0.0,50.0)
0.0,560.0)

(9]

A

-3

-
———
I =
—
Hounu
—~——~

CKT2(1)=(0.0,10.0)
CKT2(3)=(0.0,50.0)

CKT3(1)=(0.0,100.0)
CKT3(3)=(0.0,5.0)

write(5,*)'Input value for XC12 and XC13, complex’
read(6,*)ckt2(2),ckt3(2)
C wrxte(? *)° Input capacitors XC12 & XC23 equal',ckt2(2),ckt3(2)
C WRITE(7,*)'

write(7,*)' PI Network Parameters'
write(7,*)"' !

write(7,75)aimag(ckt1(1)),aimag(ckt1(2)),aimag(ckt1(3))
75 format{3x,' XL13 =',2X,F6.2,' XC13 =',2X,F6.2,' XC31 =',2X,F6.2)
WRITE(7,*)" '

write(7,76)aimag(ckt2(1)),aimag(ckt2(2)),aimag{ckt2(3))
76 format(3x,' XL12 =',2X,F6.2,' XC12 =',2X,F6.2,' XC21 =',2X,F6.2)
WRITE(7,*)’ '

write(7,77)aimag(ckt3(1)),aimag(ckt3(2)),aimag{ckt3(3))
77 format(3x,' XL23 =',2X,F6.2,' XC23 =',2X,F6.2,' XC32 =',62X,F6.2)
WRITE(7,*)' !

write(5,*)'Input the current at the input of antenna 1°
read(6,*)It

write(7,*)'The input current It =', It
WRITE(7,*)" !
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call curr{CKT1,CKT2,CKT3,1It,B)

write(5,*)b(1),b(2),b(3)

write(7,*)' The Resulting Current Distributions (complex)’
write(7,*)' °

write(7,*)'11="',b(1)

write(7,*)'12=",b(2)

write(7,*)'13="',b(3)

WRITE(7,*)' '

write(7,*)'The Corresponding Magnitudes and Phases (degrees)’
write(7,*)"’ !

call mag_ph_norm(3,crri,amp,ph)
do i=1,3
ph{i)=ph(i)*180.0/pi
end do
write(7,80)amp(1),amp(2),amp(3)
format(3x,' [11) =',2X,F7.2,' [12] =',2X,F7.2," [13] =',2X,F7.2)
WRITE(7,81)ph(1),ph(2),ph(3)
format(3x,' PHSt1 =',62X,F7.2,' PHS2 =',2X,F7.2,' PHS3 =',2X,F7.2)
ITT=B(1)+B(4)+B(6)
write(5,*)'1t =I1 + I12 +I13 is equal to',ITT
WRITE(7,*)" '
call design(crri,bd, Itdesign)

write(S,*)'XC12=",bd(13),"' XC23=',bd(14)
write(5,*)'Itdesign=",Itdesign

WRITE(7,*) 'Designed Pi Network Parameters'

write(7,*)'XC12=",bd(13},' XC23=',bd(14)
write(7,*)" '

write(7,*)'I1t (Input Current resulting from Design)'
write(7,*)'I1tdesign=",Itdesign

stop
end

subroutine CURR(CKT1,CKT2,CKT3,It,B)
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c )
c This program is the two-port analysis of a triangular three L
c element antenna system. ¢
o
fod AR EER RS RRRRRRERRRA R R Rt R R RRRRSRSRRRRR RS RSRRR RS RS
c
c e declare all variablegs----------
c
INTEGER N, IA,M,1B,1J0B, IER
COMPLEX A{15,15),B(15),WA(255),CKT1(3),CKT2(3),CKT3(3),XL13,XC13
COMPLEX XC31,Z11,Z12,213,1T,C46,C02,P11,X1,X2,X3,X4,X5,X6
REAL wk(15)
c - matrix parameters-~----------
c

r o

C
c  mmeee- mutual impedances------------- N
C y
211=(36.5,21.0) ° NS
213=(20.4,-14.18) -
Z212=213 D'
C R
c  meme-- constants generated from separation distances----~--- o
c -
C 'S
C  memm—— change above reals into complex #'s with zero reals :
¢ »
C46=(0.0,46.19397663} )

C02=(0.0,.018477591)
PII=(.382683432,0.0)

----set constant matrix b back to zero----

(8}

do 5 j=1,15
B(3)=(0.0,0.0)
5 continue

cC e BEGIN CALCULATING THE MATRIX "A"™ COEFFS------- N
c o~
XL13=CKT1(1) i
XC13=CKT1(2) -~
XC31=CKT1(3) -

CALL SUBROQUTINE COEFF FOR FIRST TIME

CALL COEFF(C46,C02,PI1,XL13,XC13,XC31,X1,X2,X3,X4,X5,X6)

------ INSERT COEFFS INTO MATKIX "A"----=---

aoNnO [pNeKS!
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)
A(1,1)=(1,,0.) >
A(1.4)=(1..0.) bt
A(1,6)=(1.,0.) Pat.
A(2,2)=(1.,0.) e,
A(2,5)=(1.,0.) -l
a(2,8)=(1.,0.) -
A(3,3)=(1.,0."
A(3,7)=(1.,0.)
4 A(3,9)=(1.,0.) ;
b C
) c N
p A(4,1)=2Z11
A(4,2)=212 =
A(4,3)=213 il
A(4,10)=X1 }
A(4,11)=X2 :
c e,
4 o ht
p A(5,6)=(1.,0.) WY
y A(5,10)=X3 \
A(5,11)=Xs X
U c
c )
' A{6,1)=212 -
A(6,2)=213 s
A(6,3)=Z11 p:
A{6,10)=X2 by
A(6,11)=X5 )
c X
c )
A(7,7)=(1.,0.) z
A(7,10)=Xx4 -
A(7,11)=X6 .
c o
cC  =emee- SECOND SET OF EQUATIONS------ -
C “
XL13=CKT2(1) i
XC13=CKT2(2) )
XC31=CKT2(3) i
C :'.
C o
c %
CALL COEFF(C46,C02,PI1,XL13,XC13,XC31,X1,%2,X3,X4,X5,%6) -~
c g
C emee- LOAD COEFFS INTO MATRIX "A"----- ;
c
A(8,1)=211 0
A(8,2)=212
A(8,3)=213 s
A(8,12)=X1 Ny
A(8,13)=X2 -
C _.:
c )
A(9,4)=(1.,0.) ooy
A(9,12)=X3 :\.
A(9,13)=X4 N
c oy
C -
A(10,1)=212 <
A(10,2)=211 -
)
, -~
e
>
]
-
§.~
'.. \-' '\“\ ‘-"'_\*'\'i “’\“\"-""‘- \"-)'.’\“'..,'-I‘-i'hJ-.\".\}’\*"‘.‘b“1{‘\-"-*"-‘V,-sf-’\{--.\*h“-’:-.-. -',,‘-‘. ‘vf‘yl".""‘f- -*N ~'..-*v._-} t
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o
A
A
\J
b
a(10,3)=213 e
A(10,12)=X2 w0
A{10,13)=X5
C
C
a{11,5)=(1.,0.)
A{11,12)=X4
A{11,13)=X6
c
c  ----- THIRD SET OF EQUATIONS---~--
C
XKL13=CKT3(1)
XC13=CKT3(2)
XC31=CKT3(3)
C
C
C
C
CALL COEFF(C46,C02,PII,XL13,XC13,XC31,X1,X2,X3,X4,X5,X6)
o
A(12,1)=212
A{12,2)=z11
A(12,3)=213
A(12,14)=X1
A{12,15)=X2
C
c
A(13,8)=(1.,0.)
A(13,14)=Xx3
A{13,15)=X4
c
C
A(14,1)=212
A(14,2)=213
A(14,3)=211
A(14,18)=X2
A{14,15)=X5
C
C
A{15,9)=(1,,0.)
A(15,14)=X4
A(15,15)=X6
C
C
C -
C [
C :"l‘»
C -—=~SET FUNCTION DEFINITION--~--~- A
c N
1JOB=0 R
c f_‘-
c -—m---- CALL MATRIX INVERSION IMSL ROUTINE--~---- e
c -
CALL LEQ2C(A,N,IA,B,M,IB,IJOB,WA, WK, IER) L2
c A
c o~ OUTPUT CALCULATED VALUES=--~-=-~=--~ ~
C o
write(5,%*)'11 = ',b(1) PO
write(5,%,'12 = ',b(2) o
write(5,%)'13 = ',b(3) A~

C.

B E G ¢ W e L -
¥ ‘....\::)':‘A..‘HL'F."‘.":.'- ."":'-\‘:‘-'\..’\':\('--:'\'.'-
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RETURN
END

LR RSS2 R R R R R EYEE ]

THIS SUBROUTINE CALCULATES THE MATRIX COEFFS

AR AR AR R R TR R TR RS LR S LR R R R R R R R R S R R

SUBROUTINE COEFF(C46,C02,PII,XL13,XC13,XC31,X1,X2,X3,X4,X5,X6)

oo O0nN0 Oo0nnn

T1={PII+(C46/XL13))
T2=(C02+(PII1/XL13))
X1==(T1+(C46*XC13))
X2=(C46/XL13)

X3=-(T2+(PI1*XC13))
X4=(PII/XL13)

X5==(T1+(C46*XC31))
X6=-(T2+(PII*XC31))

RETURN
END

x‘;l( 1’ 1; o
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CCCCCCCCCCCCCCCCCCCCCCCCCCececeecCcCcCcccceccecccceccececccececccceccceccc
DESIGN.FOR

THIS PROGRAM USES THE DESIGN TECHNIQUE DISCUSSED IN .
CHAPTER S5 TO DESIGN TWO OF THE PI NETWORK PARAMETERS OF THE o
INTERCONNECTION MEDIUM IN FIGURE 5. THE USER IS PROMPTED FOR
THE DESIRED CURRENT DISTRIBUTIONS AND THE OTHER PI NETWORK
PARAMETERS ARE ASSIGNED SOME CONSTANT MADNITUDE. THE SUBROUTINE
DESIGN IS CALLED AND THE RESULTING PARAMETERS ARE LOADED INTO
AN OUTPUT FILE. THE DESIGN SUBROUTINE PERFORMS THE ITERATIVE
PROCESS ON THE DESIGN MATRIX UNTIL INSTRUCTED TO STOP.

r «
&

T R R s

NONDONOONNNNNNN

. dimension CKT1(3),CKT2(2),CKT3(2)
real amp(3),ph(3)
complex I1,12,13,curr(3),It,bd(14),cckt1(3),cckt2(3),cckt3(3)

open(unit=7,file='design',status="'nev')

write(5,*)'Input magnitude and phase of desired current distribution’ ]
write(7,*)'Input magnitude and phase of desired current distribution’ )’

do i=1,3 )
write(5,*)'Input amp and phase for element #',i .
read(6,*)amp(i),ph(i)
write(7,*)'For element #',i,' Mag & Phase=',amp(i),ph(i)

end do

call cmpn(3,amp,ph,curr)

TR AR

CKT1(1)=10.0
CKT*{?)=1.0
CKT1(3)=5.0
CKT2(1)=CKT1(1) i
; CKT2(2)=5.0 ;
‘ CKT3(1)=CKT1(1)
CKT3(2)=7.5

L E XL

!

