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Many of the models used to study scattering from rough surfaces are based on
intuitive concepts and testing of the theories is desired. The generation of physical models
based on computer-generated random surfaces with predetermined statistics is investigated.
Generation of statistically known surfaces will allow testing of scattering theories by
studying the scattering characteristics of the surfaces as their statistics are varied in a
known, predetermined manner. This study extends the investigation of generation of
random surfaces previously performed for computer simulations and presents interfaces for
construction of a physical model. Additionally, a surface so generated is tested to measure
conformity to the desired statistics. A portion of a surface with Gaussian statistics was

generated and measured and the conclusion reached is that generation of statistically
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CHAPTER ONE

INTRODUCTION

The scattering properties associated with surfaces such as those of the oceans, the
moon and planets, and other natural targets have been of interest to researchers for many
years {1-20]. Since these surfaces are not deterministic, they must be described by their
statistics. Most efforts to understand scattering from them have therefore been based on a
statistical approach. Some data has also been acquired using numerical simulation
techniques [1,2]. A number of experiments have also been carried out involving the
measurement of natural terrains [3]. In addition, some studies of man-made surface targets
have been reported (4-7]. While this data has allowed a better understanding of the
phenomenon, many questions cannot be answered until controlled measurements on target
surfaces in which specific statistical parameters can be obtained. Previous measurements of
man-made surfaces have been limited by measurement of the parameters of interest after
generation of the surface targets, with little or no a priori control of those parameters.

Researchers have accomplished the generation of numerical surfaces, both two
dimensional [1,2], and more recently, in three dimensions, through the technique of digital
filtering. Applying discrete Fourier analysis, it can be shown that it is possible to generate a
filter which, when applied to a matrix of random deviates with the desired statistical
probability density function, can smooth the surface to very closely approximate the one
desired. For example, a set of Gaussian distributed random deviates can be filtered to
generate a surface with a Gaussian distribution of surface heights and a predetermined

correlation length. This technique works well for analysis under approaches such as the




moment method [8,21] where integral equations are solved using piecewise approximation
and iterative techniques. This filtering technique can likewise be applied toward the
generation of a physical scatterometer target using a numerically controlled mill. The
process uses the same digital filtering technique to generate the target surface , but instead of
using the generated surface in a numerical simulation, the data is converted to control
information for a computer controlled mill.

The desired surface and the corresponding miil control commands are created
through the use of computer programs. Additionally, the numerical surface statistics are
checked to insure compliance with the desired (input) statistics. The surface is generated
identically to the one used in the numerical simulation. However in numerical simulations,
the extent of the target surface is only that necessary to allow sufficient sampling points to
insure good statistical agreement with the input. In a physical target, the final product is
continuous, indicating an infinity of sample points. Actually, the milling process is
discrete, but there is a requirement for much larger number of sample points. Once the
numerical surface is generated, a large number of additional points can be located using any
of several interpolating techniques. While the actual requirement for points will be target
and machine dependent, the better the interpolating routine, the more likely success in
achieving agreement with input statistics. One good method for interpolating additional
points is that known as bi-cubic surface patch. This method uses the values of the known
points, the derivatives in each direction at the given points, and the twist vector at each
given point to provide a surface that is continuous in both directions, in both the first and
second derivative, throughout the given area. Analysis shows that the surface statistics of
interest change very little when this method is used.

Once the surface is determined at the required spacing, the points generated must be

translated into instructions for milling. There are a number of high level languages that have




been developed for such translations, most notably the Fortran compatible language known
as APT, and its extensions. Again, machine dependence plays an important role in
determining both the language and its implementation. Once the instructions are coded, they
must be processed. If all instructions have been correctly coded, the milling process itself
is automatic.

While the primary purpose of this work is to present the method developed to
generate a Gaussian distributed random surface on a Spindle-Wizard Model I CNC mill, it
is hoped that the process is sufficiently generic that other surfaces can be developed and
generated on other numerically controlled machines. To this end, the theory is outlined and
implementation is described in some detail. Chapter 2 presents the development of
scattering theory as well as some target generation techniques previously employed.
Chapters 3 and 4 present the development of the numerical and physical surfaces,
respectively. Chapter 5 is a discussion of the results of measurements of the numerical and
physical targets. Recommendations for future study are included in the concluding remarks
of Chapter 6. Listings of the programs and their use are included in the appendices along

with tables of measured data.



