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~i

This dissertation addresses the problem of determining stabilizing controls for
distributed parameter systems. The focus is on controls which provide strong
or weak stabilization to the system. Much of the prior work in this area has
emphasized exponentially stabilizing/a system. Compared to exponential stabil-
ity, weak and strong stability are less desirable properties. However, there are
situations, unlike finite dimensions systems, under which infinite dimensional

systems can not be exponentially stabilized. In such casesl, we propose weak

or strong stability.

« s " s
,..{"‘-‘,- 2 w 1

"‘.,
)

One approach to the stabilization of finite dimensional systems and and ex-
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ponential stabilization of infinite dimensional systems has been the use of Lya-
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punov type functionals. This is one technique which is developed and extended
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here, to provide new conditions for strong or weak stability. We present a new . .
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functional, and if this functional is strictly positive, a certain semigroup will be ':::

i At
. . c oy . a0y
strongly stable. This functional-also/ suggests an inequality relation which, if E:s:::

R ..'

b satisfied guarantees the weak stablity of uniformly bounded semigroups. o
’ - g a
" We also examine the relationship between contraction semigroups on a ..‘&:::
: . . . . uly
Hilbert space and shift semigroups on a related Hilbert space. In particular, .::::j
¢ L ."‘
we find strongly stable semigroups to to be equivalent in a certain sense to a "R
backward shift semigroup. This provides an alternative view point for strong o
e
stability. ‘:33:3
Wy

Since stable semigroups are uniformly bounded and since this condition is }::
important in verifying stability we examine this phenomena. Some new ob- LY
servations are presented to illustrate conditions under which perturbations of ;\
%" g

. . . . 0
uniformly bounded semigroups remain uniformly bounded. ' - f,\: o,
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Chapter 1

INTRODUCTION

This dissertation presents research into the stabilization of distributed parame-
ter systems using feedback controls. In particular the focus is on controls which
provide strong or weak stabilization to the system. Most of the previous work
in this area has emphasized providing a system with exponential stabilization.
One approach to the study of exponential stability has been the use of Lyapunov
type functionals. It is this technique which will be considered and applied to
the investigation of strong and weak stabilization. Compared to exponential
stability, weak and strong stability are less desirable properties. However, as
we will see later, there are situations under which exponential stability is not
possible. This fact emphasizes the need for feedback controls which will either
strongly or weakly stabilize a system.

A vibrating beam or string are examples of distributed parameter systems.
The state in each of these system might be represented as the position of the
beam or string relative to its equilibrium and appropriate time derivatives.

Then by stabilizing a system we are considered with the problem of given any
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state of the system at an initial time, can a control u(t) be selected, so that the
state tends to zero in an appropriate sense. In the above examples, the control
represents applying a force at the free end of the beam or in a distributed way on
the string. Feedback means that the state is used instantaneously to determine
the control at any given time. In particular we will focus on linear feedback
which means that the control in selected to be a linear function of the state.

The norm of a Hilbert space in the system context can be thought of as a
measure of the potential energy of these elastic systems. We will define precisely
exponential, strong and weak stability. A system is exponentially stable if the
norm tends to zero at some negative exponential rate as the time increases.
For strongly stable system the norm tends to zero, but there is no exponential
rate at which bounds this limit. The concept of weak stability is fundamentally
different.

In chapter 2, a review of the essential mathematical definitions is made. In
particular we look at linear systems on Hilbert or Banach spaces describe by
abstract differential equations and the use of strongly continuous semigroups
of linear bounded operators to represent the solutions of these equations. The
concept of a semigroup is key to the entire dissertation, so we look at some of
the critical properities of semigroups. In terms of these semigroups we precisely
define the notions of exponential, strong and weak stability, and present simple
examples of systems with each of these properties. The chapter concludes with
a brief discussion of controllability.

Chapter 3 presents new conditions for a system to be weakly stable. The
motivation for this approach is a well known theorem concerning the expo-

nentially stability of system on a Hilbert space given by Datko (1] which we
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summarize. When a certain positive operator related to a uniformly bounded '
semigroup defines a functional with properties like those of Datko’s Lyapunov " o
functional we find that the semigroup can be shown to be weakly stable. We "'.'
mention the relationship of this approach to weak stability implied by Nagy- o
Foais decomposition arguments. g; 3

Next, in the fourth chapter, strong stability characteristics are examined. '2 '
First we present an integral which will serve as a Lyapunov functional. We A tf.
show that the existence of this integral is equivalent the existence of an operator :.S:‘
solution to a particular inner product equation. The interesting case is when the l'.::‘
operator solution defines an equivalent norm. This is a sufficient condition for '.
strong stability of the related semigroup. We then show sone related conditions C:::

&

for the existence of this equivalent norm and present two interesting examples.

N®

]

Exact controllability is shown to be associated to this criteria.

.%-’

Also in the strong stability chapter, we discuss the particular case of strongly

stable and exponentially stable contraction. One interesting observation is the ‘:'ﬁ:l
K i
fact that a strong stable contraction is unitarily equivalent to a certain backshift o
)
operator. This suggest that the backward shift is the archetype of a strongly ‘\-;'.:
tv \
stable semigroup on a Hilbert space. ‘:::
b
A critical step to verifying strong or weak stability using the techniques we
develop in chapter two and three is, checking, whether or not, the semigroup -;..*
: . . . N e
of interest is a uniformly bounded semigroup is uniformly bounded. In chapter N
w
5, we first present conditions for a feedback system to generate a uniformly .
bounded semigroup when the uncontrolled system gives rise to a uniformly v
o~
bounded semigroup. Then the concepts developed in chapters three and four '5.‘-
o,
are combined to present new weak and strong stabilization results. 53-
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Chapter 2
o
€
In this chapter we will review the important concepts in the study of infinite
dimensional systems theory and in particular, those ideas which are critical to
\d the development of the results presented in this dissertation.
First we will discuss the class of systems to be considered. The semigroup
theory, which is the indispensable basis of this approach is examined. The key
@ concepts of stability and controllability will then be expatiated.
2.1 INFINITE DIMENSIONAL SYSTEMS
]
Many problems of interest in control theory can be described by the inhomo-
geneous equation
z(t) = Az + Bu (1)
with initial state
z(0) = z, z, € D(A)
4
". l‘.‘.. l.l‘ . I,“ ..q."‘ . \... Al N I Q ?’4.. -.Ie.‘ « ) ‘* v ‘("'.. v-. ' - ' \-'. .\.‘ \. ‘-' %‘ \’ ‘--,,“q.' o

R A A e e et R AR #.aN "o’ g n g  ep L0p cad k' Vol R T oa ol a8 b, San

LI @ %>
AT

’ @ XIS K T e
S ::' by g PRI

gy
%

pnl®
‘ -,

L A
.
S

‘.{..
n 3
¥4

LA (3 i o= ge 22 SLJ ey
.‘;::‘..:’. o



e a' g et 00 et g “aid

- ~ N
ROUCTRNOOOCO DA I X X gy

The A in this case is the infinitesimal generator of a C,-semigroup and B is a
linear bounded operator. In this section we will define these terms and related
concepts.

The solution of such a differential equation then takes the form
t
z(t) = T(t)=z(0) + /0 T(t - s)Bu(s) ds

When the solutions z(¢), ¢ > 0, are in a separable Hilbert Space X, the state
space need not be finite dimensional. In such cases we refer to equation (1) as
representing an “infinite dimensional system”.

The family of linear bounded operators T(t), t > 0, forms a C,-semigroup.

This means that the following properties are satisfied for all s,¢ > 0.
e {IT(1)]] < o0
o T(s+1t)=T(s)T(t)
e T(O)z==zforallze ¥
o the mapping t — T(t)z is continuous in “t” for each z € ¥

These are the key properties satisfied by the matrix exponential, exp{ At},
when A is a matrix, which are required to generalize the finite dimensional
state space to an infinite dimensional space. We note that in the particular
case where A is a linear bounded operator, the representation ezp{ At} also

holds. The norm above is the operator norm on the Hilbert space, ¥

IT(®)il = sup ||T(t)z]]
ll=zl}=1

Generally, A is a closed linear operator from D(A), the domain of A, to the

Hilbert Space, ¥. An element, £ € X, is in the domain of A if the limit
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is defined. In this case, the limit defines the value of Az. We then have the

P

22X L L2

representation

d
Az = *d—t'T(t)Zh:o

o~
e
[
o™~
L

-,

and formally, z(t) = T(t)z,, t > 0, solves the initial value problem
z(t) = Az, z(0) = z,

The operator A is densely defined if the set D(A) is a dense subspace of the
Hilbert Space, ¥. The Hille-Yosida {2] [3] and Generation Theorems provide us
with conditions for an arbitrary linear operator A to generate a C,-semigroup.

The resolvent set, p(A) of A, is the set of complex numbers

{A complex|]A] — A : D(A) — X is one to one and onto and

(A — A)7! is a linear bounded operator }

For these A € p(A), the operator (A — A)~! is called the resolvent of A.

A C,-semigroup is a contraction semigroup, if ||T(¢)|| < 1, t > 0, and
is uniformly bounded when ||T(t)|| < M, t > 0 for some positive M 2> 1.
Contraction semigroups have two useful properties to note here. The operator

A is said to be dissipative if for all z € D(A)

Re[Az,z) <0
L 4
r
The infinitesimal generators of contraction semigroups are dissipative. When '\ ..:'
.
T(t), t > O is a contraction semigroup, then its adjoint semigroup T(t), t > 0 f\:f; :
N

is also a contraction semigroup.
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Theorem 1 (Hille-Yosida) A is the generator of a C,-contraction semigroup

if and only if A is a closed, densely defined and each positive ) 1s in the resolvent

of set and satisfies
IIMAT - 4)7M <1
For general semigroups the following Generation theorem holds.