_..

, call design(CKT1,CKT2,CKT3,curr,bd)

write(7,*)’ !
write(7,*)' ..ivenenes ...NOW PERFORMING ANALYSIS.....ovaeus’
write(7,%)" !

g D _F T P 5

It=curr(1)+bd(1)+bd(3) -
write(7,*)" It=',1It R

cckt1(1)=cmplx{(0.0,ckt1(1))
cckt1(2)=cmplx{(0.0,ckt1(2))
cckt1(3)=cmplx(0.0,ckt1(3))
cckt2(1)=cmplx(0.0,ckt2(1))

TSR o
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Ti=aimag(bd(13))

K T2=real(bd(13))
cckt2(2)=cmplx(t1,t2)
cckt2(3)=(0.0,7.0E-6}
cckt3(1)=cmplx(0.0,ckt3(1))
cckt3(2)=cmplx{aimag{(bd(14)),real{bd(14)))
cckt3(3)=(0.0,4.0E-7)

< write(5,*)'cckt2="',cckt2(1),cckt2(2),cckt2(3)
D write(5,*)'cckt3=',cckt3(1),cckt3(2),cckt3(3)
i write(5,*) 'cckti=",cckt1(1),cckt1(2),cckt1(3)

call curri(ccktl,cckt2,cckt3,It)

c
c
* c CKT1(1)=CKT1(1) + plus2
c if(CKT1(1).LE.600.0)goto 10
\ c CKT1(1)=startCl
I c CKT1(2)=CKT1(2) +plus]
( c if(CKT1(2).GE.-60.0)goto 10
. c CKT1(2)=startC2
» c CKT1(3)=CKT1(3) +plus!
: c IF(CKT1(3).GE.-60.0)GOTO 10
Cc
i C
4 close(7)
K) stop
end

.-
C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCcCCCecCccccCCCccccCccecceccceeeececeeceeece

C
C SUBROUTINE DESIGN
b C
C THIS ROUTINE IS AN ITERATIVE DESIGN PROCEDURE
c WHICH USES GIVEN CURRENT DISTRIBUTIONS FOR THE ARRAY ELEMENTS
Cc AS INPUT. IT CALCULATES TWO USER DESIGNATED PI NETWORK
L0 C PARAMETERS THAT SOLVE THE LINEARIZED SET OF 14 DESIGN
C EQUATIONS.
C
. C INPUTS: CKT1,CKT2,CKT3,CURR
| C OUTPUTS: B
i C
; c
X subroutine design(ckt1,ckt2,ckt3,curr,bd)
complex a(14,14),curr(3),vt(3),11,12,13,b(14),y1,v¥2,y3,v4
A complex c1,c2,¢3,c4,v2C0,V1B0,5V1IB,GV2C,wa(224),bd(14)
. integer n,ia,m,ib,ijob,ier,Q
o real wk(14),XL13,XC13,XC31,Gxc12,Gxc23,x1,x2,x3,x4,x5,x6,¢46,c02,pii
o dimension CKT1(3),CKT2(2),CKT3(2)
\ C
) C SETS DIMENSIONS OF MATRIX

ia=14
ib=14
n=14
m=1
Q=0

Il con ey gd
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SETS INITIAL GUESS VALUE FOR P! NETWORK PARAMETERS AND
VOLTAGE VARIABLES.

Gxc12=1.
GV1B=(1.,1.)
Gxc23=1.
Gva2c=(1.,1.)

OUTPUTS GIVEN PI NETWORK PARAMETERS TO DATA FILE.

write(7,*)'THE given capacitor values are XC13,XC31,XC21,XC32"'
write(7,*)CKT1(2),CKT1(3),CKT2(2),CKT3(2)
WRITE(7,*)'The given inductor values are equal to',CKT1(1)

INITIALIZED THE MATRIX'S OF COEFFICENTS AND CONSTANTS (A & B).

do i=1,14
do j=1,14
a(i,jr=(0.,0.)
end do
end do
do i=1,14

b(i)=(0.,0.)
end do

THE CALL TO CMMUL PERFORMS THE COMPLEX MATRIX MULTIPLICATION
BETWEEN THE CURRENT DISTRIBUTIONS AND THE MUTUAL IMPEDANCES VALUES
WHICH RESULTS IN THE VOLTAGES AT THE BASE OF EACH ARRAY ELEMENT.

call cmmul{curr,vt)

LOADS PARAMETERS OF THE FIRST PI NETWORK INTO VARIABLES THAT ARE
USED TO REPRESENT ALL OF THE PARAMETERS IN THE CALCULATIONS OF THE
COEFFICENTS OF THE UNKNOWN VARIABLES. C

XL13=CKT1(1)
XC13=CKT1(2)
XC31=CKT1(3)}

CALL TO ROUTINE THAT PERFORMS THE COEFFICENT CALCULATIONS FOR THE
FIRGT PI NETWORK.

call numb(x1,x2,x3,x4,x5,x6,c46,c02,pii,XL13,XC13,XC31)

LOADIND OF MATRIX A WITH CALCULATED COEFFICENTS,
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C .-
By
a(1,2)=(1.0,0.0) "
a(1,5)=(1.,0.) i
a(2,4)=(1.,0.) ]
a(2,6)=(1.,0.) "
a(3,7)=cmplx(x1,0.) Y,
a(3,8)=cmplx(x2,0..
a(4,3)=(1.,0.) Ny
a(4,7)=cmplx(0.,x3) ~)
a(4,0)=cmplx(0.,x4) ey
a(5,7)=cmplx(x2,0.) -
a(5,8)=cmplx(x5,0.) "y
a(6,4)=(1.,0.) N
a(6,7)=cmplx(0.,x4) =
a(6,8)=cmplx(0.,x6)
Y,
c '
C LOADS PARAMETERS OF THE PI NETWORK CONTAININD ONE OF THE \s
C UNKNOWN PARAMETERS INTO THE VARIABLES THAT ARE BEING
C USED TO REPRESENT ALL OF THE PARAMETERS IN THE CALCULATIONS 5
C OF THE COEFFICENTS OF SOME OF THE UNKNOWN VARIABLES. 5‘ N
c [ )
xJ
XL13=CKT2(1) ool
XC13=Gxc12 o
XC31=CKT2(2) ad
V1B0=GV1B X
C .- .‘
C CALL TO ROUTINE THAT PERFORMS THE COEFFICENT CALCULATIONS FOR THE !:'
C FIRST PI NETWORK., -t
c ~r
)
call numb(x1,x2,x3,x4,x5,x6,c46,c02,pii,XL13,XC13,XC31) ot
C e
C CALCULATION OF MORE COEFFICENTS
Cc ]
NN
y1=-(V1BO*cmplx(C46,0.0)) o
y2=-(V1BO*cmplx(0.0,pii)) N
c11=c46*XC13 =
cl=vt(1)-(cmplx(c11,0.0)*V130) g
c22=pii*XC13 m
c2=-(cmplx(0.0,c22)*V1B0) 2
c N
o N
C LOADIND OF MATRIX A WITH CALCULATED COEFFICENTS. o
C ._.:-
a(7,9)=cmplx(x1,0.) .
a(7,10)=cmplx(x2,0.) .'
a(7,13)=y1 -
a(8,1)=(1.,0.) 2
a(8,9)=cmplx(0.,x3) ;&
al8,10)=cmplx(0.,x4) \
a(8,13)=y2 o
a(9,92)=cmplx(x2,0.) \‘q
a(9,10)=cmplx(x5,0.) by
‘¢
\'c' ,
’ ‘\n: ¢
V\.
Y
N
»
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a(10,2)=(1.,0.)
a(10,9)=cmplx(0.,x4)
a(10,10)=cmplx(0.,x6)

LOADS PARAMETERS OF THE PI NETWORK CONTAININD ONE OF THE
UwKNOWN PARAMETERS INTO THE VARIABLES THAT ARE BEING

USED TO REPRESENT ALL OF THE PARAMETERS IN THE CALCULATIONS
OF THE COEFFICENTS OF SOME OF THE UNKNOWN VARIABLES.

[eXeXeXaKeKs!

XL13=CKT3(1)
XC13=Gxc23
XC31=CKT3(2)
v2C0=Gv2C

CALL TO ROUTINE THAT PERFORMS THE COEFFICENT CALCULATIONS FOR THE
FIRST Pl NETWORK.

annn

call numb(x1,x2,x3,x4,x5,x6,c46,c02,pii,XL13,XC13,XC31)

CALCULATION OF MORE COEFFICENTS

[eXeXp]

y3=-(V2C0*cmplx(c46,0.0))
y4=-(V2CO0*cmplx(0,0,pii))
c33=c46*XC13
c3=vt(2)-{cmplx(c33,0.0)*v2co)
c44=pii*XC13
c4=-(cmplx(0.0,c44)*v2C0)

LOADIND OF MATRIX A WITH CALCULATED COEFFICENTS.

noan

a(11,11)=cmplx(x1,0.)
a(11,12)=cmplx(x2,0.)
a(11,14)=y3
a(12,5)=(1.,0.)
a(12,14)=y4
a(12,11)=cmplx(0.,x3)
a(12,12)=cmplx(0.,x4)
a{13,11)=cmplx(x2,0.)
a(13,12)=cmplx(x5,0.)
a(14,6)=(1.,0.)
a(14,11)=cmplx(0.,x4)
a(14,12)=cmplx(0.,x6)

CONSTANT MATRIX B FORMATION

noon

b{1)=-curr(2)
b{2)=-curr(3)
b(3)=ve(1)
b(4)=(0.,0.)
b(S)=vt(3)
b(6)=(0.0,0.)
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by /)=c1
b(8)=c2
b(9)=vt(2)
b(10)=(0.,0.)
b(11)=c3
b(12)=c4
b{(13)=vt(3)
b(14)=(0.,0.)

