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*i' ABSTRACT /

Let X,, X,... X,. be a random sample of ize r
from a binomial distribution b(n, p). Let xj, x2 ....
x, be r-observed success counts. A method has been

-- developed to estimate the total number of trials n
from a Bayesian perspective when the probability of
success p is either known or unknown. The prior
distribution for n is assumed to be the discrete uni-
form distribution. In the case when p is un-
known, p is assumed to have a beta prior distribution.
The estimate for n is then the mode of the posterior
distribution. Additionally, guidelines for selecting
shape parameters for the beta distributions are
discussed. , ,
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INTRODUCTION

Consider that X1, X2 ,...., X, is a random sample of size r from a binomial
distribution b(n, p), where n is the number of trials and p is the probability of success.
Given r observations, x1, x2 ..... xr, the usual problem in the binomial situation is to
estimate p. However, in other instances, n, the number of trials, may be the unknown
parameter of interest. For example, an appliance company may be interested in estimat-

.ing the number of appliances of a particular type in a given service area. In the naval
P9, 5* environment, when a number of ships have been located or detected in a certain region,

sometimes it is important to estimate the overall number of ships in that region in order to
decide appropriate actions. These are some of the practical problems in which n in a
binomial distribution becomes the parameter to be estimated.

In the simplest case, when r = 1 and p is known, the procedure for estimating n
by constructing confidence intervals has been worked out by Tang and Sindler in [1].
This research is a follow-up work in which the general cases are considered but some of
the restrictions are removed. r is assumed to be a positive integer greater than one and p
may or may not be known. Draper and Guttman [2] proposed to estimate n in a
Bayesian framework by introducing prior probability distributions to unknown param-
eters. Then the estimation of n is based on the posterior distribution. Since prior
probability distributions are assumed, more unknown parameters become involved. But
in [2], the issue of how to select the values of the parameters has not been addressed. In
this research memorandum, some guidelines for selecting the values of the parameters in
the prior probability distributions are recommended. Recurrence formulas for calculating
the posterior probabilities are also derived.

The method of estimating n from a Bayesian viewpoint is outlined in the next
section. Suggestions for choosing values of unknown parameters in the prior probability
distributions are discussed. Several examples are also presented in this section. Remarks
and directions of future research are presented in the last section. Characteristics of beta
distributions and an interactive computer program are included in appendixes.

THE METHOD

*5.* ' Let X 1, X 2 ,.... X,. be a random sample of size r from a binomial distribution
b(n, p). Given the observations x 2, x 2 , .x, the objective is to estimate n. When
r = 1 and p is known, the method of constructing confidence intervals for n has been
presented in [1]. For r being a positive integer larger than one, Draper and Guttman [2]

V..



proposed a Bayesian approach for estimating n. Adopting their notations, the likelihood
can be written as:

,," L ( n , p x ) ot p t  ( 1 _ r n !
~~i=1 (n-xi) '()

where x = (xj, x2 ,.... Xr)' is a column vector of positive integers and t = Y xi is the
total number of successes in the r observations. The case of p being kno'n will be
discussed first; then, the case of p being unknown will be discussed.

p is Known

When p is known, let h(n) denote the prior distribution of n. Without further
knowledge of n, the discrete uniform distribution provides a reasonable form for h(n).

-1 for 1: n5 N
•h(n) N (2)

*. 0 elsewhere

where N is a predetermined large integer. The posterior distribution for n is given by

""p(n I x, p) a (I -p)rn h(n) .t nC(3
i=1 (n-xi)

The domain of p(n I x, p) is the set of n such that n = x,,, x. + 1, x. + 2,... ,N,
where

x,. = max {X, X2 ... Xr}

The mode of the posterior distribution p(n Ix, p) given in expression 3, denoted by n,
provides an estimate of n. n , therefore, is the integer satisfying the following

4- 4, inequalities:

p (-1 x,p)<p (lx,p)

and
p (h+1 Ix,p)<p (hlx,p)

Or alternatively, n is the solution of the simultaneous inequalities:

'"" IC (n -xi)<[(-p]5%

.- 2-
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" and [(A+ 1)(1 _p)Ir < r (+1 -x i )
i=1

It has been pointed out by Feldman and Fox [3] that n is also the maximum likelihood
estimator for n.