Theorem 2 A is a generator of a C,-semigroup T(t), t > 0 if and only if A is
closed, densely defined and there exist constants, M > 1 and w € R such that
A € p(A) for each A > w and satisfies

A =w)*(AI = A4)™"| < M

Jor each A > w and when n 1s a positive integer. In which case we have ||[T(t)|| <

Me*t

The last inequality is refered to as the exponential growth property.

In the original system (1) we will frequently be interested in the case where
the control u(t) is chosen to be a linear state feedback control, u(t) = Fz(t).
Here F is some other linear and preferably bounded operator. In this case we

obtain the homogeneous system equation
#(t) = (A + BF)z(t) (2)
The solution to this differential equation then satisfies the integral equation
2(t) = T(t)z, + | "T(t - ) BFz(s) ds

For certain classes of BF a better representation is possible.[4]
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Theorem 3 (Phillips) Let A generate a C,-semigroup T(t), t > O on a Hilbert
space X and P : X — N is a linear bounded operator. Then A+ P 35 also a

generator of a C,-semigroup.

If B and F are both linear bounded operators then composition BF is also a
linear bounded operator. So the sum A + BF is once again the infinitesimal
generator of some C,-semigroup. This is one way to insure the existence of a
solution to the feedback homogeneous system. If S(t), t > 0, is the semigroup

generate by A + BF, then the following relations are satisfied.

S(t)z,

T(t)z, + /: T(t — s)BFz(s)ds

T(t)z,+ [ “T(t - s) BFS(s)z, ds

The feedback BF need not be bounded. If both A and BF are dissipative the
the following theorem provides conditions under which A + BF still generates

a contraction semigroup

Theorem 4 Let A be the snfinitessmal generator of a C,-contraction sem-
group. Suppose that P is dissipative and D(A) 2 D(P). If there are constants

0<a<1,and b > 0 such that
[|Pz]] < allAz|| + bjjz||

for all z € D(A). Then A + P generates a C,-contraction semigroup.

For example, if A is dissipative, we can choose the feedback u(t) = —B z(t).
Then if the domain of BB* contains the domain of A, A — BB" is the generator
of another C,-contraction semigroup. B and consequently B* need not be

bounded operators.

. N [ "% ¢4 L} » g
GG G, syt

"l ok

LA

LY

A &y
St ‘..

AT AT I L LB
e K
o P - e .

*y
R -

»



R L R R R R R R R R T T T T S O o R T AR SR 2% 200 2°0. 1 Va0 Vad 28 Val "afl *ud *ab. 2N Sk b, “pberab, “,‘."

2.2 NOTIONS OF STABILITY e

We would like to investigate conditions for the stability of the homogeneous &

® )
system o
N
z(t) = Az(?) ::- ]
I
® A system of this form can be obtain from the original equation (1) by either ‘.
"
applying an appropriate state feedback, u(t) = Fz(t), in which case we obtain : ::"
‘l i
equation (2), or simply by setting the control to zero. In this case a concern '::::‘
3
¢ would be: When does the solution z(t) tend to zero as ¢t tends to infinity? And . X
in would sense does this convergence occur. In the infinite dimensional case it ”"'
is possible to define this notion from many different viewpoints. The strongest ':,‘
o
",
definition commmonly considered is that of exponential stability. ': !
o ®
v 4
Definition 1 The system (2.2) is ezponentially stable if there is an M > 1 and ::
ot
an w, > 0 such that for t > O
' ;
-wot
® |T(8)]] < Me™ 2:_1
e
The key point in this definition is that the norm of the state decreases at t\.
\,, J
a known exponential rate. This is a very desirable property, however in many :'. o )
¢ real systems obtaining exponential stability is not possible, as we shall see later. )’_\' .
On
The next best and a milder form is strong stability. ;:,
-r;
Definition 2 The system (2.2) is strongly stable if there for every z € X o
L -
Jim |[T(8)z]] = 0 3
A
Here the norm still tends to zero however there is no fixed rate at which this .:'_"
o
¢ convergence occurs. ®
>
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Definition 3 The system (2.2) is weakly stable sf there for every z,y € X

lim(T(f)z,y] = 0

For a weakly stable system the norm may not decrease at all. If a semigroup
T(t), t > 0 is exponentially or weakly stable, then the its adjoint semigroup
T(t)*, t > 0 is also respectively, exponentially or weakly stable. However, the
adjoint semigroup of a strongly stable semigroup is only weakly stable.
The simplest example of an exponentially stable semigroup on an arbitrary
Hilbert space is multiplication by the scalar factor, e~“°f, where w, > 0,
y = T(t)z

—wol

y = e %'z

The backward shift is a good example of a strongly stable semigroup. Let
us consider the Hilbert space ¥ = L?|R*, };], where X; is another separable

Hilbert space with norm {| - [[y,. In this case suppose that f € ¥X. Let U(:)

denote the unit step function,
1 z>0
Uz) =
0 z<0

The backward shift semigroup on this space takes the form
T(t)f=g
g9(z) = f(z +1)
Then
o0
PO = [TUf+0lh dz
*® 2
[T 1@, dz

And since, by definition,
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it follows that
lim IIT(¢) fliza = ©

However, if we consider the family of elements of X defined by f, € ¥

flz) =Sz -t)U(z - 1)

Now, if we recognize that ||f|| = ||f:||, and that T'(t)f = f,, a.e., we see that

el = NT(r) fil]

for r < t. There does not exist a negative exponential growth rate to bound
this semigroup.
Another example of a strongly stable can be constructed using a multiplica-

tion operator. This time consider the space ¥ = L?|R*,R|. Define a function

-z for0<z<1
g(z) =
-1 forz>1

Then take the infinitesimal generator of a semigroup to be given by ¢ = Af,
9(z) = g(z)f(z). In this case the semigroup is given by h = T(t)k, h(z) =

e"*)k(z) or

h(z) e *k(z) for0<z<1
z) =
e ‘k(z) forz>1

First of all note that since (%) < 1 this semigroup is a contraction. To see

that this is at least strongly stable first consider a step function

k(z) =(1/vb—a)U(t —a)U(b~1t) for b>a>0

11
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Then ||T(t)k|| < ||e**(® k|| which tends to zero as t — co. The more interesting

case is k(z) = (1/\/a)U(z)U(e — z) for 1 > a > 0. Then
¥ Tk = [ eds

1 -ta
m(l — € )
1

< —
2ta

And the last term converges to zero.
Next we consider whether this example is exponentially stable. It suffices

to consider again k(z) = (1/v@)U(z)U(a — z) for 1 > a > 0. Suppose there

was an 0 < w, < 1/2 such that ||T(t)k|| < e"“*. However, we choose a = w,/2

F ol

and then t = 1/2a we see that

o

“T(t)k”z — _2_::(1 - e—zta) > e~ wot

-

>

U e e

So this example is not exponentially stable.

-y

-l

For the same space, X = L*(R*, ¥,), the forward shift is a weakly stable

o X rr

isometric semigroup.

s
5

)

3 ¥
Cd
1, X

h = F(t)k )
.:‘
h(z) = k(z-t)U(z—-1) ‘o

Y “wf
’{'J

‘S.:c *,
%

Then to verify that this semigroup is weakly stable, first recall that finite linear

SN,

combinations of step functions of the form U(t — a)U(b — t) are dense in X.

S
fd
N

Then for t > b,

L5 %@

AL
L,

/Ooo[h(z), U(z - a)U(b — .‘t)] dz =0
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2.3 CONTROLLABILITY

In order to stabilize a system of the form (1), it must feasible to find control
that will “steer” the system to the origin. The characteristic of a system which
permits us to select a control to transfer the state of the system to another state
is known as controllability. This property is also refered to as reachability. Asis
the situation for stability of infinite dimensional systems, there are in addition
various definitions for controllability. See Dolecki (5] for many other definitions
of controllability.

A very cogent notion is exact controllability. In this case, from the origin,
for any arbitrary state, there is a control, that for some finite time will drive
to this system to the state. As a consequence, starting at any state, there is a

control to transfer any state to the origin in finite time. More precisely we have
Definition 4 For the system (1), the reachable set for the time ¢’ 1s

K(t) = {z(t) = /(:T(t — 7)Bu(r) dr for every admissible u(-)}
This system ss then said to be ezactly controllable if

U K@) =X

¢€(0,00)
Example 1 Consider again the backward shift semigroup on L*[(0,00), X,] =
. Let B: } — X be the operator defined by
o if9<t,
f(8) ife>t,

To see that this system s ezxactly controllable, we must find the control u which

Bf(6) =

satisfies
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1
u(‘f,ﬂ +1t- T) = my(t,o)
]
14
b -;-' LA™ -"‘wr K [("v" 7’ ( !" . A f.’ (.'r.'w\vﬁy '.'rv

¢
y(t,0) = / T(t - 7)Bu(r, ) dr
0
Since the effect of the projection B s to annihilate u(8) for # < t, we obtain
t
y(t,6) = / T(t - r)u(r,8)U(6 — t,) dr
0
and applying the left-shift to the control we find
t
y(t,0) =/ u(r.d+t—-1)U(6+t—71—1t,)dr
0

When we eliminate the step function we obtain the relation

inf{tt—t,+6}

t
y(t,ﬂ):/ u(r,0+t—r)drfor8+t>t,

and zero otherwise. We see here that it 15 necessary to have t > t,. Let us

assume that there is an ¢ > 0 such that t — t, > €. Let us now consider

separately the two cases indscated by the upper lsmit of the previous integral.
CASE 1: When 8 > t, suppose that we choose the control to satisfy the

relation
1
u(r,0+t-71)= -t-y(t,O)

With the change of variableso =1, and Y =0+t —7 we obtain § = ¢y — t + o,

and then
1
u(o,y) = ?y(t,w +0—t)

for ¥ + 0 > t and zero otherwise. If y(t,-) is tn I? then unequivocally so is
u(o,).