CALL TO LINEAR EQUATION SOLVER IN IMSL SUBROUTINE LIBRARY.

ijob=0
call leq2c(a,n,ia,b,m,ib,ijob,wa,wk,ier)
Q=0+1 '

write(7,*)'l (number of iterations) =',Q
write(7,*)"’ !

write(7,90)AIMAG(B(13)),REAL(B(13)),aimag(b(14)),real(b(14))
FORMAT('XC12=',2X,F9.4,' +j',F9.4,' XC12=',2X,F9.4,' +j',F9.4)

LOADING THE NEW FOUND VALUES INTO NEXT GUESS VARIABLES FOR NEXT
ITERATION.

GV1B=hb(9)
Gxc12=real(b(13))
GvV2C=b(11)
Gxc23=real(b(14))

if(Q.le.10)goto 100

write(7,*)'End of iterations’

do 1j=1,14
bd{(ij)=b(ij)
write(7,*)'For ij =',ij,*' Bd(ij)=',Bd{(ij)
end do
return
end

CCCcCrcececeececceceececeeceeccccceceecccccecccececececccceccecceccecccecececccec

[2XsNeReKaleNeKeKe!

SUBROUTINE NUMB

THIS ROUTINE CALCULATES THE COEFFICENTS OF THE UNKNOWN
VARIABLES BASED ON THE INPUT CONSTANTS. THE INPUT CONSTANTS ARE
BASED ON THE MAGNITUDE OF THE GIVEN PI NETWORK PARAMETERS.

INPUT: XL13,XC13,XC31
OUTPUT: X1,X2,X3,X4,X5,X6

ST B A A0 b Rl B0 S0 Gt
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subroutine numb(x1,x2,x3,x4,x5,x6,c46,c02,pii,XL13,XC13,XC31)
real x1,x2,x3,x4,x5,x6,pi,pii,c46,c02,rad,t1,t11,t2,t22,conl

CALCULATIONS BASED ON THE TRANSMISSION LINE LENGTH

nnn

pi=2.0*asin(1.0)
rad=3.0*pi/8.0
coni=sin(rad)
pii=cos(rad)
c46=50.0%con1
c02=con1/50.0

CALCULATIONS BASED ON THE NETWORK PARAMETERS

aona

t1=c46/XL13
t11=pii+t1
x1={t11-(c46*XC13))
x2=~t1

t2=pii/XL13
t22=c02-t2
x3=-(t22+(pii*XC13))
x4=~t2
x5=(t11-(c46*XC31))
x6=-(t22+(pii*XC31))

return
end

CCCCCCCCCCCCCCCCCCecCcceceeccceeccccceecccceccceeccccecceccceceeccececc

C
C SUBROUTINE CMMUL
C
C THIS ROUTINE PERFORMS THE COMPLEX MATRIX MULTIPLICATION
o OF A 3X3 AND A 3X1 MATRIX. IN PARTICULAR THIS ROUTINE CALCULATES
C THE VOLTAGE AT THE BASE OF EACH ARRAY ELEMENT. THE INPUT IS THE
C CURRENT FLOWING IN EACH ELEMENT.
C ‘n
C INPUT: CURR :;\
c OUTPUT: VT oy
c 3
Cc ‘.':‘
e
subroutine cmmul(curr,vt) !>
N
complex vt(3),curr(3),impe(3,3),a ;\‘
"
W
c A
C MUTUAL IMPEDANCE VALUES FOR ELEMENT OF THE EQUILATERAL TRIANGULAR ?:
c ARRAY. he
C =
. -
NG
’ :..;
NS
|:‘h

""q&:
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impe(1,1)=(36.5,21.0)
impe{(1,2)=(20.4,-14.18)
impe(1,3)=(20.4,-14.18)
impe(2,1)=(20.4,-14.18)
impe(2,2)=(36.5,21.0)
impe(2,3)=(20.4,-14,18)
impe(3,1)=(20.4,-14.18)
impe(3,2)=(20.4,-14.18)
impe(3,3)=(36.5,21.0)

THESE TWO DO LOOPS PERFORM THE MULIPLICATION,

a=a+impe({k,m)*curr(m)

do k=1,3
a=(0.0,0.0)
do m=1,3
.end do
vt(k)=a
end do
return
end
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PROGRAM MAINHC

THIS PROGRAM IS USED TO TEST THE HILL CLIMBER 2
OPTIMIZATION ROUTINE ON A VARIETY OF F'JXCTION AS SPECIFIED -
BY THE USER IN THE SUBROUTINE FUNC. THIS PROGRAM CALLS THE
MOST GENERAL VERSION OF THE OPTIMIZATION ROUTINE AND PASSES
TO IT ANY VARIABLES THAT ARE INPUT BY THE USER. THESE VARIABLES
ARE USUALLY THE NUMBER OF VARIABLES IN THE FUNCTION (NVAR), MAX
AND MINIMUM STEP SIZE (MLIMIT,ACUR), NUMBER OF ITERATIONS FOR
THE PARTICULAR RUN (TIME), AND THE INITIAL GUESSES FOR THE
VARIABLES AND THEIR INITIAL STEP SIZE.

nnonononoonnanNnnn

REAL X(10),Dincrx(10),mlimit,mlimitl0,acur,acurl?

Integer mdist,nvar,ihow, time

open(unit=7,file='mainhc’',status="new')

write(5,*)'input # of variables in this calculation’
read(6, *)nvar

write{(5,*)'Input distance of climb in one direction (mdist)
read(6,*)mdist

P A A

mdist=10*pnvar

write(5,*)'Input starting values, and increments’
write(7,*)'Initial Guess for Magnitude and Step Size'
write(7,*)" '

do io=1,nvar

write{(5,*) 'Please input guesses for variable #',io
read(6,*)x(io)

write(5,*)'input starting increments for x #',io
read(6,*)dincrx(io)

write(7,*)'Xi=",x(io),'Si="',dincrx(io),"' for var. #',io

end do

Input how many iterations for the particular run

write(5,*)'How many iterations’
read(6,*)time

y write(7,*) 'Number of Iterations=',time N
(€ write(7,*)'

Input the acurracy limit of this calculation

write(5,*)"' Input maximun step size'
read(6,*)mlimit

L)
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write(7,*) 'Maximum step size =',mlimit n
s k)t ¢ 3
write(7,%)

write(5,*)’'Input the minimun step size' o
Read(6, *)acur ﬁ
write(7,*)'Minimun step size =',acur o

write(7,*)'Variables move in same direction (mdist)',mdist "

L}
LY

write(5,*)'Begin outputing HC data when?'
read(6,*)Ihow

s
(s

CALL HC(nvar,x,time,dincrx,mdist,ihow,mlimit,acur)

close(7)

stop ﬂ@
end gw
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeeeececceecceecceceecccecccececcececcc '::
c -
C SUBROUTINE HC 9
C "
C THIS SUBROUTINE IS THE N-VARIABLE VERSION OF THE f
C THE 1:LL CLIMBER OPTIMIZATION ROUTINE DEVELOPED BY THE THESIS
C STUDENT. THIS IS THE MOST GENERAL PURPOSE ROUTINE AND IT N
o IS USED FOR TESTING THE OPTIMIZATION PROCESS ON GIVEN ,ﬁ
C QUADRATIC, LOGRYTHMIC, AND TRANSCENDENTAL .ﬂ
C FUNCTIONS. R
by
C 0
c X
. . o L 4
SUBROUTINE HC(nvar,x,time,dincrx,mdist,ihow,mlimit,acur) =
|.‘
ﬁﬂ
REAL OERR,ERR,what,acur,acurl0 ()
real mlimit,mlimitl0,Merr(40000),Ediff A
real arrx(10,40000),x(10),dx(10),dincrx(10) A
real xsml(10),xlrg(10) -
real bestx(10) q
)
integer ch,wait,wait2,nvar,nvar2,ixdir(10),idch(10)} (]
integer te,td,time,mdist,ihow : q
A
C #2
C INITIALIZATION OF COUNTERS A
C
ik,
ch=1 .\* \
oerr=1,0E30 ~¢9
1=0 o
K=0 o
J=0 W
L=0 .
M=0 4
.
C ~ ':
C VARIABLES USED IN STEP SIZE RESTRAINT CODE :k
¢ o
mlimit10=mlimit*10.0 ~4
acurlO=acur/10.0
e
c ]
C VARIABLES OF THE ROUTINE THAT ARE BASED ON THE NUMBER )
C OF VARIABLES BEING ADJUSTED BY THE PROCESS. fﬁ
C
p‘
N
nvar2=nvar*2 <
wait=nvar*4 :\Q
wait2=nvar*2+1 J*‘
c 'ﬂi
c INITIALIZATION OF A COUNTERS AND DIRECTION INDICATORS THAT DESCRIBE E
C THE PARTICULAR STATE OF EACH VARIABLE DURING THE OPTIMIZATION, .
c ]
-
2
8.4
X
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X
do io=1,nvar ¢
Y,
dx(io)=1.0 )
ixdir(io)=1 .;
xsml(io)=0,0 .
xlrg(io)=0.0
idch(io)=0 et
end do C;
"
)
c . . . . - Pt
c This begins the Hclimber by calling fuction to be optimized »
c -
g3
100 Ccall Func(err,x,nvar) N
c N
c This is iteration counter used in Hclimber L
c e
)
'3
I=1+1 |
.l
C W,
C THE ARRAY MERR(I) CONTAINS ALL THE VALUES OF THE HILL HEIGHT. byt
C EDIFF 1S THE DIFFERENCE BETWEEN THE PRESENT HILL HEIGHT AND THE 4
C PREVIOUS HILL HEIGHT AND OEDIFF IS THE DIFFERENCE BETWEEN THE 4
C PRESENT HILL HEIGHT AND THE HILL HEIGHT OF LOWEST MAGNITUDE FOUND ‘A
C TO DATE. ’
C Eh
Merr(I)=err X
Ediff=abs(Merr(1)-Merr(i-1)) A
OEdiff=abs(err-ocerr)
Y,
y
c f
c Printing option that prints out error,l, and Network prameters. '¢
[of ‘.
h
if(I.ge.lhow)then !
write(7,%*)' ' ‘
WRITE(7,15)I,err,ch,Ediff L1
15 Format(/' I= ',15,3x,'HH= ',E12.6,3x,'Ch=",12,2x,'HHdif="',E13.6) O
write(7,%)" '
write(7,%)'Magnitudes .........000.’ \f
write(7,17)x(1),x(2),x(3),x(4)
17 Format(6x,'X1l=',6F12.6,2x,'x2="',6F12.6,2x,'x3="',F12.6,2x, 'x4="',F12.6) Y
write(7,*)' Y
c write(7,18)x(5),x(6),x(7),x(8) Py,
c 18 Format(' X5= ',Fl16.6,3x,'x6=',F16.6,3x,"'x7= ',F16.6,3x,'x8= ',F16.6) ﬁ:
c write(7,*)x(9) M
c write(7 *)*' :'
write(7,*)' Step sizes ......v0vn0.’ ﬁc
write(7,16)dincrx(l1),dincrx(2),dincrx(3),dincrx(4) )

16 Format(6x,'sl="',F12.6,2x,'s2="',F12.6,2x,'s3="',F12.6,2x,"'s4=",F12.6)

- m M - e . - R ET LAY SaNurar “RP AT RN VRS R LY L .- L. LY LTINS iy
vl'l. 'A\'-“ p, '|_ A o 7.‘ / “-" |.. . \" N f\' .._ s '. , .( ‘. el .l‘l o * ‘ " A ,l‘\. '.. I -.. N S q"-l‘.(‘ ﬁ‘



"o

AN

o \-.-.-

oaoan (g]

NN anNnnon ananann

ANNN

21

19

.

