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This dissertation addresses the problem of determining stabilizing controls for

distributed parameter systems. The focus is on controls which provide strong

or weak stabilization to the system. Much of the prior work in this area has

emphasized exponentially stabilizing a system. Compared to exponential stabil-

ity, weak and strong stability are less desirable properties. However, there are N

situations, unlike finite dimensions systems, under which infinite dimensional

systems can not be exponentially stabilized. In such casesl, we propose weak

or strong stability.

One approach to the stabilization of finite dimensional systems and and ex-

ponential stabilization of infinite dimensional systems has been the use of Lya- "

punov type functionals. This is one technique which is developed and extended

here, to provide new conditions for strong or weak stability. We present a new.-
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functional, and if this functional is strictly positive, a certain semigroup will be

strongly stable. This functional-alm suggests an inequality relation which, if

satisfied guarantees the weak stablity of uniformly bounded semigroups.

- We also eim3ine the relationship between contraction semigroups on a

Hilbert space and shift semigroups on a related Hilbert space. In particular,

we And strongly stable semigroups to to be equivalent in a certain sense to a

backward shift semigroup. This provides an alternative view point for strong

stability.

Since stable semigroups are uniformly bounded and since this condition is

important in verifying stability we examine this phenomena. Some new ob-

servations are presented to illustrate conditions under which perturbations of

uniformly bounded semigroups remain uniformly bounded.
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Chapter 1

INTRODUCTION

This dissertation presents research into the stabilization of distributed parame-

0

ter systems using feedback controls. In particular the focus is on controls which

provide strong or weak stabilization to the system. Most of the previous work 0-

in this area has emphasized providing a system with exponential stabilization. --,

One approach to the study of exponential stability has been the use of Lyapunov ""

type functionals. It is this technique which will be considered and applied to

the investigation of strong and weak stabilization. Compared to exponential ':

stability, weak and strong stability are less desirable properties. However, as ;

we will see later, there are situations under which exponential stability is not

possible. This fact emphasizes the need for feedback controls which will either:_ ,

strongly or weakly stabilize a system.

A vibrating beam or string are examples of distributed parameter systems.

The state in each of these system might be represented as the position of the

beamn or string relative to its equilibrium and appropriate time derivatives.".

Then by stabilizing a system we are considered with the problem of given any".-
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state of the system at an initial time, can a control u(t) be selected, so that the

state tends to zero in an appropriate sense. In the above examples, the control

represents applying a force at the free end of the beam or in a distributed way on

the string. Feedback means that the state is used instantaneously to determine

the control at any given time. In particular we will focus on linear feedback

which means that the control in selected to be a linear function of the state.

The norm of a Hilbert space in the system context can be thought of as a

measure of the potential energy of these elastic systems. We will define precisely

exponential, strong and weak stability. A system is exponentially stable if the
norm tends to zero at some negative exponential rate as the time increases.

For strongly stable system the norm tends to zero, but there is no exponential

rate at which bounds this limit. The concept of weak stability is fundamentally

different.

In chapter 2, a review of the essential mathematical definitions is made. In

particular we look at linear systems on Hilbert or Banach spaces describe by

abstract differential equations and the use of strongly continuous semigroups

of linear bounded operators to represent the solutions of these equations. The

concept of a semigroup is key to the entire dissertation, so we look at some of

the critical properities of semigroups. In terms of these semigroups we precisely

define the notions of exponential, strong and weak stability, and present simple

examples of systems with each of these properties. The chapter concludes with

a brief discussion of controllability.

Chapter 3 presents new conditions for a system to be weakly stable. The J.

motivation for this approach is a well known theorem concerning the expo-

nentially stability of system on a Hilbert space given by Datko (11 which we

2 •
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summarize. When a certain positive operator related to a uniformly bounded

semigroup defines a functional with properties like those of Datko's Lyapunov

functional we find that the semigroup can be shown to be weakly stable. We

mention the relationship of this approach to weak stability implied by Nagy-

Foais decomposition arguments. p
Next, in the fourth chapter, strong stability characteristics are examined.

First we present an integral which will serve as a Lyapunov functional. We

show that the existence of this integral is equivalent the existence of an operator

solution to a particular inner product equation. The interesting case is when the

operator solution defines an equivalent norm. This is a sufficient condition for

strong stability of the related semigroup. We then show sone related conditions

for the existence of this equivalent norm and present two interesting examples.

Exact controllability is shown to be associated to this criteria.

Also in the strong stability chapter, we discuss the particular case of strongly

stable and exponentially stable contraction. One interesting observation is the

fact that a strong stable contraction is unitarily equivalent to a certain backshift

operator. This suggest that the backward shift is the archetype of a strongly

stable semigroup on a Hilbert space.

A critical step to verifying strong or weak stability using the techniques we

develop in chapter two and three is, checking, whether or not, the semigroup

of interest is a uniformly bounded semigroup is uniformly bounded. In chapter

5, we first present conditions for a feedback system to generate a uniformly

bounded semigroup when the uncontrolled system gives rise to a uniformly

bounded semigroup. Then the concepts developed in chapters three and four

are combined to present new weak and strong stabilization results.

3



Chapter 2

PRELIMINARIES

In this chapter we will review the important concepts in the study of infinite

dimensional systems theory and in particular, those ideas which are critical to

the development of the results presented in this dissertation.

First we will discuss the class of systems to be considered. The semigroup

theory, which is the indispensable basis of this approach is examined. The key

concepts of stability and controllability will then be expatiated.

2.1 INFINITE DIMENSIONAL SYSTEMS

Many problems of interest in control theory can be described by the inhomo- a'

geneous equation

:E(t) = Ax + Bu (1)

with initial state

X(O) = xo xo E D(A)

4
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The A in this case is the infinitesimal generator of a C.-semigroup and B is a

linear bounded operator. In this section we will define these terms and related

concepts.

The solution of such a differential equation then takes the form

z(t) = T(t)z(O) + T(t - s)Bu(s) ds

When the solutions x(t), t > 0, are in a separable Hilbert Space M, the state 0

space need not be finite dimensional. In such cases we refer to equation (1) as

representing an "infinite dimensional system".

4 The family of linear bounded operators T(t), t > 0, forms a Co-semigroup.

This means that the following properties are satisfied for all s, t > 0.

" JIT(t)II < o c.s

" T(s + t) = T(s)T(t)

" T(O)z = for all x E M

* e the mapping t '- T(t)z is continuous in "t" for each z E M

These are the key properties satisfied by the matrix exponential, exp{At},

when A is a matrix, which are required to generalize the finite dimensional

state space to an infinite dimensional space. We note that in the particular

case where A is a linear bounded operator, the representation ezp{At} also

holds. The norm above is the operator norm on the Hilbert space, M
49

ljT(t)jj = sup IjT(t)xHj

Generally, A is a closed linear operator from D(A), the domain of A, to the

Hilbert Space, M. An element, z E M, is in the domain of A if the limit

5
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t+-0 t

is defined. In this case, the limit defines the value of Ax. We then have the

representation

dAx= T(t)xlto

and formally, x(t) = T(t)xo, t > 0, solves the initial value problem

i(t) = Ax, x(0) =x

The operator A is densely defined if the set D(A) is a dense subspace of the

Hilbert Space, M. The Hille-Yosida [2] [31 and Generation Theorems provide us

with conditions for an arbitrary linear operator A to generate a Co-semigroup.

The resolvent set, p(A) of A, is the set of complex numbers

{A complexjA/ - A : D(A) --+ M is one to one and onto and

(Al - A)- ' is a linear bounded operator }

For these A E p(A), the operator (AI - A) - ' is called the resolvent of A.

A Co-semigroup is a contraction semigroup, if IIT(t)II <_ 1, t > 0, and

is uniformly bounded when fIT(t)IT <_ M, t > 0 for some positive M > 1. "

Contraction semigroups have two useful properties to note here. The operator

A is said to be dissipative if for all z E D(A)

Re[Ax,xJ < 0

The infinitesimal generators of contraction semigroups are dissipative. When 5%*

T(t), t> 0 is a contraction semigroup, then its adjoint semigroup T(t), t > 0

is also a contraction semigroup.

6 1'
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Theorem 1 (Hille-Yosida) A is the generator of a C.-contraction semigroup

if and only if A is a closed, densely defined and each positive A is in the resolvent

of set and satisfies
jjA()J - A)-'11 < 1

For general semigroups the following Generation theorem holds.

Theorem 2 A is a generator of a Co-semigroup T(t), t > 0 if and only if A is

closed, densely defined and there exist constants, M > 1 and w E R such that

A E p(A) for each A > w and satisfies

I1(A - w)M(AI - A)"I < M

for each A > w and when n is a positive integer. In which case we have I T(t) <

Mew'.

The last inequality is refered to as the exponential growth property.

In the original system (1) we will frequently be interested in the case where •

the control u(t) is chosen to be a linear state feedback control, u(t) = Fz(t).

