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ABSTRACT

This thesis investigates the design, communication, and [
allocation considerations for implementing a distributed "
group expert system on a Local Area Network. A model system ‘:
called GESP (Group Expert System Prototype) was implemented ¢

in Prolog on a microcomputer LAN to be used as a working it
platform. From observations of the model, conclusions have &
been drawn concerning: (1) the architecture of the expert ﬁ
system software required to support an interactive group i
expert system; (2) implications of expert system to expert W
system communication; and (3) the optimum allocation strategy :'
of expert systems to nodes. Due to the lack of a distributed ﬂ
operating environment in which to implement the model, ]
efficiency has been sacrificed for operability. Although GESP :

is not a fully practical implementation of a group expert :

system, it should as a minimum provide a functional framework

LY

P

for understanding, analyzing, and designing interactive group
expert systems.
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The reader is cautioned that computer programs developed A
in this research may not have been exercised for all cases of _
interest. While every effort has been made, within the time : ﬁ
]
available, to ensure that the programs are free of A
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computational and logic errors, they cannot be considered - ks
validated. Any application of these programs without '
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I. INTRODUCTION

A. BACKGROUND

Group expert systems offer tremendous potential support
to strategic decision making. Top level managerial decisions
are ofter made by a group or by a single person after
consultation with a group. Distributed expert systems can
facilitate group <decisions whether the organizational
structure is centralized or decentralized.

The issue of centralization verses decentralization
acquires a new dimension for debate when viewed 1in the
context of distributed expert systems. Organizational
structure and behavior clearly surface as the central factors
in the question of decentralization. The physical location of
control of decision making authority and responsibility
replaces the traditional arguments of economics verses
enduser productivity as the platform debate. '

The concept of distributing expert systems implies that
some knowledge and responsibility for decision making is
distributed. On the smallest scale, all experts within the
group may be located in the same building. A Group Expert
System (GES) implemented on a local area network could, at
the very least, conserve the amount of time spent in meetings
solving reoccurring problems. In a decentralized organization
implemented on a large scale, such as a wide area network, a
GES could realize significant savings in timeliness and
effectiveness of organizational decisions.

Distributed expert systems have many of the same design
and implementation problems as other types of distributed
systems. Attempts to optimize performance within constraints
are key <considerations. Typical problems include: the
physical 1location of resources, replication of data,
interprocess and intermodule communications, and the
determination of the optimal number and location of nodes.
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B. OBJECTIVES

This study will looks at the issues related to analyzing,
designing, and implementing a distributed group expert
system. Some of the major issues addressed are how domain
concepts, rules / heuristics, and control strategies are
distributed based on system and communication costs.

C. RESEARCH QUESTIONS

The primary research question is one of  Dbasic
implementation. Is the implementation of a distributed expert
system possible on a Local Area Network?

If LAN implementation is possible, what should be the
general architecture?

What are the implications of node to node communication
and of interprocess and intermodule communication? Also, what
are the implications of expert system to expert system
communication including calling processes, rule passing, data
passing, and interactive expert systems?

The final question deals with the actual distribution of
systems. What is the optimum allocation strategy of expert
systems to nodes?

D. SCOPE

A networked prototype distributed expert system has been
implemented on 8ix nodes of a Local Area Network. The
prototype system is called GESP, Group Expert System
Prototype. GESP solves a meta problem which is a security
clearance screening for employees. It employs multiple expert
systems and multiple knowledge domains. Implementation of
GESP was constrained by the operating system of the IBM PC
LAN, which does not directly support distributed computing.
This limitation was overcome by using a commonly available
drive for a blackboard as a means of communication. Although
GESP was implemented only on a Local Area Network, design
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considerations, architecture, allocation, and communications X
are discussed in broader context.

E. METHODOLOGY Y
, An architecture has been proposed by which expert systems
1 can communicate on a microcomputer Local Area Network using

.
s A A

' - a commonly available drive as a blackboard. A prototype

system, GESP (Group Expert System Prototype), has been

developed using Prolog. It is capable of supporting three ¢

knowledge bases. The model has been implemented on a PC LAN »

3 for six nodes. Implications for system allocation and
architecture for group expert systems have been induced from

p the model. Optimization formulas from operations research ,

have been used to conduct studies of cost and allocation

problems. Formulas for determining system cost and allocation

for expert systems have been derived.

F. SUNNARY OF FINDINGS W
This study has shown, by actual implementation of a model Q

< o g s om

system, that implementation of distributed expert systems on
) a Local Area Network is possible. The implementation requires ’

an architecture consisting of a communication structure, a -3

meta expert system to decompose the problem, consult )
appropriate expert systems, and synthesize a solution, and |
individual expert systems to form solutions within their
respective domains. It has also been shown that group expert
system allocation can be optimized by minimizing system cost. yt
A method of determining expert system cost has been
i demonstrated.

G. ORGANIZATION OF STUDY
_ The remaining chapters will describe the thesis research.
; - Specifically, Chapter II presents an introduction to group
expert systems. It provides an overview of expert system
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support for group decision making and supports the use of
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artificial intellijence in group decision support. Chapter .h
I1II describes the architecture used in the model group expert ;;
system and proposes a structure for group expert systems in

general. Chapter IV presents communication and allocation

considerations for group expert systems. It details a method . :
for measuring system cost and thereby allocating expert ~£-
systems to nodes on a network. Chapter V draws conclusions -

from this study and proposes directions for future research.
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II. GRQUP EXPERT SYSTEMS

Group expert systems, GES, represent the next generation
of intelligent systems which will provide support to
management. Current expert systems operate on a stand alone
basis. Each expert system has problem solving expertise in
only a specific domain. However, strategic decision making in
management often requires the coordinated assessment and
evaluation of multiple areas of managerial expertise. The
development of group expert systems can greatly enhance the
quality and timeliness of strategic decision making.

Group expert systems function in a similar manner as do
group decision support systems, GDSS. There has been some
debate about whether or not an effective decision support
system is in fact an expert system. The use of expert systems
as decision support systems is the motivatioi: to develop
group expert systems. Expert systems represent "tremendous
potential in providing the ultimate assistance to decision
makers involved in serious business activities"™. (Isett,
1985, p.21)

Waterman (1986, pp.10-12) suggests that there are five
advantages to substituting artificial expertise for human
expertise. First of all, artificial intelligence is
permanent. Human experts must constantly exercise their
skills in order to maintain proficiency. System code does not
decay through lack of use. Expert systems are not affected by
personnel turnover. If a manager leaves the firm, that
expertise also perishes. Once an expert system is coded,
expertise becomes corporate knowledge.

Secondly, artificial =expertise is easily portable.
Transferring expert knowledge from one human being to another
is difficult, costly, and time intensive. Porting artificial
intelligence from one location to another is as simple and
cheap as copying a program. Further more, less experienced
managers gain knowledge through the use of expert systems.
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Documentation of knowledge is another advantage. It 1is .
much simpler to document system code than to thoroughly 3
explain an expert’s thought process. :\
Artificial expertise is more consistent and reliable. ®
Artificial intelligence does not perform differently in a - iq
crisis situation because of stress, time pressures, or ﬂ:
emotional factors. . 5&
Finally, artificial expertise is cheaper than managerial -
expertise. Portability is a major factor contributing to its 2N
low cost. It 1is far more expensive to hire additional e
managers to satisfy need for expertise at multiple locations. :*
In addition to the advantages described above, Waterman i“
also 1lists five drawbacks to using artificial expertise. j&
These disadvantages apply to stand alone expert systems. Some *nj
of these will be eliminated by employing GES. &9
Creativity and adaptability go hand-in-hand. There 1is :
still much progress to be made in developing systems that can 3}
learn and adapt to new situations. Group expert systems go a §¥
N

long way in adding the dimension of separate multiple problem
domains. However, while a system may consult another for

q" ’4‘-.

input into solving its own problem, it still may not adapt

another system’s algorithm or heuristic to its own internal

TP

solution.