188

write(7,21)dincrx(5),dincrx{(6),dincrx(7),dincrx(8)
Format('ixl=',Fl4.7,1x,'ix2=',F14.7,1x,"ix3="',F14,7,1x
‘ix4=',F14.7)

write(7,%)" '

write(7,*)' Direction ....cveveeneus
write(7,19)dx(1),dx(2),dx(3),dx(4)
Format(6x,'dl=",F4.1,1x,'d2="',F4.1,1x,'d3="',F4.1,1x, " 'x4=",F4.1)
write(7,*)' '

endif

This loop loads the storage array with all values of variables through
out the iteration sequence.
do ix=1l,nvar
arrx(ix,I)=x(ix)
end do
These two do loops determine determine when a variable needs to be
reduced in size when it has gotten relatively close to an answer
and begins jumping around it.
IF(I.GE.wait)then
do ia=1,nvar
J,K,L,M AND MM ARE USED TO COUNT THE LENGTH OF
A PERIODIC PATTERN.

+1
+ wait2

Exu
UL
.|oraw

=0

do ib=1,nvar2
THIS STATEMENT DETECTS THE PERIODIC PATTERN,

if(arrx(ia,j).eq.arrx(ia,k))m=m+1
'=j+1
k=k+1

end do

THIS STATCMENT PREVENTS PERICDIC PATTERN FROM BETNG
DETECTED ONE RIGHT AFTER ANOTHER.
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if(l.le.idch(ia))goto 1

IF PATTERN 1S DETECTED THEN THE STEP SI1ZE OF THE PERIODIC VARIABLF
1S REDUCED IN MAGNITUDE BY A FACTOR TEN AND THE MAGNITUDE OF
THE VARIABLE IS RESET TO THE BEST VALUE FOUND SO FAR IN THE PROCESS.

if(m.eq.nvar2)then
idch(ia)=) + wait2
x{ia)=bestx(ia)
dincrx(ia)=dincrx(ia)/10.0

write(7,*) ' **xkxxxxkkk*__yarigble is',ia
write(7,*)'Decreased increment of X,dincrx=',dincrx(ia)
write(7,%*)'X= ',x(ia)
endif
end do
1=1+1

endif

This loop keeps the step size of the variables from going out of limit.

do if=1,nvar

if(dincrx(if).le.acurl0)then
dincrx(if)=acur

write{(7,*%) ' ————--emmm e e m e
write(7,*)'dincrxl has gone to low, increased it to',dincrxl

endif

end do

This block of code determines when to increases the size (mag.) of the
variable based on how far it has climber in one direction.

do ic=1,nvar

THIS STATEMENT CHECKS THE VARIABLES DIRECTION INDICATOR
AND COUNTS HOW MANY ITERTION THEY HAVE MOVED IN THE SAME
DIRECTION.

if(ixdir{ic).eq.l)then
xlrg(ic)=xlrg(ic)+1
else
xlrg(ic)=0
endif
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THIS STATEMENT DOES THE SAME AS THE ABOVE FOR THE
OPPOSITE DIRECTION,

if(ixdir(ic).eq.0)then

else

endif

xsml(ic)=xsml(ic)+1l

xsml(ic)=0

THE NEXT TWQO IF-THEN'S INCREASE THE STEP S1ZE OF THE
VARIABLES IF THEY HAVW MOVED CONTINUOUSLY IN THE
SAME DIRECTION,

if(xlrg(ic).eqg.mdist)then

endif

dincrx(ic)=dincrx(ic)*10.0

Write(7,*) ' ###4nsskss48--variable is’',ic
Write(7,*)'Increased increment of X,dincrx=',dincrx(ic)

xlrg(ic)=0

if(xsml(ic).eq.mdist)then

endif

dincrx(ic)=dincrx(ic)*10.0

write(7,*) ' ###448484444 --variable is’',ic
write(7,*)'Increaesd increment of X,dincrx=',dincrx(ic)

xsml{ic)=0

IF THE STEP SIZE HAS GONE ABOVE THE LIMIT SPECIFIED BY THE USER
THIS LOOP WILL REDUCE THE STEP SIZE BY A FACTOR OF TEN.

do if=1,nvar

27
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if(dincrx(if).ge.mlimit10)then

dincrx(if)=mlimit
write(7,*)'STEP SIZE GONE ABOVE LIMIT'
write(7,*)' '

endif

end do

This block takes the first initial step in a positive incrmental

direction for X(1).

IF(I.EQ.1)THEN
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x(1)=x(1) + dx(1l)*dincrx(1)

if(err.lt.oerr)oerr=err

GOTO 100

ENDIF

This block of code changes the variable back to its previous value
if changing it caused the hill height to increase. This block also .
adjusts the variables based on the direction indicators and step size .
magnitudes by evaluating the magnitude of the hill height.

aoaonon

do id=1,nvar

[}
¢ C v
¢ C THIS OUTER IF-THEN STATEMENT PERFORMS THE VARIABLE ADJUSTMENTS :
4 C WHEN THE ROUTINE 1S OPERATING ON THE LAST VARIABLE IN THE ¥
d C FUNCTION. !
N C (]

]

if(ch.eqg.nvar)then

\J
C
C THIS IF-THEN REDUCES THE LAST VARIABLE BACK TO IT'S $
C PREVIOUS VALUE IF THE PRESENT HILL HEIGHT EQUALS THE X
C PREVIOUS HILL HEIGHT. IT ALSO IMMEDIATELY ADJUSTS "
C THE FIRST VARIABLE TO ITS NEW POSITION., THE STEP %
C SIZE OF THE LAST VARIABLE IS INCREASED BY A FACTOR -
C OF TEN,
¢ t

IF(EDIFF.eq.0.0)THEN

x(nvar)=x{nvar)-dx(nvar)*dincrx(nvar) 3
x(1)=x(1)+dx(1)*dincrx(1) :

-an ™

DINCRX(NVAR)}=DINCRX(NVAR)*10.0

- PREVIOUS ERR LT 1lE-6,Bx=',x{nvar)

WRITE(7,*)'ERR
id=',id,' step=',dincrx(nvar)

4 WRITE(7,*)'1=",1,"'

goto 70
ENDIF

THE SAME AS ABOVE IS PERFORMED WHEN THE PRESENT
HILL HEIGHT EQUALS THE BEST HILL HEIGHT FOUND
TO DATE.

PR
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R ]

IF(OEDIFF.eq.0,0) THEN

x{nvar)=x(nvar)-dx(nvar)*dincrx(nvar) .

N x(1)=x(1)+dx(1)*dincrx(1) .
DINCRX(NVAR)=DINCRX{(NVAR)*10.0 ;
) c WRITE(7,*)'Oerr and Err arc = to e-6' ;i
c write{(7,*)'EEEERRRRRRRRRRR = 0O0OOeeerrrr' n
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, u
C WRITEL/,=) 1=",1," 1d=",1d,' step=',dincrx(nvar) N
2
goto 70 !
ENDIF oy,
C v
C IF THE HILL HEIGHT IS LOWER THEN THE LAST VARIABLE .."
C IS KEPT AT IT'S NEW MAGNITUDE AND THE FIST VARIABLE I3,
C IS ADJUSTED.
C '.g
if(err.lt.ocerr)x{1)=x(1)+dx{(1)*dincrx(1l) ﬁJ
c
C IF THE HILL HEIGHT IS GREATER THE LAST VARIABLE 'ﬁ-
C IS REDUCED AND FIRST VARIABLE 1S ADJUSTED IMMEDIATELY. F:
C &
&
if(err.gt.oerr)then »
x(nvar)=x(nvar)-dx(nvar)*dincrx(nvar) o
x(1)=x(1)+dx{(1)*dincrx(1l)
endif ]
goto 70 B
endif -
C
C THE FOLLOWING IF-THEN STATEMENTS ARE FOR ALL OF THE ITERATIONS .
C BESIDES ADJUSTMENT OF THE LAST VARIABLE ( IN OTHER WORDS
C MOVEMENT OF THE VARIABLES IN SEQUENCE 1,2,3,..... N, BUT !,
C NOT N. MOVEMENT OF THE LAST VARIABLE (N) IS HANDLED ABOVE, Sy
C CH TRACKS WHICH VARIABLE IS CURRENTLY BEING ADJUSTED. )
C Y
-5
IF(CH.EQ.ID .AND. EDIFF.eq.0.0)THEN )
L]
*~
TE=1D+1 »
x(id)=x(id)-dx{id)*dincrx(id)
x(te)=x(te)+dx(te)*dincrx(te) ",
DINCRX(ID)=DINCRX(ID)*10.0 i
& <
c WRITE(7,*)'ERR - PREVIOUS ERR LT 1E-6,Bx=',x(id) -
c WRITE(7,*)'1=",1,' id=',id,' step=',dincrx(nvar) X v
goto 70 ]
o
ENDIF N
::t
IF(CH.EQ.ID .AND. OEDIFF.eq.0.0)THEN ,:
TE=1D+1 !‘
x{(id)=x(id)-dx(id) *dincrx(id) .
x(te)=x(te)+dx(te)*dincrx(te) iy
DINCRX(ID)=DINCRX(ID)*10.0 Y
e
c WRITE(7,*)'Oerr and Err are = to e-6"' .
c write(7,*)' EEEERRRRRRRRRRR = 00OQeeerrrr’' Y,
c WRITE(7,*)'1=',1,' id=',id,' step=',dincrx(nvar) i
'Y
7
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20

end do
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goto 70
ENDIF

IF(-i..eq.id .and. err.lt.oerr)then
td=id+1
if(id.eq.nvar)td=1
x(td)=x(td)+dx(td)*dincrx(td)

endif

1f(ch.eq.id .and. err.gt.oerr)then
td=1d+1
x(id)=x(id)~dx(id)*dincrx(id)
x(td)=x(td)+dx(td)*dincrx(td)

endif

193

This loop changes the variables direction based on the magnitude of

the hill height.