Here F is some other linear and preferably bounded operator. In this case we

obtain the homogeneous system equation 0?

i(t) = (A + BF)x(t) (2)

The solution to this differential equation then satisfies the integral equation

x(t) = T(t)z, + f T(t - s)BFz(s) ds

For certain classes of BF a better representation is possible.14]

71



Theorem 3 (Phillips) Let A generate a C.-semigroup T(t), t > 0 on a Hilbert

space M and P : M - M is a linear bounded operator. Then A + P is also a

generator of a C.-semigroup.

If B and F are both linear bounded operators then composition BF is also a

linear bounded operator. So the sum A + BEF is once again the infinitesimal

generator of some Co-semigroup. This is one way to insure the existence of a

solution to the feedback homogeneous system. If S(t), t > 0, is the semigroup

generate by A + BF, then the following relations are satisfied.

S(t)xz0 = T(t)x. + jT(t - s)BFx(s) dsfo
= T(t)xo + JT(t - s)BFS(s) zds

The feedback BF need not be bounded. If both A and BF are dissipative the

the following theorem provides conditions under which A + BF still generates

a contraction semigroup

Theorem 4 Let A be the infinitesimal generator of a C0-contraction semi-

group. Suppose that P is dissipative and D(A) D D(P). If there are constants

0< a _1, and b>O such that

IIPxHj < aIAxlj + blz)I

for all z E D(A). Then A + P generates a Co-contraction semigroup.

For example, if A is dissipative, we can choose the feedback u(t) = -B'x(t).

Then if the domain of BB contains the domain of A, A - BB is the generator

of another Co-contraction semigroup. B and consequently B" need not be

bounded operators.

8
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2.2 NOTIONS OF STABILITY

We would like to investigate conditions for the stability of the homogeneous

system

.*(t) = Ax(t)

A system of this form can be obtain from the original equation (1) by either

applying an appropriate state feedback, u(t) = Fz(t), in which case we obtain

equation (2), or simply by setting the control to zero. In this case a concern

would be: When does the solution z(t) tend to zero as t tends to infinity? And

in would sense does this convergence occur. In the infinite dimensional case it

is possible to define this notion from many different viewpoints. The strongest
definition commonly considered is that of exponential stability.

5.

Definition 1 The system (2.2) is ezponentially stable if thee is an M > 1 and

an w0 > 0 such that for t > 0

I IT(t)Ii < Me - -- '

The key point in this definition is that the norm of the state decreases at

a known exponential rate. This is a very desirable property, however in many

real systems obtaining exponential stability is not possible, as we shall see later.

The next best and a milder form is strong stability.

Definition 2 The system (2.2) is strongly stable if there for every x C Y

lir IiT(t)zIj I 0

Here the norm still tends to zero however there is no fixed rate at which this '

t convergence occurs.

49
*
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Definition 3 The system (2.2) is weakly stable if there for every z, y E M

lim[T(t)x,y] = 0

For a weakly stable system the norm may not decrease at all. If a semigroup

T(t), t > 0 is exponentially or weakly stable, then the its adjoint semigroup

T(t)*, t > 0 is also respectively, exponentially or weakly stable. However, the

adjoint semigroup of a strongly stable semigroup is only weakly stable. 0

The simplest example of an exponentially stable semigroup on an arbitrary

Hilbert space is multiplication by the scalar factor, e-w°t, where w, > 0,

y = T(t)x •

1/ = e-wo.tX

The backward shift is a good example of a strongly stable semigroup. Let

us consider the Hilbert space M = L2 [R+ , )l], where M, is another separable .O

Hilbert space with norm [ . In this case suppose that f E M. Let U(-)

denote the unit step function,
1 z>O

10 Z<O

The backward shift semigroup on this space takes the form

T(t)f=g

g(z) =f(X + t)

Then

IIT(t)f 11 - fo IIf(x + t)II , dx

I I f (Z) II'm dz

And since, by definition,

10
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IlflL2 1 (x)11', dx

it follows that

lirai flT(t)f[i,2 = 0 A-
t 00 NIP

However, if we consider the family of elements of M defined by ft E Y

ft(X) = f (:r - t)U(X- t)

Now, if we recognize that 11fil = 1f l, and that T(t)f = ft, a.e., we see that

IIftIl = IIT(r)ftll

for r < t. There does not exist a negative exponential growth rate to bound

this semigroup.

Another example of a strongly stable can be constructed using a multiplica-

tion operator. This time consider the space M L 2[R+ , R]. Define a function

-x for 0 < x < 1
-1 forz> 

1

Then take the infinitesimal generator of a semigroup to be given by g = Af,

g(z) = q(x)f(x). In this case the semigroup is given by h = T(t)k, h(x) =

C() r k() for 0 < <

e-'k(x) for z> 1

First of all note that since et9(' ) < 1 this semigroup is a contraction. To see

that this is at least strongly stable first consider a step function

k,(x) (11/ -a)U(t - a)U(b - t) for b > a >0

- , " 1%*'-1



Then JIT(t)kfl < je'9(a)kjj which tends to zero as t -. oo. The more interesting

case is k(z) =(Ilvr/)U(x)U(a - x) for 1 > a > 0. Then I

U T(t)kH 2  =j 2tz Idx

2ta

2ta

And the last term converges to zero.

Next we consider whether this example is exponentially stable. It suffices

D ~to consider again k(x) = (11/ya)U(x)U(a - x) for I > a > 0. Suppose there

was an 0 < w0, < 1/2 such that IIT(t)kII 5 e-''. However, we choose a =w,,12

and then t = 1/2a we see that

= 2 ( -2) >C
2ta

So this example is not exponentially stable.

For the same space, M = L2(R', M~I), the forward shift is a weakly stable

isometric semigroup.

h = F(t)k%

h(x) = k(x-t)U(x-t)

Then to verify that this sernigroup is weakly stable, first recall that finite linear

combinations of step functions of the form U(t - a)U(b - t) are dense in N.

Then for t > b, 
1

f 01hx),U~ -a)U(b - x)] dx =0%

12



2.3 CONTROLLABILITY

In order to stabilize a system of the form (1), it must feasible to find control

that will "steer" the system to the origin. The characteristic of a system which

permits us to select a control to transfer the state of the system to another state .

is known as controllability. This property is also refered to as reachability. As is

the situation for stability of infinite dimensional systems, there are in addition

various definitions for controllability. See Dolecki [51 for many other definitions

of controllability.

A very cogent notion is exact controllability. In this case, from the origin, 0

for any arbitrary state, there is a control, that for some finite time will drive

to this system to the state. As a consequence, starting at any state, there is a

control to transfer any state to the origin in finite time. More precisely we have

Definition 4 For the system (1), the reachable set for the time 't' is %

t"%

K(t) = {x(t) = T(t - r)Bu(r) dr for every admissible u(.)} %

This system is then said to be exactly controllable if

U K(t)= N
tE[O,oo)

Example 1 Consider again the backward shift semigroup on L2 [(0, oo), )(11 =

M. Let B : k -N M be the operator defined by .5,

Bf (0)=f t{ f(a) if 0 > to

To aee that this system is exactly controllable, we must find the control u which

satisfies

13
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y(t, 0) = T(t - r)Bu(r, ) dT

Since the effect of the projection B is to annihilate u(6) for 0 < to we obtain

y(t,9) = T(t - r) u(-,)U(8 - to) dr

and applying the left-shift to the control we find

Y(t,)= fu(r,9-t-r)U(O t- -to)dr

When we eliminate the step function we obtain the relation

y(t, 9) u(r, 0 + t - r) dr/or 8 + t > to 0

and zero otherwise. We see here that it is necessary to have t > to. Let us

assume that there is an e > 0 such that t - to > e. Let us now consider

separately the two cases indicated by the upper limit of the previous integral.

CASE 1: When 9 > to suppose that we choose the control to satisfy the

relation

u(r,0 + t - T)= !y(t,O)

t

With the change of variables a r, and 8 =+ t - r we obtain 0 = - t + a,

and then
0

u(a,,,) = ,(t,t + a - t)
t *5

5%q

for tP + a > t and zero otherwise. If y(t,.) is in L then unequivocally so is

CASE 2: If 0 < to we choose the control to satisfy the relation

u(r,O + t - r) y t+ "o (t'O)

114
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With the change of variables o = r, and b = 0 + t - r we obtain 0 = - t + a,

and then
1 

d

(a, + o - (t,+ - t)

for b + a > t and zero otherwise. To see that u(a,.) E L2 note that tP + a - t +

t - to > E and consequently

f (o,,) f dk. = (+ - tto) l (t, -t+a)l1 diP < oo

Thus we see the the above system is exactly controllable. Next note that the

operator B is self-adjoint.