The whole world concept encompasses two more
disadvantages, the sensory experience and common sense. The :f
human can look at the whole picture at once and, drawing from o
a wide range of experiences, see how each piece fits. Group :;
expert systems support human interaction only to the point :“
necessary to solve the problem. If a more extensive human 3f
interface is designed for less structured problems, human \
creativity, adaptability, and common sense can be maximized. ‘:

The final drawback to artificial expertise is a narrow :
problem focus. Waterman not only lists narrow focus as a 3
disadvantage but as a criteria for building expert systems. 3\
(Waterman, 1986, p. 26) He states, "An expert system has i:
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depth; that is, it operates effectively in a narrow domain

. containing difficult and challenging problems". This is true )
- for stand alone expert systems. Group expert systems combine 9
‘ +
e multiple domains of expertise to solve a meta problem. In '

doing so, GES can support broad scope strategic management

problems.
A group expert system in its simplest form is composed of
- a meta expert system, MES, and multiple single-domain expert

o systems. The meta ES 1is concerned with problem-domain 1

relationships and domain-domain relationships. The MES ,

identifies the problem to be solved and decomposes it into )

[)
U individual problem domains. It identifies the expert systems !
& whose domains are pertinent to the solution. :
;5 The problem solving is then devolved the remote ES. The :
ﬁ remote ES reads the problem devolved, develops a solution, ;
A and returns the solution to the MES. The MES then synthesizes \
’ the solution. Group Expert System Prototype is an =xample of
how a GES solves a meta problem. The problem in this thesis !
: is whether or not to grant a security clearance to a }
K particular employee. There are three problem~domain g
. relationships associated with this question. To conduct a E
o security screen, each employee must successfully complete a 4
;: financial profile study, criminal profile study, and a ﬁ
B psychological study. |
o There are six expert systems in the GES, including the

MES. Three are in the credit domain, CREDIT_1, CREDIT_2, and
CREDIT_3. CREDIT 1 and <CREDIT_2 have a peer-to-peer
relationship within the domain, and CREDIT 3 is independent.
CRIME_1 is the «criminal domain and PSYCH_1 in the
t psychological domain. All domain-domain relationships are
independent. Any dependency that exists should be captured in
the rule base.
The MES, META, calls other expert systems to conduct all

or part of the screening process. The criminal expert system y
looks into the criminal database and generates a criminal
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record score. Likewise, the other expert systems look into
their respective databases to calculate scores. All systems
could use a central employee database if it contained
adequate information. CREDIT_1 also has the ability to
consult CREDIT 2 to conduct a more extensive check. The
remote expert systems pass their scores to META which accepts
them as inputs to the meta problem.

The assumption is that the problem is partitionable. In a
group management decision scenario partitioning is intrinsic
to the nature of the problem. If it were not, only one
decision maker would be required. Strategic management
decisions involve not only multiple experts, but often these
managers are at remote locations. Group expert systems
provide a cost effective platform by which scarce expert
resources may be accessed.

The traditional comparison of expert systems to decision
support systems sees two major differences, how the systems
are used and the types of problems they solve. The use of
expert systems as decision support tools is generally
accepted, however the difference is that expert systems
typically replace the expert. With group expert systems it is
not necessary to eliminate an expert user. The goal is to
minimize the involvement of expert management, whose time is
a scarce resource.
The greatest advantage of GES over stand alone ES is the
type of problems they can solve. Current ES are designed to
solve structured, well-defined, and somewhat repetitive
problems with a narrow and predictable domain. Data is
usually symbolic, factual, and procedural in content. These
ES are unlike DSS which solve unstructured and ill-defined
problems of a broad, complex, and unpredictable nature. DSS
support ad-hoc¢ inquiries handling data which is numerical and
factual in content. Modification to a DSS is more difficult

than to an ES, as a DSS is more rigid.
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Group expert systems provide managers with the best of
both DSS and ES. Distributed expert systems can interface

ol
> s N

with users at all nodes on the network as do GDSS. The most \
significant factor of GES is their ability to solve broad- '

scope problems involving multiple knowledge domains. Group 4

decision support systems require interaction with a human
expert. Group expert systems support such human interaction W
when necessary but do not require it. Coding human expertise

frees the manager to perform other functions whenever direct .

human involvement is not required. o
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III. ARCHITECTURE FOR GROUP EXPERT SYSTEMS

In the arena of group expert systems, there 1is the
fundamental task of bringing the system to the user. End-user
computing puts AI decision support systems within the user’s
reach both physically and economically, in terms of both
system and budget constraints. However, there has been much
debate about the feasibility of implementing AI systems on a
PC.

The knowledge domain of a meta problem may be too large
to fit into a PC, in fact it may be too broad for a single
expert system. Factoring the meta domain into discrete sub-
domains and distributing the sub-domain expert systems
across a network allows multiple PC’s to share the problem.

The general architecture required to support this concept
consists of a communication mechanism, a meta expert system,
and consultant expert systems. Ideally, the communication is
problem independent, however, it may be imbedded within the
domain expert systems.

The meta expert system manages the solution of the
problem. It is responsible for problem acceptance and
validation and problem-domain and domain-domain
relationships. It decomposes the problem and devolves the
problem to consultant expert systems. The meta expert system
accepts the results from the consultants and synthesizes a
solution. The general architecture is shown in Figure 3.1.

Group expert systems, GES, present an ideal platform for
demonstrating how to implement distributed expert systems on
PC’s. The key to distributing expert systems is structured
modular design. There are three 1levels of modularity
applicable to GES. The first level is communication. In order
to distribute expert systems, they must be able to talk to
one another. That is, one system must call another; pass
data, rules, solutions, and make calls to the operating
system and the database. At some level, at least one expert
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MES ‘
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Problem Validation '

Problem—-Domain Relationships M
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Figure 3.1 META MODELING FOR A GES
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system  must interface with the user. The control
communication structure is located at the node where the
problem originates. The control takes the problem input from
the user, validates it, and decides which expert systems must
be called to solve the problem. It accepts the inputs and
solutions from the other expert systems and uses them to
solve the higher level problem. The communication structures
at the lower level expert systems allow them to communicate
with the calling system and with each other, as in consulting
a peer system. If the problem requires :aput from a user at
remote node, as in a GDSS, a user interface at lower level
can also be supported. To the greatest extent possible the
communication architecture should be independent of the
problem to be solved. The objective is to be able to solve a
range of problems with multiple expert systems within one
GES. The advantages of distinct separation of the problem
from communication will be realized in a multitasking
environment. The communication module could call any expert
system by issuing an executable command and then reading the
expert system output. Such a system should be extendable. It
should be able to support solutions to other common expert
system problems which are independent of the domain of
expertise. (Biegl, 1986, p. 279)

The second level of modularity is the problem itself. The
problem is factored by partitioning the knowledge domain.
Each expert system represents a distinct part of the
knowledge domain of a larger problem, as discussed in the
previous chapter. Expert systems may interact vertically or
horizontally to solve the problem. They may share a common
database, pass rules or information from their own unique
database to other systems, or pass their own solution to
another system to be used to solve a separate problem. The
top~level system can collect solutions from all other experts
to solve a meta problem. The architecture proposed herein is
one that supports the solution of this meta problem on a PC
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LAN. Vertical and peer-to-peer system communication are
.% required.
E The third level of modularity is within a single expert
system. The architecture for distributing a single expert
system is best implemented in a distributed operating system

Ty
=

-
-

environment. The problem to be solved by the system must be

-

one which can be partitioned into distinct goals. Unique rule

. e -

sets which are paths to goals may be partitioned into modules
separate from unrelated rules and distributed to another ‘
processor. The initial state rules can be fired from a module R

located on a remote processor. The resultant of the goal

e wah -

state is then passed back to the remote calling module. This
type of intermodule communication across remote processors 1is

-

not practical to implement on the PC LAN, as the LAN was not

-

designed to support distributed processing. The communica-

1 Gl i

- -

tions structure required to support an entire expert system
would be necessary for each set of modules located on a
remote processor. The overhead could only be justified for

CaNCEA

. distributing a single 1large expert system. Distributing

R o

multiple expert systems is far more interesting, and the
! problem of the single system is solved in much the same way. 9
o GESP, Group Expert System Prototype, is the initial )
' screening of an individual for a security clearance. To pass
the screening the candidate must have a satisfactory
! criminal, psychological, and credit records check. One A
o criminal record database, three credit agencies, and one
s psychological record database are on the system. The control
expert system, META, interfaces with the user. The problem to
be solved, that is the type of screening to be conducted, is
input by the user, and META calls the appropriate expert
s systems. There is a single fixed cost associated with h
consulting the criminal expert system, CRIME_ 1, and likewise, ’
the psychological expert system, PSYCH 1. However, each N
credit expert system has a different cost associated with.
The top-level system, META, may select either CREDIT_1 or

)
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CREDIT_3. CREDIT 3 is the cheaper system, but it is less
extensive than CREDIT_1 and only used for lower level

clearances. CREDIT_ 1 is more expensive and is used for more
sensitive clearances. It has the ability to consult CREDIT_2
on a peer-to-peer basis in order to obtain a higher quality
solution.

