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Abstract

Recent advances in psychometrics and computer technology

encourage the development of model-based methods of individualized

testing on a microcomputer, where each examinee receives short

tests and the number of pretest items that can be administered is

severely restricted. On-line (i.e., data is collected on

operational equipment) methods for calibrating pretest items in

this setting face new challenges. In the context of adaptive

testing, two LOGIST-based methods of on-line calibration were

developed and are described. These two methods are tried out and

compared in a simulation study using data for the CAT-ASVAB.
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Introduction

Conventional mode.- of testing, where every examinee takes a

single test form (or parallel versions of it) in large

administrations using paper and pencil as the delivery and

recording medium, belong to the past. Recent ddvances in both

psychometrics and computer technology seem to point in the

direction of model-based methods of individualized testing on a

microcomputer, where each examinee receives short tests and

testing is generally done on a demand basis. Much has been

written about adaptive testing in this latter context. But other

new methods of testing, for example model-based mastery testing or

work-sample testing, may also be designed as short tests

administered by computer to small samples of examinees.

Traditional methods of estimating parameters for items,

particularly model-based parameters as opposed to conventional

psychometric parameters such as proportions-correct, depend upon

relatively large numbers of examinees taking relatively large

numbers of items. This is especially true for the more frequently

used complex models, such as the 3-parameter logistic model.

Model-based testing requires, moreover, item parameter estimates

in order to design tests. The challenge is to develop new methods

of item parameter estimation (calibration) that capitalize on
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computerized testing modes without destroying the advantages of

short computerized tests. These methods are generally referred to

as 'on-line' calibration methods because the data collected for

calibration of new items comes from the administration of these

items on operational equipment as part of an examinee's testing o

session.

In some contexts, the acquisition of sufficient numbers of

examinees for adequate parameter estimation in on-line calibration

may be problematical. In these situations, it may be possible to

accumulate a reasonable number of examinees over a realistic time

frame. If this is not feasible, then on-line calibration methods

that are more optimal for this situation than those described here

need to be developed.

Even if the number of examinees is sufficient, a central

problem, in any application of on-line calibration, is how to

obtain adequate calibrations of pretest items when both the length

of the computerized test is very short and the number of extra

items that can be administered in pretest mode to an examinee is

severely restricted. The current context of the particular

methods of on-line calibration reported here is adaptive testing

for the Armed Services Vocational Aptitude Battery (ASVAB). The

results, however, are more general and apply to other modes of

'I'h0
10
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computerized testing that rely on recent advances in psychometric

theory.

Remaining sections of this paper will describe the current

project and its design, two methods of on-line calibration based

on the estimation procedures in the LOGIST computer program

(Wingersky, 1983) and the efficacy of these methods in the context

of adaptive testing, and how these and other similar on-line

calibration methods might be improved in the context of adaptive

testing as well as other types of computerized testing.

The Current Project

A number of agencies of the Department of Defense funded a

three-year project to develop and evaluate different methods of

on-line calibration for the computerized adaptive Armed Services

Vocational Aptitude Battery (CAT-ASVAB). Although exploration of

general classes of item calibration methods was encouraged in this

context, final results were constrained to be parameterized as the

3-parameter logistic model of item response functions. The final

phase of this project consisted of a series of 'high-fidelity'

simulations of adaptive testing and item pool refreshment. The

simulations are called 'high-fidelity' for two reasons. First,

the true item response functions and ability densities, both

developed by Levine (1987) are nonparametric, and therefore more

&A11
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realistic than more restrictive parametric models. Second, the

study design represents a realistic scenario for on-line

calibrations for the adaptive ASVAB as well as many other types of--

computerized tests. Two LOGIST-based methods of on-line

calibration were investigated. As part of the same project,

Darrell Bock (1987), Michael Levine (1987), and Fumiko Samejima

(1987) investigated other methods of on-line calibration.

The results presented here provide some general guidance for

effective computerized test item pool construction and

maintenance. In addition, one LOGIST-based method is superior to

the other in terms of statistical properties. However, the

superior method is more expensive to implement in terms of the

numbers of items required, and either the numbers of examinees

required or the numbers of items per examinee.

The Study Design

Figure 1 displays the overall design of the study. Although

four experimenters participated, only the details of the LOGIST-

based methods indicated on the right side of Figure I will be

discussed in detail below. Using data provided by Vale

(Prestwood, Vale, Massey and Welsh, 1985), nonparametric item

response functions and ability densities were produced by Levine

(1987) to serve as true item response functions and abilityj !.

LI
- - -~ ~ .~ ~ K',K -'
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densities. Also using Vale's data, LOGIST was run to provide

parameter estimates for subsequent use. Items were selected for

an initial pool and calibrated by each experimenter. Then four

rounds adaptive test simulations and item pool refreshment were

conducted.

The Original Data (Block 1 of Figure 1)

Vale, et al., developed over 2000 experimental items to be

considered as candidates for the original ASVAB adaptive testing

item pool. A subset of these items, developed for the Word

Knowledge (WK) subtest, was used in this study. The WK subtest

consists of a single item type, synonyms, and is designed to

measure the understanding of words typically used in social

studies and everyday life, human relationships, science and

nature, and arts and humanities (Prestwood, et al., 1985). The

focus of the Vale item development effort was to write and %

calibrate similar items that spanned a wider range of difficulty

than those found in operational use.

Vale developed a total of 258 such WK items. For the purpose

of obtaining item parameter estimates he obtained a sample of

N - 8171 candidates for military service from Military Entrance

Processing Stations who had also taken the conventional ASVAB test

battery. This set of data, that is, the responses of 8171 ,

'
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individuals to the 'experimental' Word Knowledge items as well as

the conventional ASVAB, forms the basis of the current study.

A calibration of the experimental WK items using the computer

program LOGIST was performed. This calibration is noted in the

top block in Figure 1. Table 1 shows summary statistics for the

item parameter estimates obtained from LOGIST. The items were

designed to be different from a conventional test aimed at the

average examinee; the purpose was to obtain items for an adaptive

test item pool. The items are supposed to be very discriminating,

with low guessing parameters, and span a wide range of difficulty.

As seen in Table 1, the items are indeed more discriminating than

is customarily seen. Although the items span a wide range of '

difficulty, there are more easier items relative to the number of

harder items.
--------------------------------------

Insert Figure I and Table I about here

--------------------------------------

Summary statistics for the ability estimates of the

calibration sample are also hown in Table 1. Although this

sample of people was the only one available for the purpose of ''

calibrating these experimental items, the sample may not be

completely appropriate. Examinees were informed that their scores
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on the experimental items did not count. It is therefore possible

that the motivation of individuals was not the same as motivation

presumably will be in the intended population.

The Definition of Truth (Block 1 of Figure 1)

Using the data provided by Vale, Levine produced

nonparametric item response functions and ability densities to be

used as true item response functions and ability densities in this

study. Figure 2 shows the true item response functions for some

typical items. In general, these true item response functions are

nonmonotonic.

--------------------------

Insert Figure 2 about here

In Vale's data collection design, no examinee was

administered all 258 experimental items. Rather, the items were

broken up into three blocks of 86 items that were roughly parallel

to each other. Each block was administered to a subset of

examinees. Therefore Levine produced three nonparametric ability

densities. To produce a description of a single ability density,

Davis (1987) averaged the three densities, and then interpolated,

integrated, and normalized the resulting function. All simulated

examinees (simulees) are drawn from the resulting distribution.
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Initial Item Selection (Block 2 of Figure 1)

An initial set of 100 items was drawn by Davis from the 258

experimental items to form the first adaptive test item pool.

Research has shown (Hulin, Drasgow and Parsons, 1983) that item

pools much larger than this are not necessary for short adaptive

tests. To select the 100 items, Davis used the LOGIST parameter

estimates summarized in Table 1 to compute a table of items sorted

by their estimated information functions at various levels of

ability. Items yielding successively decreasing amounts of

information were selected until 100 unique items were obtained.

There were two constraints on the process used by Davis.

First, 10 items that were judged to be excessively non-3PL in

shape on the basis of observed data were eliminated from the 258

before selection was done. These non-3PL items exhibited either

severe nonmonotonicities or broad plateaus in the mid-range of

ability. Second, the ability metric was divided into intervals of

1.0 between -3.0 and +3.0, and the numbers of items selected from

each of the two most extreme intervals was constrained to be no

more that 10, while 20 items were selected from each of the

remaining intervals. This latter constraint was to control for

the fact that there are proportionally too many easy items in wi

Vale's original item set.

e eU%
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The Simulated Initial Calibration (Block 2 of Figure 1)

Up to this point in the study design, Vale's WK data have

been used to develop a definition of truth for the simulations,

and to provide estimated parameters for the purpose of selecting

the initial 100 item pool. But these parameter estimates are no 0

longer appropriate for subsequent steps. They represent 3PL

estimates of the true item response functions that are

hypothesized to underlie the responses collected by Vale from live

examinees. These item response functions are not the same as

those generated by Levine to be used as the (non-3PL) definition

of truth for this study. Instead, it is necessary to obtain 3PL

parameter estimates from data where Levine's true item response

functions generate responses to items from simulees. This step is

a simulated initial calibration of the 100 item pool.

Davis divided the 100 items into four 25-item subsets, each

of which had approximately the same estimated test information

function based on LOGIST parameter estimates. Each of N - 6000

simulees was administered two subsets of 25 items in an

overlapping design that provided 3000 simulee responses per item.

Responses to the items were generated using the true (non-3PL)

item response functions and simulee abilities. LOGIST was run on

these data to provide estimated item parameters for the 100 items

W
...... %
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in the Round 0 adaptive test item pool. These parameters

estimates were then returned to Davis for the next step in the

simulation study.

A Typical Round in the Simulation Study (Blocks 3 through 6,

Figure 1)

A typical Round in the simulation study consisted of the

simulation of an adaptive test (by Davis), the selection and

seeding of candidate new items for the adaptive test item pool (by

Davis), the identification of items to be removed (by Davis), and

the calibration and selection of new items to be included in the

next Round of simulations (by individual experimenters). Davis

performed his functions separately by experimenter, and, for the

results reported here, separately by the two LOGIST-based methods

of on-line calibration. Thus the items in the pool, the item

parameter estimates, and adaptive test simulations may differ for

each experimental method at each Round. This process was repeated

for a total of four Rounds.

For each Round, Davis simulated the administration of a 15-

item fixed-length adaptive test to a sample of N - 15,000 simulees

drawn at random from the composite ability density. The same

sample of simulees was used for each experimental method within a

Round. Owen's (1975) Bayesian procedure was used to update

S

MOKI JAKI
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ability estimates during the adaptive test. The next item to be

administered during the test was chosen to be that item that was

most informative at the estimated ability, except for the

imposition of efforts to control item exposure. 'Exposure'

parameters controlled the probabilities with which an optimally-

selected item was actually administered to a simulee. For the

first item, this probability was .2, for the second item the

probability was .25, for the third it was .33, for the fourth it

was .5, and for the fifth through the fifteenth, this probability

was 1.0.

Item usage data was collected by Davis for each item, and

accumulated across each Round in the simulations. At each Round,

the 25 most used items of the current 100 item pool were

identified as items that must be replaced for the next Round. In

addition, for each Round, Davis identified a pool of candidate

'new' items by randomly selecting 50 items from the full set of

Vale's original 258 items. Within a Round, the same 50-item set
I

of candidate new items was used for each experimental Method.

Response data were collected for these items by administering each

simulee 5 randomly selected items from this set of 50. On

average, each new item had about 1500 responses to be used in the

subsequent estimation of item parameters by each experimenter.

.f,
3A f I

, . .. . _ ,
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Responses to these new items played no role in item selection or

ability estimation during the course of the adaptive test.

The Final 'Half' Round (Block 7 of Figure 1)

At the end of four Rounds, the original 100-item pool has

been 'refreshed' four times. In order to examine the cumulative

effects of these four Rounds on simulee ability, Davis conducted a

final half-Round, consisting of just the simulation of an adaptive

test using this final item pool.