In many practical applications the operator B is compact and even finite

dimensional. As one would expect, it is difficult for a control to exert influence

on the entire state space. In fact, it has been shown that it is not possible to

exactly control such as system. Specifically, Triggiani [6] has shown that . -

Theorem 5 If the semigroup T(t), t > 0, or the control operator B is compact

then the system (1) is not exactly controllable. 0

A more practical notion is approximately controllability which has important ... ,a

ramifications in the weak stabilizability of the system (1). In this case, the

subspace which is exactly controllable is a dense subspace. '

Definition 5 The system (1) is approximately controllable if ""a:

U K(t)= M'
tEo,oo)

When the system is not approximately controllable we will refer to Mc =

UjEo, ) K(t) as the controllable subspace and define the uncontrollable subspace

MUc to be the orthogonal complement of Mc.

15%
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Chapter 3 S

WEAK STABILITY

Although weak stability is not as desirable as strong or exponentially stability,

since the conditions for obtaining weak stability are simpler, some practical

results can be derived. We begin in this chapter by recounting a well known

result for exponential stability and then show how this suggests an approach

for studying the weak stability of infinite dimensional systems on Hilbert space.

An alternative approach to weak stability and stabilizability may be found in

[7].

Datko [81 proved the following,

Theorem 6 Let T(t), t > 0 be a strongly continuous semigroup with infinitesi-

mal generator A on a Hilbert space M. Then the following conditions are equiv- 44"

ale nt.

1. T(t), t > 0 is exponentially stable.

2. There exists a positive, self-adjoint operator, P > 0, satisfying ",

[PAx, x) + Ix, PAx] = -[x,]J (3)

'



for z in the domain of A.

S. For every4 x in Mt:

The unique operator P which satisfies (3) is defined by the expression

PX f T(t)'T(t)xdt, x E M/

The functional (3) is

[PX'X1 Jj IT(t)xfl'dt

This theorem can also be generalized slightly in the following sense. Instead,

if there is a solution P1, positive and seif-adjoint such that for some self.-adjoint,00

strictly positive, R > -II, -f > 0, to

[PiAx, x) + [x, PAxI = Rx, x]

Then the system (2.2) would be exponentially stable. In this case we have0

P~=JX T(t)'RT(t)x dt&

This variation is verified by recognizing that R defines an equivalent norm

([R, z)/.By transforming back to the original space, the result of the pre-

vious theorem is obtained.

It is evident from (3) that

1 7%



5.

We will investigate connections between operators P and semigroups T(t), t > 0

which satisfy this relationship and in particular the ramifications on the weak

stability of the system (2.2).

When P > 0 and satisfies (4) there is a functional defined by another linear

operator P and when applied to T(t)x this functional converges to zero. We

have

Proposition 1 Let P be a self-adjoint, non-negative linear bounded operator

and assume T(t) 0 I. Then there exists a P > 0 and P 0 0 such that

limjPT~t)x,T(t)x) = 0
t-OD

proof For0 <t It 2 ,

[T(t 2)*PT(t2 )X,Xj 5 [T(tl)*PT(tl)x,z]

T(t)'PT(t) is self-adjoint, non-negative, and non-increasing. Consequently,

when we apply the uniform boundedness principle, we find, T(t) PT(t) con-

verges strongly to a non-negative, self-adjoint operator. We will denote by C 2

this limit.
lira.

lrn T(t)'PT(t)z = C 2 z

It is easy to see that C 2 < P and that C2 = T(t)*C2 T(t). Now let us define

P = P - C2 and then

lim(PT(t)z,T(t)xl = lim(PT(t)z,T(t)xz - [T(t) CT(t)z,z] = 0
t-00 t-00

This then defines the functional desired by this proposition.
The following simple example illustrates the key property of P.

18

-- 5-.I

a~~ W .5



Example 2 Consider the case where 0., n= 1,... is an orthonormal basis for

H and

00

T(t)x = "jnj~

One example of P which meets the condition of Proposition (1) is

= X 1 + sgn(Re(an)) X0ln

n=1 n

where the at,, are scalars.

By modifying slightly, the P that appears in the previous proposition we ob-

tain conditions on for which the semigroup T(t), t >_ 0 is weakly stable. The

assumption that the semigroup be uniformly bounded is not restrictive since

all weakly stable semigroups are uniformly bounded.

Proposition 2 If P > 0 and T(t), t 0 is uniformly bounded, I IT(t) II M, M

then T(t), t > 0 is weakly stable.

0proof Define Q1 = P. Then we have that

li IIQT(t)xli = 0

Since

[T(t)x,Qyl !S I IQT(t)xIl Ilyll

we find

limI[T(t)x, QyI 0
t-00

%V



Since Q is positive, the range of Q is dense in M. For any arbitrary any

C M), there is a sequence { y}= such that Qy,, -* z. Then we have the

relation

,T(t)z,z i - [T(t)x,QyI < (IT(t)zlf 1iz - QYnII

< Mlz -Qy,ll

And then since Qyn converges strongly to z we have

IT(t)x,zI = Uim T(t)x,YnJ

We then see that the semigroup is weakly stable since, •

lim[T(t)xz] = 0

for each x,z M .

In the case of Proposition (1) we also have that C 0 if and only if

limPT(t)x,T(t)x] = O, z E M

since IICzII' < [PT(t)x,T(t)x] for every t > 0 and each z E M.

Next let us examine the action of P on the Hilbert space M. First denote

by .M the set

"7
M = {x E ): [PT(t)x,T(t)zI [Px,x] for every t > O} %

Now consider any arbitrary y E .M, it satisfies the property A: "

[PT(t)y,T(t)yj = [Py, y]

Since this equality holds for every t > 0, in the limit as t - oo we also have

llCYlI2  [Py,Y]

20
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b

or equivalently,

((P- C')y,y]= 0
3.

This means that P - C2 > 0 as well as P 0 and A C )4(P). On the other

hand if z E )(P), (P - C 2 )z = 0 and

[PXI = IiCz11 ,

From here we see that

[PT(t)z,T(t)z < [Pz,z] = jICzU' < [PT(t)z,T(t)z]

Consequently, [PT(t)z,T(t)z] = [Pz, zj for every t > 0 and every z E )(P)

and )(P) C M. To summarize we have that )(P) = t. This equality is a

attribute of the system in the following example. S

Example 3 Suppose that On, n = 1,... together with 0n m = 1,... form an

orthogonal basis for H and the semigroup T(t), t > 0 is given by

00

T(t)z= e(-a*-0)tjx,0,j¢, + , d"-X, 0,, ],,

where an, f,, and -y, are real and the an are also positive. Then

00 00

T(t)'x = e(- Xt[z, nn + Z ( -- '[X, 1,,,,
n=1 m--I

Assume that P is defined by

00 

0

n=1 n "%= +P

.3,A.
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We can compute C2 by

C 2  lrn T(t)'PT(t)z

lim Fj e(-"--) (Oftlortt-oo n-1 n

i=1 1

+ m

Then for P,

n

Finally we recognize that M1(P) = span({4-}.

In addition, when [PT(t)z,T(t)x] :_ [Px, z] and P > 0, there is a subspace

of H where a quasi-similar contraction semigroup can be found. First define by S

Q the linear bounded, self-adjoint, non-negative operator satisfying A

P =Q 2

Another Hilbert space can be constructed by completing the range of Q.

Denote this space by

M= R(Q) C H =S

We can define a family of bounded linear operators Z(t) M -M 1, t > 0, to

be quasisimilar to T(t), T > 0

Z(t)Qz = QT(t)z z E H

Z(t), t > 0, is easily seen to be a contraction semigroup [9]. The Nagy-Foias

Decomposition [10] can now be applied to Z(t), t > 0. The Hilbert space M can

be decomposed into two orthogonal subspaces S

22



S
R = nu e Nu

where the unitary subspace is defined as the set

Nu, = { E I Z(t)xI1 = IlzlJ = IIZ(t)'xll}

and the completely non-unitary subspace is its orthogonal complement.

More, importantly the contraction semigroup Z(t) also can be decomposed

according to it restriction to these two subspaces.

z(t) = z e',,(t) 9 z (t)

The restriction of Z(t) to the unitrary subspace is a semigroup

Z.(t) = z(t) ,.

as well as the restriction to the completely non-unitary portion of N

zo.(O- (t) ,. ..

Since Nu and M,.u are orthogonal subspaces there are projection operators

for each subspace. Let us denote by Pu the self-adjoint orthogonal projection

of R to Nu, by P,,. the self-adjoint orthogonal projection of M to n,... As

a consequence of space decomposition we might observe that the projection

operators commute with the semigroup Z(t). For z E M

Z(t) Pr = P,,Z(t)z '.-

Z(t)Po,,, = Pn,, Z(t) X

23
5%~

%

.. . .. i - iI I- i S I



When we apply these relations we find that

[PT(t)x,T(t)xl = IIZ(t)Qx11 2

= IiZ(t)PQXII2 + IIZ(t)P,.QII 2

= IIP.QT(t)xIi 2 + IIPm.QT(t)xl12

= (QPuQT(t)x,T(t)z] + [QP,,,QT(t)x,T(t)x]

Furthermore, for the unitary part of Z(t)

IIZ(t)P"QXII
2 = 1Ip.X112

or

[QP.QT(t)z, T(t)xJ = [QP Qz, x

In summary of the above, we have the ensuing proposition

Proposition 3 If T(t), t > 0 is a C semigroup and there exists a P > 0 such 0

that

[PT(t)x,T(t)xl < [Px,x] I

then there exist P1,P 2 > 0 such that

[PT(t)x,T(t)z] = [Piz,x] + IP 2T(t)x,T(t)xl

Note that if in addition Pu = 0 then T(t), t > 0 is weakly stable.