The first and most obvious obstacle to implementing GESP
is the fact that the IBM PC LAN operating system does not
directly support distributed processing. It is not possible
to directly call an expert system located on a remote
processor or to directly pass it data. To establish system-
to-system communication a virtual disk was created. The
virtual disk is used as a blackboard to which all expert
systems can read and write. In this respect GESP can not
adhere to modular independence between the communication
structure and the specific problem. A diagram of GESP is
presented in Figure 3.2.

META calls other expert systems by writing the file,
k file.inp. This file contains the names of the expert
systems to be called and all data necessary to begin
execution. The other expert systems use a polling process to
look for this file. When k_file.inp appears, each system
checks the time stamp to see if the file is current. If the
file is current it is opened and read. Each expert system
then checks the list for membership to see if it is being
called. The check is accomplished by using the member
predicate. If the membership rule succeeds, the expert system
begins execution of the problem. Each system returns a
solution by writing the files crime_l.rep, credit_l.rep, and
psych_l.rep respectively. CREDIT_1 calls CREDIT_2 in the same
manner using the file, credit_l.inp. CREDIT_2 responds with
the file, credit_2.rep.

All systems must constantly poll, checking the time
stamp, to see if they are being called. If the META system
knows on which processor each expert system is located the

14
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process can be made much more efficient. META could make a
call to the operating system telling it to send an interrupt
signal to the desired processors. When the called processor
receives the interrupt, it "wakes up" the polling process.

META, Figure 3.3, has a list of all problems that can be
solved on the system in its database. Any problem input by a
user is checked for wvalidity. An incorrect ©problem
submission will generate an error message to the user, and
the system will cease execution and return to the initial
state. Input of a valid problem begins execution, and META
will determine which expert systems are to be consulted from
the database. Each problem is associated with a 1list of
expert systems required to solve it. The «calling file,
k_file.inp, is created, and the list of expert systems to be
called is included. K_file.inp is then written to the virtual
drive.

Immediately after the calling file is written, META goes
into the polling process. It looks for a report file from
each of the expert systems in the order in which they were
called. Polling continues until a report file, for example
crime_l.rep, appears. By use of the "directory" predicate
META checks the time stamp on crime_1l.rep and compares it to
the time in its database. The base time is initialized to
zero for the first run. If the times do not match, the file
is determined to be current and is opened. The information
provided by the remote expert system is read and asserted to
the database. The polling process is again initiated, and the
procedure is repeated until all expert systems have reported.
The time stamp of the latest read of the report file is
recorded.

META proceeds to evaluate the reports to determine if the
candidate will satisfy the security screening requirements.
Each expert system returns a score which is the measure of
the candidates performance in each area. Point 1levels are
awarded for discrepancies. For each area of evaluation there

16
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is a threshold level above which the candidate fails. The
scores are then totaled. There is 1likewise a failing
threshold for total score, accounting for the synergistic
effect. It is possible that one might pass each area by a
narrow margin but fail for having done significantly poorly
in more than one area. META then displays the results to the
user.

CRIME_1, PSYCH_1, and CREDIT 3, Figures 3.4, 3.5, and 3.6
respectively, are very similar in structure. They are called
by and report directly to META. CRIME 1 will be used as an
example. It wuses the "directory" predicate to poll the
virtual drive as does META. It also uses the same time stamp
checking procedure and the same membership check. Upon
determining the validity of the call, it executes a criminal
record check. Upon determining a score, it creates the file
crime_l.rep including the score and writes the file to the
blackboard.

CREDIT_1, Figure 3.7, is called by and reports to META
by the same process as do CRIME 1 and PSYCH 1. The unique
feature of CREDIT 1 is peer-to-peer communication. It is this
added feature which is the primary contributor to its higher
consultation cost. The decision to consult may be delegated
to a lower level or may exist at that lower 1level as an
intrinsic part of the problem. In this case, the more
extensive credit expert system decides whether or not to
initiate further investigation based on its own first-cut
findings. The decision to consult CREDIT_ 2, Figure 3.8, is
based on a threshold score. If the candidate fails the
initial check, a more detailed investigation can be prompted
to see if a failing score is warranted.

The structure of the code used to call CREDIT_2 and to
make and receive its report is the same as that of the higher
level expert systems. Only the names of the calling and
reporting files are changed. The call to an expert system at
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the peer level can be made in the same way as a vertical
call.

The key, again, 1is modularization. The communication
structure 1is generalized within the problem, such that it
supports vertical and horizontal interfaces. The problem with
implementation on non-distributed and non-multitasking
microcomputer network is the necessity of writing to the
blackboard. A problem-specific file, such as crime_l.rep,
does not allow complete separation of problem and
communication.

A better example of modularity is the consulting module
in CREDIT_2, "calc_soln". For the purposes of the prototype,
a resultant score 1is asserted rather than conducting a
consultation of an actual database:

calc_soln:- asserta(score(l160)).

This module is called from the main program module and is
completely independent from all other code. By only asserting
a score, simplicity of the model is maintained, and most
importantly, the generic nature of this module is
demonstrated. The string "calc_soln:-" can be followed by a
call to any credit database. In fact, the predicate can be
followed by any argument, however unrelated, as this module
is not coupled to any other. Creating an open environment
will maximize the ease with which even third party expert
systems can be incorporated into the GES. (Silverman, 1986,
p. 28)

The credit check may even be conducted by a separate
expert system which is called by calc_soln. By doing so the
solution of a single problem is further separated from the
group communication structure.

GESP presents a basic architecture for supporting group
expert systems. Although it was not possible to obtain the
lowest degree of coupling and highest degree of problem
independence within the constraints of the PC LAN, the
advantages that can be derived from modular design have been

30
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demonstrated. Through the use of structured modular design
and functional independence at all three 1levels of
modularity, it is possible to implement group expert systems
on a PC network regardless of the nature of the expert
systems.
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IV. COMMUNICATION AND ALLOCATION CONSIDERATIONS

Once the decision has been made to employ a group expert
system the question of where to locate it arises. Certainly
% there are external environmental factors affecting system
W location, such as organizational structure and politics.
However, the focus here will be strictly on system issues for
which there is an algorithmic solution. The question of
optimum allocation strategy applies whether implementing a
group expert system on an existing hardware suit or designing

an entirely new system including hardware. The question to be ),
answered here is, "What is the optimum allocation strategy on
Y a network for a group expert system involving multiple expert :
¢ systems"? '
There is no good allocation strategy presently in use.
f Saj-nicole Joni, director of consulting services at Gold Hill
Computers, Inc. in Cambridge, Massachusetts, has stated that
e there is no threshold number of rules or processing speed
& that can be used to determine where the expert system should
o reside (Williamson, 1987, p. 56). If Joni’s statement is
: true, how then are systems to be allocated?
? The key to answering the question of allocation is to
¢ think in terms of maximizing benefits and minimizing costs.

Networked expert systems benefit from the modularity of

"

5

- distributed processing as do other distributed systems.

+

& Modular design and distribution achieve the greatest b

advantages over stand-alone systems. These benefits, as
‘ discussed in detail in previous chapters, include an 1in-
2 creased problem scope and knowledge base, multiple knowledge
domains, and the ability to physically distribute expertise.
The disadvantage of distributing expert systems is the
same as that for any other type of system, and that is x
overhead cost. Overhead cost is incurred when an expert ‘ y

,-,-,
o
.

system executing on a processor makes a call to the operating .
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system, the database, or communicates with another expert
system residing on a different processor.

Expert system overhead cost is analogous to interprocess
communication, as discussed by Wesley W. Chu, et al, in thrat
system performance can be maximized by minimizing system
cost. Interprocessor communication in distributed systems 1is
much like paging in memory systems. IPC can be increased to
the point where thrashing takes place. The system becomes
saturated by overhead, and performance 1is degraded. Chu
suggests an integer programming approach to the problem of
task allocation as a means of minimizing IPC and maximizing
system performance. Chu’s objective function (Chu and
Holloway, 1980, p. 57) for minimizing IPC cost, in the
general case, is as follows:

Cost (X) = ZkZi[qikxik + 2i<k2j<i(wvijdkixikle)]
Subject to:
Esixik S Ry, k=1,...n memory constraint, and
Zuixik S Ty, k=1,...n real-time constraint.
Where:
q = processing cost

x = assignment of Esi to node k, 0 or 1

w = normalization factor

v = volume of communication

d = distance between nodes. (Chu and Holloway,
1980, p. 62)