In addition to providing an estimate for n, the posterior distribution could also
N. cast some light on the precision of the estimate. A closed form of the estimator for n

may not seem feasible. But a numerical solution can be obtained by using the following
recurrence formula. For n = x,,. + j, j = 0, 1, 2,..., (N - xMa),

p (n Ix, p)=p (xmax +j Ix, p)=C Q1 , (4)

where
rif j=0

Qj = (5)
j Q-1 (1_p)r (x,,, +j)r , otherwise

j7t (Xm +j -xi)i=1

Thus, the normalizig constant C in expression 4 is the reciprocal of the sum of the

Qj' s, i.e.,

N-xma
C=I/ : Qj. (6)

j=o

As far as the point estimation is concerned, an estimate for n can be obtained
irrespective of the predetermined integer N. If a confidence interval with a specified
confidence coefficient y is desired, then the value of N is needed. A 100 7-percent
confidence interval for n is given by

[XM0 + Xma + u] (7)

where Z and u are integers such that

IN p(XM= +j Ix,p)= - (8)
/=1

Since z and u in expression 7 are the integers satisfying the condition 8, they are chosen
such that the summation on the left-hand side of 8 is approximately equal to y
and 1 - y is roughly equally divided to the two tails. Therefore, a 100 y-percent confi-
dence interval for n may not be unique.

-3-
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To determine a suitable value of N for computing a confidence interval for n,
, one may adopt the scheme given below. Let

I

be the jth partial sum of the sequence QO, Q1, Q2 . . . . For a given 5 > 0, j is defined
to be the smallest integer such that

Qj /Sj <5 (10)

Therefore, the required integer N is equal to x  + j - 1. The criterion stated in the
inequality 10 suggests that the posterior probabilities, beyond the value of N, will not
contribute significantly."N

Example 1: r = 1

Suppose p is known to be 0.2. The only success count shows that ten successes
have been detected, i.e., x = 10. Hence, xma is also equal to 10. An estimate for n
could be either 49 or 50. Similarly, 48 and 51 are also likely values for the estimate.
Since x = 10 and p = 0.2, xlp = 10/0.2 = 50. The possible estimates are all close to 50.

Using the criterion 10 for 8 = 0.005, N is found to be 81. A 95-percent confi-
V, dence interval for n is [30, 77]. As mentioned earlier, the confidence coefficient,

95 percent, is only an approximation.

Example 2: r = 4

Assume again p = 0.2. Four success counts are available: 4, 8, 12, and 8.
• Hence, Xax = 12. An estimate for n is enual to 40. Other possible values are 39

and 41.

%- For 8 = 0.005, a 95-percent confidence interval can be chosen to be [31, 54] or
[26, 51]. Both intervals give a confidence coefficient only to approximately 95 percent.

.-..
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p is Unknown

When p is unknown, assume that n and p are independent. Let n have the
same prior probability distribution as stated in expression 2. Suppose that the prior

*probability distribution for p is in the form of a beta distribution with
parameters v t and v2. Let k (p) denote the prior probability distribution of p. Thus,

k (p)cap v -1 (l-p) 2 - 1, 0<p 1 (11)

Differentiate k (p) in expression 11 with respect to p and let the first derivative of k (p)
equal zero. Then equation 12 represents the relationship among the maximum value and
the two anknown parameters, v1 and v2, in the beta prior distribution:

(1-p) v i -pv 2 - I +2p =0 , (12)

with an initial estimate of p; vI anad v2 can be solved through equation 12. However,
the solution for v t and v2 is not unique. If the initial estimate of p was obtained with
high certainty, then the parameters v t and v2 should be chosen with larger values, e.g.,
v = 10 or 20. Otherwise, use smaller values; for example, v t may be 2 or 3. This
recommendation is based on the characteristics of beta distributions. Beta distributions
are further discussed in appendix A.