CASE 2: If 6 < t, we choose the control to satisfy the relation
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With the change of variables c =7, and Y =0+t —1 we obtain 0 =y — t+ 0, .:‘
o
and then A
t‘:.l‘::
1 e B
u(0,9) = ————y(t, ¥ + o - t
(0,9) = oo v(t¥ ) oy
Jor Y + 0 > t and zero otherunse. To see that u(o,-) € I? note that Yy + 0 —t + ‘.‘ ‘;
t —t, > ¢ and consequently 3:*:.» '
o) tay= [ 1 u(t,% — ¢+ )| d ;
u{o, = W—t+o < o0 Qb
[ intow) . e | R
V]
Thus we see the the above system is ezactly controllable. Next note that the X
LY
operator B is self-adjoint. 1’-‘.-
i
In many practical applications the operator B is compact and even finite r:»\ -_
N >
dimensional. As one would expect, it is difficult for a control to exert influence ::?_,{:
W
on the entire state space. In fact, it has been shown that it is not possible to e
BarRy
exactly control such as system. Specifically, Triggiani [6] has shown that -d:‘:\:
e
(o'
Theorem 5 If the semigroup T(t), t > O, or the control operator B is compact ',,'.;"' \
LY RV
then the system (1) is not ezactly controllable. &
Taty'
EAN
A more practical notion is approximately controllability which has important '-;:;.\
.",\_.
ramifications in the weak stabilizability of the system (1). In this case, the RN
subspace which is exactly controllable is a dense subspace. -?\‘4’.~
4. -":s
Tty
Definition 5 The system (1) is approzimately controllable if My
.r_'_.-.__:‘
U K()=¥ e
t€(0,00) oA
- ~
When the system is not approximately controllable we will refer to My = : J,"_:.
A ————————— w %
Utelo.00) K (t) as the controllable subspace and define the uncontrollable subspace :f.:':
\,'\-*
My to be the orthogonal complement of M¢. P
ROy
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Chapter 3

WEAK STABILITY

Although weak stability is not as desirable as strong or exponentially stability,
since the conditions for obtaining weak stability are simpler, some practical
results can be derived. We begin in this chapter by recounting a well known
result for exponential stability and then show how this suggests an approach
for studying the weak stability of infinite dimensional systems on Hilbert space.
An alternative approach to weak stability and stabilizability may be found in
[7].

Datko [8] proved the following,

AR
ey

o
L?

Qe Theorem 6 Let T(t), t > 0 be a strongly continuous semigroup with infinitesi-

e

mal generator A on a Hilbert space ¥. Then the following conditions are equiv-

Oy
oy

alent.

.,,
ok
pi 'y

1. T(t), t > 0 is ezponentially stable.

2. There ezists a posstive, self-adjoint operator, P > 0, satisfying o
[PAz,z] + [z, PAz) = —[z,7] (3)

16 %,
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Jor z in the domain of A.

8. For every z in ) :
[+
/0 IT(t)z][? dt < 0o
The unique operator P which satisfies (3) is defined by the expression
= [T Ty T(t)zdt,
Pz fo T(t)'T(t)zdt, z€ X
The functional (3) is
Pz,z) = [~ IIT ()l dt

This theorem can also be generalized slightly in the following sense. Instead,
if there is a solution P,, positive and self-adjoint such that for some self-adjoint,

strictly positive, R > 4I, v > 0, to
[PiAz,z] + |z, Py Az| = —|Rz, 2

Then the system (2.2) would be exponentially stable. In this case we have
Pz = /0 ® T(t) RT(t)z dt

This variation is verified by recognizing that R defines an equivalent norm
({Rz,z])'/*. By transforming back to the original space, the result of the pre-
vious theorem is obtained.

It is evident from (3) that

[PT(t)z,T(t)z] < [Pz,z], z€ X (4)
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We will investigate connections between operators P and semigroups T'(t),t > 0 ¢
which satisfy this relationship and in particular the ramifications on the weak W
stability of the system (2.2). N

When P > 0 and satisfies (4) there is a functional defined hy another linear s
operator P and when applied to T(t)z this functional converges to zero. We i

have o

Proposition 1 Let P be a self-adjoint, non-negatsve linear bounded operator oty

and assume T(t) # I. Then there ezists a P > 0 and P # 0 such that

lm|PT(t)z,T(t)z) = 0 R

«
ol

-
FZZ?

proof For0 <t <t

',..
1j@ L

[T(t2)"PT(t2)z, 2] < [T(t:)"PT(t1)z,z]

eyl
S

T(t)*PT(t) is self-adjoint, non-negative, and non-increasing. Consequently,

-
-

when we apply the uniform boundedness principle, we find, T(t)*PT(t) con- N
verges strongly to a non-negative, self-adjoint operator. We will denote by C? e

this limit. ,
w
lim T(t) PT(t)z = C*z e

It is easy to see that C? < P and that C? = T(t)*C?T(t). Now let us define "
P = P - C? and then

lim(PT(t)z, T(t)z] = Jim[PT(t)z, T(t)z] - [T(1)"C*T(t)z,2] = O

This then defines the functional desired by this proposition.

The following simple example illustrates the key property of P.

18
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Example 2 Consider the case where ¢,, n = 1,... is an orthonormal basis for

H and
o0
T(t)z = _ e *[z,4nl¢n
n=1
One ezample of P which meets the condition of Proposition (1) is

Pz=Y 1+ sgn(Rc(a"))[z,énMn

n

n=1

where the a, are scalars.

By modifying slightly, the P that appears in the previous proposition we ob-
tain conditions on for which the semigroup T'(t), t > 0 is weakly stable. The
assumption that the semigroup be uniformly bounded is not restrictive since

all weakly stable semigroups are uniformly bounded.

Proposition 2 If P > 0 and T(t),t > 0 s uniformly bounded, ||T(t)|| < M,
then T(t), t > O is weakly stable.

proof Define Q* = P. Then we have that
Jim QT ()2l| = 0
Since

[T(t)z,Qy] < |QT ()= |lyll

we find

lim(T(t)z,Qy] =0

19
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Since Q is positive, the range of Q is dense in ¥. For any arbitrary any

z € N, there is a sequence {yn,}>, such that Qyn — 2. Then we have the

relation
T(t)z,2) - [T(t)2,Qun] < [IT(t)zll ||z — Qunll
< Mz - Qu.ll
And then since Qy, converges strongly to z we have
[T(t)z,2] = nle&[T(t)z, Yn)
We then see that the semigroup is weakly stable since,
tl_i.xono[T(t)x,z] =0

for each 7,2 € X.

In the case of Proposition (1) we also have that C = 0 if and only if

‘llxono[PT(t)z,T(t)z] =0, z€eX

since ||Cz||? < [PT(t)z,T(t)z) for every t > 0 and each z € X.

Next let us examine the action of P on the Hilbert space ¥. First denote

by M the set
M= {ze X :|PT(t)z,T(t)z] = [Pz,z] for every t > 0}
Now consider any arbitrary y € M, it satisfies the property
[PT(t)y, T(t)y] = [Py,y]
Since this equality holds for every t > 0, in the limit as t — oo we also have

||CyI* = [Py,y]
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or equivalently,

((P - Cz)y’ y] =0

This means that P — C? > 0 as well as Py = 0 and M C N(P). On the other

hand if z € N(P), (P-C?%z=0and 4
A
Rt
[Pz,z] = ||Cz||?
3
From here we see that
[PT(t)z,T(t)z] < [Pz,2] = ||Cz||* < [PT(t)z,T(t)z
Consequently, |[PT(t)z,T(t)z] = [Pz, z| for every t > 0 and every z € N(P)
and N(P) C M. To summarize we have that N(P) = M. This equality is a
attribute of the system in the following example.
Example 3 Suppose that ¢,, n = 1,... together with ¢, m =1,... form an
orthogonal basss for H and the semigroup T(t), t > 0 1s given by
T(t)z = Z e(-a.+iﬁn)1[z, Gnldn + Z e“’"‘"[z, Vo] .\E
n=1 m=1 gt
where a,, B and , are real and the a, are also positive. Then ."
45
T(t)': — Z e(‘an—‘pn)‘[x’ ¢"]¢n + Z e("‘"Yﬂ)'[z, 1/1,,;]1/1,,, .-‘
n=1 m=1 ‘,"'-.
o'
Assume that P is defined by ;':‘
.':\
= 1 x 1 Bl
Pz = Z _[17 ¢n}¢n + L _[z’ '/Jm]’/}m d
nm1 M m=1"1 s
At
d‘.‘.;
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We can compute C? by
c? = lim T(¢)*PT(t)z

= Jm fo: el-aa-ib)t le(“’-*"’""iz,%id’n
n=1 n

t—oco

oo
L1 (=it — (sam)t
"'}1_12 2 : e me lzs'pm]'pm

m=1
=1
= mz=:x ;[I, wmlwm
Then for P,
=1
Pz=73_ =[z,6n¢n
n=1 n

Finally we recognize that N(P) = span{é,}.

In addition, when [PT(t)z,T(t)z] < [Pz,z] and P > 0, there is a subspace
of H where a quasi-similar contraction semigroup can be found. First define by
Q@ the linear bounded, self-adjoint, non-negative operator satisfying

P=Q?

Another Hilbert space can be constructed by completing the range of Q.

Denote this space by

H=RQ)CcH

We can define a family of bounded linear operators Z(t) : X — X, t >0, to

be quasisimilar to T'(¢), T > 0
Z(t)Qz=QT(t)z z€ H

Z(t),t > 0, is easily seen to be a contraction semigroup [9]. The Nagy-Foias
Decomposition [10] can now be applied to Z(t), t > 0. The Hilbert space ¥ can

be decomposed into two orthogonal subspaces

22
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where the unitary subspace is defined as the set

Ho={z e W |1Z(t)zl} = ||z| = |12(t)"=|[}

"':J' ..
24

and the completely non-unitary subspace is its orthogonal complement.

PENXS

Henu = xd.