CHAPTER TWO

BACKGROUND

Electromagnetic scattering from random rough surfaces has received a vast
amount of study in the last thirty years due to the applicability to many natural terrains. The
complexity of most terrains makes such surfaces impossible to describe analytically and
thus requires them to be described through statistics. The study of scattering from them has
been necessarily based on those statistics. As theories have advanced, practical applications
of the analysis of radar returns from rough surfaces have become widespread. Studies of
scattering from such surfaces as the ocean are numerous [5,9-11], as well as studies of
earth-land terrains [8,9], and even other planets [12-15]). Figure 2-1 is representative of

one type of surface for which a great deal of study has been done, a surface with

Figure 2-1. Typical Surface with Normally Distributed Heights.

normally distributed surface heights. This type of surface is of interest because it
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approximates many natural terrains and is among the easiest to handle analytically [9].

A comprehensive study of the scattering from rough surfaces would be
extensive. Some of the more important theories advanced have been based on previous
work in acoustical scattering from similar surfaces. The selection of a scattering model is
usually based on the agreement of surface statistics with the assumptions necessary for
solutions using the model [8]. Fung [8] lists several methods for solution and characterizes
them by the major assumptions associated with each method. The statistical measures of
interest are generally related to surface height (density functions as well as rms heights),
slope distributions, radii of curvature and the surface height autocorrelation and
autocovariance functions [9]. Analysis of the scatter problem is often based on the Kirchoff
approximation, that is that the incident field is "reflected at every point as though an infinite
plane wave were incident upon the infinite tangent plane” {15]. This assumption leads to

the Stratton-Chu {16] formulation.

-jksRo = = ik.ren
£ =S Box | B B - fx (A N as o

where

fh s = unit vector in scatter direction

i = unit vector normal to surface

k; = wavenumber of the medium (2-2)
n, = intrinsic impedance

R = range from scatterer to P

and the far zone modification of Silver [22] has been applied. A time variation of e/®! is




implied as well. The geometry is indicated in figure 2-2.  Generation of a solution

involves determination of the tangential fields which introduces the statistical nature of the

E $.

Figure 2-2. Rough surface scattering geometry.

surface in that the surface normals will have a distribution related to the surface statistics.

While the majority of studies have concentrated on Gaussian surfaces, recent investigations

have included others {17-20].

A The Kirchoff formulation is based on planar approximation in a local region, so
that horizontal scale roughness must be large compared to the wavelength of the incident

field. This implies that the radius of curvature, on the average, must be large compared to

the wavelength. Fung has shown these requirements mathematically to be [10]

k;1>6

2 (2-3)
1" > 276 6A




where k, is the wavenumber, 1 is the surface correlation length, G is the standard deviation
of the surface heights, and A is the electromagnetic wavelength.

When the horizontal roughness (correlation length) is small in relation to the
incident field wavelength and the standard deviation of heights is large, that is when the
requirement for average radius of curvature larger than the incident field wavelength is not
met, the Kirchoff method must be abandoned. Another method often used in these
configurations is the small perturbation method. This approach requires a standard
deviation of surface heights on the order of .05\ or less [9). Also, the average slope of the
surface must be about the same magnitude as the product of the wavenumber and the

surface height standard deviation. Again from Fung [9]

kcl < 0.3

V2o, (2-4)

; < 03

In addition to the two extreme cases which meet the statistical requirements of the
Kirchoff and small perturbation methods, many surfaces include a variety of roughness
scales. Some can be modeled as a collection of two scales of roughness, one imposed upon
another. The method of solution is to consider the large scale to be dominant at low
incidence angles {11] and to consider the small scale roughness as being present on a tilted
plane for larger incidence angles of illumination [9]. One of the motivations for generation
of a scatterometer target of the type discussed here is 1o verify the limits of applicability of
each solution method.