not to be reduced below the current best hill height then the
particular variables direction indicators are reversed so the variable
can move in the other direction.

do ie=1,nvar

end do

if(ch.eq.ie .and, ixdir(ie).eq.l .and. err.gt.oerr)then
ixdir(ie)=0
dx(ie)=-~1.0
goto 20

endif

if(ch,eq.ie .and, ixdir(ie).eq.0 .and. err.gt.oerrjthen
ixdir(ie)=1
dx(ie)=1.0
goto 20

endif

This block keeps track of which variable is to be changed next.

if(ch.le.nvar)then

endif

if(ch.eqg.nvar)ch=0
ch=ch+1
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)
c This block records value of the best variables and current values
N c as the Hclimber proceeds thru the climb.
c
if(err.lt.oerr)then
write(5,*)'err=',err,' at 1=',1
oerr=err
do ip=1l,nvar
bestx(ip)=arrx(ip,I)
end do
endif
c
c This tells machine to do another iteration
c
IF(1.LT.time)}GOTO 100
write(7,*)' END OF RUN'
write(?7,*)'
write(7,*)'Values of the Variables corresponding to HH1td'
write{(7,*)'X1l=",bestx(1l), 'X2=',bestx(2), " 'B3="',bestx(3)
write(7,*)'Hill Height =',oerr
return
end
¥
.
a
o
Ly
W
‘.
1Y
(9
\
~
~
)
?,
]
~a
A
-.'4
. . - . e NN TN e -

YN I I N Ea T WL R A P
NS vu,u{xr-,\:xr PP .

D IO A I N



;4

"

M,

virv:i‘"

-

o a . vy A an e e SR e
e N ¢ fia A e T L N Y PEAS AN N i

195

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCecCececceececeecceeceee

eXeleiesie ke o Xe)

NN A PALAT A A NN

SUBROUTINE FUNC

THIS SUBROUTINE IS5 CALLED BY THE HILL CLIMBER OPTIMIZATION

ROUTINE. 1IT CALCULATES THE MAGNITUDE OF THE HILL HEIGHT BASED
ON WHATREVER FUNCTION IT CONTAINS. THE FUNCTIONS CONTAINED
IN THIS SUBROUTINE ARE USE TO TEST THE PERFORMANCE OF THE

THE OPTIMIZATION ROUTINE DEVELOPED BY THE THESIS STUDENT.

subroutine func(err,x,nvar)
integer nvar

real x(nvar),err
pi=3.141593

g=x(1)

err= (x(2)-20.0*SIN(0.05*x{1)))**2 + 0.1%(x(2)**2 + X(1)**2)

err=(exp(-x(1))-10.0*cos(q)+0.5*sin(q)-X(2)**2.+exp(—x(2)))**2.

err=(q**5-4.5*q**4+4 . 55%q**3+2.675*q**2~-3.3*q-1.4375-X(2))**2
err=100*(x(2) — X(L)**2)**2 + (1l-x(1))**2

err=(x(1l)y**2 — 78.7)**2

ERR = ERR1 + ERR2 + ERR3 + ERR4 + ERR5 + ERR6

return
end
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PROGRAM V6PATT

THIS PROGRAM PERFORMS THE HILL CLIMBER OPTIMIZATION
ON THE SIX CAPACITIVE PARAMETERS OF THE PI NETWORKS IN AN ATT™M2T
TO ENFORCE THE DESIRED CURRENT DISTRIBUTION ON THE ARRAY ELEMENTS.
THIS PROGRAM CALLS CAP6HC.FOR WHICH IS AN ADAPTED HILL CLIMBER
OPTIMIZATION SUBROUTINE THAT HAS BE MODIFIED TO ANALYSIS THE
EQUILATERAL ARRAY DESIGN PROBLEMS. THE NECESSARY INPUTS FROM
THE USER ARE ENTER IN THIS PROGRAM AND PLOTTING OF THE RESULTING
RADIATION PATTERN CAN BE DONE BY CALLING SUBROUTINE PATT3.

REAL Tlght,OERR,ERR, length,kl,what,SWR,rt,Mit,phit,Pin,pi,acur,acurl0
real scale,indl,ind2,ind3,mlimit,mlimitl0,max, null

real x(10),dincrx(10)

real FAMP(4),FPH(4),Cap(10)

real bestx{(10),amp(3),ph(3},ampC(3),phc(3),L1,L2,L3

complex 211,212,213,It,11,12,13,cktl(3),ckt2(3),ckt3(3),B(15)
complex S1(4),w(3),voltl,zin, Rfcoeff,cj,1123(3)
COMPLEX B123(3)

integer start,often,ch,wait,wait2,nvar,nvar2,ixdir(10),idch(10),numl
integer te,td,time,mdist,ihow,icount,dir(10,40000)

open{unit=7,file='vE6PATT one',status='new')

Self and Mutual impedances values for the 3 elements
z11=(36.5,21.0)

212=(20.4,-14.18)

z13=(20.4,-14.18)

pi=2.0*asin(1.9)

cj=(0.0,1.0)

These vars. define the dimensions of the 3 element triangular array

if(Tlght.eq.0.125)1length=4.0
if(Tlght.eq.0.25)1length=2.0
if(Tlght.eq.0.5)length=1.0
length=4.0

write(5,*)'Input lenght of T.L.’
read(6,*)Tlght

TLGHT=,125

write(5,*)' Given Inductor Values (ohms).'
read(6,*)indl,ind2,ind3
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IND1=10.0
IND2=15.0
IND3=22.0

write(7,*)'The Inductive Reactances (ohms).'
write(7,*)'XL13=',INDl,' XL12=',6IND2,' XL23=',IND3
write(7,*)' '

cktl(1l)=cmplx(0.,0,indl)
ckt2(1)=cmplx(0.0,ind2)
ckt3(1)=cmplx(0.0,ind3)

L1=IND1/(2.0*PI*7,.0E6)
L2=IND2/{(2.0*PI*7.0E6)
L3=IND3/(2.0*PI*7.0E6)

WRITE(7,*)'At 7 MHz the Inductor Values are (henries),'
WRITE(7,*)'Ll1=',Ll,' L2=',L2,' L3=',L3
write(7,*)

write(7,*)'Initial guess and step size for the Caps ',ip
write(7,*)’ '

do ip=1,6

write(5,*)'Initial quess and step size for Cap #',ip
read(6,*)%X(ip),dincrx(ip)
write(7,*)'For Cap#'.ip,'Xi=', x(ip),'Si=',dincrx(ip)

end do

write(7,*)* '

WRITE(S5,*) ' INPUT LENGTH(# OF ITERATIONS)?'
READ(6,*)TIME

WRITE(7,*) 'Number of Iterations =',6TIME

WRITE(5,*) '"MAX STEP SI1ZE?'
READ(6,*)MLIMIT

write(7,*)'

write(7,*) 'MAXIMUM STEP SIZE?',mlimit

write(5,*) 'MINIMUM STEP SIZE (acurracy)?'
Read(6,*)acur

WRITE(7,*)* *

WRITE(7,*) 'MINIMUM STEP IS ',ACUR

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcCcccecccccccececcee
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These are the input/given current distribution on 3 elements
write(7,*)' '
write(7,%) rrrptri e rirtnrt ety

do ir=1,3

write(5,*)’'Input Magnitude and Phase'
read(6,*)amp(ir),ph(ir)

end do
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write(7,*)'Input Om and On'
read(6,*)max,null

WRITE(S5,*)' MAX=',(MAX,' NULL ',NULL
write(7,*)" ' ;
Write(7,*)'Current Distribution Corresponds to a Om and On of'

WRITE(7,*)'Om =',MAX,' On =' NULL

c
c Change amp and phase to real and imaginary component
c
CALL CMPN(3,AMP,PH,W)
c
c Change complex current values to normal amplitudes and phase
c .
CALL MAG_PH_NORM(3,W,AMP,PH)
CALL CMPN(3,AMP,PH,W)
write(7,*)’' '
write(7,*)'Amps Normalized =',amp(l),amp(2),amp(3)
write(7,*)'Phase (Deg.) =',ph(1)*180.0/pi,ph{(2)*180.0/pi,ph(3)*180./pi
c
c Calculate It (input current into array) using normalized given curr.
c

write(7,*)'
It=(w(1)*211 + w(2)*212 + w(3)*213)/(50.0,0.0)
write(7,*)'It (Desired input current) =', It

CALL CAPE6HC(cktl,ckt2,ckt3,P1,W,IT,X,DINCRX, TIME,MLIMIT,ACUR,S1)

CALL MAG_PH_NORM(4,S1,FAMP,FPH)
rt=180.0/pi

write(5,*)' 1=',]

write(7,*)' 1=',1

write(7,*)'
write(7,*)'AMPS="',Famp(1),Famp(2),Famp(3), ' IT™M=' 6 FAMP(4)
write(7,*) 'PHASE=",Fph(1l)*rt,Fph{2)*rt,Fph(3)*rt, 'ITPH="',FPH(4)*RT
write(7,*)'

write(7,*) 'Best Capacitative Reactances’

write(7,*)x(1),x(2),x(3),x(4)
write(7,*)x(5),x(6)

WRITE(7,*)"' °

write(7,*)'Capacitance of elements at 7 MHz'
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Calculates the Capacitance of L.C. Netwirk Parameters

do ip=1,nva.

cap(ip)=1.0/(x(ip)*2.0*pi*7.0E6)

write(7,*)' Cap. of ',ip,' is',cap(ip),' Farads'

end do

voltl=81(1)*z11l + S1(2)*z12 + S1(3)*z13
Zin=voltl/S1(4)