Two LOGIST-based Methods of On-line Calibration

A Note on Methods That Do NOT Work

Lord (1984) described a straightforward approach to on-line

calibration that did not work. Since the logic underlying this

approach is so appealing, it is instructive to examine it. The

basic idea of this approach was to simultaneously calibrate the

candidate new items and recalibrate the entire adaptive test item

pool. Since the results of such a calibration would not be on the

same scale as the original item pool, it would be necessary to

determine a transformation of these results to that scale. Using

the relationship between the item parameter reestimates for the

adaptive test pool and the original item parameter estimates for

these same items, a suitable scaling transformation could be

determined by minimizing the difference between the test .

...- 
-
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characteristic curves for the two different sets of estimates, as

in Stocking and Lord (1983). After such a transformation had been

applied, the calibration results for the candidate new items would

also be on the scale of the adaptive test item pool. This basic

plan of simultaneous calibration of candidate new items and the

current adaptive test item pool, along with a transformation,

would then be repeated for each Round of the simulation study.

A problem with this approach is that some of the items in the

adaptive test item pool may not have been administered frequently

enough to provide adequate data for subsequent recalibration. To

solve this problem, those items that were infrequently used in the

adaptive test were administered nonadaptively to a sufficient

number of examinees for adequate calibration. Thus, in Lord's

design, there were three types of items to be calibrated,

distinguishable by the nature of the data available for

calibration purposes. The first type consisted of candidate new

items for which only nonadaptive responses were collected. The

second type consisted of items already in the pool, but whose

response rate was sufficiently low in the adaptive test that some

nonadaptive administrations had been performed to increase the

number of responses per item. The third type consisted of items

already in the pool, but whose response rate was sufficiently high
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that only adaptive test responses were required for adequate

calibration.

The third type of item, that is, those items for which only

adaptive responses were obtained, causes severe problems when

attempting to estimate parameters for the 3PL. Since their

response rate is high in the adaptive test, these are the more

discriminating items in the pool. The more discriminating an

item, the greater the change in the probability of a correct

answer for small changes in ability close to the item difficulty.

Since the adaptive test works well, these items are usually

administered to simulees with very similar levels of ability.

Thus the distribution of ability for those simulees administered

this kind of item becomes more concentrated the better the

adaptive test works. These highly discriminating items divide

this concentrated ability distribution into two classes: those

simulees whose ability lies slightly below the item difficulty and

therefore have only a small probability of responding correctly,

and those simulees whose ability lies slightly above the item

difficulty and therefore have a high probability of responding

correctly. The observed data from which item parameters are to be

ectimated are the actual item responses from th- r-,lees. These

data also tend to be divided into two classes by the highly

I
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discriminating item -- those who respond correctly and those who

respond incorrectly. These responses are not sufficient to

estimate item discrimination or the lower asymptote. This

situation is illustrated for a few items in Figure 3 (taken from

Lord, 1984), where the boxes represent observed proportions

correct for particular ability groups and are plotted proportional

in size to the number of cases in the group. In the extreme case,

for an infinitely long adaptive test in which the estimated

ability becomes indistinguishable from the true ability, the

response data from which three item parameters must be estimated

collapses into a single point located at the item difficulty, with

the observed proportion of correct responses halfway between

chance and 1.0.

Insert Figure 3 about here

Calibration procedures such as LOGIST, that do not utilize

other information that might be available about the item

parameters, cannot perform adequately on items such as these for

which only adaptive responses are available. Mislevy (personal

communication, 1987) conjectures that any other currently

available estimation procedure would encounter similar

1114 1 1111 1
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difficulties in trying to estimate 2PL or 3PL parameters from

these adaptive responses, unless these adaptive responses were

augmented by additional information, such as prior distributions

on item parameters or responses from examinees over a broader

range of ability.

The solution is not to discard the items in this set from the

calibration and simply proceed with the two remaining sets of

items. This is equivalent to discarding the better (more

discriminating) items available and using only the poorer (less

discriminating) items in the pool as a scale anchor. Instead it

appears that one solution could lie in the direction of avoiding

the direct use of adaptive test responses by summarizing the

information available from the adaptive test when estimating

parameters for the new items. Both methods described below move

in this direction.

Method A

For this method, adaptive test item responses and parameter

estimates for items already in the adaptive test item pool are

used to compute a maximum likelihood estimate of simulee ability.

This estimated ability serves as a summary of information

available from the adaptive test. A LOGIST calibration run is

then performed in which these ability estimates are fixed, and S
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nonadaptive responses to the new seeded items are used to estimate

parameters for the 50 candidate new items. The top half of Figure

4 shows the details of this method across all four Rounds,

starting with Round 1.

--------------------------

Insert Figure 4 about here

--------------------------

Because the ability estimates are fixed in the calibration of

the new items, and no rescaling is done within the LOGIST run, the

ability estimates determine the scale on which the item parameter

estimates are reported. Since the ability estimates themselves

are on the scale of the adaptive test item pool, the estimates for

the candidate new items will be also.

Method B

This method requires a set of 'anchor' items to be seeded,

along with the new items. The purpose of the anchor items is to

try to improve upon Method A. Method A depends entirely upon

treating estimates of ability as if they were, in fact, true

abilities in order to maintain the scales of subsequent item

pools. In so doing, errors will be made because estimated

abilities differ from true abilities. The anchor items will be

used to attempt to correct for scale drift that may result from

.S
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the use of these imperfect ability estimates for scale %

maintenance.

It seems reasonable to select as anchors items that are

representative of those in the adaptive test item pool in terms of s

difficulty. This is because scale transformations that are

derived from the anchor items will be applied to all items to be

considered as candidates for item pools. In addition, the quality

of the anchor items, in terms of item information, should be no

worse than typical items produced for the adaptive test item pool,

since it makes no sense to develop scale transformations based on

items of poor quality.

For purposes of this study, 25 anchor items were defined to

be exactly like 25 items selected from the original 100-item pool.

The first step in the selection process was to eliminate from

further consideration 9 items of the 100-item pool that were

judged to be poorly fit by the 3PL in Round 0. The remaining 91 5

items were grouped on the basis of estimated difficulty into 5

equal intervals between -2.0 and 2.0. Five items were then

selected randomly from each interval to be the anchor items.

Nonadaptive responses to 5 randomly selected new items and 5

randomly selected anchor items were collected from each simulee.

Since there are half as many anchor items as there are new items,

0
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each new item received about 1500 responses and each anchor item

received about 3000 responses. The alternative design in which

each simulee received only 5 seeded items, either new or anchor

items, requires more simulees before an on-line calibration can

occur, and was judged inconvenient to implement for the purposes

of this study. Thus, the doubling of response rate for anchor

items is not a requirement of this Method, but an artifact of the

chosen design.

As in Method A, adaptive Lest information is summarized in a

maximum likelihood estimate of simulee ability. A LOGIST

calibration is done, fixing the ability estimates and estimating

item parameters for the 50 new items and the 25 anchor items.

Using the reestimates for the anchor items, and their initial

estimates from Round 0, a scaling transformation is chosen to

minimize the difference between the two test characteristic curves

(Stocking & Lord, 1983). Using this tranformation the results of

this LOGIST run are placed on the scale of the Round 0 item pool.

The bottom half of Figure 4 shows the details of Method B across

all four Rounds, beginning with Round I.

The Selection of New Items

Although the calibration of new items at each Round differed ,

for the two Methods studied, the same algorithm was used to select "5

% -A
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from the 50 candidate items the 25 new items to be included in the

next Round's item pool. The difference between the estimated test

information function for the Round 0 item pool and the estimated

test information function for the 75 items to remain from the

current pool was defined as a 'target' information function. The

use of this difference as a target insures that items will be

selected to maximize the resemblance of the next Round's item pool

to the Round 0 item pool.

Three methods of selecting item sets or 'drafts' to match the

target information function were tried. The first method selected %

items to minimize the maximum difference between the target and

the draft test information functions across the ability metric

from -3.0 to +3.0. The second method selected items with the

greatest area under their item information functions within

ability levels that appeared important based on the target

information function. A third method was a combination of these

two: a draft set of 25 items was selected on the basis of the

area under the item information functions and then attempts were

made to improve on this draft by discarding some items and

selecting others that minimized the maximum difference between the

target and the draft test information functions.
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None of these methods of selecting replacement items worked

automatically without intervention; the process can best be

described as more of an art than a science. The 25 replacement

items (and the selection method) were ultimately chosen on the

basis of a subjective criterion: item sets with information I

functions closer to the target over middle ranges of ability were

preferable to item sets with information functions more distant

from the target in the middle but closer at the extremes. The

first method was never judged to produce the best set of

replacement items; it frequently resulted in the selection of

items with more extreme difficulties over items with more moderate

difficulties. This has the effect of matching or exceeding the

target curve at more extreme ability levels where there are fewer I

simulees and where the reduction in information over the Round 0

item pool is least. The second method, selecting on the basis of

the area under the item information functions between fairly

narrow limits of ability, was most frequently judged the best,

that is, the information functions were as close as possible to

the target curve for middle levels of ability. The results of the

third method were occasionally selected as well. Both of the more

desirable methods required tinkering with the ability limits

within which a match to the target was desired.

P'.
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Results, Part 1: The True Score Metric

In examining the results of on-line calibration by any

Method, it seems important to first focus attention on global

effects in a metric that approximates one in which examinee scores

will be reported. A subsequent section will examine in more •

detail the operation of each Method in the IRT metric.

The number-right true score metric for the Round 0 pool was

chosen for this series of comparisons because the Round 0 pool is

the only item pool that is constant across Methods, and, indeed,

across all other experimenters in this project. In this context,

the items in the Round 0 pool may be viewed as a "reference" test

that is common to all experimenters. A true score on this common

reference test is the score a simulee would have obtained if

administered the entire Round 0 pool as a conventional test.

The conditional RMSE between estimated number-right true

score and true score, and the conditional bias in estimated

number-right true score were computed for each Method after each W

Round. True scores were computed using true simulee abilities for

a Round and the true IRF's for the Round 0 items. Estimated

number-right true scores were computed using simulee abilities

estimated from the adaptive test at each Round, and the estimated

IRF's for the Round 0 items. For small intervals of true score, %
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the square root of the average squared difference between the true

scores and their estimates is considered to be the conditional

RMSE function. Similarly, the average difference between the

estimated and true scores for the same small intervals of true

score is considered to be the conditional bias function.

The conditionl RMSE and the conditional bias measures contain

errors attributable to two sources that, because of the study

design, cannot be examined separately. Both incorporate any scale

drift due to the sequence of on-line calibrations. Because the

ability estimates at each Round are from adaptive tests using

different item pools, these measures also incorporate any effects

arising from the changes in the item pools across Rounds.

Figure 5 compares the conditional RMSE and bias for Method A

across all Rounds of the study, while Figure 6 displays the same

information for Method B. The conditional RMSE and bias functions

are the same for both Methods for the first Round. In these

Figures, the dashed vertical lines mark the quintiles of the

distribution of true scores for the final half-round of adaptive

test simulation. In terms of the conditional RMSE, there is

little difference between Methods at low and high true score -

levels. For middle true score levels, the conditional RMSE for

Method A increases with every Round of adaptive testing. For
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these same true score levels, the Method B RMSE tends to remain

about the same after an initial increase from the first to the

second Round of adaptive testing. For middle true score levels,

where most of the simulees are located, Method B generally has a

smaller RMSE than Method A.
0

Insert Figures 5 and 6 about here

The changes in the conditional bias functions appear to be

systematic, although in different ways, across Rounds for both

Methods. For Method A, the bias becomes more positive across

Rounds for true scores slightly above the median and more negative

for low true scores. For Method B the direction of the bias is

opposite for middle true scores -- higher levels show more

negative bias and lower levels show more positive bias across

Rounds. Method B tends to have smaller absolute bias than Method

A across all Rounds.

Figure 7 displays the conditional RMSE and bias for both

methods after the end of all Rounds of adaptive test simulations.

This Figure clarifies the comparisons of the two Methods. For low

and high true scores, the RMSE functions are similar; at middle

true scores, Method B has smaller RMSE. For the very lowest and

UIM,
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highest true scores, the conditional bias for the two Methods is

similar; for the remaining true score levels, the bias works in

opposite directions. Overall, the absolute bias is smaller for

Method B.