Hagfors [13] has shown the statistical relationship between surface height

deviations and the surface slopes as well as their effects on the surface scattering, especially




as it applies to depolarized returns. The slope effects are included by noting the relationship
to the surface differential as ds = dx/cosc, where a is the local tangential angle. The local

incident angle can then be expressed as a function of t = tanat = dh/dx [15].

(cosau+t sin o)

cosy = —:‘/__tT_— (2-5)
. (sin a.+ t cosa)
siny = ————-—""-" (2-6)

Vi+d?

The final form of the relationship is dependent on the surface statistics. Hagfors [14] gives
an extensive analysis of the relationship for Gaussian height distributions. Beckman and
Spizzichino [19] and Boyd and Deavenport [20] provide a similar analysis for
non-Gaussian distributions.

Testing of the scatter theories has generally been performed by 1) numerical

simulations [1,2], 2) measurement of natural targets [3,9] and 3) measurements of
man-made targets [4-6]. The generation of man-made rough surface targets has however
been limited. An early study by Moore and Parkins [6] describes the generation of two
rough surfaces for acoustic scattering. One was a grout-smoothed sand surface. The other
was a mild steel sheet that had been repeatedly struck with a hammer. The statistics of both
surfaces were measured after generation. The authors reported approximate agreement
between measured statistics and those of a Gaussian surface. Horton, Mitchell and Barnard
[4] have also reported rough surface target generation. They used a corrugated
pressure-release material to study acoustical scattering. Targets generated in their study
included a surface whose cross section was a sinusoid and later a random rough surface.

The random surface was taken from an aeromagnetic map of a 32 mile x 32 mile section of




the Canadian Shield, scaled to 1 inch per mile. The statistics of this surface were again
measured a posteriori to generation, although the autocovariance functions of the contour
maps were studied before construction [4]. Welton, Frey and Moore [5] used this surface
to generate three surfaces which were identical except for scaling, along with two others
similarly constructed. Statistical measures of the surfaces, determined after generation in all
cases, indicated approximate Gaussian height distributions as well as approximately
isotropic autocovariances.

The intent of this study is to provide a method for constructing surfaces such as
those used in the above tests, but to allow the statistics of these surfaces to be determined a
priori to the construction, and in fact, to construct surfaces with desired statistics so that
theory, simulation, and experiment can be compared directly. Construction of surfaces with
specified statistics will allow the various aspects of investigation into the scattering
phenomenon to be unified. Using such targets will provide a deeper understanding of the
interaction of electromagnetic fields and randomly rough surfaces. The process for
generating surfaces with specified surface statistics is presented in the following chapters.
Chapter 3 provides the theory associated with generation of the surface numerically through
generation of a sampled surface at a number of points and determining the analytic surface
that passes through those points so that physical construction can be performed. The
generation of a sampled two-dimensional surface [1,2] is extended to three-dimensions and

the method of bi-cubic surface patching is performed to create a machineable surface.
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CHAPTER THREE

COMPUTER GENERATION OF THE SURFACE

This chapter provides the theoretical understanding and the mathematical process
for numerically generating a three dimensional surface whose statistics agree with those
input. The method involves two major steps, basic generation of the surface and
interpolation for additional information. The surface generation techniques are those used to

develop a scatterometer target using numerical control machinery.

Gaussian Random Surface

The numerical generation of a Gaussian random surface begins with the
generation of a matrix of normal random deviates. A number of methods exist for
performing this task. Muller [23] and Naylor [24] have provided studies comparing some
of these approaches, including the Inverse, Central Limit, Rejection, and Direct approaches.
Based on these studies and the requirements of the surface generation process, namely a
large number of deviates with a good degree of statistical accuracy, the Direct Approach
appears optimum. The Direct Approach provides a transformation from uniform deviates to
normal deviates that is exact, and with accurate function subroutines it can be quite precise
[23).

The Direct Approach, as developed by Box and Muller {25], follows. It is
assumed that a method exists which provides uniformly distributed independent random
deviates in the interval [0,1]. The joint probability of two independent random variables z,

and z, is defined by equation (3-1).

10
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P =P(z<z <2+Az,2,<2, < 2+ Az} (3-1)

Furthermore, if these random variables are normally distributed this probability is [26]

p=[\/"2175 exp( - 1)d ][ﬁi exp(—= 3 )dzz] (3-2)

or
pe A P R) @

Pearson [27] has shown that the transformation to polar coordinates in the (z;,z,) plane

reduces this probability to equation (3-4).