More, importantly the contraction semigroup Z(t) also can be decomposed

according to it restriction to these two subspaces.
Z(t) = Z.nu(t) @ Z,(2)

The restriction of Z(t) to the unitrary subspace is a semigroup
Zu(t) = Z(t)l,,

as well as the restriction to the completely non-unitary portion of X
Zenu(t) = Z(t)lue,.,

Since X, and ¥, are orthogonal subspaces there are projection operators
for each subspace. Let us denote by P, the self-adjoint orthogonal projection
of ¥ to X,, by P... the self-adjoint orthogonal projection of X to Nen,. As
a consequence of space decomposition we might observe that the projection

operators commute with the semigroup Z(t). For z € ¥

Z(t)Puz = P,Z()z AR

(s "- x
Ay % T N
P A

Z(t) PenuZ = PenuZ(t)z

e
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When we apply these relations we find that

[PT()2,T(t)2) = IZ(8)Qal

| 1Z(8) PuQII? + 1|2 (¢) Penu @
IPQT()2* + || Punu@T (1)

= [QRQT()2,T(t)2] + [QPmuQT ()2, T(8)2]

fl

Furthermore, for the unitary part of Z(t)
1Z(t) PuQ|? = || Puzll?
or
(QP.QT(t)z,T(t)z] = [QP.Qz, 2]
In summary of the above, we have the ensuing proposition

Proposition 3 If T(t), t > 0 is a C, semigroup and there exists a P > 0 such

that
[PT(t)z,T(t)z] < [Pz, 1]
then there enist Py, P, > 0 such that

[PT(t)z,T(t)z] = [Prz,z] + [P:T(t)z, T (t) 2]

Note that if in addition P, = O then T(t),t > 0 is weakly stable.

A

Example 4 Suppose that ¢, n = 1,..., Y, m = 1,... and &, p = 1,... :5;
ons A
Jointly form an orthogonal basis for H and the semigroup T(t), t > O is given :?_'*__-
S

by g
00 . ad . ¢
T(t)z = Y el-=*5lz g ldn+ 3 "Mz, 9m]Ym f
n=1 m=1 '
"

o

# 5 iz e, R
p=1 TR
¥
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where an, B, Ym, by, and €, are real and the o, and 6, are also positive. Then
define P by

] oo 1
Pz = Z_:l %{zg én,}én + gl ;[1’, ¢'ﬂ]¢’"

This P satisfies [PT(t)z,T(t)z] < [Pz,z]. Corresponding to the above de-
velopment we have the following relations.

1 21
QI = ,.z=:1 —"'1“[39 ¢n]¢n + P ﬁ[zs ¢m]¢m

X = span{¢,,, wn}

Z(t)z = i e(""‘"’“""‘[z, ¢”]¢" + i e("‘)'[z,rbm]t/)m
m=1

n=1

Henu = span{dn}

H, = span{ym}
Zon(t)z = 3 €Nz, 6 o,
n=1
Zt)z =3 Mz, Yltm
m=1

Piz= Y el

ul = e r—n.[z’ m|¥m
Pcvm-'z = Z 'l'[za ¢n]¢n

n=1 n

P will be posstive in the case where the &, are all zero. P, is 0 if the ¢, do not
ezist. We then have |[PT(t)z,T(t)z] < [Pz,z] and the semigroup T(t), t > 0 1s
weakly stable.

25
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Once we can verify the weak stability of a system in some cases, it is easy

to show that the system is strongly stable. In particular when the resolvent
operator of the infinitesimal generator is compact or if the semigroup itself is
compact, showing that the semigroup is weakly stable is sufficient for strong
stability. Moreover, if A has compact resolvent BF is bounded the A+ BF also

has compact resolvent so that if BF weak stabilizes A it also strongly stabilizes

A.
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Chapter 4
o ®
.,
.:;
STRONG STABILITY 3
e- ¢
¢ .
=
We present in this chapter new conditions for verifying the strong stability of :t:
some systems. We start by developing a new Lyapunov functional. This is \::
® shown to be equivalent to the existence of an operator solution to a certain ;;
£
inner product equation. When this functional defines an equivalent norm we e,
v
LY,
see that the associated system is strongly stable. Some interesting conditions &
Pt
o related to this equivalent norm are then explored. These criteria will be applied g _
A
.'."
to the strong stabilization problem. B
D

¢ 4.1 A NEW LYAPUNOYV TYPE CONDITION
FOR STRONG STABILITY

¢ The major thrust is based on the integral

. > v
O SO ®

<

.
N

- v s
*

/°°° |B*T(¢)z|[? dt < oo

O N

p We will use this functional to obtain a sufficient condition for the strong stability

1@

S

7
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of a C,—semigroup. First we prove the existence of a solution to a certain

Lyapunov type equation is equivalent to the finiteness of this integral.

Theorem 7 A necessary and sufficient condition for the convergence of the

integrals
[ 1B T2l ar (5)

for every z in H is the ezistence of a self-adjoint linear operator P on H such

that P 15 non-negative and satisfies

[PAz,z} + |z, PAzZ]| = —||B"z||* for z € D(A) (6)
Moreover,

Pz= /0 “ T(t) BB T(t)z dt

satisfies (6). T(t)',t > O is the adjoint semigroup of T(t),t > O with the

infinitessmal generator A*, the adjoint of A.

proof [Sufficiency] Suppose there exists a self-adjoint operator P : H — H,
P > 0, such that for all z € D(A) equation (6) is satisfied. For each z € H define
V(z,t) = [PT(t)z,T(t)z]. Since P is non-negative, V(z,t) is non-negative for
allt > 0.

Suppose z € D(A), then V(z,t) is differentiable with respect to t and
%V(I»t) = |[PAT(t)z,T(t)z] + [T(t)z, PAT (tjz) = —||B"T(t)z|}?
Integrating we obtain

V(z.t) - V(z,0) = /o' _||B*T(r)z|]* dr

28
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Equivalently,
‘ .
0< V(z,t} = V(z,0) —/o (B T(r)z()? dr
And for all t > 0 and z € D( A)
t
V(z,0) > /0 ||B*T(r)z]|? dr (7)
The inequality
||B*T(t){(za — z)|| < || B*||Me“*||z,, — ||

shows that if z, — z then B*T(t)z, — B°T(t)z uniformly on compact intervals
of [0,00). Hence the inequality (7) holds for all z € H since D(A) is dense in
H. So we have that forallz € H

(Pz,z] = V(z,0) < /0 Z (B T(t)zl[? dt

proving sufficiency.

[Necessity] Assume that for all z € H the integral (5) is finite. For each

t > 0, define the self-adjoint non-negative operator P(t) by

Pt)z= [ ‘T(r)'BB'T(r) dr

|
¥

Note that for each z,y € H, P(t) satisfies:

{v’.;}

s:
o
3

=
® s

1. [P(t)z,y] = [P(t)y, ]

re

}
{

2. 0< [P(t)z,z) < [P(t2)z,z) for 0 < t; < 1y

Wy e Y VY

» [ A {(l.
Pd Ry
® P [";'{"4'1 ’,

2
o2
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[P(O)z, 4] = , /O‘[B'T(S)z,B‘T(s)y] dsr R
([ 1B Tl T(e)yllds) 2
(18T (@2l as) ([ 1B"T ()l as) g

< [TUBT)zltds [T 1B T()yIP as

o0 .‘o"'l'

IA

IA

A

X
So we have that o

sup |[P(t)z,y]| < o©
t€(0,00)

¥
:3‘
Applying the uniform boundedness principle, ﬁ: h,

sup |[P(t)]| < o0
t€([0,00)

R A A
T Je Y

2L ’.

-.‘-'v s 2

o '
)
-

Since P(t) is increasing with respect to t, there is a P > 0 such that

1o

<
/7,

‘l_i.rg l|P(t)z — Pz|| =0

P P4
o 1")"

Denote this P by

ALLT,

4

Pz = /ow T(t)*BB*T(t)zdt

L]
.
N
."4.
5

[
P

[
A A, N N Yy

P > P(t) and [Pz,z] < co by assumption. Now consider

s s
..-_‘\“f' y
&

o
i

AV A
v

[PT(t)z,T(t)z] = /‘ “ B T(r)z|* dr

Differentiating with respect to ¢ yields

0

[PAT(t)z,T(t)z] + [T(t)z, PAT (t)z] = ~||B°*T(t)z||

30
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Setting t = O we have the desired relation
[PAz,z] + |z, PAz] = —||B"z||

which is defined by z € D(A). This completes the proof of Theorem 7.
Given the existence of the integral (5) we have the following condition for

strong stability.

Theorem 8 If there enists an a > 0, satisfying
o0
allal? < [T 1B T()alldt < o0 (®)

Then the semigroup T(t), t > 0 is strongly stable.

proof First define
=3 ® * 2
P=["|IBT(s)al ds (9)
and
P(t) = / 1B T(s)z]| ds (10)
t
From (8) we find the sufficiency for strong stability.

2Tzl < [T IBT(T(O dr

/, * B T(r)z|]? dr
= (P-P()z,1]
(P = P(t))zl||z||

IA

Since

Jim ||Pz - P(t)z] = 0
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it follows that lim, ., ||T(t)z|| = 0. Hence T(t), t > 0 is strongly stable.
A solution to the Lyapunov equation, unfortunately, does not guarantee
that P defines an equivalent norm. As indicated above verifiable conditions are

known in the exponentially stable case, when B* = I. Pazy [11] showed:
Theorem 9 T(t),t > 0 is ezponentially stable if and only if for 1 < p< 0
oo 1/p
tally = ([~ Tz dt) < oo
0

Moreover, if there ezist constants t, > 0 and ¢ > 0 such that ||T(t,)z|| >

cl|z|| for every z € H then {|z|| and ||z||, define equivalent norms.