-

Insert Figure 7 about here

Results, Part 2: The IRT Metric

The bias results on the true score metric seen in Figures 5,

6, and 7, may be viewed as scale drift. To interpret these

results it seems necessary to explore the behavior of the two

Methods in detail on the IRT metric. The various features of the

simulations are complex and difficult to examine in a sequential

fashion. Unfortunately, any written exposition can only proceed

sequentially rather than simultaneously.

Many factors concurrently impact the four Rounds of item pool

refreshment and the four-and-one-half Rounds of adaptive testing.

Among these are:

--- the method of selecting the initial item pool,

--- the correlations among errors of estimation for the item

parameter estimates,
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--- the adaptive testing paradigm that selects items for

administration based on an estimated ability and

estimated item information,

--- the use of ability estimates in place of true abilities,

--- the precision with which new items are calibrated,

--- the method of identifying items in the current pool for

replacement,

--- the method of selecting replacement items from the new

items.

The effort to understand the interactions among these factors

is complicated by other factors that are not central to on-line

calibration, but must be dealt with nevertheless. Among these

complicating factors are:

--- the necessity of establishing a single IRT scale upon

which comparisons can be made,

--- the comparison of estimated parametric IRF's with true

nonparametric counterparts,

--- the fact that changes in relevant variables between

consecutive Rounds may be small, necessitating the

examination of multiple Rounds simultaneously and across

two different Methods.

4P
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The information available from each Method for each Round

will be described in five different but overlapping analyses. The

first such analysis deals with what, for lack of a better term,

may be called a 'snapshot' of a single Round. Included in this

snapshot are data about 1) the item pool at the beginning of the

Round, 2) the nature of the ability estimates obtained from using

this item pool to administer adaptive tests, 3) the nature of the

errors made when using these ability estimates as if they were

true abilities, and 4) the estimation of the parameters for the

candidate new items.

The remaining analyses will look at many of these same

features summarized in different ways. Given an item pool, the

second analysis will explore what happens to ability estimation

when this pool is used to administer adaptive tests. This

analysis will take place across Rounds within Methods of on-line

calibration. The third analysis will investigate what happens to

the calibration of candidate new items, given that the ability

estimates are used as if they are true abilities. This analysis

will also take place across Rounds within Methods. The fourth

analysis will focus in detail on the differences in the

calibration of new items between Methods across Rounds, with

particular attention paid to considering separately the effects of

%FU W 111 1111 111 111111111,1 11111 1],11 % 411
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the approximate scaling transformation for Method B. Finally,

given the rules for elimination of items and the method of

selecting new items for the adaptive test pool, the fifth analysis

will explore the impact of these across Rounds and within Methods.

The Establishment of a Single IRT Metric

Throughout these discussions, comparisons of estimated

quantities are made with their true counterparts. This, of

course, is one of the advantages of a simulation study. Before

this comparison can be made, however, true and estimated

quantities must be on the same (arbitrary) metric.

It is unlikely that the metric on which the true item

response functions and abilities were developed by Levine bears

any simple linear relationship with the metric of LOGIST

estimates. However, the assumption is made here that a linear

transformation can be developed that will be a good approximation

to a possibly more complex transformation. From the simulated

initial calibration of the Round 0 item pool we have abilities

estimated by LOGIST. Davis provided the corresponding true I-

abilities for the N - 6000 simulees. Robust measures of location

and scale (Mosteller & Tukey, 1977, p.20) were computed for both

the estimated and true abilities and a linear transformation

developed from them to transform true abilities to the scale of

1P
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the Round 0 calibration. This same transformation was applied to

the true abilities of all other simulees in the remaining Rounds

of the study.

All true item response functions were transformed to the

Round 0 scale by applying this approximate linear transformation

to Levine's tabled ability values. Figure 8 shows the transformed

true item response functions (solid lines) and the LOGIST

estimates of the same item response functions (dotted lines) on

the Round 0 metric for some typical items. All subsequent

comparisons with true values were done using the transformed true

item response functions and abilities.

Insert Figure 8 about here

--------------------------

Some Results From the Bivariate Normal Distribution

Some aspects of the subsequent discussions, particularly

those dealing with true and estimated abilities, may at first

appear confusing. This section attempts to deal in advance with

these aspects by removing them temporarily from the context of on-

line calibration, and placing them in the more familiar context of

the bivariate normal distribution. The point of the exercise is

not to imply that the Joint distribution of estimated and true

05
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abilities is bivariate normal, but rather to clarify some of the

techniques used in subsequent analyses.

Suppose we have two variables whose joint distribution is

bivariate normal, z and z2. Suppose that both variables have

means of 0 and variances of 1, and that the correlation between

the two is rho < 1. A scatterplot of 400 random draws from such a

distribution, restricted to the range of -1 to +1, is shown in the

left panel of Figure 9. On the same panel, the solid line is the

45-degree line of z2 = z * The line with long dashes is the
regression of z2 on zl namely z2 - rho * z The line with the

short dashes is the regression of zI on z2, z1 - rho * z2 , or z2 -

(1/rho) * zI.

Insert Figure 9 about here

Consider the difference (z2 - zI). The expectation of this

residual, conditional on zl, is

E(z2 - zllzl) - E(z21z) zI = rho * z- zI - (rho - 1) * zI .

This function is plotted as a function of z in the middle panel

of Figure 9. Because rho is less than 1, this function has a

negative slope. Suppose that z is an urnbservable variable, and

.1
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the z2 is an observable estimate of it. The average value of this

residual for different values of the unobservable variable is, by

definition, a conditional bias function.

Consider the expectation of this same residual, now

conditional on z2

E(z2 - zl1z 2) z2 - E(zl1z 2) - z2 - rho * z2 - (1 - rho) * z2 .

This function is plotted as a function of z2 in the right panel of

Figure 9. Because rho is less than 1, this function has a

positive slope. We again suppose that z is an unobservable

variable, and z2 is an observable estimate of it. The average

value of this residual for different values of the observable

variable can be considered to be a conditional error function.

That is to say, it gives the average of the errors that will be

made if the observable variable is used as if it were the

unobservable variable, for different values of the observable

variable.

In subsequent sections, the joint distributions of estimated

and true ability will be analyzed in both ways. The expected

residuals conditional on the true abilities will constitute an

examination of the bias in the estimated abilities. These

.POw
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conditional bias functions will usually have a negative slope.

The expected residuals conditional on the estimated abilities will

constitute an examination of the error made when using estimated

abilities rather than true abilities. These conditional error

functions will usually have a positive slope.

Analysis 1: Snapshots

Figures 10 for Method A and 11 for Method B display the

snapshots of each Round for each Method. Each subfigure (labeled

10a, 10b,. . ., or lla, lib,. . .) of each Figure shows a single h

Round and is intended to be read left to right and top to bottom

as in a page of printed text. The following section discribes the

derivation and interpretation of each panel of a subfigure.

Subsequent sections compare each RGund of Lift LWU Aethods of on-

line calibration.
0---------------------------------------------

Insert Figures lOa-10e and lla-lle about here

The Panels of a Subfigure

The first two panels in the top row of a subfigure display

information about the item pool with which the Round is begun.

The first panel shows the differences between the estimated and %

true slopes, plotted as a function of the true slopes; the second

a
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panel shows the differences between the estimated and true

difficulties, plotted as a function of the true difficulties. In

the second panel, the difficulty of an item for which the slope

has been overestimated is indicated by a plus, and the difficulty

of an item for which the slope has been underestimated is I

indicated by a circle.

In thesp and all other figures containing item parameter

information, the 'true' difficulty is defined as that value on the

true (transformed) ability metric that yields the same probability

of a correct response as does the estimated difficulty on the

estimated item response function. The 'true' slopes are computed

by numerical methods (Hamming, 1962. p. 318) at the location of

the true difficulty. This method of obtaining 'true' difficulty

and slope parameters for the nonparametric true IRF's is flawed.

Consider an item represented by a particular true nonparametric

IRF. If we have two different estimates of the difficulty

parameter for this item, it is possible that this procedure will

produce two different values of the 'true' difficulty parameter,

and also two different values of the 'true' slope parameter. To

examine the magnitude of this problem, the 50 new items calibrated

in Round 4 were examined. These items are the same for each

Method, and the difference between the parameter estimates, and

0%
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therefore between the 'true' parameters determined by this Method,

should be largest on this final Round. The average difference

between the 'true' difficulties was found to be .02, and the

average difference between the 'true' slopes was found to be .004.

These differences are small.

This method has an additional disadvantage. In this and

subsequent figures, not all relevant items may appear. The

nonparametric item response function is described by tabled

function values over a finite interval of ability, and

occasionally it is not possible to find the 'true' difficulty and

slope values within this table. Appendix 1 contains a list, by

Figure, of all items that should, but do not, appear in plots of

this nature throughout this paper, along with the values of their

estimated item parameters.

In spite of these flaws, this method of determining 'true'

parameters from nonparametric item response functions, although

crude, seems to to work well enough to give useful insights into

differences between the two Methods of on-line calibration.

The third panel in the top row of each snapshot displays the

median difference between estimated and true ability as a function

of the median true ability for small intervals of true ability.

The median difference rather than the average difference is used
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because some estimated abilities may be outlying values that

distort averages. This panel may be viewed as a plot of an

approximate bias function for estimated ability resulting from the

use of this item pool to administer an adaptive test.

The first panel on the bottom row of each snapshot displays

the median difference between estimated and true ability as a

function of the median estimated ability for small intervals of

estimated ability. This may be viewed as approximating the errors

made when using an estimated ability as if it were a true ability.

For example, in Figure 10a, we see that when we use an estimated

ability of 2., that this estimated ability is larger than the true

ability by about .1; when we use an estimated ability of -3, this

estimated ability is lower than the true ability by about .8.

The final two panels on the bottom row of each snapshot

display the residual plots for the estimates of the new items in a

Round. The estimation of these item parameters is accomplished

using the estimated abilities as if they were true abilities.

Round 1 Snapshots

The first Round of the simulation is represented in Figure

10a for Method A and Figure lla for Method B. In these two

figures, the starting item pool for this Round is the same -- the

Round 0 pool. Likewise, the bias function and error function for
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the abilities are the same. Most of the items in the Round 0 pool

have over estimated slopes (first panel in top row). Items with

middle difficulty are better estimated than items with more

extreme difficulties (second panel in top row). This is because

these item parameter estimates were obtained from a group of

simulees with a typical (bell-shaped) distribution of abilities.

Easier items tend to have overestimated difficulties, and also

overestimated slopes. Harder items are also less well estimated

than those of middle difficulty. In addition, overestimated -

harder items tend to have underestimated slopes while

underestimated harder items tend to have overestimated slopes.

These relationships between over- and underestimated slopes and

over- and under estimated difficulties are consistent with the

Wingersky and Lord (1984) result of a positive correlation between

errors of estimation for item discriminations and difficulties for

easy items and a negative correlation for hard items. These

correlations are perhaps emphasized here because the distribution

of ability in the sample of simulees was not broad enough to

obtain accurate parameter estimates for the more extreme items. '

Adaptive tests were administered to simulees using this Round
0

0 item pool. An ability estimate was first determined, based on 4

responses to items previously administered. During the actual TM/



101*

Scale Drift

39

operation of the adaptive test, this ability estimate was computed

using Bayesian methods developed by Owen (1975). For both Methods

of on-line calibration, a maximum likelihood ability estimate,

rather than Owen's Bayesian ability estimate, was used. Both the

Owen's Bayesian ability estimate and the maximum likelihood

ability estimate weight items with higher estimated

discriminations more than items with lower estimated

discriminations.

In the adaptive test, items that were maximally informative

at the estimated ability were then selected for administration.

The information for an item is itself an estimate, and will be an

overestimate of true information for items with overestimated

slopes. For items of approximately the same difficulty, the items

with the most overestimated slopes will be chosen more frequently

than items with less overestimated slopes. Because of the

correlation between errors of estimation for difficulty and

discrimination, easy items with overestimated difficulties will be

chosen more frequently than easy items with less overestimated

difficulties. Likewise harder items with underestimated

difficulties will be chosen more frequently than harder items with

less underestimated difficulties. The missestimation of

difficulties will be emphasized by methods of estimating ability

B%
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that weight items with higher estimated slopes more than items

with lower estimated slopes.