The joint posterior distribution is given by

t Iv - 1- ) rn-t+v.)- r n!
p(n, pI x) cxp '+"I h(n) C n3!

The marginal distribution of n can be obtained by integrating expression 13 with respect

to p from 0 to 1. Therefore,

p (nx)a(rn-+v + v2 -1)! r n frXmax < n < N . (14)

Again, the mode n of expression 14 would provide an estimate of n. Similarly, if
n m x +j, for j =0, 1, 2,...N m x

p(nlx)=p(xmax +jIx)=C.Qj , (15)

0

-5-
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where

Iof ifj=o
Q={Q r-l [rxmax -t+v 2 +(-)r+i]S0 [rxmax + v + v2 + ( r + i] (16)

(Xmax +j)r otherwise
:, X (Xrna + j x )
, i=1

is a recurrence formula for calculating Q.. The normalizing constant C in expression 15
.. ~.can be computed in exactly the same manner as before.

Example 3: r = 1

Suppose p is unknown. An initial p is found to be 0.2. Assume that the only
success count gives ten successes. If 8 in criterion 10 is chosen to be 0.005, then the
estimates at various levels of certainty are presented in table 1.

TABLE 1

ESTIMATES OF n WHEN r= 1 AND p IS UNKNOWN

n N 95% confidence Interval

Sv =2,v2 = 5 29 or 30 106 [17,1021
, 1 = 5, v 2 = 17 41 or 42 100 [23,96]

v = 10, v 2 = 37 45 or 46 93 [26, 891
V = 20, V2 -77 47 or 48 88 [27, 83]

When the initial estimate of p is made with high certainty, such as vi = 20 and
V2 = 77, the point estimate for n is almost identical to the result given in example 1, in

*- which p is known. However, with p unknown, confidence intervals are not as tigh,.

4' -6-
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Example 4: r = 4

Consider the set of data given in example 2. Assume that an initial estimate for p
is 0.2 and 8 = 0.005. The results are summarized in table 2.

TABLE 2

ESTIMATES OF n WHEN r= 4 AND p IS UNKNOWN

n N 95% confidence Interval

v1 = 2, v2 = 5 29 103 [17,97
v, = 5,v 2 =17 35 85 [22,81]
v, = 10, v2 = 37 38 74 [24, 69]
v, = 20, V2 = 77 39 67 [26, 62]

CONCLUSIONS AND REMARKS

In this research, the procedure for estimating n in a binomial distribution has
been developed if there are r success counts available. Both cases of p being known
and cases (A p being unknown are discussed. The approach is adopted from a Bayesian

point of view. which was first proposed by Draper and Guttman in [2]. Prior probability
distribution for n is assumed to be the discrete uniform distribution. When p is
unknown, p is assumed to have a beta prior probability distribution. The estimator for n
is then the mode of the posterior distribution.

To put the estimation procedure into practice, suggestions of how to select values
of unknown quantities in the prior probability distribution are provided. An interactive
computer program, written in FORTRAN language, is included in appendix B.

The interval estimation for n is also discussed in this paper. As pointed out in
the paper, confidence coefficients are not exact because n under consideration is dis-
crete. Furthermore, confidence intervals are not unique.

Future study may include a simulation to verify whether the proposed procedure
for constructing confidence intervals for the specified confidence coefficients has actually
been achieved. Another topic worth further investigation is the assessment of the error of
the estimators. The bootstrap method may be a useful tool for the investigation.

% ..

- 7-
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As mentioned by several authors before, e.g., Carroll and Lombard [4], estimators
for n in a binomial distribution are usually unstable. Therefore, the value of p used in
the estimation procedure must be selected with special caution.

0%
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APPENDIX A

CHARACTERISTICS OF BETA DISTRIBUTIONS

Let Y be a random variable having a beta distribution with parameters v1 and
v2 . The probability density function of Y is given by

r,' (V + V2)_ v -1 1_yV-, y!

f = ((A-i)

0, elsewhere

where v1 and v 2 are positive and r(.) denotes the gamma function. The shape of the
.: density of f (y) given in equation A- I depends on the values of v1 and v2.