This is necessary as we prove in the following proposition. We find however

that a similar condition does not carry over to our case

Proposition 4 Suppose that for some a > 0,
allzl® < [~ IBT(B)z] dt < oo

for every z € H and T(t), t > 0 s a unsformly bounded semigroup with bound

M. Then there exist constants ¢ > 0 and t, > 0 such that

cllzi] < ||T(to)zl] (11)
for everyz € H.
proof Suppose that no ¢ > 0 and t, exist. Then for every ¢; > 0 and every

t > O there is an z € H such that ||z|| = 1 and ||[T(t)z|| < €;,. We can estimate

integral (5), where 0 < 7 < 00, by

/0 B T(8)z]]? dt /o "B T(8)z|? dt
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+ [ 1B T ()l 2t

IA

7||B*|* M?||z||* + [PT(r)z, T(r)z]
k < rlIBIPMR2ll? + ||PIHIT () 2]

Since ||z|| = 1, by selecting

L 1'T<W
2.€1< ;n%:

we have the arbitrary bound
/°° |B*T(t)z]| dt < e
0

Since for some z € H with ||z]| = 1, the integral (5) can be made arbitrarily
small, the integral is not bounded below. This contradicts the given conditions
so the proposition is true.

Unfortunately, this condition is not sufficient. We also observe that for a
similar construction, if B*T(t,) has a bounded inverse then the semigroup T'(t),

t > 0 is actually exponentially stable. We find then

Proposition 5 Suppose that [5° ||B*T(t)z||* dt < oo and for some ¢ > 0, t, >

0 and for everyz € H
1B*T (t)z|| = ell=l| (12)
Then
1. T(t),t > 0 is ezponentially stable.

2. The following are equivalent norms

33
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(a) |l=l]
(b} U'Ooo ”T(t)z“z dt)l/z
(e} (f° IIB*T(t)=|f? dt)/?

proof

1. Substituting T'(t)z for z in equation (12) we obtain
¢|IT()zl* < ||B°T(t. + t)z||®

Integrating from O to oo yields

[Cirm=r < 5 / ® BTt + )z d

- clz 1B T(¢)z]]? dt
< LT BT dt

¢t Jo

< o0

Since [;° ||T(t)z||? dt is finite for all z € H the semigroup is exponentially
stable by Theorem (6).

2. Since B is bounded, we see that

HB.H”z” < |IT(t.)=l)

for every z € H. Thus T(t,) is bounded below and Pazy’s theorem [11]
applies. ||z|| and (f3° ||T(¢)z||? dt)!/? are equivalent norms. Moreover,

¢ [Clrware < [T 1B TR dt
1B°11 [~ T (0)=)

So all three are equivalent norms.O

IA
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In the following example, we find that integral (5) is precisely equal to ||z||?.

Example 5 Suppose that {¢,}>., 15 an orthonormal basis for a Hilbert space

n=1

X. Consider the semigroup
T(t)z=5_ e *"|2, dn) bn
n=1

Note that this semigroup ts strongly but not exponentially stable. Take B* to be

the compact operator defined by

Bz =5 \/2/n |z 6] én
n=1

Then

B'T(f)z = i C-'/n\/;-/; {I, ¢n] ®n

. 2
1B 2l = 3 —e "z, 6,
n=1
So we have that

/o°°||B°T(t)x||’dz = i-z- ch'z‘/"dtl[z,d;,,]lz

n=1n

- i (22 bl ?

= lzl|®

For this ezample P = I and

= 1
Az = Z _;’{z, ¢n}¢n
n=1

So we see the “Lyapunov” equation holds.

We might also note that the boundedness of B*® is not necessary in the use
of integral (5) to verify strong stability. In the following example, (5) is an

equivalent norm when restricted to the domain of A and C* is unbounded.
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Example 8 Consider the backward shift semigroup defined by T'(t)f = f(0+1), RS
where f € L;](0,00), ¥1] = ¥, and X}, is another Hilbert space with norm ||-||y,. ’
att'e!
h The domasn of A is the space of absolutely continuous functions contained in )
&
X¥. On this subspace, we can define the operator C : X — 3}, by C*f = f(0). E
Then we have C*T(t)f = f(t) and D(A) = D(C*). In which case, ;'g
% e 2 *® 2 2 orY
[T T, de = [T s, d = 113 .
Y
Ol
The fact that [° [|C*T(t) f|[}, dt = ||f||} smplies that T(t),t > O is strongly x :ﬁ
R
stable on D(A) as suggested by Theorem 4. Since the semigroup is also uniformly ‘ ‘:::"
bounded, strong stability on the dense subspace D(A) eztends to strong stabslity ;.. 1
L8y 0
onall of X. :::‘o
s
]
In the above development we require that the semigroup be uniformly bounded. {
o
An important question is then when is the feedback semigroup also uniformly .5-: i
bounded. We have one case where this can be verified. }w
"‘\r
Proposition 8 Let P be a linear bounded, non-negative operator satisfying "‘.
(Pz,z = [ I|BT(0)z] R
0 L]
S
Assume that P defines an equivalent norm. Then the feedback semigroup '
S(t), t > 0 generated by A — BB* P is uniformly bounded. r,!:
o
N
proof Substituting T(t)z for z we obtain :'.:'-
ey
. 2
[PT(t)z,T(t)z] = /o |B*T(t + r)z||? dr A
‘*l'
If this is differentiated with respect to t we get :,;5
d 0
a[PT(t):r,T(t)z] = 2Re[PAT(t)z,T(t)z] = —||B*T(t)z||? ) '
4
36 ..:
b
:‘:‘
. J
¥ ..’

- o e T ; SN e N N N Y L N, R?:
D O e b Lo D e M N i 0 e e LN PO AN NN RN

Kl nl el



T R O P PR O TR W WU W W TP W M W W W R T U U NG U,

Then set ¢t = 0 and subtract 2Re[P(e — BB*P)z,z| to obtain
9Re(P(A — BB*P)z,z) = —||B"z||* - 2||B*PS(t)z|?
Substituting back S(t)z for z, we see that
21Ps(1)z,5(0)2] = ~||B"S ()=’ - |B"PS(t)z] <0

g So [PS(t)z,S(t)z] < [Pz, z]. Since {Pz, z] defines an equivalent norm, there

exist constants a; and a, such that 0 < a; < a; and

allz|]? < [Pz,2] < asllz]®
We find that

a|S(t)=l* < [PS(t)z,5(t)2] < [Pz,2] < aqliz]]?
And

IS()zll < \/f‘;-:juzn o

We should note that since P defines an equivalent norm T'(t), t > 0, is

already a strong stable semigroup. If we define a self-adjoint non-negative D

by D?> = BB* + 2PBB" P, we also have
2Re|P(A — BB*P)z,z] = —|| Dz||?
and applying Theorem 7
00
[Pz,z] = /O |DS (t)z|[? dt

Consequently, S(t), t > is also strongly stable.
The following theorem of Triggiani suggests alternate criteria for the appli-

cability of the preceding theory.
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Theorem 10 Let U be a Hilbert space, and let the space of admissible controls

7,

be L*(U). The system (1) is ezactly controllable if and only if there exist t > 0

) 4
s

£ T

h and ~ > O such that

e
L X,

[ 1B Ty 2l dr > el

e

To obtain conditions like those we considered previously in this chapter, a o
P sufficient condition would then be the exact controllablity of the system (A", B).
In this case the above theorem indicates the existence of at >0anda v > 0

such that Wy

[ 1B T (el dr > Az 2

o
In this case if the above integral is finite as t — oo we can apply Proposition N

We can state that

Corollary 1 Suppose U is a Hilbert space, and let the space of admissible con-
trols be L*(U). If the system (A®, B) is ezactly controllable and there is a P > 0
satisfying |PAz,z) + |z, PAz| = —||B*z||?, then the semigroup T(t), t > O 1s M

strongly stable. !

°
4.2 STRONGLY STABLE CONTRACTIONS Ry

r
a
Previously, we saw that the backward shift semigroup on the half-infinite in- e

terval was strongly stable. Another interesting approach to investigating the

!

oA
?,'}q

strong stability of a contraction semigroup is to consider similarity to the back-

5 Yy & %
s, 2

ward shift. In this section we investigate the relationship between backward

-
oy,

shift semigroups on various spaces and the original semigroup.

o
L

[y
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Since an exponentially stable contraction semigroup is an extreme example
of a strongly stable contraction semigroup let us examine briefly this special
case first. As demonstrated earlier, if T(t), ¢ > O is an exponentially stable

semigroup then there is a positive P such that
P2,z = [ IT(t)z|l*at

In this case, we can ask what are the ramifications of the assumption that P
defines an equivalent norm, that means that P is strictly positive. Consider
an linear operator V : ¥ — L?(R*,¥) defined by y = Vz and y(t) = T(t)z.
Moreover consider the inner product defined by P, namely [z,y]p = [Pz,yl.

i

Then we can write
|M@=Wnﬂ=ﬁiﬂmwwt

The range space of V, R(V) is a subspace of L*(R*,¥) and if V is viewed as
amap V : (X,||-|lp) = L}(R*,X) then V is an isometry. We can define a
backward shift on the space L*(R*,¥), B(t),t > 0. For any z € (¥,|| - ||p) we

have the relation
B(t)Vz=VT(t)z (13)

Relation (13) shows that an exponentially stable contraction semigroup is “uni-
tarily equivalent” to the backward shift restricted a subspace of the associated

space LZ(R*,X). We will see that similar constructions exist for strongly sta-

ble semigroups on Hilbert spaces. On Banach spaces the relationship between
strongly stable semigroups and backward shift semigroups on related spaces is ATy
even simpler.

The following two theorems are of interest to us. ®
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Theorem 11 [12/ Any strongly continuous contractive semigroup can be ez-

tended to a strongly continuous coisometric semigroup.
Coisometric means that the semigroup has an isometric adjoint semigroup.

Theorem 12 [12/ Let V (t), t > O be a strongly continuous isometric semigroup
on K. Then there are Hilbert spaces K and L and a strongly continuous unitary
semigroup U(t), t > 0 on L, such that V(t) is unitarily equivalent to B*(t) &
U(t), t > 0, where B°(t) is the forward translation semigroup on I}(R*, K).