Example 4 Suppose that 0, n = 1,..., ,, m = 1,... and Cp, p = 1,...

jointly form an orthogonal basis for H and the semigroup T(t), t > 0 is given

by
00 00

T(t)x E ~ e(an.+i,)t IX, 'Oj~ + 1: e( -9)t(X, Om.10m,
n=1 M=l

+ E e('i1~ 1X i]C

24
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where ,., fl,,, y,,1, 6., and e; are real and the a, and b, are also positive. Then

define P by

* 00 cc1

Px = -1 - . + E ., Obmom
n m

This P satisfies (PT(t)z,T(t)z] < [Pz,z]. Corresponding to the above de-

velopment we have the following relations.

QX=00j 00 XO1n+Ixtv]

= 7n= -+
n=1 7m=

= span{O,. } •

Z(t)X = e(-°.+'0.)ttX, O] . + i C')'[X,On]'A
n= I

Mu = span {k.}

Z,.,,(t)x ej-j -+ i.)t[z, ,.]On . 1
n=1

00
zP(t)X = Z e),'OI,- O,4t

0010

ml

n=1

P will be positive in the case where the are all zero. Pu is 0 if the On do not
exist. We then have IPT(t)x,T(t)x] < [Px,z] and the semigroup T(t), t > 0 is

weakly stable.

25
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Once we can verify the weak stability of a system in some cases, it is easy

to show that the system is strongly stable. In particular when the resolvent %41_W

operator of the infinitesimal generator is compact or if the semigroup itself is

compact, showing that the semigroup is weakly stable is sufficient for strong

stability. Moreover, if A has compact resolvent BF is bounded the A + BF also

has compact resolvent so that if BF weak stabilizes A it also strongly stabilizes
0

A.

0

X.-
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Chapter 4

STRONG STABILITY

We present in this chapter new conditions for verifying the strong stability of
some systems. We start by developing a new Lyapunov functional. This is '

shown to be equivalent to the existence of an operator solution to a certain S

inner product equation. When this functional defines an equivalent norm we

see that the associated system is strongly stable. Some interesting conditions 1%

* related to this equivalent norm are then explored. These criteria will be applied 0

to the strong stabilization problem. 
a..

4.1 A NEW LYAPUNOV TYPE CONDITION S

FOR STRONG STABILITY

4 The major thrust is based on the integral

Jf IB'T(t)xl 2 dt < oo

We will use this functional to obtain a sufficient condition for the strong stability

27
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of a C.-sernigroup. First we prove the existence of a solution to a certain

Lyapunov type equation is equivalent to the finiteness of this integral.

Theorem 7 A necessary and suffleient condition for the convergence of the

integrals

* a IB'T(t)xI12 dt()

for every x in H is the existence of a scif-adjoint linear operator P on H such

that P is non-negative and satisfies

[PAx,xl + [x,PAx] -- IIBz112 for x E D(A) (6)0

Moreover,

Pz T(t)'BB'T(t)zdt

satisfies (6). T(t)*,t > 0 is the adjoint semigroup of T(t), t > 0 with the

infinitesimal generator A% the adjoint of A.

proof [Sufficiency] Suppose there exists a seif-adjoint operator P :H --+ H, p.

P > 0, such that for all x E D (A) equation (6) is satisfied. For each x E H define

V(x,t) = [PT(t)x,T(t)xl. Since P is non-negative, V(z,t) is non-negative for

all t >0.

Suppose x C- D(A), then V (x, t) is differentiable with respect to t and ~P

dt

Integrating we obtain

V(x't) - V(zO) f] -IIB*T(r) xHI'dr

28 
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Equivalently,

V(Z'tj V(X'0) - BP~)ZI2dr<_ v=,t}= v(,ol jB'T( )t' N

And for all t > 0 and z E DA)-

V(Z,0) IIB'T(r)xll' dr (7)

The inequality

IIB'T(t)(x. - x)fl < IIBflIMe' tIIz, - zil

shows that if z,, -- x then B'T(t)x,, - B'T(t)z uniformly on compact intervals 0

of [0, oo). Hence the inequality (7) holds for all z E H since D(A) is dense in

H. So we have that for all x E H

[Px, X1 = V(z,0) f I IIBT(t)zl[ 2 dt -

proving sufficiency.

[Necessity] Assume that for all x E H the integral (5) is finite. For each

t > 0, define the self-adjoint non-negative operator P(t) by

P(t)= T(-r)'BB'T(r) dr .

Note that for each x,y E H, P(t) satisfies:

1. [P(t)z,y] = [P(t)y,r]

2. 0 < [P(tl)X,z] < [P(t2)x,r] for 0 < t1 < t2
...
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4-1

3.

"(ft IIB*T(s)xII IIB*T(s)yI ds)

< f IIB'T(s)xH2 ds fJo IB*T(s)yiI2 ds
< 00

So we have that

sup IP(t)x'YHI < 00
tE0,00)

Applying the uniform boundedness principle,

sup IIP(t11I< 00
tE[0,oo)

Since P(t) is increasing with respect to t, there is a P > 0 such that '

J~lj' HIP(t)z - PX1I = 0

Denote this P by

= JO T(t)*BB*T(t)xdt

P > P(t) and [Px,x] <00o by assumption. Now consider

[PT(t)x, T(t)x] =] f IB'T(r)x12 dr

Differentiating with respect to t yields

tPAT(t)x,T(t)xI + IT(t)x,PAT(t)x] -IIB*T(t)x1 2

300
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Setting t = 0 we have the desired relation

[PAz, x] + [x, PAx] = -IIB=xI '

which is defined by x E D(A). This completes the proof of Theorem 7.

Given the existence of the integral (5) we have the following condition for N-

strong stability.

Theorem 8 If there exists an o: > 0, satisfying

alX112 10 JIB'T(t)zlI 2 dt < o0 
(8)

Then the semigroup T(t), t > 0 is strongly stable. 
.

proof First define

P= Jo IIB'T(s)xlHds (9)

Nand

P(t) = f IIB'T(s)xll1 ds (10)

From (8) we find the sufficiency for strong stability.

ajIT(t)zx12 < fo IB'T(r)T(t) 12 dr 
•

IB'T('r)x11 dr

= [(P- P(t))x,z] 

4,: 4

_ II(P - P(t))XII IIzil

Since

lir IPx - P(t)zI = 0
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it follows that lim,.. IIT(t)xJI = 0. Hence T(t), t > 0 is strongly stable.

A solution to the Lyapunov equation, unfortunately, does not guarantee

that P defines an equivalent norm. As indicated above verifiable conditions are

known in the exponentially stable case, when B" = I. Pazy [iI] showed:

Theorem 9 T(t),t > 0 is exponentially stable if and only if for 1 < p < 0

1x41 = (j !T(t)xj I" dt) < 00

Moreover, if there exist constants t, > 0 and c > 0 such that IIT(to)xII >

c~xnI for every x E H then ijzIU and IjxJzI define equivalent norms.

This is necessary as we prove in the following proposition. We find however

that a similar condition does not carry over to our case

Proposition 4 Suppose that for some a > 0,

cIIXl1 2 < IIB'T(t)xl12 dt < oo

for every z E H and T(t), t > 0 is a uniformly bounded semigroup with bound

M. Then there exist constants c > 0 and t. > 0 such that

cIJlxl < IIT(to)zxl (11)

for every x E H.

proof Suppose that no c > 0 and t, exist. Then for every el > 0 and every

t > 0 there is an x E H such that ~zlH = 1 and I[T(t)xfl < cl. We can estimate

integral (5), where 0 < r < oo, by

fo IIB°T(t)x 2 dt = f JIB'T(t)xl2 dt
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+ fJ B'T(t)x1 2 dt

< riIEII1MIlxI 2 + [PT(r)x,T(r)x]

< rIIB~jI'M'jjxI 2 + 11P11 flT(ijxl 2

Since jjzxj 1, by selecting

. <211B*112M2 0

2. < 1

we have the arbitrary bound

10fB'T(t)xI dt < E
Since for some x E H with lizil 1, the integral (5) can be made arbitrarilyN3

small, the integral is not bounded below. This contradicts the given conditions

so the proposition is true. 
V

Unfortunately, this condition is not sufficient. We also observe that for a

similar construction, if B*T(t.) has a bounded inverse then the semigroup T(t),

t > 0 is actually exponentially stable. We find then

Proposition 5 Suppose that fo- IIB'T(t)zII dt < oo and for some c > 0, to,>

0 and for every x E H
IIB*~ t.xll : cjxjj(12

Then

1. T(t),t > 0 is exponentially stable.

. The following are equivalent norms rJ
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(a) I~xII

1. Substituting T(t)x for x in equation (12) we obtain

JC 21IT(t)x 12 < JI-Tt J~IB 0+ t) z1 dt

f~~ ~ I ITt 12< 1f IIE'T(t, ) 112 dt

0

Since fo" IJT(t)xfj12 dt is finite for all z E H the semigroup is exponentially

stable by Theorem (6).