* Case 1: v =v 2 =1

f(y) in (A-i) becomes
1 0_< y _!5l

f (y) =  elsewhe (A-2)ll 0 lsewhere

'.- ; which is the density of the uniform distribution in the unit interval. The graph of (A-2) is
--. shown in figure A-1.

Case 2: v 1 =v 2 >l

Equation A-I becomes
F.. F(2v,) -

Ly (1-y)I'- 0! < y! 1
SV](A-3)

0 elsewhere

The-function f (y) in expression A-3 is symmetric with respect to the line y = 1/2. The

mode occurs at y = 1/2. The mode is

f ( 12) = [r (2 v,) ( l"

-. "Graphs of (A-3), with various values of v1 , are shown in figure A-2.

A-1

011 V



f(y) I

AY

i

" FIG. A-1: v= v2 =1

Case 3: v2 > v >1

Equation A-1 is not symmetric. The mode occurs at

Y = (vI - 1) / [(v - 1) + (v2 - 1A

In this case, the mode y is less than one-half. The density shows a positive skewness; in
other words, the graph has a long tail to the right. Graphs are presented in figure A-3 for

v various values of v and v with the mode equal to 0.2.

Case 4: v, > v2 >1

Case 4 is the reverse of case 3. The mode is larger than one-half. The density
shows a negative skewness; therefore, it has a long tail to the left. Graphs of beta dis-
tributions in this are the symmetric images with respect to the line y = 1/2 of those given
in case 3 and shown in figure A-3.

,f.v.

I'.

A-2
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C BAYES:AN ESTIMATION OF n IN A BINOMIAL DISTRIBUTION
C
C PROGRAM INPUT 1). OBSERVATIONS FOR RANDOM VARIABLE X(J)
C 2). PROBABILITY OF SUCCESS (PRSUCC)
C 3). SHAPE PARAMETER FOR PRIOR BETA DISTRIBUTION (Vl)
C PROGRAM OUTPUT 1). POSTERIOR PROBABILITIES
C 2). NUMBER OF TRIALS (n)
C
C VARIABLE DEFINITIONS
C
C GAMMA - THE NUMBER OF SUCCESS COUNTS (NUMBER OF X(J)'s)
C QSUM -SUM OF Q
C POSTPROB - COMPUTED POSTERIOR PROBABILITY
C PRSUCC - PROBABILITY OF SUCCESS (BINOMIAL)
C TSUM - TOTAL NUMBER OF SUCCESSES (SUM OF X(J)'s)
C Vi - SHAPE PARAMETER OF BETA PRIOR DISTRIBUTION
C V2 - SHAPE PARAMETER OF BETA PRIOR DISTRIBUTION
C zJ - OBSERVATION OF RANDOM VARIABLE X(J)
C (NUMBER OF OBJECTS DETECTED)
C XJMAX - MAXIMUM VALUE OF RANDOM VARIABLE X(J)
C MODE - MODE OF PROBABILITY DISTRIBUTUIN. THIS IS
C THE n VALUE THAT HAS THE MAXIMUM PROBABILITY
C LSUM - SUM OF PROBABILITIES IN LOWER TAIL OF DISTRIBUTION
C FOR A 95% CONFIDENCE INTERVAL
C USUM - SUM OF PROBABILITIES IN UPPER TAIL OF DISTRIBUTION
C FOR A 95% CONFIDENCE INTERVAL
C LBOUND - LOWER BOUND OF CONFIDENCE INTERVAL FOR n
C UBOUND - UPPER BOUND OF CONFIDENCE INTERVAL FOR n
C
C DATA DECLARATION/INITIALIZATION
C

INTEGER XJ(10), XJMAX. %VALUE, GAMMA, TSUM. N(1000), UBOUND
DOUBLE PRECISION Q(1000). QSUM, POSTPROB(1000), MODE, LSUM. USUM
CHARACTER * . KE
DELTA - .005
XJMAX -0
TSUM - 0
QSUM - 0.0
DATA N /1000'0/
DATA XJ /10'0/