As task allocation minimizes IPC in conventional
distributed systems, the allocation of expert systems to
nodes and the allocation of problems to expert systems
minimizes IPC in the specific case of distributed expert
systems. An integer programming technique similar to the one
presented by Chu can be used to solve the expert system
allocation problem. Processing costs and communication c.sts
are <calculated for every expert system at every node.
Assignment of expert systems to nodes is based on minimizing
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the objective function, and therefore, maximizing !
perfor- ce. The system cost function for expert 0
syster .8 comprised of two cost components, processing cost o

and communication cost. One of the major tasks of using the

integer programming model is the evaluation of the system }
processing costs. Studies of literature concerning task -
allocation in a distributed environment have suggested the e
following list of variables pertinent to system cost: Al
N = execution frequency of a module B
accumulative execution time j%

by
&
&
"
=

r; = number of expert system rules J

s; = I/0 and level of coupling among rules ;‘
MIL = machine language instructions (Chu and Lan, ::
1984, p. 692) 4
tp(A) = processor turnaround time kﬁ
t(A) = task turnaround time (Shen and Tsai, 1985, p. >
198) i
ty = power of processor at the node &ﬁ

Other considerations:

Growth potential

>
Memory o
The values of r; and s; can be found by using the A* E&,
algorithm, which employs a cost function and an evaluation }h
function, as described later in this chapter. N is captured N
in S; through the cost function, and therefore becomes ;
statistically insignificant and can be dropped. AET, tp(A), Sf
and t(A) are inversely proportional to ty- AET is expressed f;
in machine language instructions, MIL. Machine instructions ;
vary from processor to processor. Measuring MIL across Ei
heterogeneous processors could require a significant ﬂ‘
normalization effort. Measuring execution cost with respect ;'
to the expert system rather than a specific processor’s -
instruction set provides a uniform measurement, and MIL is rj . g
/ ty. Considerations such as growth and memory are determined £§
by the power of the processor at the node, t,. “rocessing Eﬁ
b
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cost is the execution time of an expert system on a 3
processor. Execution time 1is a function of the number of .
rules fired to solve a given problem by an expert system, the ':
level of coupling among the rules, the amount of 1I/0 3
required, and the power of the CPU at the node. The following k
formula for processing cost was derived as part of this r.

. study: :.:“‘

Qi = £(rj, sj. Ty)

Combining the cost function and the evaluation function %
with respect to the power of the processor yields the cost of :
execution, qjy- g

The cost of processing an expert system 1is directly f
proportional to the number of rules in that expert system. 1
Any expert system will eventually test all its rules, even if '%
the level of coupling among the rules is =zero. Certain g;
queries will find an immediate match, while others will be
matched by the latter rules. On the average fifty per cent of E|
the rules in a system will be fired. The cost of executing a s
system is driven up by the total number of rules, ry. :t

ik = Ti N

The level of coupling is a factor which weights the o

rules. Rules that are highly coupled, that is, one rule fires 3%

one or more successive rules, are more costly to execute.
Rules which perform 1I/0 functions utilize more system
resources than those that do not. The number of rules is
weighted by the level of coupling and amount of I/0, and

SELT

A

therefore, r; is multiplied by s;. System cost is directly

proportional to s;.
Ak = 83 and gy = r;s;
The relationship between execution cost and the

P

processing power is straight forward. As the power of the CPU
increases, ceteras paribus, the time of system execution

i d ;A"l".{) "l ,‘

s

decreases. System cost is inversely proportional to t,.

Ak =1/

1®sansuntsn
o

.
s
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If expert system (i) is located on node (k), then the

processing cost, Qg of running problem (a) on expert system
(i) located on processor (k) is gq-

e d

.!:‘
ik = ry si / g !
: r; = number of rules in ES; !
X s; = I/0 overhead and level of coupling among t
i rules in ES; X
| t, = power of CPU at node k b
For the general case, the total system processing cost )
for any expert system located on any node is captured in the ;J
formula: o
Processing cost = Zkzi(qikxik) '“
where, q is the cost of processing expert system (i) »n 9
| processor (k), for all i and k, and from the assignment ﬁ
: matrix, x = 1 if expert system (i) is on processor (k) and O N
if it is not. r‘
The number of rules fired and the level of coupling among e,
the rules depends on the control structure of the expert Nt
system. Expert systems may use any of a number of control N
structures for search; depth-first, breadth-first, ’_
optimization, best first, branch-and-bound, or A* search. ﬁé
Depending on the type of problem and the control structure ﬁ
used, one can determine the state of search of a problem W
using tools such as evaluation functions or cost functions. .
When designing an expert system, these functions help to i;
clarify which search structure is best for a given problem by {
! identifying the number of states, levels of logic, which must ;
be transversed in order to reach a goal state. An evaluation 5
function can numerically represent the distance from the :J
goal, at any state in the search. 9
; The concept of measuring distance from the goal by number %_
‘ of states is also useful in determining processing cost. Each ’,
state transversed to reach the goal requires an additional ’ g:
number of rules fired. Different search structures will fire :i
a different number of rules for a problem, but regardless of - f
'
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the type of search, the distance from the goal can be
measured. By using an evaluation function one can determine
the number of states required to solve a problem by an expert
system.

To find r; and s;, each state must be evaluated in terms
of the number of rules fired, the level of coupling of the
rules, and I/O overhead. Optimal path searches, of which
there are two, are best suited to state evaluation in terms
of processing costs. The branch-and-bound search employs an
evaluation function, and, as do all evaluation functions, it
measures cost in terms of distance to the goal. This
"strategy may jump around among states ..., but it has a nice
property: the first path to the goal is guaranteed to be the
lowest-cost path to the goal"™ (Rowe, Ch. 9 p. 9). Evaluation
functions, however, account only for distance in terms of
states. With respect to expert systems, they do not account
for the number of rules fired in a given state or the cost of
executing operators within that state. Operators which
require I/0 have a higher system cost associated with them
due to the difference in speed of CPU processing versus
database access and calls to the operating system. The I/O
operators can be converted to standard work units for system
design and tuning purposes, as will be discussed later.

The A* (A star) search employees both an evaluation
function, to account for search distance, and a cost function
to assign values to the states based on the cost of the
operators within the states.

Combining the values of the evaluation and cost functions
provides a method of measuring r; and s;. Both functions
should use the same unit of measure. The processing cost
function measures the execution time of equivalent
instructions on a processor in terms of rules fired and I/O
requirements. Therefore, if the evaluation gives the distance
to the goal, the number of states to the goal, and the cost
function assigns a value to each state, based on rules fired
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and I/0 overhead the combination of the two yields the lowest
cost of processing a given problem on a node.

A specific example of how this 1is done <can be
demonstrated using the prototype distributed expert system.
The processing cost for expert system CRIME 1 to solve
problem (a) is calculated as follows:

dik = Ty 83/

Using A* search to trace r; and s; through each state
within an expert system is a variation of the state-space
search method, applied specifically to expert system
allocation. The purpose of this application of state-space
search is not to find the optimal weak homomorphism (Shen and
Tsai, 1985, p. 200) but to measure the processing cost
q;x ©of a possible system allocation or that of an existing
system. There are significant system design implications for
the A* algorithm which will be discussed in the concluding
chapter.

State-space search allows one to find the cost of the
path to the goal for a single problem. Applying the integer
programming method to the result of the A* algorithm sums the
processing costs of all problems that can be executed by all
expert systems at a given node to determine the system
processing cost for that node. The system objective function
can now optimize processing cost for all problems over all
nodes. It is now possible to allocate systems to nodes based
on minimizing processing cost, however, an optimum allocation
strategy must also consider communication costs.

Communications costs for the expert are decomposed into
volume and cost per unit. Volume is the amount of
communication required between expert systems, C;j, for
expert systems (i and j). Cost per unit volume, Cyir is the
cost of communicating between two processors, k and 1.

Volume of communication is not problem dependent when
allocating expert systems to nodes. The primary consideration
is the volume of communication necessary to create the
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interface between expert systems regardless of the problem to .ﬁ
be solved. Volume becomes problem dependent at the task ﬁ'
allocation level. That is, how to decide which problem should ?
be run on which expert system, based on cost verses solution )
payback. Volume becomes problem dependent at the system R
level only if the system solves a single problem or if task g
allocation is static. Both of these situations are »ﬁ
uninteresting from an interactive GDSS point of view and will o
not be discussed further. A static allocation problem can be 4
solved using the dynamic allocation model. ;
The formula for determining communication cost is 'é
developed by combining volume of communication with cost per ;‘
unit volume with respect to the assignment matrix: ﬁ
Communication cost = zkzl(cijcklxikle) ﬁ

Other variables for communication cost suggested by ;}
previous studies: %

V = average number of words communicated
M-F

L average number of words per update (Chu and Lan,
1984, p. 692)

V and L are captured by cij' and M-F is represented in Ck1-

L5

i

number of updates

P

-

Total system cost is realized by combining processing and
communication costs:

T

Total system cost = Zkzlfqijxij + Zkzl(cijcklxikle)]
Optimum allocation can be realized by minimizing total
cost subject to:

real-time constraint:

- oy v, e s

Z(ulxikS Tk)' k=1,...,n .
where, u = processing time required by ES (i) hty
]
T = time constraint for processing ES (i) on node \
(k) and, ™
memory constraint: )
Z(Sixik < Rk)' k = 1,...,n :E
where, s = memory required by ES (i) ]
>
r = maximum memory in node k. X
)
-
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The expert system allocation formula is similar to the
general format for distributed systems derived by Chu (1980):

Cost (X) = IyZilajp + xipt Ticrdycr (WVigdixRix*41) ]
For the model system implemented on the LAN, distance (d) is
considered constant and insignificant to communication cost
and will be ignored. As well, the normalization factor (w) is
unnecessary, as units of measure are consistent throughout
the model.