Fillmore then suggests the following two problems which we resolve here.

Theorem 13 A strongly continuous contractive semigroup is unstarily equiv-
alent to a part of a backward translation semigroup if and only if T(t) — O

strongly as t — 0.

proof: As in the proof of the first Fillmore theorem the following devel-
opment holds. The backward shift semigroup on an L? space is strongly sta-
ble. The adjoint of the backward shift is a forward shift which is an isometric
semigroup, so the backward shift is coisometric. Conversely, let us consider a

semigroup which is strongly stable. Define the bilinear form
[z’ y]l = —[Az’ y] - [zaAy]

on D(A). Since the semigroup is contractive this is non-negative. Let N =
{z € D(A) : [z,z], = 0}, then D(A)/N is a pre-Hilbert space and define the
completion to be K. Take W : D(A) — L*(R*,K) as Wz(t) = T(t)z. And we

have
Wallame ey = lim [ 17Oz} et
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= lim - O"zRe[AT(t)z,:r(t)z]dt

= tim - [ %HT(t)sz dt
= llzlf* - lim |iT(n)z]P
= |llf®
In this case W is an isometry on D(A) and consequently W can be extended to
X. From the fact that W is an isometry and hence bounded from below, the
inverse, W =1 is defined on the range of W. Then in this case we must have for
y(-) € R=WX c L}(R*,}), an z € K such that y(t) = T(t)z and W'y = z.
Moreover, for z € D(A), we have
(WT(s)z)(t) = T(t)T(s)z = T(t + s)z = (B(s)W)(¢t)
where B(t), t > 0 is the backward shift on L*(R*,K). We see that R is an
invariant subspace of B(t), t > 0. T(t), t > 0 and B(t)|g, t > O are unitarily
equivalent.

Then next question is then to obtain a representation for W*. Consider
We e = [Tz y(0)d

- [7 (AT 2y (1) + [T(0)z, Av(0) at

= = [Tla (4T + T A)y(0)]

= [a- [CaTor + T )00 o

We see that for appropriate y(-) € L*(R*,K) and W* is given by W'y = v,

v= - /0 Z(A'T(t) + T(t) A)y(t) dt
Since y(t) € K, for all t > 0 we have, first of all, that y(t) € D(A) and secondly,

for t > 0, T(t)"y(t) € D(A®). Thus v is defined if we can identify those y(-) for

which this integral is finite.
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When y(-) € R(W) then there is a z € ¥ such that y(t) = T'(t)z and in this

case we have

W,y = — /D “IAT(0)z, T()2]) + [T(t)z, AT (t)2)) dt

. nd
—~ lim g E(T(t)z,T(t)z] dt

n— Qo

= |z,2
Thus for y(t) € R(W), at least, W* is defined. In addition, in this case,
HyliL2e+ .y = llzllx
so that
W yllx = [lyllLar+ x)

This same analysis applies when y(-) is a forward shift of T(t)z. Suppose

that y(t) = T(t — t,)zu(t — t,), for t, > 0, where u(t) is the unit step function.

In this case we have

il

Wayl = - [T (ATOzu(t - t)T(t - )]
+ [T(t)z,u(t — t,)AT(t — t,)z]) dt
- - /t ® (AT(8)z, T(t — t.)2) + [T(t)z, AT(t — t.)z)) dt

= —lim [ %[T(t)z,T(t — t.)2]dt

n-+o0 J¢

= [z,T(t,) 2]

Then for this y we have w = Wy, w = T(t,)°z. So we have [[W"'y||y <

Hyllza(e+.c)-

In the following lemma we see that terms of the form Wz, together with the

forward shifts, generate L*(R*, K).
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Lemma 1 Consider the set
M={ye L}R*",K):y=Wz ory = F(t)Wz}

where F(t) ¢s the forward shift on I*(R*,K). Then the closure of the span of
M s L}H(R™,K).

proof: [12] We show that we can construct step functions of L*(R*, K) from
the elements of M. Take ¢|o4) to be the indicator function on the interval (0, al.
Then f = ypaz € L*(R*,K) if z € K. Now define a set functions

g:.7t) =T(t + 7)zu(r —t)
Since T(t)z converges to z in the || - ||, -norm as t — 0™, for any ¢, > O there
is an N such that ||z — T(t)z||* < ¢, for t <2/N. O

Finally then, since M = L?(R*, K), we recognize that W* is defined on all
of L*(R*,K) and that for z € K, z = W*Wz. Moreover, W is an isometry and
W* is an isometry on R. On L%(R*,K), W* is a contraction.

A semigroup T'(t), t > O is equivalent to a backward shift semigroup left-
shift] if and only if it is strongly continuous, coisometric and T(t) — O strongly
ast— 0.

In this case we must show that the added condition, that the semigroup is
coisometric implies that the subspace R is in fact the whole space L?(R*,K).
First of all, note that R is invariant under B(t), t > 0 and B(t) is coisometric.
Consequently, R reduces B(t).

A contractive exponentially stable semigroup is an interesting example of a

contractive strongly stable semigroup. Let us add a few additional observations.

Proposition 7 Suppose T(t), t > 0 1s a C,-semigroup, exponentially stable,

and contractive. Then there 1s a constant w, < O such that
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T ()] < e*
proof: We know that for an exponentially stable semigroup
b T (1)]] < Me=*

for « > 0, and M > 1. What we would like to point out is the fact that for

contraction semigroups the bound M is in fact 1. In this proof we utilize the

notion of the characteristic growth property [13]
Let w(t) = log ||T(t)|| for t > 0. Define w, = infy>o w(t)/t. Since w, is finite
we choose an “a” such that w(a)/a < w, + € for some arbitrarily small . Then

set t = ka + r, with k, a non-negative integer,and 0 < r < a.

Then
w(t) _ w(ka + 1) < kw(a) w(r)
t ka+r “ka+r ka+r
w(a)  w(r)
a+r/k M t
.“@ Cwotet “’(t") (14)

For contraction semigroups

w(r) = log||T(r)|| <0 (15)

VY

e

since ||T(r)|| € 1. Consequently (14) and (15) imply
t

w(t)

_t—swo'\"f

1T (t)]] £ elwotet

ORI
P ®
Y Ny

¥
S

%

Finally, since ¢ is arbitrary, for an exponentially stable contraction semigroup,
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Chapter 5

STABILIZATION

As was evinced in the proposition (2) and will be shown in this chapter, uniform
boundedness is a key property in verifying the stability of a C,-semigroup.
In this section we will review the germane material and present two suitable
conditions for a feedback semigroup to be uniformly bounded. Then we will
combine these conditions for a uniformly bounded semigroup and the conditions
for weak and strong stability. This will enable us to present new results on the
stabilization problem.

It is more convenient in this case to focus on C,-semigroups defined on
Banach spaces. In this framework we lose the inner product, which is replaced
by the notion of duality. We will denote by X, a Banach space with norm
[| - ]| and the dual space X *. The dual space consists of the continuous linear

functionals on the Banach space X.

Definition 6 [14] For a Banach space X and the associated dual space X we
define the multivalued duality map J by

Jf)={se X :|Igll* = lIfII" = [f.4]}
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Define a duality section J of J by J : X — X* and J(f) € J(f) for every
f € X. Then the operator A is called dissipative with respect to the duality
section J if for every f € D(A), Re[Af,J(f)] < 0. A on X s dissipative if A

is dissipative with respect to some duality section.

A is said to m-dissipative if it is dissipative and {p(A) N (0,00)} = 0.
Based on these definitions we have the Lumer-Phillips form of the Hille-
Yosida Theorem. {15!

Theorem 14 Suppose A generates a contraction C,-semigroup on X. Then

1. D

~—~

A)=X
2. A is dissipative with respect to any duality section

3. (0,00) C p(A)

Conversely, if

1. D(A)=X

2. A is dissipative with respect to some duality section

8. {(0,00) N p(A4)} #0

- ..
- - -

o 3 Jo X

h 28 oF g
-

'.‘.3?.'.

=t

then A generates a contraction C,-semigroup on X .

-

To verify the dissipativity of an operator the following condition may be

useful.

Y

4

Proposition 8 [16] A is dissipative if and only if for each A > 0

AT - 4)7" < 1/2

-,
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We considered in the previous chapter a Hilbert space ¥ and the feedback

—B* to obtain the infinitesimal generator A — BB*. When A is dissipative A —

- -
-

v
-
-

BB also is dissipative so the semigroup generated by A— BB" is a contraction.

However, when A is not a contraction, it has not been determined whether the

FrEL
2 RS

resulting semigroup is a contraction or even uniformly bounded. We will present

raL,

»
L2
e

conditions under which feedback semigroups are uniformly bounded.

(D
i
od
3

%

Suppose that T'(¢), t > 0 was a uniformly bounded semigroup. We can make

N

¥
*ﬂ

the following change of norm to obtain a space where “T'(t)” is a contraction.