Rfcoeff=(Zin-(50.0,0.0))/(Zin+(50.0,0.0))
SWR=(1l+cabs(Rfcoeff))/(1.0 - cabs(rfcoeff))

write(7,*)' '
write(7,*)'2Zin="',2Zin,' SWR=',6SWR
write(7,*)' Itbest=',S1(4),'Vli=',voltl

write(5,*)'Zin found=',Zin
write(5,*)' SWR=',SWR

Calculate values for It for singlr dipole problem

Pin=(((CABS(S1(4)))}**2.0)*REAL(ZIN))
scale=sqrt(1000,0/Pin)

mit=sqrt((1000.0)/36.5)

phit=0.0

numl=1

call patt3(scale,Famp,Fph,pi,length,numl,mit,phit)

numl=2
Famp(1)=1.0

do ip=1,3
Famp(ip)=Famp(ip)*scale
end do

call patt3(scale,Famp,Fph,pi,length,numl,mit,phit)
CLOSE(7)

STOP

END

INCLUDE 'CAP6HC.FOR'
INCLUDE 'FUNC6C.FOR'
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SUBROUTINE CAP6HC(cktl,ckt2,ckt3,pi,w,It,x,dincrx,time,mlimit,acur,S1)

REAL OERR, ERR,what,acur,acurl0

real mlimit,mlimitl0,Merr(40000),EQiff

real arrx(10,40000),x(10),dx(10),dincrx(10)
real xsml(10),xlrg(10)

real bestx(10),pi,BSTIN(3)

complex B(15),It,w(3),81(4),cktl(3),ckt2(3),ckt3(3)
integer ch,wait,wait2,nvar,nvar2,ixdir(10),idch(10)
integer te,td,time,mdist,ihow

IHOW=t ime-1

ch=1
oerr=1,0E30
1=0

K=0

J=0

L=0

M=0

mlimitl0=mlimit*10.0
acurlO=acur/10.0

nvar=6
mdist=nvar*1l0
nvar2s=nvar*2
wait=nvar*4
wait2=nvar*2+l]

Initialize points for Hclimber vars. and increments

do io=1,nvar

dx{io)=1.0
ixdir(io)=1
xsml(io)=0.0
xlrg(io)=0.0
idch(io)=0
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c This begins the Hclimber by calling fuction to be optimized

100 Call Funcéc(pi,w,x,it,b,cktl,ckt2,ckt3,err,S1)

.

c .
c This is iteration counter used in Hclimber
c

I=1+1
CCCCCCCCCCCCCCCCCCCCCCCCcceececcceceeececcccecceececccecceccceeecccececcece
c
c This block takes the first initial step in a positive incrmental
c direction for X(1).
c

1F(I.EQ.1)THEN
x(1)=x{1) + dx(1)*dincrx(1)
write(7,%}* '
WRITE(7,*)'Initial Hill Height =',err
if(err.lt.oerr)then
oerr=err
endif
GOTO 100
ENDIF

CCCCCLCeeeeeeceeceececcceccccececcecccececceececceececcceececece
Merr(I)=err
Ediff=abs(Merr(I)~Merr(I-1))
OEdiff=abs(err-cerr)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcCCCcCCecccccceccceccecee

Printing option that prints out error,l, and Ntwk. elements as desired

onan

if(Il.gt.Ihow)then
write(7,%*)* °
write(7,*) 'Number of Iterations,HHi,Variable Seqg., & HH(i)-HH(i-1)'
write(7,*) .
WRITE(7,15)I,err,ch,ediff

15 Pormat{(/' I= ',15,2x,'HH= ' E12.6,2x,'Ch=',12,2x, 'HHdif=',E12.6)
write(7,*)'varibles present value ....'
write(7,*)'
write(7,17)x(1),x(2),x(3),x(4)

17 Format(6x,'Xl=',6F12.6,2x,'x2="',6F12.6,2x,'x3="',Fl12.6,2x, "'x4="',F12.6)
write(7,*)* '
write(7,18)x(5),x(6)

18 Format (6x,'X5=',F12.6,2x,"'x6="',F12.6)

write(7,%*)' '
write(7,*)' Step SiZeS .tvveenreneas
write(7,*)' !

write(7,16)dincrx(1),dinecrx(2),dincrx(3),dincrx(4)
16 Format('sl=',(F12.6,1x,'s2="',F12.6,1x,'s3="',F12.6,1x
$ ,'s4=',F12.6)
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[
g
N’
3 J
f write(7,21)dincrx(5),dincrx(6)
1 21 Format('sS=',F12.6,1x,'s6=",F12.6) ]
) (
i write(7,*)' !
. write(7,*)’ Direction ....c.ouveves’
N write(7,*)' 3
write(7,19)dx(1),dx(2),dx(3),dx(4)
K 1% Format('dl=',F4,1,1x,'d2="',F4.1,1x,'d3="',F4.1,1x, 'x4="',F4.1) }
2 write(7,*)' ° f;
endif :
%"
(% CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeceeeecececceecceeecccecccecccccccecccececce :
s c
& c ¢
’E c This loop loads the storage array with all values of variables through :
N c out the iteration sequence. iy
c . ]
i do ix=1,nvar ;
) , 0
: arrx(ix,I)=x(ix) $
)‘. b,
“ end do ‘
K3 (
c .
g c These two do loops determine determine when a variable needs to be
¢ c reduced in size when it has gotten relatively close to an ansver 4
& c and begins jumping around it. N
3 <
' ¢ X}
4 IF(I.GE,wait)then Y
) do 1 ia=1,nvar ’
A v
'. j=l+1 y
; k=1 + wait2
K m=0 N
mm=0
f \
do 2 ib=1,nvar2
; if(arrx(ia,j).eq.arrx(ia, k) )m=m+1 "
> j=j+1 ,
: k=k+1 ;
¥
2 continue ¢
) if(l.le.idch(ia))goto 1 A
R
\ if(m.eq.nvar2)then .
idch(ia)=1 + wait2
x(ia)=bestx(ia) %
dinerx(ia)=dincrx(ia)/10.0 K
\ c write(7,*%) ' *xaxxxxxax*__yariable is',ia A
g c write(7,*)'Decreased increment of X,dincrx=',dincrx(ia)
; c write(7,*)'X= ' ,X(ia)
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bl
ol
4
endif 4
1 continue "
1=1+1 et
endif
e
X
L]
c e
c This loop keeps the acurracy of the variables from going out o: limit :2
c Ve
,!'I
do if=1,nvar ,-,
o
if(dincrx(if).le.acurl@)then ::':0
dincrx(if)=acur |:0:
c write{7,*) ' mm—mm e eo ' v
c write(7,*)'dincrxl has gone to low, increased it to',dincrxl A
endif . ol
®
end do O
L%
c This block of code determines when to increases the size (mag.) of the .l::
c variable based on how far it has climber in one direction. .:,
c v
do 3 ic=1,nvar .
.u‘
if(ixdir(ic).eq.1l)then o
xirg(ic)=xlrg(ic)+1 g
else e
xlrg(ic)=0 P
endif o
c -
c by
if(ixdir(ic).eq.0)then W
xsml{ic)=xsml{ic)+1 N
else \
xsml(ic)=0 *:“s
endif )
ol ©,
if(xlrg(ic).eq.mdist)then .
dincrx(ic)=dincrx(ic)*10.0 3 :
T
c Write(7,*) ' ###4#444444¥--variable is',ic w
c Write(7,*)'Increased increment of X,dincrx=',dincrx(ic) . )
xlrg(ic)=0 ._
endif P
c i\
c o
if(xsml(ic).eq.mdist)then . i':
dincrx(ic)=dincrx(ic)*10.0 .
X
c write(7,%) ' ####s###nsss --variable is',ic A
c write(7,*)'Increaesd increment of X,dincrx=',dincrx(ic) :'
5
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xsml(ic)=0 'l;
endif ; 41
3 continue )
Pytr
N
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCtLCCCCCCCCCeC
$
do if=1,nvar o~
o )
if(dincrx(if).ge.mlimitl0)then w2
dincrx(if)=mlimit
c write(7,*)'STEP SIZE GONE ABOVE LIMIT' b
c write(7,*)' ' o
endif [P
N g
end do :E
F'
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcCCCCCCCCCCCcccecceececcecccecccceececcecee a,\' J
c . "
c This block of code changes the variable back to its previous value
c if changing it caused the error to increase., This block also increases 4
c or decreases the variable based on the current direction of the var., by o
c the value in incrx(?). iyt
c W
¢
o
do 4 id=1l,nvar . l‘
if(ch.eq.nvar)then %
haly
IF{EDIFF.eq.0.0)THEN N, '
x(nvar)=x(nvar)-dx{nvar)*dincrx(nvar) :f':{
x(1)=x(1)+dx(1)*dincrx(1) RS
a4y
DINCRX(NVAR)=DINCRX (NVAR) *10.0 g
c WRITE(7,*)'ERR - PREVIOUS ERR LT 1E-6,Bx=',x(nvar) y
c WRITE(7,*)'I=',I,' id=',id,' step=',dincrx(nvar) .')"n,
goto 70 -
ENDIF : v
®
-—
(,’"'
IF(OEDIFF.eq.0.0) THEN
N
x(nvar)=x(nvar)-dx(nvar)*dincrx(nvar) "
x(1)=x(1)+dx (1) *dincrx(1) N
DINCRX (NVAR) =DINCRX (NVAR) *10.0 il
c WRITE(7,*)'Oerr and Err are = to e-6' -
c write(7,*)'EEEERRRRRRRRRRR = 0Q0OCeeerrrr' Rals
c WRITE(7,*)'I=',1,' id=',id,' step=',dincrx(nvar) ::_
S
goto 70 _f‘\:
ENDIF .
"0:1
’ H
b ::;
N
O'Q
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A
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if(err.lt.oerr)x(1)=x(1)+dx(1)*dincrx(1) W
if (err.gt.oerr)then It
x{nvar)=x(nvar)-dx(nvar)*dincrx(nvar) LAY
x(1)=x(_)+dx(1)*dincrx(1)
endif o
goto 70 : .
endif P
{F(CH.EQ.ID .AND., EDIFF.eq.0.0)THEN
TE=1D+1 o
x(id)=x(id)~dx(id)*dincrx(id)
x(te)=x(te)+dx(te)*dincrx{te) 4
DINCRX(ID)=DINCRX(ID)*10.0 :
C WRITE{(7,*)'ERR - PREVIOUS ERR LT 1E-6,Bx=",x{id) g:‘
c WRITE(7,*)'1=',1,' id=',id,' step=',dincrx(nvar) oy,
goto 70 a
L ]
ENDIF A
e
e
]
Yy
o
IF(CH.EQ.ID .AND. OEDIFF.eq.0.0)THEN ‘(
TE=1D+1
x(id)=x(id)~dx(id)*dincrx(id) )
x(te)=x{te)+dx(te)*dincrx(te) kﬂ
DINCRX(ID)=DINCRX(ID)*10.0 :
.i.
[ WRITE(7,*)'Oerr and Err are = to e-6' .‘
c write(7,*)'EEEERRRRRRRRRRR = OOOOeeerrrr’ :
c WRITE(7,*)'1=",1,' id=',id,' step=',dincrx(nvar) ’
hl
goto 70 - “~
ENDIF NS,
oA
IN 3
RS
IF{ch.eq.id .and. err.lt.oerr)then 3
td=id+1
c if(id.eq.nvar)td=1 ‘
x(td)=x(td)+dx(td) *dincrx(td) Wy
LN
endif 4
3
I1f(ch.eq.id .and. err.gt.oerr)then o
td=id+1 s
x(id)=x(id)~dx(id)*dincrx(id) -~
x{td)=x(td)+dx(td)*dincrx(td) .
endif -—
\',l
#
hd
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continue