To look at a specific problem on the model, suppose the
problem is problem "a". There is some probability associated
with each expert system in the model which is the likelihood
that the system will be called to solve problem a. There 1is
likewise some probability associated with each expert system
for every problem solvable by the distributed expert system
model. The probability that a system is called to solve a
problem can be applied to the processing costs and
communication costs of executing that problem on the
individual expert system. Summing the costs of every expert
system called to solve the problem solution yields the cost
of solving that individual problem on the distributed system.
Summing the costs of all the individual problems on the
system determines the total system cost.

Cost = ILyZ; [qyyX;p*t ZZy (C55CK1% k% 41)]

The distributed expert system model has four expert
systems; META, CRIME 1, CREDIT 1, and CREDIT_2Z, to be
referred to in the equation as ES1, ES2, ES3, and ES4
respectively. The probability that expert system 1 is called
is Ppgy- the probability that problem a is executed is P,. As
discussed in the previous chapter, all nodes communicate via
the blackboard, which will be represented as node 5. During
each <call, a node both writes to and reads from the
blackboard. Therefore, communication costs between nodes 1
and 2 via node 5 is 2C;5+2C,:.
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The problem of optimizing the allocation of problems on
the system can be solved by the following equation: \

f Cost = PEg) (Paq;+ Pyt Poqp) +

+ +
) Pc(q2+ 2015 + 2C25)] + ;
W PES3{P_[g3+ 2C g+ 2C35+ Ppga(Qg+ 2C35+ 2C,4e)] + 1

Polag* 2C g+ 2C35+ Ppgq (gt 2C35% 2C45) 1)
The problem of optimizing the allocation of expert

::! systems to nodes is more complicated when considering the

") processing and communication costs for the entire set of

problems to be solved by the expert systems. The above
equation must now be solved for each expert system on each

O node, and the equation is expanded as follows:

[ (
N Cost = Ppgy (Paq11%1+ Ppd11¥1t Pod11¥1% Padio¥ot Ppdioxot ‘
’ Pod12%2% pad13*3% Ppdiz*3t PodizX3* PadpgXgt

2 - PpapgXgt Podigqxg) ¢t

Ppga [Pa(dpyXp* QpoXp+ dp3Xpt dpg%pt 2Cig% 2C55) .
Pp(Qp1Xp+ dpp%2+ qp3xXp+ qpgxpt 2C g+ 2Cyg)+

. Polapyxpt dppXp+ dp3Xp+ dpgXpt 2Cig% 2Cpg)+

N Ppg3{Pala3 X3+ q3px3+ q33x3+ g%yt 2C g+ 2C35+

B Ppsq (dg1%q% 942%4% d43%4% qag%g4t 2C35
2C45) 1+ Pplazi¥3+ d3p%x3*t d33%3+ d34%3*
2C 5% 2C35+ PpgqldgyXg* dgq2%g4* dgq3%¢*
dgq%qt 2C35% 2C45) 1+ Polaz x3+ qzpx3+

o 1

'. q33X3+ q34X3+ ZC 5+ 2035"" )

U

% Ppgg (dg1X4qt dgp%gt dg3%gt dgq%g* 2C35t ‘
2C,5) 1)

! Assume ES, is located on node 1, E52 on node 2, ES3 on
\', node 3, and ES, on node 4 with node 5 as the blackboard.
Problem "a" will be solved, and all expert systems are called

"y to reach a solution.
W
Cost = g9 + (qyy + 2Cyg + 2Cyg) + [a33 + 2Cyg t+ 2C3g +

(]
]

--------------------
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For problem (a) on q,; there are 83 rules. These rules o
perform I/0 functions or are coupled to other rules 51 m)
Vo

times. The power of the 8086 processor on the IBM PC LAN is
4.77MHz.

@

91 = T3 si / tx - B
=83 x 51 / 4.77 = 4233 / 4.77 = 887.42 .
+ oF
A
4y, = 40 x 26 / 4.77 = 1040 / 4.77 = 218.03 N
+ ??
2Cy15 = 2(C34Cx1) °
= 2(2 x 2) = 8 §§
%
+ A
2C5e = 2(1 x 2) =4 4
+ :'
gaz = 80 x 46 / 4.77 = 3680 / 4.77 = 771.49 v
33 ]
+ .':t
|.g
+ P
Qqq = 40 x 26 / 4.77 = 1040 / 4.77 = 218.03 : ?;
+ J
Cost = 887.42 + 218.03 + 8 + 4 + 771.49 + 2 + 218.03 + 2 2
= 2110.97 N
N
o

For this example the level of coupling was determined by
the number of times a rule fires additional rules or invokes
an I/0 function. The module "get_credit_ 1" has a coupling

il Y
ey

L8

C Tt
SRR A

&
r

.

. ".
[

value of 6.
get_credit_1:-
* directory(’c:\credit_1.rep’, ,_,T,D,_),

L base_time_c,

Pa b SRR

L base_date_c,

42
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I # new_time c(T),
o # new_date_c (D),
. asserta(base_d c(D)),

T W

asserta(base_t _c(T)),

i * shell (‘copy c: credit l.rep’),
;' open(H,’'credit _1l.rep,r), !
SO read_val (H), X
" close (H) . :
a There are two calls to the operating system (*) and four
? additional rules fired (#). It is assumed that vertical '
k communications cost twice as much as peer-to-peer }
communications and that META is sending twice the message
N volume as the other systems. f
Q‘ The resultant value is a magnitude. It can applied across 9
r heterogeneous processors, with regard to the value of g, and :
: to dissimilar networks, with regard to C. The value of g ,
& may be converted to equivalent instructions on a specific f
& machine and the time of execution on that machine. C A
) - represents the number of messages sent and the wvalue of the :
" data. The end result can be measured in terms of the
Ko standard work unit (SWU). In terms of the interactive Y
f environment, the SWU is the single most important concept.
§ Applications built within parameters of the standard work
’ unit minimize critical resources used for execution and
A uniformly apply the discipline of controlling resource
' consumption across all applications within the system. 4
. (Inmon, 1983, p. 75) 1
. A magnitude expressed in terms of performance
e constraints, such as the SWU, provides an optimal means of :
. allocating expert systems. A threshold number of rules or .
' processor speed is not necessary, as the number of rules, N
* level of coupling among rules, and power of the processor are ]
) contained in the objective function. ¥
it Through the use of distributed expert systems, it 1is X
‘; possible to solve problems previously thought to be too broad by
K 43 3
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for expert system application. A large knowledge domain may
be partitioned into distinct areas of expertise which are
incorporated into separate expert systems. Overall problem
management is performed by the meta expert system. The system
allocation function can be applied to any specific
configuration to determine to determine where these expert

systems should reside. If the problem can be solved by more

than one expert system, or if it may be necessary to solve
only part of a problem, the task allocation function can
determine which expert system should be <called. Integer

-

programming allows che to determine the optimal use of the
distributed system. Programming the selection criteria into
1 the meta system automates the optimization process of task

allocation.

- e -
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V. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

A. CONCLUSIONS

This thesis has shown that implementation of distributed
expert systems 1is possible on a Local Area Network. By
distributing expertise within group expert systems, it is
feasible to solve large problems using artificial
intelligence applications on PC’s.

If the problem domain is one that is factorable, then
independent expert systems can solve portions of the problem.
The domain must be factored into discrete areas of expertise
which can be distributed across the nodes of a network.
Solutions from these expert systems can be synthesized by a
single system to solve the meta problem.

The general architecture for group expert systems
consists of a communication structure, a meta expert system,
and consultant expert systems. The communication mechanism
should be independent of the specific function of the expert
systems in the group. It 1is merely a vehicle to invoke
consultant expert systems, pass problem information and
solutions, and perform I/0 functions. Vertical communications
between the meta and consultant systems and horizontal peer-
to-peer communications between consultant systems must be
supported.