1 -r2
P= 3o exP(—Z—) rdrdo (3-4)

where the area element has been written as rdrd6. If two independent variables x, and x,
are chosen, using the above mentioned method, from a uniform distribution on [0,1], then

let

2
X, = cw(—%) (3-5)




so that the value of r is given by
r= \/ -Zln(x1)

Using the definition of a normally distributed random variable,

2
P{r<r<r+Ar}) = cxp(:%-) rdr

and an inverse transformation to rectangular coordinates,

Z,= rcosg
z,=rsin@

e=27|:x2

the variables z; and z, can be directly calculated from equation (3-9).

z,= [-2In(x)) cos (27 x,)
) =\/-21n(x1) sin( 2 x,).

(3-6)

(3-7

(3-8)

(3-9)

Now z, and z, are independent, normally distributed random variables with unit variance

and zero mean. It is a simple matter to transform them to other normal distributions by

making use of the generalized formula.
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2
exp( 2Te) (3-10)

f,(2)= 1

S\ 2x 2¢,
where o, and n, are the desired standard deviation and mean. To illustrate the
transformation, let w be normally distributed with standard deviation 6, and mean 1. Let
y represent the desired distribution, so that the desired standard deviation and mean are o,

and ny respectively. Then from Pearson [27]
9y
y= (-o—) (w-nw)+ny. (3-11)
w

While other methods exist for generating normally random deviates, this method provides
excellent results with a simple algorithm, little memory, and within reasonable time
constraints. Furthermore, by using a constant seed in the call to generate uniform deviates,
the vector of normal random numbers can be quickly reproduced, allowing comparisons of
tests without the necessity of storing a large number of values. Results of the
implementation of this approach are presented in Chapter 5.

After generating the matrix of random numbers it is necessary to force a
correlation function on them. The method used is that of Naylor [24], as outlined by Axline
and Fung [1}, Fung and Chen (2], and Levin [28], but applied in two dimensions. Using a
sequence of normal random deviates generated as above, a method based on the concept of
digital filtering is applied. If ¢(m) represents the desired correlation function and its

z-transform is written ®(z), then by definition:
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d(z) =Y, p(m)z’! (3-12)
m=-co
z =exp{jo) (3-13)

For clarity, let the normally distributed deviates be normalized to mean zero and unity
variance and be written as r(n). Finally, write the sequence of correlated deviates as c(n).
Since the process is based on digital filtering techniques, assume a filter exists whose

impulse response is h(n). Barker [29] has shown that

d(z) = H@)HE) (3-14)
where
H(z) =Y h(n)z" (3-15)
n=0

The output of the filter with the normal sequence input is then given by equation (3-16).

M

c(n) = Y h(m)r(n-m) (3-16)
m=-M

Using this process it is theoretically possible to generate a sequence of deviates with any
definable sampled correlation function desired, however. calculation of the filter response

requires calculation of the covariance matrix for the product summation beyond n {28].
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For large sequences, as used for surface generation, this process becomes impractically
complex. However, for two certain correlation functions a closed form of h(m) can be
determined analytically and then sampled [24]. These are the linear and exponential
autocorrelations. Noting that the expected value of the product of c(n) and c(n+j) gives the

discrete autocorrelation.

E{cn)c(n+)) = 2 hmr(n-m)Y h(k)r(n-k+j) (3-17)
m k

SO

E{c(mem+)} = Y Y h(m)h(k) (r(n-m)r(n-k+j)) (3-18)
m k

But the input sequence is of uncorrelated deviates with identical variance so that

E{r(n-m)r(n-k+j)) = ?’ 2?}‘(’;; (3-19)

and the autocorrelation is seen 10 be the convolution of the filter with itself.

E(c(me{n+)) = ¥, h(k)h(k+j) (3-20)
k

Using the notation 3{f(x)} to indicate the Fourier transform of f(x), it is seen that
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3 {s} = 3 {n}13 tn} = (3 {n})? (3-21)

so that

n= 3 {/30! } (3-22)

Use of a two-dimensional filter follows exactly. Let the desired correlation ¢ be Gaussian

with a spectrum p. The correlation function can be written as

2 2
6 = exp { [-i;:] i [‘%] 1S (3-23)

Then p can be found from the Fourier transform, as in Goodman{30].