2. Since B* is bounded, we see that

for every x E H. Thus T(t0 ) is bounded below and Pazy's theorem [111

applies. 11:11 and (f' JIT(QxI12 dt) 1/2 are equivalent norms. Moreover,

C2 f0 IIT(t)z112 dt < Jf IIB'T(t)x11 2 dt
00

JIB o1 JTtz 2d

So all three are equivalent norms. 0
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In the following example, we find that integral (5) is precisely equal to jJxJJ'.

Example 5 Suppose that {.O,,)'_ is an orthonormal basis for a Hilbert space

M. Consider the semigroup

00

T(t)x =x e -'/", 0.1 On

Note that this semigroup is strongly but not exponentially stable. Take B" to be a

the compact operator defined by

B'x= Z .3-n tX,,.nO
n=1

Then

B*T(t)x e-1/"Vr2// (X, On] On

UIB' U2 = £ -e'f) 1,'JI,I=1

So we have that

f I IB'T(t)xll 2 dt = f 22_/n dtI[X,¢O] 1

00

n=lI= 11x,112 ,
IIX lI12 

,,

For this example P = I and

"001Ax = E - - (Xi On]
n1n

So we see the "Lyapunov" equation holds.

We might also note that the boundedness of B" is not necessary in the use

of integral (5) to verify strong stability. In the following example, (5) is an ' .%

equivalent norm when restricted to the domain of A and C" is unbounded.
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Example 6 Consider the backward shift aemigroup defined by T(t)f f f(O+t),

where f E .121(0, 00), N~il = Ml, and )(i is another Hilbert space with norm lfi.

The domain of A is the space of absolutely continuous functions contained in

Mt. On this subuspace, we can define the operator C* :N --+)I by CJf = f (0).

Then we have C*T(t)f = f (t) and D(A) = D(C). Ina which case,

000f IC*T(t)U~ dt =f J0 If(t)ly I!II

The fact that fo' JjC*T(t) f 112, di = 11f 112 implies that T(t), t > 0 is strongly

stable on DP(A) as suggested by Theorem 4. Since the semi group is also uniformly

bounded, strong stability on the dense subs pace D (A) extends to strong stability -

on all of M.

In the above development we require that the semigroup be uniformly bounded.

An important question is then when is the feedback semigroup also uniformly

bounded. We have one case where this can be verified.

Proposition 6 Let P be a linear bounded, non-negative operator satisfying

IPz,z] = IB-T(t)xI12 dt

Assume that P defines an equivalent norm. Then the feedback semi group

S(t), t > 0 generated by A - BBP is uniformly bounded.

proof Substituting T(t)x for z we obtain

[PT (t) x, T(t) ] = I*~ )12d

If this is differentiated with respect to t we get

d IPT(t)x, T(t)xl =2Re[PAT (t)x, T(t)xl -IIB*T(t) Xj 2
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Then set t =0 and subtract 2Re[P(a - BB*P)x,xI to obtain

2RetP(A - BB*P)x,x] = -IIBz11 2' - 211ff'PS(t)xl 2

Substituting back S(t)z for x, we see that

-jPS(t),S(t)x] = -flB*S(t)xl2  IIB*PS(t)zl2 0
dt

So [PS (t)zx, S (t)z x]: [Pz, xj. Since [Px, x] defines an equivalent norm, there

exist constants a, and a2 such that 0 < a, < a2 and

a, I1XI 2 _<[PXT] : a21X' 1

We find that

And

IIS(t)zII t 1I1zfl 0

We should note that since P defines an equivalent norm T(t), t > 0, is

already a strong stable semigroup. If we define a seif-adjoint non-negative D

by D 2 = BB* + 2PBB*P, we also have

2Re[P(A - BB*P)x,xI -IIDxI12

and applying Theorem 7

[Pz,x] f

Consequently, S(t), t > is also strongly stable.

The following theorem of Triggiani suggests alternate criteria for the appli-

cability of the preceding theory.
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Theorem 10 Let U be a Hilbert space, and let the space of admissible controls

be L 2(U). The system (1) is exactly controllable if and only if there exist t > 0

and -y > 0 such that

IJB-T(r)'xI dr > 1ixfl2

To obtain conditions like those we considered previously in this chapter, a

sufficient condition would then be the exact controllablity of the system (A', B). 5

In this case the above theorem indicates the existence of a t > 0 and a -y > 0

such that

f IIB'T(r)xl12 dr > IIXl11 2

In this case if the above integral is finite as t - oo we can apply Proposition

4.

We can state that

Corollary 1 Suppose U is a Hilbert space, and let the space of admissible con-

trols be L2 (UL). If the system (A',B) is exactly controllable and there is a P > 0

satisfying [PAx,x] + [x,PAx] = -IIBxl12 , then the semigroup T(t), t > 0 is

strongly stable. K

4.2 STRONGLY STABLE CONTRACTIONS

Previously, we saw that the backward shift semigroup on the half-infinite in-

terval was strongly stable. Another interesting approach to investigating the

strong stability of a contraction semigroup is to consider similarity to the back-

ward shift. In this section we investigate the relationship between backward

shift semigroups on various spaces and the original semigroup.
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Since an exponentially stable contraction senigroup is an extreme example

of a strongly stable contraction semigroup let us examine briefly this special

case first. As demonstrated earlier, if T(t), t > 0 is an exponentially stable

semigroup then there is a positive P such that

{PXx] = llT(t)xl' dt

In this case, we can ask what are the ramifications of the assumption that P 0

defines an equivalent norm, that means that P is strictly positive. Consider

an linear operator V : M - L'(R+ , N) defined by y = Vx and y(t) - T(t)x.

Moreover consider the inner product defined by P, namely Ix, y] p = [Px, y].

Then we can write

1Iz-1, = 1Px,zX = f IT(t)xll' dt
00

The range space of V, R(V) is a subspace of L 2(R+,Y) and if V is viewed as

a map V : (N,I lP) -- L 2 (R+, M) then V is an isometry. We can define a

backward shift on the space L 2 (R + , Y), B(t), t > 0. For any x E (Y, Ip) we

have the relation

B(t)Vx = VT(t)x (13)

Relation (13) shows that an exponentially stable contraction semigroup is "uni-

tarily equivalent" to the backward shift restricted a subspace of the associated

space L 2(R+, .V). We will see that similar constructions exist for strongly sta-

ble semigroups on Hilbert spaces. On Banach spaces the relationship between

strongly stable semigroups and backward shift semigroups on related spaces is

even simpler.

The following two theorems are of interest to us.
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Theorem 11 /12] Any strongly continuous contractive semigroup can be ex-

tended to a strongly continuous coisometric semigroup.

Coisometric means that the semigroup has an isometric adjoint semigroup.

Theorem 12 [12/ Let V(t), t > 0 be a strongly continuous isometric semigroup

on K. Then there are Hilbert spaces K and £ and a strongly continuous unitary

semigroup U(t), t > 0 on C, such that V(t) is unitarily equivalent to B*(t) E

U(t), t > 0, where b'(t) is the forward translation semigroup on I?(R+ , K).

Fillmore then suggests the following two problems which we resolve here.

Theorem 13 A strongly continuous contractive semigroup is unitarily equiv-

alent to a part of a backward translation semigroup if and only if T(t) --- 0

strongly as t - 0.
,-q I.

proof: As in the proof of the first Fillmore theorem the following devel-

opment holds. The backward shift semigroup on an L' space is strongly sta- ',V

ble. The adjoint of the backward shift is a forward shift which is an isometric 0

semigroup, so the backward shift is coisometric. Conversely, let us consider a

semigroup which is strongly stable. Define the bilinear form

[x,!y] = -[Ax,y] - [x,AyI

on D(A). Since the semigroup is contractive this is non-negative. Let 4 =

{x E D(A) : [x,x]I = 0}, then D(A)/)1 is a pre-Hilbert space and define the

completion to be K. Take W : 9(A) -- L2(R + , K) as Wz(t) = T(t)x. And we

have

IIWxIIL(,,K ) =lira fllT(t)xjj'dt

40
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n0

= lm - f 2Re[AT(t)z,T(t)x]dt

= lirn -i dT(t)xl .dt

= j ur' flmJT(n)z11 2

n-co

= I1 2

In this case W is an isometry on D (A) and consequently W can be extended to

M. From the fact that W is an isometry and hence bounded from below, the

inverse, W - 1 is defined on the range of W. Then in this case we must have for

y(') E R = WM' C L2(Z + , M), an x E K such that y(t) = T(t)z and W-'y = z.