-,

Let us denote this new norm by || - ||» and denote by
I (X001 = (XL Ha)
I_l : (x’HHn)—'(r!H“)

the identity maps relating the same element in each space. Suppose then that

ye (X,||-1), z€ (X,]|-]la) and 2 = Iy. Now define the new norm by
|lzlla = sup [|T(t)yll
t€(0,00)
First since T'(t), t > 0 is uniformly bounded,
llyil < sup |IT()yll < Mllyll
t€(0,00)
and so
llyll < sup |[|zlln < M]ly]|
t €[0,00)

We have an equivalent norm. The semigroup on the new space is then

T.(t) = IT(t)I"!, t > 0. This is a contraction since

1T () 2]l

sup ||T(t + 7)yl|
0,00)

r€E

sup T (r)yl]

re|

= |lzlla

IA
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In theorem (4) we saw conditions under which a feedback semigroup might '
be a contraction semigroup. This theorem also holds in the Banach space -" ::‘
case. This variation can be used in the Banach space framework to obtain the

following theorem. e )

Theorem 15 Let A be the infinstesimal generator of a uniformly bounded sem:- |:"|'
group T(t), t > O on a Banach space (X,||-||). Suppose that C is a bounded °
dissipative operator on (X,||-||ls). Then A+ I7'CI also generates a uniformly 0’.::“:
bounded semigroup S(t), t > 0. !

proof: On (X,]|-||) then operators JAJ ! and C are dissipative and generate ®
contraction semigroups. Since C is bounded we find a new semigroup S,(t),
t > 0 generated by the sum JAJI~! + C. In the original space I~'C1I is also "::
bounded and the sum A+ J ~1CI also generates a semigroup S(t) = I ~'S,(t)]. 9
Then

1S@®yll < 11Sa(8)zll o
[ )

IA

’ ) 4
< Mijjyl| _,.
We see that the semigroup S(t), t > 0 is uniformly bounded O. T

In the following example it is possible to verify that dissipative feedback

actually decreases the bound of a uniformly non-contractive semigroup.

P4
Example 7 On the Hilbert space, ¥ = L{(0,00), R] @ La[(0,00), R| consider e
the projection operator given by Q : L»[(0,0), R] — L;((0,0), R] onto the set I

of intervals I = U2, [mx — 1,m,], where the m; satisfy the relation }-,!‘-"'

me, <my, => 4m, <my, —1
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Then Q can be represented by

@N() = S U+ 1 - my)U(my — 2)£(2)

n=1

First take the snfinitessmal generator
3/dz ]
Lo e

Then the semigroup generated by A is

0 S() |
S*(t) and S(t) are the left and right shifts. Q(t) is represented by

@) =[5t - Qs dr

Now we can apply a dissipative feedback given by

[a/az 0 ]
F =
0 -9d/oz

F is also the generator of a contraction semigroup and so it is dissipative. Let

e LS le

us then investigate the boundedness of the semigroup V(t), t > O generated by )
]
A + F, noting that s :i
20/0z  Q o
e A o
A+ F = [ ] o
0 -2d3/0z N 3
First note the effect the coefficients “2” on 8/0z and 3/0z. These generate the \‘; ":
~
shift semigroups, respectively, A ~
Ly(t)f(z) = U(z-2t)f(z—21) o
—'.‘-.‘
(%
Ry(t)f(z) = flz+2¢) R
Also define ‘o
N 3
oo,
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x(z) = f:U(:r:+1—m,,)U(m.= )

n=1

And for g = Q(t)f we have

o(2) = [ Ruft-)QLa(s)s ds

t
/o x(z+ 2t —2s)U(z + 2t — 4s) f(z + 2t — 4s) ds

Then the semigroup generated by A + F can be ezpressed as

Vi - [ La() Q)
0 Ry(t)

A meticulous calculation in the Appendiz A shows that
IT(B)) < V3

while
Vel < vz

Of course the point of the previous development is to provide another tool
for stabilization. One would expect that if a bounded dissipative feedback is
applied to a system where A generates a uniformly bounded semigroup, stability
should be improved. At the very least, this should not destabilize an already
stable system.

Recall that in the chapter on weak stability conditions we found that if for
some uniformly bounded semigroup T'(t), [PT(t)z,T(t)z] < [Pz,z] and P > O
then the semigroup is at least weakly stable. It would be helpful here to note the
relationship between controllability of (A, B) and (A + BF, B). The following

result is applicable.
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Theorem 16 Let F be a bounded operator. Suppose A generates the semigroup
T(t), t > 0 and A+ BF generates the semsigroup S(t), t > 0. Then the approz-
b smate controllabihity of the systems (A, B) and (A + BF, B) are equsvalent.

proof: First we need to derive two identities. Consider the system
z(t) = A’z(t) + F* B z(t)

then

2{t) = T(2)"2(0) + [ "T(t - ) F*B"z(s) ds
ot
z(t) = S(¢)"z(0)
Combining these two we have, after setting z(0) = z,
Sz =T =+ [ "T(t - 5) F*B"S(s) z ds (16)
In a similar manner we use
z(t) = (A + BF)'z(t) — F*B"z(t)
to obtain
=(t) = S(0)"=(0) - [ “S(t~ s)"F*B'z(s) ds
as well as
z(1) = T(£)"z(0)
These yield

T(t)'z=S(t)'tz+ /;‘ S(t - s)°'F*B*'T(s)'zds (17)
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To show that (A, B) controllable implies (A + BF, B) controllable we assume
that (A + BF, B) is not controllable. Hence there is an z # 0 such that for all
P t >0, B'S(t)"z = 0. From the identity (16) derived above we also have that
B*T(t)°z = 0 for all t > 0. This contradicts the controllability of (4, B). So it

must be true that

(A, B) controllable = (A + BF, B) controllable

In a similar way, to verify (A + BF, B) controllable implies (4, B) control-
lable, we assume that (A, B) is not controllable. Then there is an z # 0 such
that for all t > 0, B*T(t)*z = 0. Applying the identity (17) we again find
B*S(t)*z = 0 for all t > 0. This contradicts the controllability of (A + BF, B).

So it must also be true that

(A + BF, B) controllable = (A, B) controllable

&

A\;:
0. g-;.) '
>
We can state the following proposition, ;‘;ﬂ
o
Proposition 9 Let T(t), t > 0 be a unsformly bounded C,- semigroup with D .,.
tnfinitesimal generator A. Assume A+ BF is the infinitessimal generator of the o .

semigroup S(t), t > 0. Suppose the system (A, B) is controllable, BF = I"'CI

@

® 2ize -;"é-,

”:

S

where is ¢ C is a dissipative bounded operator as described above. and

o,
X

/o°° I1B*S(t)"z||* dt < oo (18)

Car okl

then the semigroup S(t), t > O is not only uniformly bounded, but also weakly

e

Y
&
o

stable.

f;:;

A

proof: From the previous proposition we see that (A+ BF, B) is also controllable

k2

and then the integral (18) defines a positive operator P, where

e,

L2
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Pz = /0 * S(t)BB*S(t) z dt

o s
S
%

Moreover, [PS(t)"z,S(t)*z] < [Pz,z], so S(t)* is a weakly stable semigroup.
Then the adjoint semigroup S(t) is also weakly stable. 4.

We can make the usual extension to strong stability when the appropriate
resolvent condition is satisfied. If the resolvent of A is compact then so is the
resolvent of A+BF. In the case where the conditions of the previous proposition
are satisfied then the weak stability of S(t), ¢ > O implies that the feedback
semigroup is also strongly stable.

If the operator P is strictly positive, as would be implied by exact control-
lability of (A + BF, B) then we would also find that the feedback semigroup is
strongly stable.

There is one generalization of theorem (15) that we would like to point out
before we leave this topic. Rather than a bounded perturbation, we consider

the so called Kato perturbation [14].

Definition 7 C is a Kato Perturbation of A if D(C) D D(A) and if for every

P

a > 0 there s a ¢ > 0 such that

e

{‘t

[ B

IC=|| < af|Az]| + ¢l|=]!

20t
.
"“gl-_\- ‘:l'i

For such perturbations we have the following perturbation theorem [3] for the

e v e
EAPAP

generation of a contraction semigroup.

3 v

s
&

0_.;

Theorem 17 If A generates a C, contraction semigroup and if C is a dissipa-

ParR
&

tive Kato perturbation of A, then A+ C generates a C, contraction semigroup. a7

Which leads us to the following theorem T
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Theorem 18 Let A be the infinitesimal generator of a uniformly bounded semi-

group T(t), t > 0 on a Banach space X. Suppose that C is a contraction on

(X,11 - lln) and a Kato perturbation of the operator A. Then A + I"1CI also

generates a uniformly bounded semigroup S(t), t > 0.

proof: We must verify that if

ICz[ln < a|lTAT ™ 2|| + bl|z]]

then I~1C1I is also Kato bounded, in which case A + J “!CI also generates a

uniformly bounded semigroup. First of all, since

lyll < llzlln < Milyl]

we have |{I|| = M and |[T~!||, = 1 and it follows then that

% "41"0 S

A
)
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Ly

< aM||Ayl| + bM|]y||
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Appendix A

EXAMPLES OF UNIFORM
BOUNDEDNESS
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Since so much emphasis has been placed on contraction semigroups by other

<

¥z

authors, one might question the significance of uniformly bounded semigroups.
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An interesting result of Packel [17] provides conditions under which a uniformly
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bounded semigroup is not similar to a contraction semigroup. He shows that
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Theorem 19 If T(t), t > O s similar to a contraction semigroup and A 1s the
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infinitesimal generator of A, then if W(A) is the weakly stable subspace of A,
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Packel [17] also presented the first example of a uniformly bounded semigroup
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which is not similar to a contraction.
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Example 8 Consider the space X = L3[(0,00), R| & L;[(0,00), R]. Let S*(t), f.-i_,. ‘
.
t > 0 denote the left shift semigroup and S(t), t > O denote the right shift. Let '_’,'.:_-'_:J

ot
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P(t), t > 0 be another family of linear bounded operators. Suppose then that . !
I’ -..‘1.

(S f)z) = flz-t)U(z-1) ey
(5°N)(z) = flz+1) v

~(P(t)f)(z) = f(2-4-t-2)

when € (0,2-4' —t] or £ € (4* — t,4%] or k > I and P(t) f(z) = O, otherwise.
Here | is the unique snteger such that 4 < t < 4!, And the semigroup given
by

) [S'(t) P(t)
0 S()

1s uniformly bounded, not similar to a contraction and ||T'(t)}]| < 2.