C
C ACCEPT XJ's FROM INPUT DEVICE AND COMPUTE GAMMA, TSUM, XJMAX
C

DO 20 1-1.10
10 PRINT

PRINT . 'ENTER VALUE FOR THE NUMBER OF OBSERVATIONS IN SAMPLE
& X(j) (UP TO 10 SAMPLES)

PRINT ' PRESS RETURN WHEN ALL SAMPLES HAVE BEEN ENTERED
PRINT * '
ACCEPT 15, XVALUE

15 FORMAT (I80)
IF (XVALUE .EQ. 0) THEN

IF (I .GT. 1) THEN
GOTO 35

ELSE
PRINT t
PRINT . 'MUST ENTER AT LEAST ONE VALUE
GOTO 10

ENDIF
ENDIF
GAMMA -I

B-I
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i XJ(I) - XVALUE

TSUM - TSUM - XVALUE
C
C DETERMINE MAXIMUM SAMPLE VALUE
c

IF (XVALUE .GE. XJMAX) XJMAX - XVALUE

20 CONTINUE
C
C ACCEPT PROBABILITY OF DETECTION FROM INPUT DEVICE AND EDIT VALUE
C

35 PRINT
PRINT , 'ENTER PROBABILITY OF SUCCESS
PRINT . '(MUST BE .1, .2 .3. .4, OR .5)
PRINT .

ACCEPT 40, PRSUCC
40 FORMAT (F80.2)

IF ((PRSUCC .EQ. .1) .OR.
& (PRSUCC ,EQ. .2) ,OR.
& (PRSUCC .EQ. .3) .OR.
& (PRSUCC .EQ. .4) .OR.
& (PRSUCC .EQ. .5)) THEN

GOTO 41
ELSE

PRINTS
PRINT . 'PROBABILITY OF SUCCESS MUST BE .1, .2, .3, OR .4'

GOTO 35
ENDIF

41 PRINT "
PRINT . 'IS PROBABILITY OF SUCCESS KNOWN (K) OR ESTIMATED (E)'
PRINT . 'ENTER K OR E'
PRINT .

ACCEPT 42. KE
42 FORMAT (Al)

IF ((KE .EQ. 'E') .OR. (KE .EQ. 'e')) THEN
GOTO 45

ELSEIF ((KE .EQ. 'K') .OR. (KE .EQ. 'k')) THEN
GOTO 500

ELSE
PRINT
PRINT 'MUST ENTER K OR E
GOTO 41

ENDIF
C
C COMPUTE PARAMETER V2 FOR BETA PRIOR DISTRIBUTION. A VALUE FOR
C SHAPE PARAMETER VI (FLOATING POINT VALUES 2 THROUGH 10) IS ACCEPTED
C FROM THE INPUT DEVICE. A LARGER VALUE OF VI INDICATES GREATER
C CERTAINTY FOR THE SELECTED PROBABILITY OF SUCCESS. V2 IS
C THEN COMPUTED AS A FUNCTION OF VI BASED ON THE FOLLOWING
C EQUATION. (VI -1)(1-p) - (V2-1)(p) - 0, WHERE p IS THE
C PROBABILITY OF SUCCESS.
C

45 PRINT
PRINT 'ENTER SHAPE PARAMETER FOR PRIOR BETA DISTRIBUTION'
PRINT '(PARAMETER MUST TAKE ON FLOATING POINT VALUES BETWEEN 2.

NO AND 10.0)
PRINT
PRINT 'LARGER VALUES INDICATE GREATER CERTAINTY FOR THE SELECT

&ED '
PRINT , 'PROBABILITY OF SUCCESS.
PRINT

B-2



ACCEPT 50. Vl

50 FORM4AT (F80.2)
IF (Vl .GE. 2.0 .AND. Vl .LE. 10) THEN

CONTINUE
ELSEPRINT•

PRINT ' SHAPE PARAMETER MUST TAKE ON VALUES BETWEEN 20AND1
Y40.0O'

J GOTO 45
ENDIF
IF (PRSUCC -EQ. 0.1I) THEN .