-(12f2 2 g2
P=1ylx\[7r_exp{ = ; LVEL)} (3-24)

If the samples of the filter h are designated as weights W;:, they can be found from
p g ij

equations (3-24) and (3-22).

" 20 4-92)] L[ G-y
vy o 22 2] G2

Generation of surfaces with other statistics can be performed in a similar fashion.
If a closed form of the correlation function’s spectrum is not available it may be generated

numerically. An appropriate sampling period must be determined. Additionally, methods

PRV SR § S
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exist for generating non-Gaussian deviates as the basis matrix [24]. Physical target
generation is independent of the method used to generate the numerical definition of the
surface. The use of the bi-cubic surface patch, outlined in the next section, may or may not

provide results as good for other surfaces.

Bi-cubic Surface Patch

The method of generating smooth curves through given points using a cubic
spline is well known. Other fits are possible and a number of studies are available
comparing them. Their extensions into surface generation is also well studied [31-37].
While many provide accurate results, the extension of cubic splining to three dimensional
surface fitting provides a method for insuring the surface is smooth and continuous. The
comparison of surfaces generated by the methods of the previous section and those
generated from bi-cubic surface patching a sparse set of points from those surfaces show
remarkable agreement. Quantitative comparisons are made in Chapter 5.

The bi-cubic surface patch method originally developed by Coons [38] is based
on piecewise fitting a cubic surface through all the given points as well as insuring
smoothness by matching the slopes and twist vectors across boundaries. Once the cubic
surface is determined, interpolation can be performed to any degree desired, i.e. the cubic
surface is continuous throughout the region. The accuracy of the fit is dependent on the
accuracy of the given values of points, slopes and twists [40]. Numerical differentiation
methods such as centered differencing or the geometrical condition process of Akima [32]
may be used if the slopes and twists are unknown. The surface patch is performed on sets
of four points as shown in figure 3-1. Here the assumption has been made that the corner
values of the block have been parametized to (0,1) as u and w. The values of the corner

points are written using the shorthand notation of Pressman [40], V(a,b) = V.- The slopes
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Figure 3-1. Coons' Surface Patch [40].

are also written in shorthand as V., = 9V (a,b)/du, and the twist Vectors as Vabuw =
92V(a,b)/dudw. Note that the continuity of slopes and curvatures is assured if the
interpolating function is forced to maintain these at the boundaries, so that it suffices to
analyze one arbitrary patch among the many that would make up a full surface target. Look

first at the curve defined by V(Q.u). Since the equation is cubic, the general form

VOu) = C+uCy +ulCy +u3Cy (3-26)

may be used. The unknown coefficients can be determined by use of the boundary

conditions.
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V(0,0) =V,

V(0,1) = V,,

ov(0,0) _ v (3-27)
—u Voo

av(,1)

v Votu

Solving equation (3-26) using these conditions gives equations (3-28).

C“ = Voo

=V
G2 = Yoo (3-28)
Cs = 3V 3V 2 Voo™ Yotu

2Voo- 2 Vo1 + Voou* Voru

Ca

The use of a single curve segment must now be generalized to a single surface segment, or
surface patch. This is done by first finding parametized equations for two related curves,
say V(0,u) and V(1,u), then using these curves to find intermediate points at w which serve
as the endpoints for a cross curve of the type V(w,u), where w is held constant but not
necessarily as zero or one. The general intermediate curve then defines a parametric
surface. Ferguson [34] has shown that the choice of initial curves does not affect the final

surface patch defined. The process leads to the parametric equation (3-29) from Press [35].