Another interesting uniformly bounded semigroup was constructed by Benchi-

mol {18].
Example 9 First define a projection operator
P : Ls[(0,00), R} = L4{(0, 0}, R|
onto the set of intervals I = {,, [3" - 1,3"]. Then P can be represented by

(PF)(z) = 3 Ulz +1-34U(3* - 2) f(2)

n=1

Nezt the infinitesimal generator 1s taken to be

2/dz P
0 -9/0z
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In this case the semigroup generated by A ss shown to be
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5+(t) P(y)
0 S(t)

T(t) =

Again, S'(t)A and S(t) are the left and right shifts and P(t) can be written as
(P)f) = [ $7(t=)PS()far
In this case Benchimol computes the bound of T(t) and finds that
IT(@)i < V3

Benchimol also notes that if the intervals are defined by (m, — 1,m,] where

these integers satisfy the relation
my, < my, = 2m;, < my, — 1 (19)

Then if P : Ly[(0,00), R] — L3[(0, 00), R] is once again the projection operator
onto the set of intervals I = U2, [my — 1,m,|, the semigroup T'(t), t > 0, as
developed above, is also uniformly bounded semigroup which is not similar to
a contraction.

It is possible to modify this generalization and illustrate our theorem on the

application of a dissipative feedback to uniformly bounded semigroups.

Example 10 On the same Hilbert space, ¥ = L3[(0,00), R| & L;{(0,00), R
Consider the projection operator given by Q : L,{(0,00), R] — L,[(0,00), R}

onto the set of intervals [ = (U2, [my — 1,m,], where the m, satisfy the relation
my, <m;, = 4mh < My, — 1

Then Q can be represented by
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(@f)(2) = S Uz + 1 = m)U(ms ~ 2)/(2)

n=1

Agein we have the snfnitesirnal generator

A= 2/0z Q
0 -8/oz

And the semigroup generated by A is

) - [ HONC0 }
0 St
S°(t) and S(t) are the left and right shifts. Q(t) is represented by
@/ = /()‘s'(z _1)QS(r)f dr

In this case the choice of my also satisfies Benchimol’s condition (19).
Benchimol’s calculations are still valid and the bound for T(t) is given by
T < V3.

Nouw let us modify things a little bit. We know that on L,|(0,0), R], 8/9z
and —3/0z generate contraction semigroups, namely, the shifts, S*(t) and S(t).

On ¥ = L,y|(0,00), R] & L,{(0, ), R] the operator F

a/0z 0
0 -9/oz

s also the generator of a contraction semigroup and so st 1s dissipative. Let
us then tnvestigate the boundedness of the semigroup V(t), t > O generated by
A + F, noting that

20/0z Q
0 2-98/oz

A+ F=
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First note the effect the coefficients “2” on 8/3x and 3/0z. These generate the

shift semigroups semigroups, respectsvely,

Ly(t) f(2)
Ry(t)f(z) = f(z+21)

U(z—-2t)f(z - 2t)

Also define

X(2) = 3. Ul + 1 - ma)U(my - 2)

n=1

And for g = Q(t)f we have

g(z) = -/: Ry(t — s)QLy(s)f ds

t
= /0 x(z + 2t —2s)U(z + 2t — 4s) f(z + 2t — 4s) ds

Then the semigroup generated by A + F can be ezpressed as

v < [ B0 Q0
0 Ryt

Using similar techniques to Benchimol we show that this new semigroup is also

uniformly bounded. First of all, for any pair of f and ¢ we have

1 pzt2
o(z) = 5/ x(0)U(2v — 2 — 2t)f(2v — z — 2t) dv
2+2t
= -/:up{z,(z+2t)/2} x(v)f(2v — z—2t)dv

Then if, xx(v) = U(v — my + 1)U (me — v) we have

2+2¢ d
= 2v—z -2t
gk(I) /sup{z.(z+21)/2} Xk(v)f( v z-2 ) v

and
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oz) = 3 ai(2)

k=1

Eliminating the x; by applying the definition of the step functions we obtain
for g:

1 sinf{z+2t,m,}

gx(z) f(2v -z —2t)dv

= § sup{z,(z+2t)/2,m; -1}

If we make the change of variables u = 2v — z — 2t we obtain

1 inf{z+2¢,2m, —2-2t} f 9 2t) d
= _ —-z-2t
9x (I) 4 c/sup{z-21.0,2m.—2—z-2t} ( v ) v

A careful examination of the limits of this integral reveal that g,(z) equals zero

if:
1.24+2t<2mk-2-z-2t<=>z<m;-—-2t-1
2.2my -z-2t<z-2t<> T 2>2m,
3.2m—z-2t<0<&<=z2>2m; — 2t
4. z<0
We then see that
support{g;} C [sup{0,m; — 2t — 1}, inf{m,, 2m, — 2t} (20)

Breaking down the remaining calculations into three propositions adds to the

comprehension of the following.

Proposition 10 For t > O there 15 at most one k > 0 such that

my < 2t < dm; (21)

proof: Suppose that there are integers k; < k; such that
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my, <2t <4my,
L and :54:7
my, <2t < 4m,,
so 2
m, <2t < 4my, (22) -

Since k; < k3, my, < m,,, and for every k, 4m; < m, — 1 we have oy

amy, S my, — 1 (23)
When equations (22) and (23) are combined we obtain ::‘,::-:
dm,, S my, -1 <2t -1 <4m,, —1 ‘.:.'
So the assumption that k; < k; must be false. O O

Proposition 11 The functions g,(z) have disjoint supports. ?’

proof: In the last proposition it was shown that there was at most one t to N

”
satisfy (21). Given ¢, suppose there is a k, such that (21) holds. In this case ":5 .

support{gi.(z)} C [0,2m,; — 2t N,/

R e AN
LAY

Then let k; and k, be integers satisfying the inequalities k, < k; < k;. In which

2y
P
4.‘.‘-‘7
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case

i
e
L A X

my, > 2t and m,, > 2t (24)

P A

A

(i) To show that the supports of g,, and g, are disjoint, first note from (24)

}f‘?‘- <

that o
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2my;, — 2t > my, (25)
in addition, since 4m, < m,, — 1 we have the relation
2 <dmy, <mp, —1=>0<4my, =2t <my, —2t—1 (26)

Then since the support of g, is given by (20) we see that the support of g; also

satisfies
support{gs,} C [ms, — 2t — 1,m; | (27)

When one combines (25), (26), and (27), we see that the supports of g,, and
g, are disjoint.
(ii) To see that the supports of g, and g,, are disjoint, it will be sufficient

to deduce that M, < m;, — 2t — 1. We note that

4m,, <my, —1=>4m, —2t<m,, —2t—1 (28)
and that
mp, <rmy, —2t< My, —-2t-1 (29)
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O Once we compute the bound for ||Q(t)|| we will have completed the hard

LS
25

work.
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Proposition 12 ||Q(t)|| <
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proof: Let’s start with a couple of new definitions. Let

)(1] )
1@

-~

2

J(z) = sup{0,z—2t,2(my—1) —z - 2t}

- N %
1o 72z

2 ¥

K(z) = inf{z+2t,2m, —z -2t}
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Since

J(z) '

IA

2(my—-1)—z -2t

K(z) > 2my -z -2t

It follows that K(z) — J(z) < 2. With this new notation we can rewrite g, as

(z) = l/x(:) fle)du

4 JJ(z)
Suppose that 2t < m, < 4t, then applying (20) we see that
support{gi(z)} C [0,2m; — 2¢]

On the other hand, if m; > 2t

support{g:} C [2m: — 2t — 1,m,]

)

<8
x ':

Now denote by [a(k),b(k)] be the largest of these two intervals. Then we find

=

that

.'?.

ol = [ lon(z)* da

1 k) ?
= i-é (k) (/.‘l(z)""' f(s) dZ) dz
1 [ (K@) K(z)
—_— 12 2
= (/J(,, ds) (/J(,) £(s) ds) dz

1 K(z)
< §</J " f(s)’ds) dz

As a result of the definition of [a(k), b(k)] we have the inclusion

IA

[J(2), K(z)] € [a(k),b(k)]
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and the above integral can be bounded as

IA

a(k)

b(k)
/m fm U(K(z) - s)U(s - J(z)) dzds

L ”gknz b(k)/b(k) K(z) - 8)U(s - (z))fz(s) dr ds .E|

IA

k If we replace K(x) we see that ety

K(z) ~s=inf{z+2t,2m, —z~- 2t} —s<2m, —z -2t iy

U(K(z) -s) <U(2m; —z—2t-s)
Y
If a similar manner we can replace J(z) to obtain i

s — J(z) s —sup(0,z — 2¢t,2(m; — 1) — z — 2t) ﬁ

= s+inf(0,2t - z,z + 2t — 2(m; — 1)) =

< s+z+t-2(mp—1)) =

And as a result,
Uls—J(z)) SU(s+z+t—-2(m — 1))
When these step functions are substituted back in ~'7'
%

b(k)
/O(k) U(K(z) - s)U(s - J(z)) ds

®

(l
B(k) 2\.\
< /()U(th—z—2t—s)U(s+z+2t—2(mk—1))da: &
a(k -
/inf(2m,,-a—2t,b(k)}

T N

-

up{a(k),2(ms—1)—s-2¢}
< 2
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From here we see that for each g;
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1 b e
2 - 2 ds . ) Wt
”gk” S 8 /o(k) f(S) 2 () ...'

Since the supports of the individual g,’s are disjoint it is easy to compute the e,

P norm of g. We have for g Gy

e o]
4 Y
a2 = X llalf? o
k=1 ey
< 53 ferd o
- S S

R0 i
= Od N

1 t
12

!
< Z\\ i tehts

Finally we find that ||g|| < (1/2)||f]| and

1
Q1) < 3

L4

-1
s

Computing the norm of T'(t) f we see that

T
+® 7

>

i X &

TP = 15" (0 + QAR +1iS() ol
< (Inll+350) + i1
< 2(IAIP + ZIAIR) + AP
< 2LIP+ SN

< 20fP
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Therefore ||T(t)|] < V2 and the application of the dissipative feedback, in fact,

P
Ao o s 3

decreases the bound for this particular example.
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