V2 - (9o0 * vl) - 8.0 .ELSEIF (PRSUCC EQ. 0.2) THEN

,-VJ

V2 - (4.0 * Vl) - 3.0
ELSEIF (GRSUCC .E. 0.3) THEN 10)THE

V2 - ((7.0 " Vl) - 4.0) 3.0 =
ELSE

PRSUCC -0.4
V2 - ((3.0 ' V) - 1.0) O S2.0N.ND

ENDIF 0

C % eC COMPUTE ESTIMATED PROBABILITY CASE .

C COMPUTE Q(I) AND QSUM. COMPUTATIONS ARE TERMINATED._
C WHEN Q(I) QSUM IS LESS THAN OR EQUAL TO DELTA.•
C E(I) IS THE PRODUCT OF THE FOLLOWING THREE FACTORS

C
c ). Q(-) E 0) N

c
C 2) . THE PRODUCT FROM (GAMMA*XJMAX-TSUM+V2+((1-I) "GAMM4AJ*J)
C J-0 TO GAMMA-I (GAMMA*XJMAX-VI-V2 ((I-I)*GAM4MA)-J)
C 3). ((XJMAX+I) GAMMA) . THE PRODUCT FROM (XJMAX-XJ(J)I)'
C J- TO GAM1MA

C
C LET CONSTANT A - GAMMAXJAX-TSU+V2
C LET CONSTANT B - GAMMAXJMAX+VIV2 AET INE
C

A - FLOAT (GAMMA)*FLOAT(XJMAX)-FLOAT(TSUM ) V2B - FLOAT(GAMMA)-FLOAT(XJMAX)VVIGV2A•

DO 200 1-1,9999
ISTORE - I~l
N(1) - XJMAX+I- T
IF (N(I) EQ. 129) GOTO 205

C
C COMPUTE FACTOR
C

IF (I .GT. 1) THENFACTRI - (I)TXA V 2

ELSE, i
FACTR 1.0

ENIF(NI EQ12)GT20

C COMPUTE FACTOR 2

FACTR2 - 1.0

DO 105 J-O.GAMMA-I
FACTR2 - FACTR2 * (A((I-1i)*GAMMA)+J),(B+((I-I)*GAMA)+J)

105 CONTINUE
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c
C COMPUTE FACTOR 3
C

PRODCT- 10
DO 110 J-1.GAMMA

PRODCT - PRODCT (FLOAT(XJMAX)-FLOAT(XJ(J))-FLOAT(I))
10 CONTINUE

FACTR3 - (FLOAT(XJMAX-I)*"GAMMA) PRODCT

C COMPUTE Q(I) AND QSUM
C

Q(I-1) - FACTR1 FACTR2"FACTR3
QSUM - QSUM - Q(I)

C
C TEST TERMINATION CRITERIA
C

IF (Q(I)'QSUM .GT. DELTA) THEN
CONTINUE

ELSE
. GOTO 205

ENDIF
C 200 CONTINUE

C COMPUTE POSTERIOR PROBABILITY DISTRIBUTION.
* C

2C5 DO 300 I-i.ISTORE
"A 3C POSTPROB(I) - Q(I)'QSUM

3co CONTINUE
GOTO 702

C
C COMPUTE KNOWN PROBABILITY CASE~C
C COMPUTE Q(I) AND QSUM. COMPUTATIONS ARE TERMINATED

-.. C WHEN Q(I) QSUM IS LESS THAN OR EQUAL TO DELTA.
C
C Q(I) IS THE PRODUCT OF THE FOLLOWING THREE FACTORS
C
C 1). Q(I-1)
C
C 2). (1-P)" GAMMA
C
C 3). ((XJMAX-I)"*GARMA) THE PRODUCT FROM (XJMAx-XJ(J)*I)
C J-1 TO GAMMA

500 Q(1) - 1.0

DO 600 1-1.9999
ISTORE - I-I
N(I) - XJMAX-I-1
IF (N(I) .EQ. 120) GOTO 605

C
C COMPUTE FACTOR 1
C

IF (I .GT. 1) THEN
FACTR1 - Q(I)