We can expect these speculations to be confirmed by the bias

plot of estimated abilities. Indeed, the bias in the ability

estimates (third panel of top row in Figures 10a and Ila) does

follow the same pattern as that of the difficulties of the items

with overestimated slopes (middle panel of top row in Figures 10a

and lla).

In the next step of Round 1 for both Methods, the ability

estimates are used as if they were true abilities and the item

parameters are estimated for the candidate new items. We know

that estimated abilities have a larger variance that true

abilities. Because the unit of measurement of the IRT scale is

usually taken to be the standard deviation of abilities, this

difference in variance may be viewed as a difference in scale.

Table 2 displays the variance of the true and estimated abilities

for all samples of simulees for all Rounds. While the differences

in the Round I variances may seem quite small, a better picture of

the nature of the errors incurred is found in the error function

1%

panel (first panel of bottom row in Figures 10a and lla). Higher

estimated abilities are systematically overestimates of their

corresponding true values, and the difference becomes larger as

IK
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the estimated ability increases. The same is true in the opposite

direction for lower estimated abilities.

Insert Table 2 about here

Up to this point in Round 1, the two Methods of on-line

calibration have been identical. It is in the calibration of the

new items that the Methods begin to differ. The spreading out of

the estimated abilities and their subsequent use as if they were

true abilities causes the slopes to be generally underestimated

for the new items for Method A (middle panel, bottom row, in

Figure lOa). The difficulties for the new items are not as well

estimated as the difficulties for the Round 0 pool; the scatter of

the residuals is greater. In addition the trend towards the

overestimation of difficulty for harder items and underestimation

of difficulty for easy items is consistent with the direction

predicted on the basis of correlation between estimation errors

for items with generally underestimated slopes.

The calibration of new items for Method B (second and third

panels, bottom row, Figure lla) is less affected by the use of

estimated abilities as if they were true abilities. About half of

the items have overestimated slopes. The difficulties for the
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items with overestimated slopes are missestimated in a pattern

consistent with the correlation of estimation errors. The

difficulties for the items with underestimated slopes seem less

affected. The items are the same for both Methods and the

parameters are estimated from the same set of estimated abilities.

What is different is the scaling transformation that is performed

for Method B, using information from the anchor items. This has

the effect of an approximate correction for the fact that using

the estimated abilities to obtain parameter estimates is not the

same as using true abilities. From this point on, the two Methods

of on-line calibration will differ, and the differences will

become more notable with each Round.

Round 2 Snapshots

Figure 10b for Method A and Figure lib for Method B display

the second Round of simulation results. Items have been discarded

from the Round 0 pool on the basis of the frequncy of use in

adaptive test simulations. Because the simulees are a typical

group, the most frequently used items were the discriminating

items of middle difficulty. Replacements were selected from the

new items calibrated in the previous Round (Figures 10a and lla,

bottom row, third panel). These items spanned a broad range of

difficulty. All items of middle difficulty were selected as

....... ....
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replacements, as well as more extreme items with higher estimated

slopes.

The Method A pool for Round 2 contains more items with

underestimated slopes than the Method B pool. The well estimated

middle difficulty items from Round 0 have been eliminated for both

Methods, and replaced by items whose difficulties are less well

estimated. For Method B, and also, but less clearly, for Method

A, the pattern of residuals for the item difficulties for items

with overestimated slopes is consistent with the correlation of

estimation errors; the trend is less clear for items with

underestimated slopes. As in Round 0, the bias in the estimated

abilities follows the bias in item difficulties for those items

with overestimated slopes.

For both Methods, the variance of estimated abilities is

greater than the variance of true abilities, although this

difference is smaller than the differences for Round 1, as shown

in Table 2. But, also for both Methods, the pattern of errors

made when using estimates as if they were true shows systematic

errors are now made, even for middle levels of estimated ability.

It seems probable that this phenomenon is the result of the fact

that the item difficulties are less well estimated for both
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Methods for middle difficulty items as well as the patterns of

missestimation of slopes and difficulties peculiar to a Method.

For Method A, estimated abilities just above the middle are

overestimates, while estimated abilities just below the middle are

underestimates. Method B shows the same error pattern for

estimated abilities just above the middle, and a slightly less

severe underestimation for estimated abilities just below the

middle. For Method A, then, the estimated abilities are more

spread out than for Method B, even for middle ability estimates.

This difference in patterns is a consequence of the

underestimation of slopes for almost all new items selected for

inclusion in this Round 2 pool by Method A.

When using these estimated abilities to estimate parameters

for new items, as before the slopes for Method A are mostly

underestimated while those for Method B are less so. The

correlation of estimation errors is now clearly visible for Method

A for those items with underestimated slopes. It is also clearly

visible for Method B for those items with overestimated slopes.

Snapshots for Rounds 3, 4, and 5

The remaining subfigures of Figures 10 and 11 show the

results for the remaining Rounds. All of the phenomena examined I

so far appear and become more exaggerated as the Rounds progress:
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1) The starting pool for a Round for Method A always contains

more items with underestimated slopes than the pool for Method B.

As the Rounds progress, the slopes for the Method A pools become

mostly underestimated. For Method B, the numbers of over- and

underestimated slopes become about the same.

2) The middle difficulty items are the items that are

continually replaced for both Methods. For Method A, it becomes

more visible that the estimates of these difficulties follow

patterns predicted by the correlated estimation errors for items

with underestimated slopes. Patterns for overestimated slopes are

less discernable for this Method, presumably because there are so

few items with overestimated slopes. For Method B, the estimates

of the difficulties for the new items with overestimated slopes

follow patterns predicted by the correlated estimation errors.

The prediction of patterns for items with underestimated slopes is

not very visible.

3) For middle levels of ability, the bias in the ability

estimates follows the bias in the difficulties of the items that

are most used in the adaptive test. For Method B, this tends to

be the middle difficulty items with overestimated slopes. For

Method A, this tends to be the middle difficulty items with

underestimated slopes, simply because there are few, if any,

LS
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Method A items calibrated on-line with overestimated slopes.

These biases tend to be in opposite directions, predictable on the

basis of the correlated estimation errors when the items were

calibrated on-line.

4) Table 2 shows that, across Rounds, the estimated abilities

are more spread out than the true abilities. This difference is

generally larger for Method A than for Method B, and for Method A

it increases across Rounds. The Figures show that for middle

levels of estimated ability, the errors made when using estimated

ability as if it were true become increasingly large in opposite

directions around the middle for Method A. They remain about the

same for Method B. This reflects fact that the slopes of items

for Method A are consistently underestimated, as well as the

missestimation of middle item difficulties for both Methods.

Analysis 2: Item Pools and Bias in Ability Estimates

This analysis is offered as an aid in understanding a single

aspect of the data presented in the snapshots of each Round.

Figure 12 for Method A and Figure 13 for Method B display for each

Round the item pool with which the Round is begun, and the

approximate bias functions for the estimated abilities that result

when the item pool is used in adaptive testing. These Figures are

constructed by lining up the top row of three panels from each"
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subfigure in Figures 10 and 11. Each row in the Figures 12 and 13

represents a Round in the simulation. The top rows in the two

Figures are the same; they both display the Round 0 item pool and

the bias functions for the first Round of the simulation.

Although no new information is presented here, it may be easier to

comprehend the trends across Rounds when the panels are arranged

in this manner.

Insert Figures 12 and 13 about here

Looking down the left hand column in Figure 12, it is easy to

see that, for Method A, the point cloud representing the residuals

of the slopes is mostly above the horizontal line in Round 1,

gradually drifts downward, and is mostly below the horizontal line

in the final Round. For Method B in Figure 13, this drift seems

to stabilize at about the point where the slopes are evenly over

and underestimated.

The middle column of panels in the two Figures shows that the

changes in the residuals of the difficulties are predominantly for

middle difficulty items. These are the items that get used most

frequently, and therefore replaced most frequently. For Method A,

these items become overestimated if they are slightly above the

4.0
tSO

7~~ 

%~,* 

V. 
0~'



Scale Drift

S

48

middle and underestimated if they are slightly below the middle.

Most of these items have underestimated slopes. For Method B,

these middle difficulty items have slopes that are both over- and

underestimated.

The third column of panels in the two Figures shows that the
S

bias in the estimated abilities tends to remain the same for

extreme abilities, regardless of the Method of on-line calibration

or the particular Round. The bias of middle estimated abilities -

0

changes because the middle difficulty items are being replaced.

For Method B, the bias tends to look like the bias in the

difficulties for items of middle difficulty that have
S

overestimated slopes. This is because it is just those items that

are selected most frequently and weighted most heavily for

simulees of middle ability levels in adaptive testing. For Method

A this bias also tends to look like the bias for items of middle

difficulty, because these are the only items available for

simulees of middle ability levels. Most, if not all, of these

items have underestimated slopes.

Analysis 3: Errors in Ability Estimates and the Calibration of

New Items

This analysis is offered as an aid to understanding a second

aspect of the data presented in the snapshots of each Round.

P
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Figure 14 for Method A and Figure 15 for Method B display the

approximate error functions when using estimated abilities as if

they were true abilities, and the resulting residual plots for the

new items calibrated from these estimated abilities. These

Figures are constructed by lining up the bottom three panels from

each snapshot subfigure across Rounds. The left panel in the top

row of each Figure is the same; it displays the error function for

Round 0. All remaining panels differ.

Insert Figures 14 and 15 about here

For Method A, the left column of panels in Figure 14 shows

that the estimated abilities are increasingly spread out across

Rounds. This is confirmed by Table 2. The middle column of

panels shows that more new items have underestimated slopes across

Rounds; this is because the abilities become more spread out. The

right panels show the correlation between estimation errors for

items with underestimated slopes becomes increasingly pronounced

across Rounds. This is not surprising in view of the greater

number of items with underestimated slopes.

For Method B, Table 2 and the left column of panels in Figure "

15 show that the spread in estimated abilities does not change

'C dr- r r ..
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much across Rounds. The middle column of panels shows that the

slopes for the new items are about evenly over- and

underestimated. The right column of panels shows that correlation

between errors of estimation for items with overestimated slopes

becomes more visible across Rounds.

It is possible for individual item parameter estimates to be

different but the estimated item response functions produced by

these estimates to be similar. This is particularly true for very

easy and very hard items, where individual item parameter

estimates are not well determined; quite different parameter

estimates can give similar item response functions in the area of

the ability distribution where simulees are located. It would be

instructive to compare estimated item response functions for both

Methods across Rounds. Unfortunately, only a single item (Vale

number 244) was included in the Round 0 pool and was also included

in the 50 candidate new items for each Round for each Method.

This item was a discriminating item with higher than average

difficulty. Figures 16 (Method A) and 17 (Method B) show the true

item response function (solid line) and the estimates of this item

response function across all Rounds. Method A estimates show more

variability, both in terms of slope and location, than do Method B

estimates. Method A estimated slopes tend to be too low and

S
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estimated difficulties too high. Method B estimated slopes tend

to be too high and estimated difficulties too low.

-----------------------------------

Insert Figures 16 and 17 about here

-

While it is not possible to directly compare the estimated

item response functions for any other item across Rounds and

Methods, it is possible to approach issues of the accuracy of

estimation more indirectly. Using the true abilities at a Round

as weights, a weighted RMSE between the estimated and true item

response functions was computed. At each Round, an average

weighted RMSE was then computed, where the average was taken over

the new items calibrated in that Round. Table 3 shows these

average weighted RMSE's for all Rounds for both Methods. The

Round 0 average weighted RMSE is the same for both Methods since p

the items and estimates of item parameters are identical. The p

average weighted RMSE for Method A increases across subsequent

Rounds, while the average RMSE for Method B remains approximately

the same.