The meta expert system manages the problem solution. It
identifies, validates, and decomposes the problem. The meta
system determines problem~domain and domain-domain
relationships and devolves the problem to the appropriate
expert systems. When given a choice of consultant expert
systems within the same domain, it selects a system based on
a cost verses problem pay-back criteria. Inputs from
consultant expert systems are then synthesized into a problem
solution by the meta system.

The consultant expert systems read and validate the
problem input. These expert systems may consult with each

45
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‘™ other on a peer-to-peer basis during the formulation of a
« problem solution within its own domain. They then communicate
hy vertically their individual solutions to the meta system.
This general architecture supports the solution of any
problem for which the knowledge domain is factorable. The
W architecture is not affected by the specific nature of the

ﬁ: problem. -
The optimal location for an expert system on the network
iﬁ can be determined by minimizing system cost. System cost has
3& two significant components, processing cost and communication
;ﬁ. cost. Communication cost is straight-forward. It is a factor
of the volume of communication, Cij' multiplied by the cost
fﬁ per unit of volume, Cy,.
X Processing cost, Qi for expert systems was found to be
ﬁ; a function of the number of rules in an expert system, Ty,
p the level of coupling among the rules, 8;, and the power of
;ﬂ the CPU at the node, t,. The relationship is the formula:
33:..: Uk = Ty Si /
$’ Using integer programming, minimum total system cost can
5 be obtained by minimizing the following objective function:
3% Cost = zkxl[qijxij+zkzl(Cijcklxikle)]
fk The end result is a magnitude which can be applied to expert
h. systems across heterogeneous processors. Optimum distribution
. is important to both system design and tuning.
i
3“ 2. FUTURE RESEARCH
3# The group expert system developed in this thesis is a
_; pioneering model used to prove the possibility of
E& implementing group expert systems on a PC LAN, to demonstrate
e a method of system allocation, and to propose an architecture
'i; for group expert systems. This unique prototype is limited by
: the purposes for which it was created and the environment in
:: which it was implemented.
> Expansion of the model itself offers several directions
,Zé for future research. To make the GESP system practical it
%: 46
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should be implemented on a distributed operating system. The
advent of multitasking microcomputer operating systems, such
as 0S/2, will allow calling procedures for consultant expert
systems to be efficient. The processor need not be dedicated
to a polling procedure to receive information, and the use of
a blackboard can be eliminated.

In a distributed environment the communication
architecture can be totally generic. There will be no need to
communicate by sending problem-specific files. The goal is to
create a communication ES which 1is completely problem-
independent, achieving the first level of modularity.
Adhering to a modular communication structure will allow
multiple group expert systems to co-exist on the network and
be controlled by a single communication expert system, CES.
The CES will know of all other expert systems in the GES and
of all problems the GES is capable of solving. The generic
CES can be located at any or all nodes in the network. A user
can then enter the GES from any node and solve any problem in
the GES. To make this extension from the GESP system one must
a CES separate from the meta ES. It is the meta ES that
achieves the second level of modularity, the factoring of the
problem domain, and synthesizes the problem solution.

The ultimate extension of this study would be the
implementation of a group expert system on a Wide Area
Network. Aside from the obvious differences in communication
requirements, the implications for GES and individual expert
system architecture will need to be studied. Wide Area
Network GES offer tremendous potential support for both the
strategic c3 environment and managerial decision making in

the private sector.
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" APPENDIX

§ SOURCE CODE FOR GESP

‘

: /* META.ARI * / |
o /* database */ -
% base _t b(time(0,0,0,0)). '
" base_d_b(date(0,0,0)).

g base_t_c(time(0,0,0,0)).

- base_d_c(date(0,0,0)).

% base t_d(time(0,0,0,0)) . ‘
I base_d_d(date(0,0,0)). :
. base_t_e(time(0,0,0,0)).

e base_d_e(date(0,0,0)). y
R basa_t_f(time(0,0,0,0)).

a base_d_f(date(0,0,0)).

ﬁ member (Probs, {a,b,c,d,e, f]). ‘
g

3 consult_es(a, [crime_1,credit_1]).

] consult_es (b, {crime_1]).

2 consult_es(c, [credit_1]).

fE consult_es(d, [psych_1,credit_3]).

;' consuit _es (e, [crime_1,credit_l,psych_1]). ‘
'* consult_es(f, (credit_3,crime_1,psych_1]).

By f

/* rules */

:- public main/O.

§ main:-

> prob_read,
N prob_features,
prob_soln,
\'
-~ find soln, \
L% - \
' retract (prob_stmt (P-~b_Stmt)). /* Do this last. */ 4
)
K,
b 48
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-

prob_read:-

nl, -
write ('input problem statement:’), $,

o]

read(Prob_Stmt), "
asserta(prob_stmt (Prob_Stmt)). s

Rt

prob_features:- A
call (prob_stmt (Prob_Stmt)), >
ifthenelse (member (Prob_Stmt,Probs),meta a,exit). ~
member (X, [X]_]). :?
member (X, [_|Y]) :- member(X,Y). 5
Y4

WX

meta_a:- z:’
subfeatures (E_Sys), +
put_k files(E_Sys), .'
write(’'kfile written’). 3

A

exit:- .':
)

nl,write(’Could not interpret’). i'
3
N

"

put_k files(E_Sys):- ~
create (H3,’k_file.inp’), -
write(H3,'es(’),write(H3,E_Sys),write(H3,’).’),nl(H3), ;'
close (H3), P
shell (copy k_file.inp c:’). :

' -
o

subfeatures(E_Sys) : - ’
call (prob_stmt (Prob_Stmt)), 3

)

consult_es(Prob_ Stmt,E_Sys). ,
5
2

prob_soln:-
call (prob_stmt (Prob_Stmt)), o

-

ifthen (Prob_Stmt=a, report_a); S
ifthen (Prob_Stmt=b, report_Db); o
I
'
~
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’
ifthen(Prob_Stmt=c, report_c); \
ifthen(Prob_Stmt=d,report_d); g

My
ifthen(Prob_Stmt=e,report_e); ,:

r

ifthen(Prob_Stmt=f,report_f). ‘
TN

report_a:-~ J
get crime_1, W

I.'

get_credit_1. -
'3

-

Wi
report_b:- N
v
get_crime_1. iy

A

»
report_c:- "
(
get_credit_1. h

¢
'

report_d:- ;.
get_psych_1, fz
get _credit_3. -3
o

report_e:- »
get _crime_1, o
get_credit_1. 3

:‘;.

report_f:- »
A

Lot A0 L A S0

get_crime_1,
get_credit_3,

- -

get_psych_1.

‘r,ir J [ J

get_crime_1:-

directory(’c:\crime_l.rep',_,_,T,D,_),

- .
22

b

base_time_Db,

Y
base date_Db, >
new_time_b(T), :;
new _date_b(D), ;E
asserta(base_d b(D)), ﬂm'

»
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asserta(base_t_b(T)),

shell (‘copy c: crime_l.rep’),
open(H,’crime _l.rep’,r),
read_val (H),

close (H) .

get_credit_1:-

directory(‘c:\credit_l.rep’, ,
base time_c,

base_date_gc,

new_time_c(T),

new_date c (D),
asserta(base_d_c (D)),
asserta(base_t _c(T)),

shell (‘copy c: credit_1l.rep’),
open (H, ‘credit_l.rep’,r),
read_val (H),

close (H) .

get _psych 1:-

r T,D,

directory('c:\psych_l.rep’, , ,T,D, )

base time_d,

base_date_d,

new_time d(T),

new_date_d (D),
asserta(base_d_d(D)),
asserta(base_t_d(T)),

shell (‘copy c: psych l.rep’),
open(H, "psych _1l.rep’,r),
read_val (H),

close(H) .

get_credit_2:-

Sl

directory(’c:\credit_2.rep’, , ,T,D,_).,

base_time_e,

51

m\‘ ™ W N T Y N my(.\ "’:. p PN AN

Ry

).