4 4
2xy) = 22, Cwtt yi! (3-29)

i=lj=1

Parametric variables u and w can be obtained from equation (3-30)
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(3-30)

where x and y are the coordinates of the point internal to the patch at which an interpolated
surface height is desired and subscripts indicate the corner points after parametizing as

shown in figure 3-2. There are now 16 distinct coefficients to be determined. and it is

O ®

O ®

Figure 3-2. Points on the corners of a single surface patch.

possible to determine them generally as algebraic functions of the boundary conditions and
corner point heights. At least two methods have been used for determining these values.
Ferguson [34] simply forced continuity of slopes across the boundaries. Coons [38]
defined the twist vector to include the effects of the curvature as well as slopes, thus
creating a smoother surface. The two methods are equivalent if the second derivatives are
assumed equal at all points within a patch and zero at patch boundaries [34]. The
development follows Coons' method as outlined by Pressman [40]. Writing the parametric

equation in matrix form gives equation (3-31).
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V(w,u) = [W]M][BIIM] [U]" (3-31)
where the following vectors are defined.

(U=’ u? u 1]
Wl=(w®> w2 w 1

(3-32)

The coefficients found in equation (3-28) generate the matrix [M] as follows. The process
is valid for any of the four boundary curves so define a general curve V(t).

V()= At>+Bt2+Ct+D (3-33)

Then, as in equation (3-27), boundary slope continuity is applied to determine the

coefficients.

32(3 ooo1]faA
111 Bl _ 3-34

vool =loo1 0} |cl =miel (3-34)
V(1) 3210 D

Inverting [M] gives

-1 T

A 0001 :’/Etl);
Bl _ - 1111 3-35
cl =€ =1oo010] |vo (3-33)
D 3210 V(1




The [B] matrix of equation (3-31) is termed the blending matrix [38].

B N
v00 vOl vOOw vOlw
V, V. V. \"/
10 11 10 11
(B] = ~ v (3-36)
V00\1 VOlu VOOuw VOluw
-VIOII Vl lu leuw v] ]uw_‘

Finally the constant (for any single patch) [S] matrix is found from [M][B]IM]T, and is
equivalent to that of equation (3-37), which is easily implemented numerically to determine

the Cij's of equation (3-29).

[Cll C12 Cl3 Cl4 C21 C22 C23 C24 C31 %2 C33 C34 C41 C42 C43 C4] =

-H'—V—
1 0000O0O0COOOOOOGOOO 00
00000O0CO0OOT1O0O0O0O0GO0OGO0OO0OI}|Ya
30030000-2200-1000 01|V
20020000100 10000]/[]y,
0000100000000O0O0O0OI|fy
000O0O0O0O0OOOOOOT1O0OO0O 00u
0000-3002300U0U0-2200-11]]VYow (3-37)
0000200-=200001001]|V
3300-2-10000000000]||v,
00000000-3300-2-1001/|]y
99 99 63-366-6-334212 V°°‘"
6 6 6 6422 433 3-3-2- -1=2 Olw
2200110000000 000/]}|Viw
00 0000O0O02-200T1T1U090]lVi
6666333 3-442-2-22-1-1]1]Vee
4444222222221111]|]y
o — 1wu
v01uw
Vituw
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After determining the coefficients for a given patch, any number of points may be quickly
found within the patch from equation (3-29). While it is possible to store these coefficients
along with those of all other patches, and thereby fully define the surface, the accompanying
complexity associated with generating the parametric variables becomes prohibitive for
realistic surface sizes. Instead, a number of points are calculated that insure adequate
definition for machining, as outlined in the following chapter. Also, it should be noted that
some method of determining the first and second derivatives at the given grid points is
required. Centered differencing is adequate for most patches but for the edges of the target
boundary patches, the slope will be undefined in at least one direction and the second
derivatives will not be defined at all. It is sufficient to set these unknown values to zero,
since any small change in the slope will be at or very near those edges and will not alter the

electromagnetic properties associated with the bulk of the target. Before measurements are

-

Figure 3-3. General curved surface defined by 9 planar patches.
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Figure 3-4. Same general surface as shown in figure 3-3 after bi-cubic surface patching.