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeccccccccceecccecceecceecccee

(o4
Cc
C

70

5

This loop changes the variables direction basd on the value of error

do 5 ie=1,nvar

if(ch.eq.ie .and. ixdir(ie).eq.l .and. err.gt.oerr)then
ixdir(ie)=0
dx(ie)=-1.0
goto 20

endif

if(ch.eq.ie .and. ixdir(ie).eq.0 .and. err.gt.oerr)then
ixdir(ie)=1
dx(ie)=1.0
goto 20

endif

continue

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeccceceeccceccccececcceececce

a00non

20

nnonon

noo

This block keeps track of which variable i§ to be changed next.

if(ch.le.nvar)then
if(ch.eq.nvar)ch=0
ch=ch+1

endif

This block records value of the best variables and current values
as the Hclimber proceeds thru the climb.
if(err.lt.ocerr)then
oerr=err
do ip=l,nvar
bestx{ip)=arrx(ip,1)

end do
endif

This tells machine to do another iteration

IF(I.LT.time}GOTO 100
do iz=1,nvar

x(iz)=bestx(iz)
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N end do .
d
' write(7,*)' END OF RUN' '
rite(7,*)"' ! )
write(7,*)'Lowest Hill Height Magnitude =',oerr A
K write(7,*)" '
return )
e end !
D) {
)
4
)
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: CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeecceeeeeeecececccececceeecececceecececceccece :
S C
, C SUBROUTINE FUNC6C 3
N Cc
! Cc THIS SUBROUTINE PERFORMS THE ANALYSIS OF THE EQUILATERAL !
v Cc ARRAY BY CALLING THE ANLYSUBR SUBROUTINE. THE SIX CAPACITIVE
K C REACTANCES BEING ADJUSTED BY THE HILL CLIMBER OPTIMIZATICN
\ C ROUTINE ARE SENT TO ANLYSUBR FOR CALCULATION OF THE RESULTING :
U C CURRENT DISTRIBUTION., THE HILL HEIGHT 7S THEN CALCULATED AND !
Y C RETURNED TC THE OPTIMIZATION ROUTINE FOR EVALUATION. THE DESIRED ,
. C CURRENTS ARE INPUT AS VARIABLE W AND THE Pl NETWORK PARAMETERS hi
i Cc ARE IN VECTORS CKT1,CKT2,CKT3. '
c ,
I (o INPUTS: PI,W,X,IT,CKT1(1),CKT2(1),CKT3(1)
N c OUTPUT: ERR,S1,B :
‘| C "
: C W
{
SUBROUTINE FUNC6C(PI,W,X,I1T,B,CKT1,CKT2,CKT3,ERR,S1) ¢
2 o
| REAL err,x(10),Pi,AMPCN(4) ,PHCN(4),Tlght 2
y COMPLEX ckt1(3),ckt2(3),ckt3(3),B(15),51(4),w(3),1t,B123(4) A
« «
Y C
L] C THIS VARIABLE IS THE LENGTH OF THE TRANSMISSION LINE s
: C BETWEEN THE ARRAY ELEMENTS AND THE PI NETWORKS. d
c by
Y TLGHT=,125
)
$ o "
. Cc THE PRESENT VALUES FOR THE SIX CAPACITIVE REACTANCES ARE LOADED ﬂ
: o INTO THE VARIABLES TO BE PASSED INTO THE ANALYSIS ROUTINE.
(]
| C 3
» cktl(2)=cmplx(0.0,x(1))
y ckt2(2)=cmplx{(0.0,x(2)) X
) ckt3(2)=cmplx(0.0,x(3)) .
' ckt1(3)=cmplx{(0.0,x(4)) "
a ckt2(3)=cmplx(0.0,x(5)) 6
- ckt3(3)=cmplx(0.0,x(6)) 5
! .
; lof 2
) c This is a call to subr, curr in file anlysubr.for which solves .
c the analysis of the array. A
[, c -
4 call curr{pi,Tlght,cktl,ckt2,ckt3,it,b) <
c J
& c This loops detects when the variables have gone below zero and A
c adds the square of the variables magnitude to the hill height. Y
o c \
N c err8=0.0 N
c do ip=1l,nvar -
D c
[ ’
) X
¢
i (
[ 3
: g
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if{x(ip).1t.0,0)then

errB=err8 + x(ip)**2
write(7,%*)'x=',ip,' gone LT. 0,0',x(ip)

endif
end do

This loop is a warning block of code which detects when the
currents for the array elements found by the analysis routine
are zero (undetermined). This means that there is no solution
for the present values of the network parameters.

do ip=1,3

if(real(b(ip)).eq.0.0 .and. aimag(b(ip)).eq.0.0)then
-write(7,%)" !
write(7,*) 'WARNING CURR',ip,' .... to ZEROES'
write(5,*) 'WARNING CURR',ip,' .... to ZEROES'
write(7,*)" '

endif

b123(ip)=b(ip)

LS
o
b

end do
b123{(4)=b(1)+b(4)+b(6)

e v s
e JPd
't't't&h

Changes complex current distributions in normalized magnitude
and phase vectors.

-
R

CALL MAG_PH_NORM(4,B123, AMPCN, PHCN)

Changes noiralized magnitude and phase vectors into complex values.
CALL CMPN(4,AMPCN,PHCN,S1)

This is the calculation of the hill height, which is the
difference between the desired and calculated values.

**2 +(real(w(2))-real(sl(2)))=**2,

errl=(real(w(l))-real(sl( )
)**2 . +(aimag(w(l})-aimag(sl(1)))**2.
)
)

1l

errZ2=(real(w(3))-real(sl{(3
1 ))x2,
1

err3=(aimag(w(2))-aimag(s
y)®x2,

)
)
(2
erré=(aimag(w(3))-aimag(sl(3

err=errl+err2+err3+errd + err8

RETURN
END

; o
T N T A NN T TN A T )
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C
(o SUBROUTINE MAG_PH_NORM
C
o This subroutine is used to convert a complex number
C into Phasor form (magnitude and phase). Once in
(o phasor form the magnitude and phases are then normalized
C with respect to the current flowing on the first antenna.
C That is the first complex number in cmplxl which is cmplxI(1l).
C
C
Cc Input : V,CMPLXI
c
c Output : MAGTN, PHSEN
(o
Cc

SUBROUTINE MAG_PH_NORM(V,CMPLXI,MAGTN,PHSEN)

INTEGER A,V .

REAL MAGTN(V),PHSEN(V)

COMPLEX CMPLXI (V)
C
c CALCULATIONS OF THE MAGNITUDE AND PHASE OF A INPUT COMPLEX NUMBER,
C

DO A=1,V

MAGTN(A)=CABS (CMPLXI(A))
PHSEN(A)=ATAN2 (AIMAG(CMPLXI (A)) ,REAL(CMPLXI(A)))

END DO
C
c NORMALIZATION ACCOMPLISHED BY DIVISION OF THE MAGNITUDES
Cc AND SUBTRACTION OF THE PHASES.
Cc

DO A=2,V

MAGTN(A)=MAGTN(A) /MAGTN(1)
PHSEN(A)})=PHSEN(A)-PHSEN(1)

END DO

MAGTN(1)=1.0
PHSEN(1)=0.0

RETURN
END
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B
3 c
N
2 C SUBROUTINE CMPN
2, C
c
, C THIS SUBROUTINE WAS DESIGNED TO CALCULATED THE CUMPLEX
h c VALUE FROM INPUT MAGNITUDE AND PHASE VECTORS.
y c GIVEN THE MAGNITUDE AND PHASE OF A VECTOR THE COMPLEX
. c NUMBER REPRESENTATION IS FOUND USING THE FORMULA
C
g C M*COS{0) + j*M*SIN(O)
- c
c INPUTS : V,MAGN, PHSE
. C OUTPUT : CMPLXN
| c
2 ¢
)
t
\ SUBROUTINE CMPN(V,MAGN,PHSE, CMPLXN)

» INTEGER A,V
| REAL MAGN(V),PHSE(V)
COMPLEX CMPLXN(V)

-

DO A=1,V
CMPLXN(A)=MAGN(A) *COS(PHSE(A)) + (0.0,1.0)*MAGN(A)*SIN{(PHSE(A})

ORI N

e
o

END DO

: RETURN
A END

-

)
)