Insert Table 3 about here

.'P F
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Analysis 4: The Calibration of New Items and the Approximate

Scaling Transformation

The Round 0 item pool is, by design, identical for both

Methods of on-line calibration. After the first Round the actual -

items included in a pool can be different for the two Methods,

also by design. The differences are introduced by the elimination

of overused items and the selection of the 25 new items to be

included in the next item pool, processes that operated

independently for the two Methods. In actuality, all items of the

100 in the final pool created for Round 1 were the same, 96 out of

100 were the same for Round 2, 95 were the same for Round 3, and

90 were the same for Round 4. Since the pools are so similar for

the two Methods, the differences between the two Methods appear to

originate with the approximate scaling transformation developed

from the anchor items for Method B. This analysis will examine

the effects of this rescaling in more detail.

The multiplicative and additive constants of each rescaling

are shown in Table 4. All multiplicative constants are less then 
%

one, indicating that at each Round, the scale unit before 1

transformation is too large. All additive constants are non-zero,

indicating that the scale origin before transformation is not a.

precisely correct. The importance to attach to the differences .

.,.-
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among the multiplicative constants or the differences among the

additive constants is unknown but could be investigated through a

jackknife study.

Insert Table 4 about here

Note that the rescalings depend upon one another in a complex

and indirect fashion. The rescaling for Round I is applied to the

new items calibrated in that Round, of which 25 are selected to be

included in the second item pool. To the extent that abilities in

the second Round of adaptive testing are estimated using the items

that have been calibrated on-line in Round 1, the calibration of

the new items in the second Round will be affected by the

rescaling from the first Round. Since the 25 items selected are

of middle difficulty, it is certain that some abilities are

estimated from some items that have been calibrated on-line. This

same type of dependency propagates across Rounds.

Figure 18 shows the residuals for the estimated slopes and

difficulties of the new items calibrated in each Round by each

Method. Each subfigure (18a, 18b, etc.) shows a different Round,

and within a Round, the items calibrated are the same for each

Method. In each subfigure, the panels in the top row show the
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results for Method A. The panels in the middle row show the

results for Method B before the application of the approximate

scaling transformation. The panels in the bottom row show the

results for Method B after the application of the approximate

scaling transformation.

For Round 1 (Figure 18a), Method B before transformation

(middle row) is identical to Method A (top row), that is, the

items are the same and the estimated parameters are also the same.

As seen before, the slopes are generally underestimated. Also as

seen before, the underestimation of difficulties for easy items

with underestimated slopes and the overestimation of difficulties

for hard items with underestimated slopes is apparent. The

sampling correlation for items with overestimated slopes is not

apparent. The effect of the transformation (bottom row) is to

reduce the underestimation of the slopes. The overestimation of

easy items with overestimated slopes and the underestimation of

hard items with overestimated slopes is now visible, while the

sampling correlation for items with underestimated slopes

disappears.

---------------------------------

Insert Figures 18a-18d about here

e.~

'I
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For Round 2 (Figure 18b) and all subsequent Rounds, Method B

before transformation (middle row) is no longer identical to

Method A (top row), that is, the items are the same for a Round,

but the parameter estimates are different. This is because the

estimated abilities used to calibrate the new items have been

affected by -he different parameter estimates for the items

included in the final pool from the previous Round. Across

Rounds, Method B untransformed slopes generally have less scatter

than Method A slopes, although they are generally underestimated,

as are the Method A slopes. Method B untransformed difficulties

also have less scatter than Method A difficulties, and as for

Method A, the sampling correlation for items with underestimated

slopes is visible.

Across Rounds, the application of the scaling transformation

has the effect of raising slopes, so that there are about equal

numbers of slopes that are over- and under-estimated.

Simultaneously, the correlation between errors of estimation for

slopes and difficulties for items with overestimated slopes is

enhanced, and the correlation between errors of estimation for

slopes and difficulties for items with underestimated slopes is

suppressed.
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The middle panels of Figures 18b, 18c, and 18d show the

estimation of parameters for the new items for Method B is

improved when compared to Method A even before the scaling

transformation is applied for the current Round. This improvement

can only occur indirectly through the improvement of the ability

estimates (derived from the adaptive tests that used the previous

Round's final item pool) used to calibrate these new items. An

alternative method of examining the improvement is shown in Table

3. In parentheses, the average RMSE for the new items in each

Round for Method B before the application of the scaling

transformation is shown. The RMSE's are smaller than those for

Method A, and also smaller than those for Method B after

transformation. The scaling transformation has the effect of

reducing the bias in the estimated item parameters, at the expense

of increasing the overall RMSE. But the RMSE after transformation

for Method B is still smaller than the RMSE for Method A.

Analysis 5: The Impact of Elimination and Selection Rules on Item

Pools

The snapshots of each Round in Figures 10 and 11 show that

cycles of on-line calibration and item pool refreshment have most

impact on items of middle difficulty in the item pool. The

analysis presented here examines these results from a more global
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perspective in terms of the estimated test information functions

for the 100-item pools developed during each Round of the study.

The estimated test information function (Lord, 1980, equation

5-6) of a set of items is the maximum amount of information that

can be obtained from the item set if it were administered as a

conventional test. It is not the information function for an

adaptive test using this item set as the item pool. The adaptive

test information function for algorithms of the type used here can

only be conveniently estimated from a numerical approximation

using Monte Carlo results (see, for example, Lord, 1980, section

10.6). This latter information function depends upon not only the

item pool, but also the algorithms incorporated in the adaptive

test that deal with the selection of the first item, randomization

to increase item security, the selection of the next item to be

administered, the stopping rule, and the scoring method. In this

discussion, the estimated test information function will be viewed

as a convenient mechanism for examining the information structure

of the item pool upon which the adaptive testing algorithm will

operate.

Figure 19 for Method A and Figure 20 for Method B display the

estimated test information functions for the 100-item pools

developed during each Round of the study. The estimated test

OKI Vor
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information function for Round 0 is the same for both Figures.

For both Methods, the information in the pool for middle levels of

ability declines from Round 0 to Round 1; subsequent declines are

less severe. Across Rounds, the information at low ability levels

does not change very much and actually increases over that for

Round 0 for some items. The information at high ability levels

continues to decline, particularly for Method A, although it

actually increases somewhat for the very highest ability levels.
-----------------------------------

Insert Figures 19 and 20 about here

These results are due to the interaction of a number

circumstances that are visible in the snapshots of Figures 10 and

11. First, the method of building the Round 0 pool makes it look

better than it actually was, since the items were selected on the

basis of estimated information. This estimated information came

from parameter estimates derived from a LOGIST calibration of

Vale's original response data, rather than the Levine-based

simulated data used to obtain parameter estimates in Round 0. To

the extent that Levine's true IRF's and ability distribution are

adequate representations of the phenomena generating the Vale

data, we would expect the calibrations in Round 0 to be similar to 9.
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the calibrations based on the Vale data. Indeed, the first panel

of Figure 10a or lla show that most Round 0 slopes are

overestimated.

Second, the decline in estimated test information for middle

levels of ability is also a consequence of the rule for

eliminating items at each Round. In adaptive testing with a

typical group, it is the informative middle difficulty items that

will be selected most frequently for administration. Since items

are eliminated on the basis of frequency of use, these items will

be the ijist -o be removed as the process goes from Round 0 to

Round 1. This phenomenon was apparent in the snapshots. Since

frequency data is accumulated across Rounds, informative easy and

difficult items may be removed in subsequent Rounds.

Replacement items are selected on the basis of estimated

information from a set of 50 items that have been randomly

selected from the original Vale pool of 258 items. These items,

as seen in the snapshots, have a broad range of difficulty. For

both Methods, the estimated difficulty for items of true middle

difficulty are less well estimated than Round 0 items of middle

difficulty. For Method A, their slopes are generally

underestimated, while for Method B, the slopes are about evenly

over- and underestimated Since replacement items are selected on

. .
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the basis of estimated information, replacement items selected for

Method A will have lower estimated information than replacement

items selected for Method B.

Figure 21 for Method A and Figure 22 for Method B show the

estimated test information functions for the target curve, the 50

new items, and the final selection of 25 replacement items for

Round 4. These results are typical of other Rounds. A random

selection from Vale's items cannot provide adequate numbers of

informative middle difficulty items as possible replacements. For

both Methods, the 25 replacement items have as much information as

possible at middle levels of ability, given the inadequacy of the

50-item set from which they are selected. The decline in

estimated test information in Figures 19 and 20 is less for easier

items because the Vale item set contains proportionally more easy

items rather than hard items.

Insert Figures 21 and 22 about here
-----------------------------------S

For both Methods, about 30% of the Round 4 item pool consists

of items remaining from the Round 0 pool, all with estimated

difficulties greater than 1.0 in absolute value. These items have

been available for administration to N - 60000 simulees by the end

S
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of Round 4, but have not accumulated sufficient responses to be

among the 25 most used items at any Round. A different but

overlapping 30% of the Round 4 item pool for each Method consists

of items with fewer than 1000 (and sometimes no) responses. Most

of these items have estimated difficulties greater than 1.5 in

absolute value.

Discussion

Of the two methods of on-line calibration studied here,

Method B would be more expensive to implement than Method A. More

items must be obtained initially from which to select not only the

first adaptive test item pool, but also the set of anchor items.

Because the anchor items must also be seeded, either each examinee

must receive more seeded items, or more examinees are required to

receive seeded anchor items before an on-line calibration can S

occur. In any practical application of this Method, the anchor

items themselves must also be replaced from time to time,

requiring, at every stage, a larger number of items to be S

considered as candidate new items.

Although Method B is more expensive than Method A to

implement, some of its properties are more desirable than Method A

properties. The evidence shows that relying on ability estimates

alone to maintain the scale across Rounds in on-line calibration

.SW
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leads to increasingly inaccurate estimation of the parameters of

the new items, which in turn, leads to increasingly inaccurate

ability estimates (Figures 14 and 18). Even the approximate

rescaling used here with the anchor items improves scale

maintenance (Figures 15 and 18). The conditional RMSE on the true

score metric of the Round 0 item pool (Figures 5 and 6) shows

these effects on a metric that approximates what might actually be

used for the CAT-ASVAB. Both Methods show an initial increase in

RMSE after the first item pool refreshment. However, the RMSE for

Method B remains about the same for subsequent Rounds, while that

for Method A increases, particularly for middle true scores,

across Rounds.

Both LOGIST-based Methods show scale drift over four Rounds

in which about 70% of the original item pool is replaced (Figure

7). The drift is in opposite directions for the two Methods.

Method A tends to underestimate slopes because estimated abilities

are more spread out than those of Method B. Because of the

correlation between errors of estimation, Method A underestimates

difficulties for easier items and overestimates difficulties for 'N

harder items (Figures 14 and 18). Estimated abilities reflect

this bias in the difficulties (Figure 12), as do estimated true

.b
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scores (Figure 5). Thus the bias is positive for moderately high

true scores and negative for moderately low true scores.

Method B tends to estimate slopes better because abilities

are better estimated since the items used to compute the abilities

have been subjected to the approximate scaling transformation

developed from the anchor items. However, this Method

overestimates more slopes, and because of the correlation between

errors of estimation, this Method tends to overestimate Ja

difficulties for easier items and underestimate difficulties for

harder items (Figures 15 and 18). Estimated abilities reflect

this bias in difficulties (Figure 13), as do estimated true scores

(Figure 6). Thus the bias is negative for moderately high true

scores and positive for moderately low true scores.

Based on their respective biases at the lower ranges of true

scores, Method A might exclude too many minimally qualified

recruits; it underestimates their scores. Method B might include

too many minimally qualified recruits; it overestimates their

scores. At upper true score ranges, Method A gives an overly

optimistic reporting of scores, while Method B gives an overly

pessimistic reporting. 4

The causes for this scale drift are known and seem in large

part attributable to the correlation among errors of estimation. e.

0

9
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However, these effects appear to be exaggerated by the currently

accepted procedures for adaptive testing. These correlations are

not the result of the particular estimation method used here

(LOGIST), but are common to all item response models and

associated estimation methods that assume that an it response

function is a member of a family of symmetric curves. They become

important in applications of IRT that rest heavily on the ve-rity

of item level data, such as adaptive testing.