made, it is likely that these edges will be modified, covered, or otherwise eliminated from
illumination by the incident electromagnetic wave during. Figures 3-3 and 3-4 indicate the
application of the bi-cubic surface patch to an arbitrary surface. The routine was applied to
an input surface shown in figure 3-3 and the surface generated is plotted as figure 3-4.
Here additional interpolation was performed to convert the 9 patches given to 900 patches.
Through the use of Fouricr analysis, it has been shown that generation of a
sampled surface with specified statistics is possible. The surface is generated by
convoluting a set of random numbers with the inverse Fourier transform of the square root
of the spectrum of the desired correlation function [2]. This sampled surface can then be
extended to a continuous surface through the application of bi-cubic surface patching, which
matches the sample points, as well as the slopes and curvatures at each point, and
determines a double-cubic surface that matches these boundary conditions. Using the

analytic surface, 2 smaller sampling interval can be used so that the surface to be machined
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is well defined and approaches that of a continuous surface. The method of converting the

numerical surface to a physical one is presented in Chapter 4.




CHAPTER FOUR

NUMERICAL CONTROL MILLING PROCESS

Since its inception in the early 1950's, numerical control has advanced rapidly.
Today the majority of machining takes place on numerically controlled machines. The
Electronics Industries Association defines numerical control as "a system in which actions
are controlled by the direct insertion of numerical data at some point. The systcin siust
automatically interpret at least some portion of this data" [39] The application of numerical
control to the specific problem of rough surface generation is discussed in this chapter. The
discussion includes general interfaces and techniques as well as the specific process used
for generating two test patches on the Spindle-Wizard Model I CNC Mill.

Initially, numerical control was investigated and developed to find an economical
manufacturing technique for accurately producing metal parts in relatively limited quantities.
While the difference between numerical control and automation was initially based on this
definition, the success of numerical control processes have somewhat clouded the
distinction. Automation is generally used for large quantity production of a part, but
numerical control today is almost as fast and accurate, and far more flexible. The original
intention of numerical control designers is ideally suited to target generation however, since
each target is likely to be unique. The success of numerical control has generated the
development of a large number of numerically controlled machines and control schemes.
The generation of scatterometer targets is best performed on a numerically controlled mill,

but any of a number of control schemes and specific machines are available to perform the

task.
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Generation of the surface numerically, described in Chapter 3, provides a set of
grid points (x and y coordinates) with an associated surface height, (z=z(x,y)), as well as
the slope in each coordinate direction at each point (9z/9x, and 9z/dy) and the twist vector
(0%2/0xdy). While it has been shown possible to generate any desired number of such
points (within time and memory limitations) the surface remains defined at a finite number
of such points. No amount of digital preprocessing can completely define the surface
without implementing some sort of interpolating scheme in the hardware of the numerically
controlled machine. The work of early researchers in surface generation often centered on
developing such interpolating schemes [31,33,38,41,42]. The interpolating schemes range
from the simplesi point-to-point mechanisms, to hardware/software implementation of
Coons' type surface patches [38,40].

The earliest machines, and even simpler machines in use today, are limited to
point-to-point interpolation. Figure 4-1 indicates the process. The machine part
programmer provides a set of coordinate shifts, and the machine simply moves in the given
direction the specified amount. For many simple machining problems, this method is quite
acceptable. However, even slightly complex objects require a vast amount of programming

using this technique. Even in point-to-point schemes there are several choices for

End point

Start point

Figure 4-1. Point-to-point interpolation paths {43].
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movement, as indicated in the figure. Although the path indicated as number three would
most often be the optimum, it is the most difficult to implement, especially in a three
dimensional environment. For surface generation it is unlikely that paths one or five would
provide acceptable results, and even path three type point-to-point milling would be a poor
choice.

Other common interpolation schemes are usually grouped under a category
known as contouring or continuous path programming. In reality, even contouring
machines use a point-to-point process, however, they do not require input of all the path
points forming the locus of the desired path. Instead, an integral part of the numerical
control machine calculates the intermediate points based on given coordinates, feed rates,
tolerance requirements and the desired interpolation scheme. Contouring machines

normally provide the user witha choice of interpolation paths, most notably linear and

/tolerancc
7

>
7

actual curve

chord length

"Figure 4-2. Tolerance geometry [40].

circular paths, and even parabolic paths in some instances. Figure 4-2 indicates the

approximation of a general curve using linear interpolation. Since the curves associated
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with a random surface are defined at a relatively large number of points, it is expected that
linear interpolation will provide an adequate approximation. While circular interpolation
might provide a slightly better fit, the complexity added in determining whether each path
should be interpolated with an inward or outward curve at each point would not be justified
by the improvement.