Moreover, for z E D(A), we have -

(WT(s)x)(t) = T(t)T(s)x = T(t + a)x = (B(s)W)(t)

where B(t),t > 0 is the backward shift on L (R+,K). We see that R is an

invariant subspace of B(t), t > 0. T(t), t > 0 and B(t)Iz, t > 0 are unitarily

equivalent.

Then next question is then to obtain a representation for W'. Consider %

1W:, y]L(R+K,) = ][T(t)z,y(t)]1 dt

S- fo* ([AT(t)x,y(t)j + rT(t)x,Ay(t)) dt

(-x, (A'T(t)" + T(t)A)y(t)] dt

- X - f (A'T(t) + T(t)'A)y(t) dt]

We see that for appropriate y(.) E L ( + ,K) and W" is given by W'y v, "

v - ('T(t " + T(t"A)y(t) dt
V¢%.

Since y(t) E K, for all t > 0 we have, first of all, that y(t) E D(A) and secondly,

for t > 0, T(t)'y(t) E D(A'). Thus v is defined if we can identify those y(.) for

which this integral is finite.
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When y(.) E R(W) then there is a z E M such that y(t) - T(t)z and in this

case we have

P= -/ (!Arr(t)x, T(t)zj + [T(t)z, AT(t)zl) dt

li d -!n ] ( T(t), T (t) zjdt

Thus for y(t) E R(W), at least, W" is defined. In addition, in this case,

IiY{(L2(R+,K) = HzIlw

so that

11W*YlU 1IY~IL1(t+,) S

This same analysis applies when y(.) is a forward shift of T(t)z. Suppose

that y(t) = T(t - to)zM(t - t.), for t0 > 0, where A(t) is the unit step function.

In this case we have

Wxy 1 = - ([AT(t)x, t(t - t0)T(t - t.)zl 4

+ [T(t)x, ti(t - t.)AT(t - tQz]) dt

= - jf (IAT(t)z,T(t - t)z] + [T(t)x,AT(t - to)z]) dt

= - lim d[T(t)x, T(t - toz dt

= [x,T(t,)*z"

Then for this y we have w = Wy, w = T(to)*z. So we have W'yjjx <

In the following lemma we see that terms of the form Wx, together with the

forward shifts, generate LI(R+, K).
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Lemma .1 Consider the set .toh

M = {y L(Z +, K): y .Wx or y = F(t)Wx}

where F( ) 's the forward shift on L2(+ , K). Then the closure of the span of
Al zsL(., ).

proof: [12] We show that we can construct step functions of L 2 ( , K) from

the elements of M. Take '[0.] to be the indicator function on the interval [0, a].

Then 2f =if o.x a Ly(ift , K) if x K. Now define a set functions A_ ,

gas t) = T(t + r)0. r- t).

Since T(t)x converges to x in the I1"I~ -norm as t -* o0, for any co > 0 there ,,,

is an N such that ex - T(t)xl[o < he for t < 2/N. D a th i

Finally then, since M = Li(, K), we recognize that W is defined on all

of L(o K) and that for x K, x = WW . Moreover, W is an isometry and

W is an isoretry on . On L( + ,lK), W* is a contraction g exapl o-

Aosemigroup T(t), t > 0 is equivalent to a backward shift semigroup [left- .tale

shift] if and only if it is strongly continuous, coiso etric and Tit) - 0 strongly

as t --+0. -v'

In this case we must show that the added condition, that the senaigroup is" ,,.

coisometric implies that the subspace is in fact the whole space L 2 (R +, K). S
r"i'*

First of all, note that R is invariant under B(t), t 0 and B1(t) is coisometric. .'

Consequently, reduces 11(t). '."

I) A contractive exponentially stable semigroup is an interesting example of a _.

contractive strongly stable semigroup. Let us add a few additional observations. -

Proposition 7 Suppose T(t), t > 0 is a C,-semigroup, exponentially stable, .

and contractive. Then there is a constant wo < 0 such that S
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JIT (t)II < ew°'

proof: We know that for an exponentially stable semigroup

iT(t) j[ < M e ' ....

for a > 0, and M > 1. What we would like to point out is the fact that for .N

contraction sernigroups the bound M is in fact I. In this proof we utilize the

notion of the characteristic growth property [13]

Let w(t) = log IjT(t)JI for t > 0. Define wo = inrft>o w(t)/t. Since w,, is finite

we choose an "a" such that w (a)/a < wo + e for some arbitrarily small e. Then

set t = ka + r, with k, a non-negative integer, and 0 r < a. .

Then

w(t) w(ka + r) kw(a) +w(r)
t ka+r k a+r ka+r

< w(a) +w(r)
a+r/k t

w(t) < Wo'+ + w(r) (14) 5

t - t

For contraction semigroups

w(r) = log IIT(r)II < 0 (15)

since JIT(r)II < 1. Consequently (14) and (15) imply

<o + '.0
t - ", *"'

I IT(t) < e(I I + <

Finally, since e is arbitrary, for an exponentially stable contraction semigroup,

for some w,0 < 0. M
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Chapter 5

STABILIZATION

As was evinced in the proposition (2) and will be shown in this chapter, uniform ,

boundedness is a key property in verifying the stability of a Co-semigroup. :

In this section we will review the germane material and present two suitable

conditions for a feedback semigroup to be uniformly bounded. Then we will

combine these conditions for a uniformly bounded semigroup and the conditions

for weak and strong stability. This will enable us to present new results on the
stabilization problem.

It is more convenient in this case to focus on Co-semigroups defined on

Banach spaces. In this framework we lose the inner product, which is replaced" :

by the notion of duality. We will denote by X, a Banach space with norm

{" and the dual space X*. The dual space consists of the continuous linear.,:

functionals on the Banach space X:. -"

Definition 6 114] For a Banach space X and the as sociated dual space X" we Ve

define the multivalued duality map J by %-

a..o

ES
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Define a duality section J of J by J X - * X and J(f) E J(f) for every

f E X. Then the operator A is called dissipative with respect to the duality

section J if for every f E D(A), Re[Af,J(f)] < 0. A on X is dissipative if A

is dissipative with respect to some duality section.

A is said to m-dissipative if it is dissipative and {p(A) n (o, oo)} = .

Based on these definitions we have the Lumer-Phillips form of the Hille-

Yosida Theorem. 1151

Theorem 14 Suppose A generates a contraction Co-semigroup on X. Then

1. DP(A) =X

2. A is dissipative with respect to any duality section

S. (0,c) c p(A)

Conversely, if

2. A is dissipative with respect to some duality section

S. {(0, oo)n p()} 0

then A generates a contraction Co-semigroup on X. 0

To verify the dissipativity of an operator the following condition may be

useful.

Proposition 8 /16] A is dissipative if and only if for each A > 0

f -A)- i1/A
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We considered in the previous chapter a Hilbert space M and the feedback

-B to obtain the infinitesimal generator A - BB*. When A is dissipative A -

BB" also is dissipative so the semigroup generated by A - BB * is a contraction.

However, when A is not a contraction, it has not been determined whether the

resulting semigroup is a contraction or even uniformly bounded. We will present

conditions under which feedback semigroups are uniformly bounded.

Suppose that T(t), t > 0 was a uniformly bounded semigroup. We can make

the following change of norm to obtain a space where "T(t)" is a contraction.

Let us denote this new norm by fl fl,, and denote by

the identity maps relating the same element in each space. Suppose then that

y E (XII" l),zE (XII"II) and z = y. Now define the new norm by

lIzI = sup IIT(t)yll

First since T(t), t > 0 is uniformly bounded, S

II ll_ sup IIT(t)ylj _< M IIyl lyM

and so

IIYII :5- sup IIZIk, <M IIYII ,
t E [O,oo)

We have an equivalent norm. The semigroup on the new space is then

T(t) = IT(t)1- 1 , t > 0. This is a contraction since

IIT(t)zll, = sup IIT(t + r)yll

rE [0,oo)

< sup IIT(r)yll- , E 10,00) :

= IIzIIn 0
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In theorem (4) we saw conditions under which a feedback semigroup might

be a contraction semigroup. This theorem also holds in the Banach space

case. This variation can be used in the Banach space framework to obtain the

following theorem.

Theorem 15 Let A be the infinitesimal generator of a uniformly bounded semi-

group T(t), t > 0 on a Banach space (X, I" I). Suppose that C is a bounded 0

dissipative operator on (X, l1" IIn). Then A+ -1 C1 also generates a uniformly

bounded semigroup S(t), t > 0.

proof: On (X, f[-[[-) then operators IAI - and C are dissipative and generate -0

contraction semigroups. Since C is bounded we find a new semigroup Sn(t),

t > 0 generated by the sum IAI - ' + C. In the original space I-CI is also

bounded and the sum A + I -'CI also generates a semigroup S(t) = I -'S,,(t) I.