The problems begin with the inadequate calibration of the

items from which thp initial item pool are to be selected. By

design, this is typically an unusual set of items that are very

discriminating, have a wide range of difficulty, and low guessing

parameters (see Table 1). Item parameter estimates for this

collection of items are usually obtained by administering these

items to a typical group of examinees. This sample of examinees

is inadequate for good estimation of the more extreme items. Thus

the estimation errors, and their correlations, are exaggerated for

just those items that are important in building an adaptive test

item pool.

The problems are magnified by the accepted method of building

an initial adaptive test item pool by selecting items on the basis

of estimated information. This guarantees that the items with the
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most overestimated discriminations and missestimated difficulties

will be selected. Figure lOa or Figure lla show that the

correlations between estimation errors are already present in the

Round 0 item pool.

Further damage is done when items are chosen for

administration in an adaptive test on the basis of estimated

information. Because of the correlation between errors of

estimation, the items with the most overestimated discriminations

and therefore most missestimated difficulties will be chosen,

insuring that the difficulties will be, on average, inappropriate

for the examinee. This missestimation is already present when

using the Round 0 item pool for adaptive testing, as seen in 4

Figures lOa or lla. Scoring an adaptive test with an algorithm

that weights items with high estimated discrimination more than

items with low estimated discrimination must further magnify this

missestimation of abilities. Both the maximum likelihood b.

estimator used in the on-line calibrations and the Bayesian modal

estimator used in the adaptive test administration have this

property.

Abilities estimated from adaptive test administrations to a

typical group are biased because of the biases in the estimates of

item difficulties (Figures 12 and 13), and contain more error than ?%

A 3]
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the true abilities (Figures 14 and 15). These estimates are used

to determine the parameters of the new items. The new items are
r -

unscreened, and typically cover a wide range of difficulty. Only

a few of these items are effective replacements for items that are .;%

eliminated (Figures 21 and 22). If no scale adjustments are made,

item discriminations become underestimated, with predictable

missestimation of difficulties (Figure 18). If an approximate

rescaling is employed, discriminations are better estimated, but

also with predictable missestimation of difficulties (also Figure

18). If items are selected for inclusion in the pool on the basis

of estimated information, the correlation of errors of estimation

is exaggerated once again. Over subsequent cycles of on-line

calibration, these problems continue to grow.

The following suggestions for improving the process seek to

retain the spirit of conventional wisdom in adaptive testing,

although an unthinking application of this conventional wisdom is

appropriate only when true item parameters and abilities are know.

It is possible that some of these suggestions might mitigate the

inevitable scale drift in on-line calibration. As always, there

seems to be a choice of mitigating bias by giving up precision, or

increasing test length.

, %" ,
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Suggestion #1

Any method of on-line calibration should begin by obtaining

the best possible estimates of item parameters for the items from

which the item pool will be selected. The current design could be '

improved by the use of a more appropriate sample of examinees. If

the items have a wide range of difficulties, a sample with a wide

range of abilities is required for the adequate calibration of the

more extreme items. When employing a LOGIST-based approach to on-

line calibration, it may be possible to correct these estimates

for bias, at least approximately, using formulas appropriate for

the simultaneous estimation of item and ability parameters.

Formulas for this situation do not exist, but could possibly be 4

derived using methods similar to Lord and Wingersky (1985).

Suggestion #2

Selecting the initial item pool on the basis of estimated

information only exaggerates the correlation of estimation errors.

A better method would stratify on estimated item difficulty alone

and select randomly within each difficulty stratum. This reduces

the correlation between estimation errors for item discrimination

and difficulty. Alternatively, items could be eliminated using

only conventional criteria such as item content or poorly behaving

distractors, and all other items accepted. This method, too,
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would reduce the correlation. Both of these methods might degrade

the real quality of the item pool over the entire range of

ability, requiring a longer adaptive test to achieve the same

accuracy of estimated ability. An additional alternative

available in a LOGIST-based approach would be to choose only those

items that are well estimated, thus eliminating extreme items and

saving middle difficulty ones. While methods exist for computing

the appropriate standard errors (see Lord and Wingersky, 1985)

these methods are difficult and cumbersome to implement.

Suggestion #3

The selection of items for administration in an adaptive test

is typically based on estimated information or estimated

discrimination. However, we know that for given levels of

estimated difficulty, drawing items on estimated discrimination

implies that on average estimated difficulty is not equal to the

true difficulty because of the correlation of estimation errors.

A better design would select items for administration on the basis

of estimated difficulty alone. Even if the errors are correlated,

this increases the chance that, for given levels of estimated

difficulty, on average the estimated parameters are equal to their

true values. This design, although mitigating the correlations

among estimation errors, degrades the adaptive test over the

40
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entire range of interest, requiring the administration of more

items to achieve similar levels of accuracy. Alternatively, it

may be possible to develop a confidence interval approach to

estimated information functions and select items with narrow

confidence bands around the estimated item information function.

This latter method has the advantage of possibly maintaining the

quality of the item pool in the middle of the ability range, while

at the same time eliminating more extreme and more poorly

estimated items. This is similar to Suggestion #2, choosing items

with well-estimated parameters; here we consider items with well-

estimated functions of parameters.

Suggestion #4 
1

Adaptive test scoring algorithms should not weight items with

high estimated discrimination more than items with low estimated

discrimination. Both maximum likelihood and Bayesian procedures

have this property. Use of these estimators will undo the efforts

to use true item parameters on average. Instead, new scoring

methods, such as those suggested by Lewis (1985) or Jones, Wainer,

and Kaplan (1984), that take into account errors in item parameter

estimates when estimating ability, should be considered.

-"
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Suggestion #5

The selection of items to be seeded for on-line calibration

should be closely tied to algorithms for eliminating items in the

current pool. Reasonable screening procedures based on classical

item statistics, if applied to items before they are considered

for seeding, should improve the maintenance of the quality of the

item pool by providing more useful new items from which to select

replacements. Replacement items should be selected from the

candidate new items using methods that reduce the correlation

amoung errors of estimation, as in Suggestion #2.

Consideration should be given to eliminating items with too

few responses in addition to too many responses. This provides

more room in the item pool for middle difficulty items, at the

expense of poorer measurement properties at more extreme levels of

ability. While this may appear to be antithetical to the purposes

of adaptive testing, it may be cost effective to concentrate

efforts on maintaining the information structure of the item pool

in regions where most of the examinees are to be found.

While the above suggestions for improving on-line calibration

have been couched in terms of adaptive testing, the principles

behind them are also relevant to on-line calibration for other

model-based testing paradigms that emphasize short computerized

,%
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tests. Any such test design, by virtue of the fact that test

lengths are short and the seeding of potential additional items is

restricted, may have to rely on imperfect information about

ability to maintain the scale across different versions of the

item pool. Thus, the accuracy of the initial item calibration,

the method of selecting items for the initial pool, methods of

selecting items for administration, and test scoring should all be

designed to mitigate, as much as possible, the effects of the

correlated errors of estimation. Careful attention should be paid

to methods that insure that on average the estimated parameters

are equal to the true parameters. Such methods will improve the

accuracy of the estimated ability used to maintain scales across

Rounds of item pool refreshment, and thereby reduce scale drift.

N %S
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Table 1

LOGIST Parameter Estimates of Vale's Experimental WK Items (n - 258)

Taken by Armed Forces Inductees (N - 8171)

Percentiles
Parameter N Mean S.D. Min Max 10 25 50 75 90

A

0 8171 -0.00 1.06 -7.26 5.16 -1.22 -0.65 -0.04 0.63 1.34

a 258 1.25 0.47 0.26 2.50 0.66 0.88 1.23 1.54 1.88
* 0
b 258 -1.08 2.00 -6.10 3.45 -3.58 -2.42 -1.33 0.52 1.76

AA

^c 258 0.15 0.08 0.01 0.45 0.10 0.11 0.14 0.19 0.28

"1
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Table 2

Variance of Estimated and True Abilities, Both Methods,

across All Rounds of Adaptive Testing*

Method A Method B

* differ- A differ-
N var(O) var(O) ence N var(O) var(O) ence

Round 1 14,979 1.15 1.05 .10 14,979 1.15 1.05 .10
(Round 0 pool)

Round 2 14,965 1.09 1.04 .05 14,968 1.10 1.04 .06

(Round I pool) I

Round 3 14,979 1.16 1.05 .11 14,976 1.11 1.05 .06

(Round 2 pool)

Round 4 14,969 1.13 1.02 .11 14,979 1.07 1.03 .04 0

(Round 3 pool)

Round 5 14,965 1.19 1.03 .16 14,976 1.04 1.03 .01

(Round 4 pool)

*Simulees with all-wrong or all-right response patterns are excluded from

the computations of both var(s) and var(O). - -
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Table 3

Average (across Items) Weighted RMSE for the

New Items Calibrated in Each Round, for Each Method

(Method B
Method A Untransformed Method B Number

New items in Average RMSE Average RMSE*) Average RMSE of items 0

Round 0 .023 (.023) .023 i00
Round 1 .025 (.025) .026 50
Round 2 .027 (.026) .026 50
Round 3 .029 (.024) .027 50
Round 4 .031 (.024) .025 50

*Computed prior to the application of the approximate scaling

transformation for Method B; see Analysis 4 for explanation.
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Table 4

Parameters Developed for the Approximate Scaling Transformation,

Based on the Anchor Items, for Method B

Multiplicative Additive
Round Constant Constant S

1 .921 -.021
2 .897 -.034

3 .897 -.016
4 .917 -.027
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conventional tests. IRound 0: Simulate initial

Davis calibration of Block 2 *

n - 100 item pool r

Bock Levine ISamejima lStockingI

Simulate adaptive test. Seed items. Round I of adaptive testing
Identify items to be removed. - use Round 0 pool

Dvs- prepare Round 1 pool Block 3 ~

LBock Levine IISamelimal I FStockin Al I Stockin BI 41

Simulate adaptive test. Seed Items. Round 2 of adaptive testing %

Identify Items to be removed. -use Round I pool N.
Dai prepare Round 2 pool Block 4

Boc ILevneI ISae is IStockin A Stocki'nB

Simulate adaptive test. Seed items. Round 3 of adaptive testing
Identify Items to be removed. -use Round 2 pool

Dai prepare Round 3 pool Block 5..

IBci Ieie ~ mis Stockin Al StoikinBi

Simulate adaptive test. Seed items. Round 4 of adaptive testing
Identify items -to be removed. - use Round 3 pool

Dvs- prepare Round 4 pool Block 6

jBock IILevine ISame Imal Stocking A So

ISimulate adaptive test Round 5 of adaptive testing Block 7
- use Round 4 pool

Davisa

Figure 1. Global design of 'high-fidelity' simulation study for the ONR On-line
Calibration Project. 1
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Figure 3. Estimated and observed item response functions from
simulated adaptive test responses.

% %

'9( -._ 6 ' _ .. , _ 0, _, .' .'. ',: .'...' .'..'.''. .'_ ;.. -."..".. ." ." , -. -, _.. -. -,'_ -.. .. -." ."-..



-- Scale Drift

_______83

a o

41 -a Go 4#

- - - - - - - - - - -4 -4.

44 A. aue A
0.~~G II A .14,~

4, 44, -- - ,4,4 IA

Li 4, 4 0 4 4

4 14 4 11 bc - 44 4 4 11 11 A

-- - - - - - - - - - - - - --- - -- - - - -

.4

Go a4 A A

A * .44,

-uK 1_ _ __K a_
v , 4, b, all

I4 ~ -. 144,4 4 *, 4 7F.

,t4 t,, . 0 ,, . 4

4').4 U4 U 4. U I. U U) ) .44 4 u£.4,

- - -_ _ _- -

A-



A' K Scale Drift .

84

00000,

00000-

Q.- a- 

0C0 0 Q L) LI ) 0
0003000 Cd W 41

.JJ CJr 4.4 .- 4
CDMC DM 4 --- 0 ) 4-)

< u

0 0Q0.) 0

J0 0

Cd 0

o 4) 0 t

J 10 M -4

~000 0~L-4 0.4 0

0) o -4 Cd-

00ZI C)v I U 44 04~J Cd~

0 41

00 00 -H r )4
C oc2

00 0C 0 44 4 -4

(I (L a. a0 u)44 4

U) -, W O U C

0 1 >



000000

0000 -J-0JJ 0)

0

LWWWW-

0 0 I U - Scale Drift
(X Cr Cr L U, a

V) 00 0 , C)85

WMMTLflW 0
4 I r,

m m m Cu

a( O.a a C3

-k

1101 0

00

a: 44 .- 4 w

0- .