3
.
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CCCCCCCCCCCCCCCCCCCCCCeelcclCCCeeCCcelCCeCCCCCCCCCCCCCCCCCCCCCCCeceeceece ]
C v
c SUBROUTINE CURR A
Cc
C THIS SUBROUTINE PERFORMS THE EVALUATION (]
Cc OF THE 15 LINEAR COMPLEX EQUATIONS THAT DESRCIBE THE \
C EQUILATERAL THREE ELEMENT ARRAY. THE Pl NETWORK PARAMETERS
C (3 CAPACITORS AND 6 INDUCTORS) ARE INPUT INTO THIS ROUTINE
C AND ARE CONSTANTS PROVIDED BY THE USER. THE PARTICULAR .
C MAGNITUDE OF THESE PARAMETERS AND THE LENGTH OF TKE Y
Cc TRANSMISSION LINES ARE WHAT DETERMINE THE COEFFICENTS "
C OF THE 15 UNKNOWN VARIABLES. THIS ROUTINE USES A LINEAR iy
C EQUATION SOLVER ACCESSED FROM THE IMSL LIBRARY OF FORTRAN :,
C SUBROUTINES. N
C
Cc
C ';
ay
subroutine CURR(pi,Tlght,cktl,CKT2,CKT3,1It,B) ;:{
'
c 5
R et declare all variables--~------- !
c ?
v
INTEGER N,1A,M,IB,1J0B, IER -
COMPLEX A(15,15),B(15),WA(255),CKT1(3),CKT2(3),CKT3(3),XL13,XC13 y
COMPLEX XC31,211,212,2Z13,1T,C46,C02,PII,X1,X2,X3,X4,X5,X6 h
REAL wk(15),Tlght,pi,L46,L02,LII ."{:
¢
v
c
c mmmeee- matrix parameters------------ L
Ty
c )
&
IA=15 3
IB=1$ W
N=15 i"
M=1 ¢
c L
c  ------ mutual impedances-~----—=----- &
c ol
A
Z11=(36.5,21.0) "
Z13=(20.4,-14.18) "3
212=213 e
!'
C )
cC  meeee- calculation of constants based on transmission line------- ~
)
C :_\
L46=50.0*(sin(3.0*pi*Tlght)) “a
L02=(sin(3.0*pi*Tlght))/50.0 )
LiI=cos(3.0*pi*T1lght) )
C46=cmplx(0,.0,L46) ; o
C02=cmplx(0.0,L02) e
PII=cmplx(LII,0.0) : X
L}
c e
ey
)
‘!
3
4 i ‘
)
W)
po
9
\
=
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----set constant matrix b back to zero----

do j=1,15
B(j)=(0.0,0.0)
end do

B(l)=IT
------ BEGIN CALCULATING THE MATRIX "A" COEFFS-------

XL13=CKT1(1)
XC13=CKT1(2)
XC31=CKT1(3)

CALL SUBROUTINE COEFF FOR FIRST TIME
CALL COEFF(C46,C02,PII,XL13,XC13,XC31,X1,X2,X3,X4,X5,X6)
------ INSERT COEFFS INTO MATRIX "A"-------

A(l,1)=(1,
A(l,4)=(1.

A(4,1)=211
A(4,2)=212
A(4,3)=213
A(4,10)=X1
A{4,11)=X2

A(5,6)=(1.,0.)
A(5,10)=X3
A(5,11)=X4

A(6,1)=212
A(6,2)=213
A(6,3)=211
A(6,10)=X2
A(6,11)=X5
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iy
X H
C
) A(7,7)=(1.,0.)
, A(7,10)=X4 y,
: A(7,11)=X6 »
[}
! c !
! C mmemmee- SECOND SET OF EQUATIONS------ ¢
c
X XL13=CKT2(1) -
X XC13=CKT2(2) .
N XC31=CKT2(3) By
0 c "
N c
CALL COEFF(C46,C02,PII,XL13,XC13,XC31,X1,X2,X3,X4,X5,X6)
(¥ U
b c ]
! e — LOAD COEFFS INTO MATRIX "A"----- E
: c
f A(8,1)=211 ‘
i A(B,2)=212 d
z A(8,3)=213
wl A(8,12)=X1 b
L A(8,13)=x2
k) C <
(o ‘J
1 A(9,4)=(1,,0.) y
N A(9,12)=x3 “
§ A(9,13)=X4 .
c
» C g
1)
R\ A(10,1)=212 $
) A(10,2)=211 ;
R A(10,3)=213 X
X A(10,12)=x2
! A(10,13)=X5 By
C
c 5
R A(11,5)=(1.,0.) !
N A(11,12)=X4 ,
By A(11,13)=X6 3
a c )
' C  e=m—- THIRD SET OF EQUATIONS---—--- :
c
R XL13=CKT3(1) N
I XC13=CKT3(2)
" XC31=CKT3(3)
L ]
c
A c
CALL COEFF(C46,C02,PII,XL13,XC13,XC31,X1,X2,X3,X4,X5,X6) ’
» C -
C -
) A(12,1)=212 Y,
b A(12,2)=211 4
8 A(l12,3)=213
) A(12,14)=X1 ht
&
4
¢ 14
1}
)
‘ »
»
! ’
-
W . . Y
‘ 4]
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4"
A(12,15)=x2 .
. o
¢ )
c S”
A(13,8)=(1.,0.) o
A(13,14)=X3 X
A(13,15)=X4 "
C (N
C
A(14,1)=212 Py
A(14,2)=213 oty
A(14,3)=211 S
A(14,14)=X2 Y
A(14,15)=X5 }»5
= 2
A(15,9)=(1.,0.) ;%
A(15,14)=X4 h
A(15,15)=X6 :4&
43
c 2
c 74
C ~~=-SET FUNCTION DEFINITION~----- Ay
¢ ®
~7
1J0B=0 S‘i
c 2
C  memmee- CALL MATRIX INVERSION IMSL ROUTINE-----—- hh%
C <
i
CALL LEQ2C(A,N,IA,B,M,1B,1JOB,WA,WK, IER)
t.r
RETURN } 1
END Y
LS
M
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeee Y
(ol ‘:\
c SUBROUITNE COEFF )
c v
c THIS ROUTINE CALCULATED THE COEFFICENTS OF THE N
C UNKNOWN VARIABLES BASED ON THE LENGTH OF THE TRANSMISSION A
c LINE BETWEEN THE ARRAY ELEMENT AND THE PI NETWORK AND THE ®
c MAGNITUDE OF THE NETWORK PARAMETRS Fr
c 1
c INPUT: C46,C02,PII,XL13,XC13,xC31 o0
c OUTPUT: X1,X2,X3,X4,X5,X6 )
p 0
\\
C :.A.
@
SUBROUTINE COEFF(C46,C02,PII,XL13,XC13,XC31,X1,X2,X3,X4,X5,X6) q;ﬁ
- 4
C 4
C emmme—eean DECLARE COMPLEX VARIABLES---~---=--=--= :;r
C
bt
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COMPLEX T1,T2,X1,X2,X3,X4,X5,X6,C46,C02,PI1,XL13,XC13,XC31

nnn
]
\
]
]
t
]
t
]
|
]
8
X
o
[
=
>
>
|y
Q
t1
g
0
>
o
(8]
c
|
>
-3
-
(0]
-4
w0
'
i
1
|
t
I
'

Tl=(PI1+(C46/XL13))
T2=(C02+(PI1/XL13)) v
X1=-(T1+{(C46*XC13)) a
X2=(C46/XL13)

X3=-(T2+(PII*XC13))
X4={PI1/XL13)

X5=-(T1+(C46*XC31))
X6=-(T2+(PII*XC31))

RETURN
END
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SUBROUTINE PATT3

This subroutine calculates the radiation pattern

for the three element equilateral triangular array used

to demonstated the design methods of this thesis.

The amplitudes and phases of the elements of the array

are input from one of the design procedures. This routine
is called by one of the design procedures to display the
pattern generated by the solved current distributions.

INPUT : SCALE,AMP,PH,PI,LENGTH,NUM1,MIT, PHIT

OUTPUT: XY

subroutine patt3(scale,amp,ph,pi,length,numl,Mit,phit)

real amp(3),p(3),ph(3),x(3},y(3),xy{(360,2),Etot(360)
real scale,d,length,kl,pi,Emax,mit,phit,er(3),ei(3)
integer numl

These are the coordinates of the element on the XY plane
The length variable is the reciprocal of the separation
distance between the elements. KL is used to convert
the geometric phase shift to radians.

kl=2,0*pi/length
x(1)=0.0
x(2)=0.5
x(3)=1.0
y(1)=0.0
y(2)=.866025404
y(3)=0.0

Use to plot the pattern of a single dipole.

if(numl.eq.1)then

n=1
amp(1l)=Mit .
p{1l}=phit
x(1)=0.0
y(1)=0,0
else
n=3
endif
Emax=0.,0
do 1=1,360

Theta=float(I)*pi/180.0
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do J=1,n

if(x(J).eq.0.0 .and. y(J).eq.0.0)goto 14

P is the geometric phase shift associated with the physical
location of the elements with respect to each other.

PEJ;=kl*sqrt(X(J)**2.+Y(J)**2.)*cos(atanZ(Y(J),X(J))—Theta)
p(1)=0.0

Er(J) is the real component of the complex current on
the element and Ei(J) is the imaginary.

er(J)=amp(J) *cos(ph(J}+P(J))
ei(J)=amp(J)*sin(ph(J)+P(J))
end do )

This is for the single dipole calculations,

if(numl.gt.l)then
do J=2,3
er(l)=er(1)+er(J)
ei(l)=ei(1)+ei(J)
end do
endif

Etot(I) is the magnitude of the radiating current
as seen at all I angles of observation.

Etot(I)=Sqrt{er(l)**2,+ei(1)**2,)
if(Etot(I).gt.Emax)Emax=Etot(I)

end do

write(7,*)’' Emax=',Emax

This 360 degrees loop calculates the XY coordinates of the
radiation pattern of the array.

do 1=1,360
theta=float(1)*pi/180.0
ETOT(I)=(Etot{I)*41.0)
xy(1,1)=ETOT(I)*cos(theta)
xy(I,2)=ETOT(I)*sin(theta)
end do

Calls the plotting routine which display the pattern to the screeen.
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call plot(xy,numl)

return
end
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h. CCCCCCCCCCCCCCLCCCeeeecceeecceeecceeecceccecececeecceccececcececce y
1 C

d (o] This subroutine uses the Plotl0 graphics library

ﬁ o on the vax 11/780 at the University of Louisville, .
K] o It is used to plot radiation patterns. A matrix ¥

Cc containing the X an. Y coordinates of the pattern

. C is passed into this routine and move and draw commands 1
Q‘ o are used to draw this pattern, ]

s c 1
c Input : XY,NUM1 J
EN C )
ﬁ' C .
3 )

subroutine plot(xy,numl)
) }
@ dimension xy(360,2) 5
pa real radd,ang,x,y,pi )
5 integer numl %
" )
-3 call grstrt(4014,1) J
-, if(numl.eq.1l)then
call newpag

3 endif

call window(-750.0,750.0,~-750.0,750.0)

call move(-750.0,0.0)
call draw(750.0,0.0)

call move(0.0,750.0) Y
KA call draw(0.0,~750.0) )
;\:, call move(xy(1l,1),xy(1,2)) )
i do I1=2,360
. x=xy(I,1)
X y=xy(1,2) o
b call draw(x,y) f
3 end do 0

(X

$: call grstop !
Y return

end
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