’

» 19y

-'.I*‘U.'*If ‘._:" ) -}" v.n‘.ln.-{-“. . ~“‘, Ve



3 e ek - 0 g oA N 0T 0 AR S AT AN S aR a4 e 290, 8°0 24200 04 . 2L 99 2% 4% 2ty Bt 1\ b 4™ 0" e M At  a e a%) ' ‘4 aty ghg gty gty

N
"
: :
" base_date_e,
i
4 new _time e(T),
X new_date_e (D), .
' asserta(base d e(D)),
s asserta(base_t_e(T)), 3
W 0
; shell (‘copy c: credit_2.rep’), '
g open (H, 'credit_2.rep’,r), "
! read_val (H),
& close(H) . 2
: 3
}
. get_credit_3:-
directory(’'c:\credit_3.rep’, ,_,T,D,_),
" base time f,
. - -
‘ base_date_f, ‘
2 new_time_f(T), I
' new_date_f (D),
i) asserta(base_d_f(D)), 2
4
¥ asserta(base t f(T)), A
X '
K shell ('copy c: credit_3.rep’), - "
‘ open (H, 'credit_3.rep’,r),
N read_val (H), .
ﬁ close(H) . ]
4
base_time b:- base_t_b(time(W,X,Y,2)).
; .t
L base_date_b:- base_d_b(date(X,Y,2)). :
‘ \
base time_c:- base_t_c(time(W,X,Y,2)).
A
' base date c:- base_d c(date(X,Y,2)). '
|. - - U
' base time d:- base_t_d(time(W,X,Y,2)).
;‘ ~
)
K base_date d:- base_d_d(date(X,Y,2)). N
¥ :
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base_time_e:- base_t_e(time(W,X,Y,2)). o

S

base_date_e:- base_d_e(date(X,Y,2Z)).

base_time_f:- base_t_f(time(W,X,Y,2)).

i

[ .
{ *
L) LA
' base_date f:- base_d_f(date(X,Y,Z)). €
L] A
) new_time b(T):- N
i base_t b(B_T), :
, LJ
’ ifthenelse (T=B_T, keep_looking_k,set_new_time). ¢
- _new_ §
t new_date_b (D) : - N
; base d b(B_D), y
) - g
! ifthenelse (D=B_D,keep_looking k,set_new_date). :
new_time_c(T):- ;

" base t c(B_T), X
o ifthenelse (T=B T, keep_looking_k,set_new_time). e
o ;
new_date_c (D) :- i

4

b base_d c(B_D),
k. ifthenelse (D=B D, keep_looking_ k,set_new_date).

K new_time_d(T) :~ i
base_t_d(B_T),
) ifthenelse (T=B_T,keep_looking k,set_new_time).

new_date d(D):- By
. base_d d(B_D), o
3 ifthenelse (D=B_D, keep_looking_k,set_new_date).

new_time_e(T):~-
base_t_e(B_T),

' ifthenelse (T=B_T, keep_looking_k,set_new_time).
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4
N
new_date_e (D) : - '
base_d_e(B D), ]
- (]
ifthenelse (D=B_D,6keep_looking_k, set_new_date). ..
o,
LY
new_time_f£(T):- o~
base t £(B_T), _ .;
ifthenelse (T=B_T, keep looking_k,set_new_time) . )
‘;‘
new_date_ f (D) :- ?
base_d_£(B_D), XAl
- - bt
ifthenelse (D=B_D, keep_looking_k, set_new_date) . “
set new_time:- retract(base_t_b (time (W, X,Y,2))). :&
{
« .:
set new date:- retract(base_d_b(date(X,Y,2))). "
L
set_new___time := retract (base_t _c (time (W,X,Y,2))). %’
]
'I
set_new_date:-~ retract(base_d c(date(X,Y,2))). . '
o
L sy
set_new_time:~ retract(base_t_d(time(W,X,Y,2))). :c
3
c_g
set _new_date:- retract(base_d_d(date(X,Y,2))). L
i
set _new_time:- retract(base_t_e(time(W,X,Y,2))). .‘.’:
S
set new_date:- retract(base_d_e(date(X,Y,Z))). :"
set new_time:- retract(base t_f(time(W,X,Y,2))). =
24
set_new date:- retract(base_d_f(time(X,Y,Z))). e
N
read_val (H) :- ';:
.
repeat, .
.
®
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.!:
'
read (H,T), o
asserta(T), .
recordz (val,T, ), $
A
T=end_of file. y
‘
y
find_soln:- M
add. :l
h
add: - '
findall (X, score (X),L), &
d
L=[L1,L2], 9
Total is L1+L2, ’
write (Total), é
4
ifthen(Total>300,action_1); m
ifthen(L1>160,action_1);
ifthen(L2>180,action_1); y
ifthen (Total=<300,action_2); 4
ifthen(L1=<160,action_2); \
ifthen (L2=<180,action_2). A
action_1:- i
write (’Further investigation required.’). b
F
v,
action_2:- .
write (' Subject requires no further investigation.’). !
:
keep_looking_k:- tf
)
prob_soln. )
7,
v
/* end META.ARI */ m
e
;
N
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"
/* CRIME 1.ARI */ )
/* database */ hﬂ
base_t(time(0,0,0,0)). 0y
base_d(date(0,0,0)). >
1
"
/*  rules */ b
"
N
:- public main/O.

. iy
main:- ?ﬂ
directory(’c:\k_file.inp’, , ,T,D, ), Bl
base_time, ﬁ‘
base_date, [
new_time(T), )
new date (D), 3
asserta(base_d (D)), >
asserta(base_t(T)), i_
shell (‘copy c:k_file.inp’), :&
open(H,'k file.inp’,r), *&
- ]

read val (H), !

close(H),
(( find_soln,

‘l" rq.'
Ead -

calc_soln,

S5

“
report_meta ) ; ]
keep_looking_k). ®

e
P
base_time:- base_t (time(W,X,Y,2)). N
o
Pt
base_date:- base_d(date(X,Y,2)). !
o

-

C R R n

new_time(T):-
base_t (B_T),
ifthenelse (T=B_T,6 keep_looking_k,set_new_time).

PR

e

-

new_date (D) : -
base_d(B_D),

» s
2

et A
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ifthenelse (D=B_D, keep_looking_k,set_new_date). A

o

set_new_time:- retract(base_t(time(W,X,Y,Z))). N

set _new_date:- retract(base_d(date(X,Y,2))). o

read_val(H) :- %
repeat,

read(H,T), )

asserta(T), §

recordz(val,T, ), b

T=end_of file. a

4

find_soln:- v

find_es(E_Sys). g

'

find_es (E_Sys) :- 2

call (es(E_Sys)), i}

member (crime_1,E_Sys) . e,

X

calc_soln:- asserta(score(180)). !

8

/* A score of 180 is asserted for demo purposes. */ E§

/* The actual criminal database would be called here. */ b

%

:

member (X, (X|_]). :t

‘ member (X, [_|Y]) : - member (X,Y). o

report_meta:-
call (score (X)),
create(H3,'crime_l.rep’),
write(H3, ' score(’),write(H3,X),write(H3,’).’),nl (H3), )

o 5

close (H3), R
R

shell (’‘copy crime l.rep c:’'), o

]

keep_looking_k. %f
)

-
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keep_looking k:- '
main. )

/* End CRIME_1.ARI */ . v

o
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b

/* CREDIT_ 1.ARI */ :
/* database */
base_t(time(0,0,0,0)). )
base d(date(0,0,0)). 'J
base t_ c(time(0,0,0,0)). 3
base_d c(date(0,0,0)). 3
W%
/* rules */ ™
:- public main/O. ;
main:- )
directory(’c:\k_file.inp’, , ,T,D,_), r
base time, ‘
base_date, 3
new_time(T), 4
new_date (D), i
asserta(base_d (D)), e
asserta(base_t(T)), ;E
shell (‘copy c:k_file.inp’), g
open(H, 'k file.inp’,r), h
read_val (H), ﬁ
close (H), ‘ﬁ
(( find_soln, )
report_meta ) ; »E
keep looking k). ;‘
"
¢
base time:- base_t (time(W,X,Y,2)). )
A
base date:- base_d(date(X,Y,2)). R
3
new time(T):- 4
base_t (B_T), o
ifthenelse (T=B_T, keep_looking_k,set_new_time). :F‘
=
new_date (D) :- ;
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base_d(B_D),
ifthenelse (D=B_D, keep_looking k,set new_date).

set_new_time:- retract(base_t(time(W,X,Y,2))).
set_new_date:- retract(base_d(date(X,Y,Z))).

read_val (H) :-
repeat,
read(H, T),
asserta(T),
recordz(val,T, ),
T=end_of_ file.

find_soln:-
find_es (E_Sys),

calc_soln.

find_es(E_Sys):-
call (es(E_Sys)),
member (credit_1,E_Sys).

member (X, (X[ _]).
member (X, [ _|Y]) :- member(X,Y).

calc_soln:-

! /* do credit calc & insert X for 161 */

| asserta(score_1(161)),

call (score_1(161)),
ifthenelse(score_1(161)>160,get_credit_2,put_score_1).

put_score 1:-

/* call(score_1(161),
S=(161),
asserta(score(l6l)), */

60
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report meta.

get credit_2:-

put_k files,

f write(’kfile written’). 4
J \
L get_k_files, v

calc_consult.

calc_consult:-

call(score_1 (X)), .
! call (score_2(Y)), E‘
ifthenelse(score_2(Y)>score_1 (X),put_score_-
2,put_score_1).

put_k_files:-

create (H4,'credit_l.inp'),
write(H4,'es(’),write(H4,credit_2),write(H4,’).’),nl(H-

close(H4),
shell (' copy credit l.inp c:’').