S00

Kn 4-)0

I IN 0 4

4 " 4 4-4
14 0 0

0 r. 10

0) 0) 10 C)0
an" a" a.- 0~- -

4 .4 0 4

02 2 0 0 I"d 1 U

OOC)IOB -~40&i0

000 001009

0- 4) W "

C Q Lj 1) 0 0-4 0

C) 0 Q 0 Q 44 ) 40
a Ja. aC ! D AZ4 4

0 -o 40000]

0Uf 0 'a -0 l0 c
000000 0 4 ?

o Cu

0)
0 94

q v: Zrik QAj a

0 <4
zS

00
w~~

II~L 
I)

mnNN~J3 C)3A'4vnns' NvgyI iCOH

I.r -r5 'r ~ ~ % * - ~ - 5'5- - %''
4 .

N'~"~~~' ~ 4



0p

_______- 0

000

00 -0 Scale Drift

---- ---- ---- 8 6

ow 0
0 0 - ---- --- --- ... --- --- -- - --- ---- --

& - - - - - -- -: -- - - -- - - - -

0 -

0
oo

0 U41. S

-,4 a C

'-4 4)

o0 0!a
U -.4 '0 W

U) M) -4*

4) 0 0-4

Sv~a A44. :3

0 448 r 0

sd rn.

0 0 $4 Is4 .

0 0. 04. 0

00 0 .) 4) 1.4 0
0..- IL 0 -4 *4 ) U)4

00

00 - < J0

00 CD 4 "4 -4 (V

CD a 04j1 4

00
-0o

-owS

a.

__________________ ___________ D 5

-0a

I Sa -0, .- a z 9-



I0

Scale Drift

87

0 I
-3 0 -3 0 3

5 CH #1 16 5 CH # 121

/ 0

5 CH 1 20I 5 CH #IZ3

/
/ /

.p//

5 CM 0 Ie 5 CM 0 I3

Figure 8. Typical item response functions estimated by LOGIST (dotted
lines) and the corresponding true item response functions
(solid lines). Both estimated and true IRF's are on the scale

of the Round 0 pool.

_ -:- .



VT -7 'm --- 2 .

Scale Drift

88:4

(-40

4J (4 1

0 -

60~~Q 0 ' 0 ~
0

//~0

L 0 - 0 V.

No

(t-4
0 "4-4

S-4

o0 0 0,0 0- 20-
I37 NIAIO I 37 )(Z3 A-0 NQII3dX

+ +a

+ N

02
)zS

NM LW-



Scale Drift

89

+ 0
* +4

N 3 4-

z o 4-

-,-4 C

0 f -4

z 4) o 0-

<- 4J + 0 oO

0- *.E 00C
+0 0+

0 +- 0 -

-4

0 0 Q0

NV I4- 03 -VH

'-4

AV N 0

44 0

0+ 0

+~ I+
A0 *HV + - 4

+0 N +- Eg
+ 4 ) w

V).4.

4- C_ _ _ _ _ 0 4
+-M.- Q)
00 -r K 1 '

m ++ j

j Co Lo + ., .
+- + C'4.-

00 Q) 0" N *-

0 V, 0 v4IflN

+ 0 0< bf)

+4 +e4

(L V) C M
0 ~~ ~+ 1- -__ _ _ __ _ _ _ _ __ _ _

+o +1 1--- I 0 4
+-LH + SNVW a-iV 04 I r N -W -4+ +V) CL0 1 1 1 1, z I

-0 Q) 0+ 40 0(4 0 NW 0 C
+ 0 -4 bo

+ + n C K if)% d



Scale Drift

90

(4 0++ 4-44:+ A V

z W 4j 0 p

<(404 1-4V

-- 4 -4 +
0 0W -4

+± X~0 Im

4-4 -

+- 2 4 1
0 Ei - 0 +- +0

4 0

CL 0o
.CL -4

0A 01

4-J-o

-.4 r-
+0 -e: 4

+ +0 0
-N 4.4~1,L) +*

-4 +- + E
<4 < n 0 C

o V)i 00 W~

0t 0 M_ _ _ _ _ -4 N) ++ + -.4 -4'I-

14 -- 4- 44
+d 4, +: 04

-4 + +-'4 f.4
+ + %

+- ~ O a 0 (1 0

-44~ 0

10 KO 0__ 0 0'4z
0'0

S-.LHS (NV~i1-iV1) NI0CI

+ + 4
+ w.

+.. +
ir'~~~ % r-Cr- W.,.-- ~ ~ .-



Scale Drift

91

-", -,
+ 0 o 0

t I-

00

- 0 -) F-

cr o F--
4" 00 0 0 m

0 .o Z 0 1,
+ 0 0 0 CD 44

+ r 0 -40 +________ __ _o_ 4 C

I-o + 0-

I. + + ++

+-) CLi10

+I+ ; +0.0 m o

0. U0

0 000-

8-.LVHB S-IVHS E3-,, ,.

00

-4

0

++o0

+ 0+ (+nI -

< 0 -)

0.0) )x-0 - O+ ;4 -4 4

(+- _4 + ~ C

1 'O O'z - .

4 3t
+4 + +

+C +~

+~~ --r
+ 4+ 0--~-

+ CNlIIVHI) N t0) N.-W

+0 N -+ +0

+ ) 
+ 

4-:

00 Co,

10 00 0,0 v -

G-IVH(I

',



Scale Drift
r

92

0
A V

I-I- 0
+ 4-

+w

w 0 + O+ -44:z EnWe +04
,<, a . ,-4 11,

4: D - u Q)-
4 -

U
00 + 0 0 .- 4j

z a) C (4-4 -4
+- +0o4

"o - 0

(~L EN I -VI a) NVI01 Q-)

N - j & 0 0 C

" '1" x 0o 0 +
+ + +o 0 +

C I- I' O'I,-

(SVW -VH)NII S-i VHS 8

U --

00

~J-4 0

(4 0

I N -4- (4
0 AV .-4-4 + +-

+4 ... " 0 t-U- o,

+ - + +.
T4 m 0 ) - I

4 + 4 0 E- 0
++ 44 z

0w. + n 4--4+
+0 

4 4  + +o 0) -4

+ 
0 0 CD 

+ 
+

+4 (W

+ + 0 o oA.~o 

o

00

8; -INHS (SVI -I VHS VI

4 0

0 0I 01 .0
e-LI S- I-

+

+ F-

-44. +

4 + +-

S-IVHS 0SVi1-VJ + V 10



Scale Drift

93

+ C
N 0

z

00 4

_ _ _ _ _0 nI ~

0' 1-

0 8

0.0
Cd 4)

rr

0J

*0 01

U) W

+4 4--

X0 x 0

+ W -4-z

0 Cd (A
+0 "

"4

0 C-

e-LVHG C

00

__ 0 + +

+ + 4 + r.-N

4 * 4 -j 16-
+n 14 -~ W () -

+ +~ v-)b 0I~I

+9ON 0 It$4-

I4 011 N+0
* + 0+

+ n .+ 0 N0

+ !+ 4j + x

0_ __ _ 0. 4)

,,VH (SLNV W.-IVH.) NVI03VI



Scale Drift0

94

+4 0
+4 I

r. +
-N C-4 4)(

z -A <-,
<C U4j0 4-4

+ N O "-4 04-

~-4 + 0

z 0) ed0 4.4 -

2x S d-
+ W- 0, +0C

(4C 4 2)
Q)44

+ 0C Q4)0l

+0 +

-N W- 0

I , 4- +

+ 0 < T _ _ 0 4) (

04 1- 4- 00 P0 E-

++ C ++ + +r

+- 04 0

0

0 ++- - . 4 4)

+4 + CDN7N

0 - inl (4 N 0 - 0 -,

+ U) 0N-

+ V) +

0__ _ 0 +1 +; N o

0 F- 00 F

*+ 00 1*0 1 0 m o L

0V--



Scale Drift 0

95

. + 
0

~U2+ 0ii 42

'A40 A V Y 4)

,U4j - -- 0 4J0<= -, < <o-j - 1.4C.4 4 : C

z 0 + 0 T L 44 .4
41 _t zI4-* .- +0 4_-0 I t0i4

NW "44 + r.0
+ +0 CO z- N-

+ 00N

+ 0 +-b12. .4.) +0 +10 (L

0 00

(SNVJIW.-IVHI ) NVIO33 8-IVHe 00

€n
C

00

4-4 0

0 2o + 02
A V CY 4- +

A -4 + ++ +

.4 0 + ,+ 4) 0

--O .,4 bD+ + + + +-4 4J 444 r. 0 00 ,4

4 ,-4 + + +
+-0 , 4 +  

+ 4,- g

"0+0 N ++ ot.+

0 C0 0

-- " O 
+  14

+~ ~ ~ ~ C U),' +6 + + (,,( - ,

++ In .4

+0 4) 0.

W 0 M

a-iVH6 S-IVHS

_____ ___4 ++__ __ 0 (___ __ _

+ + +

+4 * + 2-4 (L (DV N < $44
+ +) 0 N 4

-+ w..+
++ II W 0 0I.N 1 1,

+ W0$ - 0 a <

+ +4,+ 00 4 4
0- 0< W M4

+ . Z+ w2 (.) '4 0

+ 41

+2 m 4.
0 + m0)2

V.0 '0-9 0 1 -
S-J.VHS (SNVW..L-IVHJ.) NVI03I



Scale Drift

96

-4

+ + 0 -

+ 0 044
-A .- 0) A V N 0

z 0--J

4.-I m II 00r4L

0 -4 04 *4)

.0 + 0 ( n A-

< 41J (4-4

Co + + 0 0-D -A )
0 0 CD

+ + 0 c+00 -4
+0 0 C

0. +~ 0)(

0 0) 4-

(SNVd11-1VH1) NVI03fl 0 1-4 X

00

00
4,4 0

0 a0
-4 0

< 10+ 0A

m-4 0 ++ 1A(
+ :s C -44w + CLE 0

u + L1) 00) X0  
-bfW + + ++ -4 4J 4-j
4+4 r- + 0 L4 -A

+ 4- ++ + +~) I

00 0 t-+
0+ 0 IN (a + + + 0

++ 0 0 + C
0 ) 0

Co 0 Cfl

0 I- ~0 00 ro
e-IVH8 S-JNHS

-4

0

++ U]bf
1-4+ Ln

++ 0 0N .- 4a)
+- +4 J_-

+ V) +4~- 0 X-.. 0 -
++ ) 00 WII -4

+ + +6 0~ ID N (- (W
+ IO CL C

+4~ 01 1 z

++- 0 *- 0 ."-4 a

+_ _ _ _ _ __+-_ _ _ Q 1i _ _ _ _ _ _ _in{C -~ < 0)

PC00P0 0 L-
++N~ +SNCO -VHI N V) f) ) r

+ :3 C

9~~It1+



Scale Drift

97

--- ("#7 / V O -- S0 0t0
-I. -4-4

+ + +n
- A AV 0 N -

+4 -j

0 +0 0 + 0-

Z 0 + 0 - n
- H +( 0V0 IN - (44

-. + I.N-A r

NW o A-) 0 N IN
t2 x +0 . IN .- 4

++ 4-A :

I n 0

F-- -A,4 -4 - +
< < + 0 +
X 1 4 0 +

i ~O -4( tko 04, + + ++ + n o .

S04- + 0 n -4.

0, + + .. -4)

0 - 0 I 0 + 0
S4-

00

o°4

(4-i 0

+ 0

AV _..... -- ."

40 0

+ + w o 0

O- N- + 4- +o-4-4- -- -4Jo +0 0

++ -N -A 4)QQ ,i "0 ++ 4 -A
+- . < 4.-
+" 0) 0 IN'0 0

- -4 (-1 o; )o

+# 00-

0+ F-0m

4J+ I--m d4

-Ain*+ 0 -A

$44

-T-4

VI 0+ V 0-
(420~ (SN-11...1 0-H03



Scale Drif-

98

+ z -

I~ -4 u.