Then

IIS(t)Y 1 < SICt)zll

< MIyI

We see that the semigroup S(t), t > 0 is uniformly bounded E.

In the following example it is possible to verify that dissipative feedback

actually decreases the bound of a uniformly non-contractive semigroup.

Example 7 On the Hilbert space, M = L2 [(O,oo),RI 9 L2[(0,oo),RI consider

the projection operator given by Q : L2[(O, oo),R] - L2[(0, oo),a] onto the set

of intervals I = U'= [mk - 1,mk1, where the mk satisfy the relation

Mi < Mk 2 =* 4mk _ ms - 1_ ]
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Then Q can be represented by

(Qf)() = .U(x + 1 - m)U(mk - z)f (Z)

First take the infinitesimal generator

[a/ax Q ]
A -a/aq] J

Then the semigroup generated by A is

so (t) Q(t)
0 S(t)j

S'(t) and S(t) are the left and right shifts. Q(t) is represented by 0

(Q(t) = fS'(t - r)QS(r)f dr

Now we can apply a dissipative feedback given by

F (9 (x=9o -a/a

F is also the generator of a contraction semigroup and so it is dissipative. Let
! 

0

us then investigate the boundedness of the semigroup V(t), t > 0 generated by

A + F, noting that

2a/lax QIA+F= ]
0 -2a/ax

First note the effect the coefficients "E" on a/ax and a/ax. These generate the

shift semigroups, respectively,

L 2 (t)f(x) = U(x-2t)f(x-2t)

R2(t)f(x) = f(x+2t)

Also define
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Xxz) = U(z ±1- Mk)U(Mk X )
n1=1

And for = Q(t)f we have

g(x) = -2(t - s)QL2 (s)f -s

f t

= x (z+2t-2s)U(x+2t -4s)f(x+2t-4s)ds

J

Then the semigroup generated by A + F can be expressed as

V(t)= IL 2(t) Q(t)

10 R2j t
A meticulous calculation in the Appendix A shows that 0

while

IIV(t)II < v/

Of course the point of the previous development is to provide another tool

for stabilization. One would expect that if a bounded dissipative feedback is

applied to a system where A generates a uniformly bounded semigroup, stability

should be improved. At the very least, this should not destabilize an already

stable system.

Recall that in the chapter on weak stability conditions we found that if for

some uniformly bounded semigroup T(t), [PT(t)x,T(t)x] < [Px, x] and P > 0 0

then the semigroup is at least weakly stable. It would be helpful here to note the

relationship between controllability of (A, B) and (A + BF, B). The following

result is applicable.
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Theorem 16 Let F be a bounded operator. Suppose A generates the scmigroup

T(t), t > 0 and A + BF generates the aemigroup S(t), t > 0. Then the approx-

imate controllability of the systems (A, B) and (A + BF, B) are equivalent.

proof: First we need to derive two identities. Consider the system

i(t) = A'x(t) + F'B'x(t)

then

x(t) = T(t)'x(O) + j T(t - s)*F*Bx(s) da
0S

or

x(t) = S(t)x(O)

Combining these two we have, after setting x(0) =x

S(t)z =-T(t)x + fT(t - s)'F.B'S(s)'xd.9 (16)

In a similar manner we use

.i(t) = (A + BF)*z(t) - F'Bz(t)

to obtain

z(t) =S(tyx(O) - foSt- s)*F*Bz(s) ds

as well as

x(t) =T(t)*x(O)

These yield%

T(t) x =S(t) tz + foS(t -s)*F*BT(s)xds (17)
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To show that (A, B) controllable implies (A + BF, B) controllable we assume

that (A + BF, B) is not controllable. Hence there is an x ? 0 such that for all

t > 0, B*S(t)*z = 0. From the identity (16) derived above we also have that

B-T(t)-x = 0 for all t > 0. This contradicts the controllability of (A, B). So it

must be true that

(A, B) controllable => (A + BF, B) controllable

In a similar way, to verify (A + BF, B) controllable implies (A, B) control-

lable, we assume that (A, B) is not controllable. Then there is an z 0 0 such

that for all t > 0, B*T(t)'x = 0. Applying the identity (17) we again find "

B*S(t)*z = 0 for all t > 0. This contradicts the controllability of (A + BF, B).

So it must also be true that

(A + BF, B) controllable =: (A, B) controllable 0

n.

We can state the following proposition,

Proposition 9 Let T(t), t > 0 be a uniformly bounded C.- semigroup with

infinitesimal generator A. Assume A + BF is the infinitesimal generator of the

semigroup S(t), t > 0. Suppose the system (A, B) is controllable, BF = I-'CI

where is a C is a dissipative bounded operator as described above, and

IB'S(t)'xlldt < 00 (18)

then the semigroup S(t), t > 0 is not only uniformly bounded, but also weakly

stable. %

proof: From the previous proposition we see that (A+ BF, B) is also controllable

and then the integral (18) defines a positive operator P, where
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PX fo 00 S(t)BB'S(t)'xdt z;

Moreover, [PS(t)*x,S(t)*x] <5 [Px, x], so S(t)" is a weakly stable semigroup.

Then the adjoint semigroup S (t) is also weakly stable. C3

We can make the usual extension to strong stability when the appropriate .

resolvent condition is satisfied. If the resolvent of A is compact then so is the .-

resolvent of A +BF. In the case where the conditions of the previous proposition

are satisfied then the weak stability of S(t), t > 0 implies that the feedback

semigroup is also strongly stable.

If the operator P is strictly positive, as would be implied by exact control-

lability of (A - BF, B) then we would also find that the feedback semigroup is .

strongly stable.

There is one generalization of theorem (15) that we would like to point out

V

before we leave this topic. Rather than a bounded perturbation, we consider.

the so called Kato perturbation [141. % ,

Definition 7 C is a Kato Perturbation of A if D(C) D D(A) and if for every 1

a > 0 there is a c > 0 such thatv"

1lCzl11 <_ ajjaxjj + cjlzlj

For such perturbations we have the following perturbation theorem [31 for the "

generation of a contraction sernigroup.. ..

Theorem 17 If A generates a Co contraction semigroup and if C is a dissipa-

...:.

MoeKoper P trbat)ion of A ~, so geetes a wekl sotableo semigroup.

Whesolets condton ise satisfidg theresovnmfAi opatte oi h

reo~en f +B. nth cs wer tecodiiosofth reios rpoito

are saisie thntewatblt f5t, mle httefebc



Theorem 18 Let A be the infinitesimal generator of a uniformly bounded semi-

group T(t), t > 0 on a Banach space X. Suppose that C is a contraction on

(X,fl • ! ,) and a Kato perturbation of the operator A. Then A + .-'CI also

generates a unifrml4 bounded semigroup S(t), t > 0.

proof: We must verify that if

IHCzl1, < a l.,A I-'z l + blizil 0

then I-'CI is also Kato bounded, in which case A + I -'CI also generates a

uniformly bounded semigroup. First of all, since

we have I1II1 = M and III-'11,, = 1 and it follows then that

II-'CIYII III-'llC.Y.

< aMIIAyII+bMIjIjy

0

. %
,.:,. .
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Appendix A

EXAMPLES OF UNIFORM

BOUNDEDNESS

S

Since so much emphasis has been placed on contraction semigroups by other

authors, one might question the significance of uniformly bounded semigroups.

An interesting result of Packel [171 provides conditions under which a uniformly

bounded semigroup is not similar to a contraction semigroup. He shows that

Theorem 19 If T(t), t > 0 is similar to a contraction semigroup and A is the
infinitesimal generator of A, then if W(A) is the weakly stable subspace of A,

I
W(A ) n w(A') • -o 0.

Packel [171 also presented the first example of a uniformly bounded semigroup

which is not similar to a contraction.

Example 8 Consider the space M = L2[(0, oo),R] ED L 2 [(0, oo),R]. Let S'(t),

t > 0 denote the left shift semigroup and S(t), t > 0 denote the right shift. Let '.-
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P(t), It > 0 be another family of linear bounded operators. Suppose then that

(S(t)f)(x) =f(x -t)U(X -t)

(S f)(x) =f(x+t)

-(P(t)f)(x) 1(2.4k -t-x)

when XE [0,2.4'- t] or XE (4 k - t, 4 ki or k >1I and P (t) f(x) =0, otherwise.

Here I Is the unzique integer such that 41 < t < 4 1+1- And the semigroup given

by

r* (t) P (t) b
T (t) = 0

0 S(t)

is uniformly bounded, not similar to a contraction and IIT(t)jl : 2.

Another interesting uniformly bounded semi group was constructed by Benchi-

mol [18[.