ELSE
FACTR1 - 1.0

ENDIF

C COMPUTE FACTOR 2
C
C FACTR2 - (1.0 - PRSUCC)" GAMMA
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C COMPUTE FACTOR 3

C
PRODCT - 1.0
DO 510 J-1.GAMMA

PROOCT - PRODCT (FLOAT(XJMAX)-FLOAT(XJ(J))-FLOAT(I))
510 CONTINUE

FACTR3 - (FLOAT(XJMAX-I)-'GAMMA) PRODCT
C
C COMPUTE Q(I) AND QSUM
C

Q(I-1) - FACTRI-FACTR2"FACTR3
QSUM - QSUM - Q(I)

C
C TEST TERMINATION CRITERIA
C

IF (Q(I) QSUM .GT. DELTA) THEN
CONTINUE

ELSE
GOTO 605

ENDIF
600 CONTINUE

C
C COMPUTE POSTERIOR PROBABILITY DISTRIBUTION.
C

605 DO 610 I-1.ISTORE
POSTPROB(I) - Q(I)/QSUM

610 CONTINUE
C
C
C GENERATE AND DISPLAY REPORT ON CRT
C

702 WRITE (6,705)
705 FORMAT (lHO,'BAYESIAN ESTIMATION OF n IN A BINOMIAL DISTRIBUTI

&ON')
WRITE (6,710) PRSUCC

71C FORMAT (!HO,'PROBABILITY OF SUCCESS (ESTIMATE) - ',F3.1)
IF ((KE EQ. 'E') .OR. (KE .EQ. 'e')) THEN

WRITE (6,715) V1. V2
715 FORM4AT (1H .'SHAPE PARAMETERS FOR PRIOR BETA Vi - ',F5;2.

& ' V2 - ',F5.2,')
ENDIF
DO 730 1-1,10

IF (XJ(I) EQ. 0) THEN
GOTO 730

ELSEIF (I .LE. 9) THEN
WRITE (6,720) I. XJ(I)

720 FORMAT (1H ,'NUMBER OF OBSERVATIONS IN SAMPLE X( ,I.
') l- ',I2)

ELSE
WRITE (6.725) I, XJ(I)

725 FORMAT (1H .'NUMBER OF OBSERVATIONS IN SAMPLE X(',I2.
& ) ,12)

ENDIF
730 CONTINUE

DO 733 1-1,9999
IF (POSTPROB(I) .GT. POSTPROB(I+1)) THEN

IMODE - I
MCDE - POSTPROB(1)
GOTO 734

ENDIF
733 CONTINUE
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734 WR:TE (6.735)
735 FORMAT IHO,' n p(n:x.p)')

WRITE (6.740)
740 FORMAT (IH .' -

DO 750 I-IMODE-5,IMODE 5
WRITE (6.745) N(I). POSTPROB(I)

745 FORMAT (1H .2X.I3,4X.F7.6)
750 CONTINUE

C
C GENERATE 95% CONFIDENCE INTERVAL FOR n
C

LSUM - 0.0

DO 770 1-1.9999
LSUM - LSUM - POSTPROB(I)
IF (LSUM LE. 0.025) THEN

LBOUND - N(I-L)
GOTO 770

ELSE
= LSUM - LSUM - POSTPROB(I)

GOTO 780
ENDIF

770 CONTINUE
C
C N - ISTORE-2
C

780 USUM - LSUM
DO 790 I-ISTORE-2,1,-I

USUM - USUM - POSTPROB(I)
IF (USUM .LE. 0.05) THEN

UBOUND - N(I-1)
GO2O 790

ELSE
GOTO 800

ENDIF
790 CONTINUE
800 WRITE (6,810) N(IMODE)
810 FORMAT (H I,' MODE OF DISTRIBUTION IS n -',I)

WRITE (6,820) LBOUND
820 FORMAT (lHO,'LOWER BOUND OF 95% CONFIDENCE INTERVAL - '.I3)

WRITE (6.830) UBOUND
830 FORMAT (H .'UPPER BOUND OF 95% CONFIDENCE INTERVAL - '.13)

C
PRINT "
STOP
END
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