5
: get_k_files:- n
/ directory(’c:\credit 2.rep’, ,_,T,D,_), ;
' base_time_c, |
K base_date_c, i
new_time_c(T), vt
b new_date_c (D), §
) asserta(base_d _c (D)),
7 asserta(base_t_c(T)), 3
‘ shell ('copy c: credit_2.rep’), ;
K open (H, ' credit_2.rep’,r), ﬁ
i read_val c(H), T
) close(H) . ij
, ;
i base time_c:- base_t_c(time(W,X,Y,2)). i
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base _date_c:- base_d_c(date(X,Y,2)).

new_time_c(T) :-
base t_c(B_T),

ifthenelse (T=B_T, keep_looking_k,set_new_time_c).

new_date_c(D) :-
base_d_c(B_D),

ifthenelse (D=B D, keep_looking_k, set_new_date_c).
set _new_time_c:- retract (base_t_c(time(W,X,¥,2))) .
set_new date_c:- retract(base_d_c(date(X,Y,2))).

read val c(H):-
repeat,
read(H,T),
asserta(T),
recordz(val,T, ),
T=end_of file.

report_meta:-
call (score (X)),
create (H3,'credit_l.rep’),
write(H3,’score(’),write(H3,X),write(HB,').’),nl(H3),
close (H3),
shell (' copy credit_l.rep c:’),
keep_looking_k.

keep_looking_k:-

main.

/* end CREDIT_1.ARI */
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/* CREDIT_2.ARI */
/* database * /

/*

base_t (time(0,0,0,0)) .
base_d(date(0,0,0)).

rules */

:- public main/O0.

main: -

((

directory(’c:\credit_l.inp’,

base_time,

base_date,

new_time (T),

new_date (D),
asserta(base_d (D)),
asserta(base t(T)),

shell (‘copy c:credit_1l.inp’),
open(H, 'credit_1l.inp’,r),
read_val (H),

close(H),

find_soln,

calc_soln,

report_meta ) ;

keep looking k).

base time:- base_ t(time(W,X,Y,2)).

base date:- base d(date(X,Y,2)).

new _time(T):-

base t(B_T),

r_+TeDy )y

ifthenelse (T=B_T, keep looking k,set_new_time).

new_date(D) : -
base _d(B_D),

I T I S PR e 0 TR TIS
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ifthenelse(D=B_D, keep_looking k,set_new_date).

: A
i )
1]
) set new time:- retract (base t(time(W,X,Y¥,2))). -
y -7 - /]
set _new_date:- retract(base_d(date(X,Y,2))). 3
5
v b
% read val (H) :- :
; - ]
repeat,
read(H,T), ?
asserta(T), :}
¥ recordz(val, T, ), k
' T=end _of file.
)
¢ b
it 4
\ find soln:- ?
[} - J
s find_es (E_Sys). 5
" find _es(E_Sys):- H
» call (es(E_Sys)), :
' member (credit_1,E_Sys) . ,
»
Y
: calc_soln:- asserta(score(l60)). .
3 .
' >
4 /* A score of 160 is asserted for demo purposes. */ -~
Y
/* The actual credit database would be called here */
; 3
1 member (X, [X]|_]). )
» (
K member (X, [ |Y]) :- member(X,Y).
R
y report_meta:- \
call (score (X)), ¢
;: create (H3, 'credit_2.rep’), ;
; write (H3,’score(’),write(H3,X),write(H3,’).’),nl (H3), ’
L4
: close (H3), <
A shell (' copy credit 2.rep c:'), 3
4 ke~ looking k. ;
N
:. 6 4 l.
‘l e
> * ¢
[} :
] 3
X A
; N
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keep_looking k:-
main.

/* end CREDIT_2.ARI */
~Z
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¥

r /* CREDIT_ 3.ARI */

& /* database */

5 base_t (time(0,0,0,0)).

& base_d(date(0,0,0)).

"

g /* rules */

2 :

W :- public main/O.

o main:-

iZ directory(’c:\k_file.inp’, ,_ ,T,D,_), !
' base_time, f
! base_date, ;
w new_time(T),

N new_date (D),

. asserta(base_d (D)), ;
' asserta(base_t(T)),

ﬁ shell (‘copy c:k_file.inp’),

i‘ open(H,’'k_file.inp’, ), (
d read_val (H), '
h close (H), '
I (( find_soln, .4
o calc_soln,

“

M report_meta ) ;
(3
E keep looking k).

base_time:- base t(time(W,X,Y,Z)).

S AT

base_date:- base_d(date(X,Y,2)).

new_time(T) :-
base t(B_T),
ifthenelse (T=B_T, keep looking k,set_new_time).

% new_date (D) : -
P base _d(B_D),
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R ifthenelse(D=B_p,keep_looking_k,set_new_date). ',
; :
f set_new_time:- retract(base_t(time(W,X,Y,2))). 2
§ set_new_date:- retract(base d(date(X,Y,2))). X
. +
"
L)
[ read val (H) :- §
A _
- repeat, .
" read(H,T),
\
; asserta(T),
R recordz(val,T, ), .
K T=end_of_file. .
!
A Y
; find_soln:- :
i find_es (E_Sys) . 3
N find_es(E_Sys) :- 4
(] {
§ call (es(E_Sys)), \
i member (credit_3,E_Sys). &
0 calc_soln:- asserta(score(160)). :
L .
\ /* A score of 160 is asserted for demo purposes. */ }
. /* The actual credit database should be called here. */ o
. member (X, [x]_]). 3
] 9
W member (X, [ |Y]):~ member(X,Y). 3
: report_meta:- ;
call (score (X)), A
b create (H3,’crdeit 3.rep’),
write(H3,’score(’),write(H3,X),write(HB,').’),nl(H3),
N close (H3), K
; shell (' copy credit_3.rep c:'), ;
keep_looking k. ¢
. 67 3
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XX

keep_looking_k:-

i ’
main. )

S
/*  End CREDIT_3.ARI */ !
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g
/* PSYCH_1.ARI */ j
! /* database */ X
Y base_t (time(0,0,0,0)). ]
' base_d(date(0,0,0)). '
' \
k /* rules * / E
‘ := public main/O. .
¥ main:- 3
: directory(’c:\k_file.inp’, , ,T,D,_), N
E base time, s
’ base_date,
. new_time(T), i
b new date (D), N
: asserta(base_d(D)), :
' asserta(base_t(T)), .
j shell ('copy c:k_file.inp'), f
) open(H,'k_file.inp’,r), 4
E read_val (H), 4
! close (H),
F (( find soln, .
" calc_soln, X
report_meta ) ; ‘j
keep looking k). ’
5 base time:- base_t(time(W,X,Y,2)). A
S
: base_date:- base_d(date(X,Y,Z)). g
new_time(T) :- :
, base t(B_T), 2
: ifthenelse(T=B_T, keep looking k,set_new_time).
N
new_date(D) : - &
base_d(B_D), N
x 69 §
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3
ifthenelse (D=B_D, keep_looking k, set_new_date) . ¢‘
)
e,
set new_time:- retract(base t(time(W,X,Y,2))). =3
»
set new_date:- retract(base d(date(X,Y,Z))). Pf
|||:
gt
read val (H) :- 23
repeat, ),
read(H,T), 2
asserta(T), #E
recordz(val,T, ), ﬁ
T=end_of_ file.
\
...:
find soln:- o
find_es(E_Sys) . K
!
find_es (E_Sys) :- oy
Vel
call (es(E_Sys)), i
member (psych_1,E_Sys) . ' Pﬁ
calc_soln:~ asserta(score(170)). v 5‘
o~
/* A score of 170 is asserted for demo purposes. */ ;‘
/* The actual psychological database should be called here. ?
*/ A
gl
o
member (X, [X]|_]). HN
member (X, {_[Y]) :- member (X,Y). L]
report_meta:- D
call (score (X)), _,-l'
create(H3,'psych_l.rep’), ’
write (H3,'score(’),write (H3,X),write(H3,’).’),nl (H3), ‘f
close(H3), A
shell (' copy psych_l.rep c:’), ﬂ
’
g
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keep_looking k.

keep_looking k:-

main.

/* End PSYCH_1.ARI */
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