NW -, 4

+

_______ (n
4.J

'3)
(SNVULL-IVN1) NVIO13I4

I -N4

410
'4I 0

AV - -A 4-4
4 0

0 0
C.)0

o~C w4J-
++

o 0 0

oC
b r.

G-.LYH8

0

* + ad 0E

+- + $ < --
4. +- + W 41~+ Ea 0~ 0 A

+ +4 .. 03 0 L6fy - 4-

+** it) 12. 0. 0< I II f

+ 4i r 0 (E) (DO 0+ + ++ o w
*CC .,4 Co

4~~ r..4 ~-4- CO)

++.4 + 4

VIO 010 v -O-9 0 1O S
S-J.VHS (SNVW.1-IVHI) NVIO3"



Scale Drift 0

99

Residual Slopes Residual Difficulties Approximate Bias

in Estimated
o * not, Abilities

lio Round 1

41

# I , Round 3

4-T 
I

4Round 4

+ 44

It.4 Round 2

444

i'
I ,f". 6"

Figure 12. For all Rounds of Method A, the residuals for the slopes and
the difficulties for items in the starting pool and the

approximate bias in the estimated ability. See text.
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each Round.
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Figure 18d. The Round 4 residuals for the slopes and difficulties for new items
for Method A (top), Method B before scaling (middle), and Method B
after scaling (bottom). See text.



Scale Drift

109

TEST I

" 4L

37.5~Run 4~n --

~ I IN5+ .

T,~ H ET

12.5s 7tec Round 4ltos

9 Po
-3,9 -. 5 +1,



Scale Drift

110

T ES T 1

IV

12 5'

-3,~~ 0 +1

pol atec ound 4fsmltos

12.5



Scale Drift

TEST 1

40

30"

20

-~ 50 new items 
- J ___-

- -

- - 25 replacement items

0,I I

-301.5 +15 +3.

Figure 21. Method A estimated test information functions for the target,
the 50 new items and the 25 replacement items, Round 4.
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Appendix 1. Parameter estimates for items not included in Figures because

'true' parameters could not be developed from the tabled
values of the true item response functions

Figure Row Column a C

10a 1 1,2 .87 -3.94 .07
.70 3.92 .10

1.03 -3.45 .07
.88 -3.72 .07

2.11 10.18 .22

2 2,3 .31 -11.07 .20

.54 -4.13 .20

.99 -3.17 .20

.32 -8.85 .20
1.10 -3.20 .20
.21 -9.82 .20
.90 -2.79 .20
.68 -3.86 .20
.41 -6.54 .20

.13 -14.88 .20

10b 1 1,2 .87 -3.94 .07

.70 3.92 .10 -
1.03 -3.45 .07

.88 -3.72 .07
2.11 10.18 .22

2 2,3 .76 -5.22 .20

1.01 -3.00 .20
.65 -2.78 .20
.50 -5.88 .20

1.05 -2.83 .20
.41 -6.57 .20
.28 -10.88 .20

0

9
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Fizure Row Column a b c-

lOc 1 1,2 .87 -3.94 .07
.70 3.92 .10

1.03 -3.45 .07
.88 -3.72 .07

2.11 10.18 .22
.65 -2.78 .20

2 2,3 .89 -3.26 .20
.05 -66.42 .20
.60 -3.34 .20
.66 -3.92 .20

1.21 2.83 .10
.50 -5.46 .20
.34 3.46 .20 ~

1.08 -3.35 .20
.57 -3.55 .20
.65 -3.87 .20

10d 1 1,2 .87 -3.94 .07
.70 3.92 .10

1.03 -3.45 .07
.88 -3.72 .07

2.11 10.18 .22
.65 -2.78 .20

2 2,3 .44 -5.94 .20
.40 -6.89 .20

1.04 -3.14 .20
1.42 -3.37 .20
.51 -5.32 .20

1.10 -3.11 .20
.61 -4.21 .20

2.02 3.02 .1.9

S6
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Fig-ure Row Column a bc

l~e 1 1,2 .87 -3.94 .07
.70 3.92 .10

1.03 -3.45 .07
.88 -3.72 .07

2.11 10.18 .22
.65 -2.78 .20 a

Ila 1 1,2 .87 -3.94 .07
.70 3.92 .10

1.03 -3.45 .07
.88 -3.72 .07

2.11 10.18 .22

2 2,3 .34 -10.21 .20
.59 -3.82 .20

1.07 -2.94 .20
.35 -8.17 .20

1.19 -2.97 .20
.23 -9.06 .20
.98 -2.59 .20
.73 -3.57 .20
.44 -6.05 .20
.14 -13.72 .20

llb 1 1,2 .87 -3.94 .07
.70 3.92 .10

1.03 -3.45 .07
.88 -3.72 .07

2.11 10.18 .22

2 2,3 .43 -7.46 .20
1.01 -2.74 .20
.73 -2.65 .20
.47 -5.41 .20

1.21 -2.43 .20
.48 -5.82 .20
.36 -8.18 .20
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Fig-ure Row Columin a bc

lic 1 1,2 .87 -3.94 .07

.70 3.92 .10
1.03 -3.45 .07
.88 -3.72 .07

2.11 10.18 .22
.73 -2.65 .20

2 2,3 .31 -7.31 .20
.25 -12.34 .20
.65 -2.88 .20

1.01 -2.78 .20
.95 3.11 .08
.34 -8.73 .20 0
.87 -3.44 .20

1.22 -2.38 .20
.79 -3.32 .20

ld 1 1,2 .87 -3.94 .07
.70 3.92 .10

1.03 -3.45 .07
.88 -3.72 .07

2.11 10.18 .22
.73 -2.65 .20

2 2,3 .32 -8.18 .20
.39 -6.32 .20
.64 -3.94 .20
.48 -7.81 .20

*29 -9.24 .20
1.24 -2.60 .200

'.33 -7.13 .20
1.24 3.21 .20

lie 1 1,2 .87 -3.94 .07
.70 3.92 .100

1.03 -3.45 .07
.88 -3.72 .07

2.11 10.18 .22
.73 -2.65 .20

SN
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Figure Row Column a b

12 1,2 1,2 .87 -3.94 .07
.70 3.92 .10

1.03 -3.45 .07
.88 -3.72 .07

2.11 10.18 .22

3,4,5 1,2 .87 -3.94 .07
.70 3.92 .10

1.03 -3.45 .07
.88 -3.72 .07

2.11 10.18 .22
.65 -2.78 .20

13 1,2 1,2 .87 -3.94 .07
.70 3.92 .10

1.03 -3.45 .07
.88 -3.72 .07

2.11 10.18 .22

3,4,5 1,2 .87 -3.94 .07
.70 3.92 .10

1.03 -3.45 .07
.88 -3.72 .07

2.11 10.18 .22
.73 -2.65 .20

14 1 2,3 .31 -11.07 .20 N
.54 -4.13 .20
.99 -3.17 .20
.32 -8.85 .20

1.10 -3.20 .20
.21 -9.82 .20
.90 -2.79 .20
.68 -3.86 .20
.41 -6.54 .20
.13 -14.88 .20
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Figure Row Column a b c

14 (cont'd.) 2 2,3 .76 -5.22 .20
1.01 -3.00 .20

.65 -2.78 .20

.50 -5.88 .20
1.05 -2.83 .20

.41 -6.57 .20

.28 -10.88 .20

3 2,3 .89 -3.26 .20
.05 -66.42 .20
.60 -3.34 .20
.66 -3.92 .20

1.21 2.83 .10
.50 -5.46 .20
.34 3.46 .20

1.08 -3.35 .20
.57 -3.55 .20
.65 -3.87 .20

4 2,3 .44 -5.94 .20
.40 -6.89 .20

1.04 -3.14 .20
1.42 -3.37 .20

.51 -5.32 .20
1.10 -3.11 .20

.61 -4.21 .20
2.02 3.02 .19

15 1 2,3 .34 -10.21 .20
.59 -3.82 .20

1.07 -2.94 .20
.35 -8.17 .20

1.19 -2.97 .20
.23 -9.06 .20
.98 -2.59 .20
.73 -3.57 .20
.44 -6.05 .20
.14 -13.72 .20
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Figure Row Column a bc

15 (cont'd.) 2 2,3 .43 -7.46 .20
1.01 -2.74 .20
.73 -2.65 .20
.47 -5.41 .20

1.21 -2.43 .20
.48 -5.82 .20
.36 -8.18 .20

3 2,3 .31 -7.31 .20
.25 -12.34 .20
.65 -2.88 .20

1.01 -2.78 .20
.95 3.11 .08
.34 -8.73 .20
.87 -3.44 .20

1.22 -2.38 .20
.79 -3.32 .20

4 2,3 .32 -8.18 .20
.39 -6.32 .20
.64 -3.94 .20
.48 -7.81 .20
.29 -9.24 .20

1.24 -2.60 .20
.33 -7.13 .20

1.24 3.21 .20

18a 1 1,2 .31 -11.07 .20
.54 -4.13 .20
.99 -3.17 .20
.32 -8.85 .20

1.10 -3.20 .20
.21 -9.82 .20
.90 -2.79 .20
.68 -3.86 .20
.41 -6.54 .20
.13 -14.88 .20

!9
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Fiaure Row Column a b c

18a (cont'd.) 2 1,2 .31 -11.07 .20
.54 -4.13 .20
.99 -3.17 .20
.32 -8.85 .20

1.10 -3.20 .20
.21 -9.82 .20
.90 -2.79 .20
.41 -6.54 .20
.13 -14.88 .20

3 1,2 .34 -10.21 .20
.59 -3.82 .20

1.07 -2-.94 .20
.35 -8.17 .20

1.19 -2.97 .20
.23 -9.06 .20
.98 -2.59 .20
.73 -3.57 .20
.44 -6.05 .20
.14 -13.72 .20

l~b 1 1,2 .76 -5.22 .20
1.01 -3.00 .20
.65 -2.78 .20
.50 -5.88 .20

1.05 -2.83 .20
.41 -6.57 .20
.28 -10.88 .20

2 1,2 .39 -8.28 .20
.91 -3.02 .20
.65 -2.92 .20
.42 -6.00 .20

1.08 -2.67 .20
.43 -6.45 .20
.32 -9.09 .20
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Fizure Row Column a b C

18b (cont'd.) 3 1,2 .43 -7.46 .20
1.01 -2.74 .20
.73 -2.65 .20
.47 -5.41 .20

1.21 -2.43 .20
.48 -5.82 .20
.36 -8.18 .20

18c 1 1,2 .89 -3.26 .20
.05 -66.42 .20
.60 -3.34 .20

.66 -3.92 .20
1.21 2.83 .10
.50 -5.46 .20
.34 3.46 .20

1.08 -3.35 .20
.57 -3.55 .20
.65 -3.87 .20 S

2 1,2 .28 -8.14 .20
.22 -13.74 .20
.58 -3.20 .20
.91 -3.08 .20
.85 3.49 .08 S
.30 -9.72 .20
.78 -3.82 .20

1.10 -2.64 .20
.71 -3.69 .20

3 1,2 .31 -7.31 .20 0
.25 -12.34 .20
.65 -2.88 .20

1.01 -2.78 .20
.95 3.11 .08
.34 -8.73 .20
.87 -3.44 .20

1.22 -2.38 .20
.79 -3.32 .20

S
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Figure Row Column a b c

18d 1 1,2 .44 -5.94 .20

.40 -6.89 .20
1.*04 -3.14 .20
1.42 -3.37 .20

.51 -5.32 .20
1.10 -3.11 .20

'61 -4.21 .20
2.02 3.02 .19

2 1,2 .29 -8.83 .20
.36 -6.86 .20
.59 -4.26 .20
.44 -8.48 .20

,26 -10.05 .20
1.14 -2.81 .20

*31 -7.74 .20
1.14 3.53 .20

3 1,2 .32 -8.18 .20
.39 -6.32 .20
.64 -3.94 .20
.48 -7.81 .20
.29 -9.24 .20

1.24 -2.60 .20
.33 -7.13 .20

1.24 3.21 .20
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