Example 9 First define a projection operator

P :L 2 [(01 oo), R] -~ L2 [(0, oo), R) f~

onto the set of intervals I = U'-1 [3k - 1,3k]. Then P can be represented by

(Pf)() = ~U(x + 1 - 3t)U(3k _ X) f(X)

Next the infinitesimal generator is taken to be

00
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T (t) [S~t P (t)
0 S (t)

Again, S*(t) and S(t) are the left and right shifts and P(t) can be written as

(P(t)f) JS*(t - r)PS(r)f dr

In this case Benchimol computes the bound of T(t) and finds that

IIT(t) 1 <_

Benchimol also notes that if the intervals are defined by [mk - 1,mi] where

these integers satisfy the relation

mk 1 < m 2 =:* 2 mk, < mn -1 (19)

Then if P: L 2 [ (0, oo), R L2 [(0, o), R is once again the projection operator

onto the set of intervals I = U 1k=l [mk - 1,mkl, the semigroup T(t), t > 0, as

developed above, is also uniformly bounded serrigroup which is not similar to %

a contraction. .

It is possible to modify this generalization and illustrate our theorem on the

application of a dissipative feedback to uniformly bounded semigroups.

Example 10 On the same Hilbert space, Y= L2 [(O,oo),R] D L 2 [(0,o o),R]

Consider the projection operator given by Q L2 V0,oo),R]-- L2 [(0,oo),RJ

onto the set oJ intervals I = U ( [mk - 1, mki, where the mk satisfy the relation

Mk, < Mk, = 4m < - 1

Then Q can be represented by
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(Qf)(x) = U(x + 1 - m')U(mJ - z)f/(X)
n=lI

Again we have the infinitesimal generator

A --- ax Q
A -a/ax ]

And the semigroup generated by A is

T (t) =[S*(t) Q(t) ]

0 S (t)J

* S'(t) and S(t) are the left and right shifts. Q(t) is represented by

(Q(t)f) =JS(t- r)QS(r)f dr

In this ease the choice of tr* also satisfies Benchimol's condition (19).

Benchimol's calculations are still valid and the bound for T(t) is given by

H!T(t)II < vl'.

Now let us modify things a little bit. We know that on L2[(0, oo), R], a/ax

and -a/ax generate contraction semigroups, namely, the shifts, S*(t) and S(t).

On M = L2[(0, oo),RI L2 [(O,oo),RI the operator F

0 -a/a

is also the generator of a contraction semigroup and so it is dissipative. Let

us then investigate the boundedness of the semigroup V(t), t > 0 generated by

A + F, noting that

A+F= 2a/ax 2-/aA +F 2OOz Q 
,.0 2-c)/o=

0 58
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First note the effect the coefficients "2" on a/azl and al/az. These generate the

shift aemigroups semi groups, respectively,

L 2 (t)f(X) = U(x-2t)f(x-2t)

R 2 (t)f(X) = f(x+2t) g%

Also define

x~z)= ~U(z -r 1 - mk')U(mk - X)
n= 1

And for g Q(t)f we have

t0

g(z) = fR 2 (t- s)QL2 (s) fds

=f JxI~+ 2t -2s)Ukz+ 2t -4s)JIz+2t - 4s) ds

Then the semi group generated by A + F can be expressed as

V (t) L2 (t) Q (t)
0 R2 (t)j

Using similar techniques to Benchimol we show that this new semigroup is also

uniformly bounded. First of all, for any pair of f and g we have

g (x) z t X(v)U(2v - x - 2t)f (2v - x - 2t) dvI2+2t
*upzz+t)2}x(v)f (2v - x - 2t) dv

Then if, xk(v) = U(v - mnk + 1)U(mk - v) we have

,2+2t

gk (x) xh(v)f (2v - x - 2t) dv
f.UP(,(X+t)/2

and
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0-0

g(z) g ~g(X)
k=1

Eliminating the X& by applying the definition of the step functions we obtain

for g,
II

gk(x) =jJUzz2)2m-1f(2v - x - 2t) dv

If we make the change of variables u = 2v - x - 2t we obtain

1 rinf{:+2t,2m&-:-2t}

g(X) -- .. p(2to2M,-z-2t f(2v - x - 2t) dv

A careful examination of the limits of this integral reveal that gk(x) equals zero

if:

1. x + 2t < 2mk- 2- x- 2t 4=* z < mk - 2t -1

2. 2m -- x - 2t < x - 2t - x > mk-

3. 2m,, - x - 2t < 0 4 z > 2m& - 2t

4. x < 0

We then see that

supporttgk} g [sup{O,m - 2t - 1}, infr{m,, 2mt - 2t}] (20)

Breaking down the remaining calculations into three propositions adds to the

comprehension of the following.

Proposition 10 For t > 0 there is at most one k > 0 such that

rn < 2t < 4Mk (21)

proof: Suppose that there are integers k, < k2 such that
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m&1  2t < 4mk,

and

Mi 2 t < 4mrk .

so

ink1  5 2t < 4mk2  (22)

Since k, < k2 , iMk < nk2 , and for every k, 4rnk n - 1 we have

4 mk, _ mk, - 1 (23)

When equations (22) and (23) are combined we obtain

4mnk Mk, - 1 <2t - 1 <4mink - 1

So the assumption that k, < k2 must be false. E "%

Proposition 11 The functions gt(x) have disjoint supports.

proof: In the last proposition it was shown that there was at most one t to

satisfy (21). Given t, suppose there is a ko such that (21) holds. In this case A

supportfg.(X)} [0,2mr - 2t] 5

Then let k, and k2 be integers satisfying the inequalities ko < k, < k2 . In which

case

Mk, > 2t and ink2 > 2t (24)

(i) To show that the supports of go and g are disjoint, first note from (24)

that 0
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2 M, - 2t > mt, (25)

in addition, since 4 mko _< Mk, - 1 we have the relation

2t < 4m -mk- 1 =* 0 < 4rnko - 2t < k, - 2t - 1 (26)

Then since the support of g is given by (20) we see that the support of 9k, also

satisfies

support{g,} C [m, - 2t - 1,m k, (27)

When one combines (25), (26), and (27), we see that the supports of gto and

9k, are disjoint. I%

(ii) To see that the supports of gh, and gk2 are disjoint, it will be sufficient

to deduce that MIh - 2t- 1. We note that

4 mk, _< Mn2 - 1 =*- 4mk, - 2 t < rmk - 2 t - 1 (28)

and that

inI < rink, - 2t < mk2 - 2t - 1 (29)

C3 Once we compute the bound for I[Q(t)II we will have completed the hard

work.

Proposition 12 IfQ(t)II .2

proof: Let's start with a couple of new definitions. Let

J(x) = sup{0, x -2t,2(mk -1)- x -2t)

K(x) = inf{x + 2 t, 2 mk- x- 2t}
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Since

J(x) _ 2(mi - 1) - - 2t

K(x) _ 2 mk- z- 2 t

It follows that K(x) - J(x) < 2. With this new notation we can rewrite g as

1 fK(=)
gk(x) = f(u) du S

Suppose that 2t < m< 4t, then applying (20) we see that

support{gk(z)} C (0,2mg - 2t]

On the other hand, if nk > 2t

support{gk} C [2mk - 2t - 1, mk]

Now denote by [a(k), b(k)] be the largest of these two intervals. Then we find

that

I = 1 f0(g) () 12 dx

1 fb) 2x
- 16J(d~,za~Su x)

< 1 (k 2 ds)K( f(s)2 d) dx

< 1 ( ) 1 2f(s)2 d. d f d86 j( J(z) /

As a result of the definition of [a(k),b(k)] we have the inclusion

[J(x),K(x)] [a(k),b(k)] -")
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and the above integral can be bounded as

Hgkflf U jU(K (x)-sUsJ ) 2 sdxds
1 (k) r4k

< - I) f 2 (a)j6k U(K(xr) - sU, - J(z)) dzds
8 Ja(k) J a(k)

If we replace K (x) we see that

K(z) - s = inf{z + 2t, 2 mk - xz- 2t) - s < 2mk - x - 2t

U(K(x) - s) !5 U(2mkt - x - 2t - s)
0

If a similar manner we can replace J(z) to obtain

s- J(z) = s-sup(O,z-2t,2(m:- 1)-x-2t)

= s+inf(Q,2t-x,x+2t-2(mk:-1))

!5 s+x+t-2(mk,-1))

And as a result,

U(s - J(x)) <U(s + x + t - 2(mk - 1))

When these step functions are substituted back in

4 (k) U(K (x) - s)U(s - J(x)) ds
Jak) f bk

.(k) N

in{27& -#-2t,b(k)} x

<2

From here we see that for each 9k
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11,0 <- f f (8) d$

Since the supports of the individual Wks are disjoint it is easy to compute the

norm of g. We have for g

000

kl4 Jo(k)
1

< f 2

4

Finally we find that 11gil ! (1/2)11f IJ and

Computing the norm of T(t)f we see that

1IT(t) f 2  11 S *(t) f, + Q(t) f211 + IIS (t) f2 112

(n~fiu + 1 4 !f1)2+I-21

2(1If 112 +'I I f2112) + I 12

S21fliI1 + 3 11f2I1l
5211f112

Therefore IIT(t)JI 5 vII" and the application of the dissipative feedback, in fact,

decreases the bound for this particular example.
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