The shape of a three dimensional surface requires that the cutting be performed
with a ball-end cutter. The combination of a circular cut and finite steps between cutting
paths leads to two problems. First, the actual path cut is circular so that a ridge is developed
between paths. This ridge, commonly referred to as the scallop or step over, is minimized
by use of large radius ball-end cutting tools, and small lateral movements so that cuts
overlap. Secondly, the overcut or undercut caused by an improper offset must be

compensated for, as outlined below.

Figure 4-3. Geometry indicating method for determination of scallop height.
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Figure 4-3 indicates the geometry associated with the scallop. The lateral

movement, indicated as Ax, and the cutter radius, r, form two sides of an isosceles triangle

whose height, r-h, is given by equation (4-1).

roh= [r2. [_1321]2 @1)

Solving this equation for the scallop height h provides a method of determining the

minimum value of scallop for a given step and radius.

ho=r~ fr’- [%x']z (4-2)

While this scallop is constant for a plane, the milling of a target surface with various slopes

will provide a range of step over heights. Figure 4-4 indicates the determination of the

surface /

~
\

Figure 4-4. Geometry indicating method for determination of maximum scallop.
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maximum step over based on maximum slope. This increased height neglects a shift of the
cutter path (offset) discussed below. Here, an increased relative lateral move Ax' can be

seen to be given by equation (4-3).

Ax
cos@

(4-3)

Using equation (4-2) and the new shift, and taking the maximum slope 6,,, the

relationship that determines hy,,,, is seen to be:

_ 2 Ax 2 4-4
hmax_ r= r - [ZCOSQmaX ) (4-4)

As an example, for points 2 mm apart on a 45° slope milled with a 3/4" dianeter cutter

would give a scallop of 0.10 mm.

path defined by contour

\ksired contour

area overcut

Figure 4-5. Cutter-tool overcut due to uncorrected path description.
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Figure 4-5 indicates the need for a tool path offset. Normally, the path provided
as input to the numerically controlled machine is that of the centerline of the ball end cutter.
If the cutter path input is exactly that of the desired surface, it is obvious that the surface will
be overcut (or relatively, undercut). This problem is corrected by defining a new offset
based on the surface normal, as shown in figure 4-6. In two dimensions, the new x
coordinate is determined by locating the intersection of the z-coordinate and the surface
normal. Since the surface is three dimensional, two corrections are required, but they are

approximately separable.

x'=xtAx=xxr(sing,)

(4-5)
y=ytAy=yr(sing,)

where the appropriate sign depends on relative slope direction. Since the surface slopes are

Ax B
.+ normal to
,»+ surface
L4

Figure 4-6. Determination of the tool offset to correct for overcut.
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calculated in the numerical generation, this type offset is easily incorporated into the control
definition routine. The additional increase in scallop height will be negligible since it is a
function of the change in slope from grid point to grid point, which is small for surfaces of
interest.

The construction of a rough surface presents a number of unique problems. As
indicated above, a large radius cutter is desirable, but since the surface consists of hills and
valleys, a maximum cutter size must be determined. The choice of target material is also of
interest, and it is dictated by electromagnetic requirements as well as mechanical constraints.
The limitation of the mill on maximum size may also require construction of the target in
pieces.

To insure that an acceptable scallop is achieved, while minimizing the number of
cut passes, it is necessary to maximize cutter radius. The limit will be defined by either the
minimum curvature of the surface or the maximum available cutter radius for the machine.
To determine the minimum radius of curvature, local minimums of the surface must be

found. The approximate radius of curvature can then be found from figure 4-7 as:

r2= (r- Az)* + Ax? (4-6)
_ Adral @7
T~ —3az
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r-az| __I_z_}-

4— Ax —P

Figure 4-7. Determination of the minimum radius of curvature.

Since there is a maximum radius cutter available for a given numerically controlled mill, it
suffices to check for curvatures less than this maximum.

The material chosen must meet the requirements of the milling process as well as
those of the electromagnetic properties being studied. Many targets will be generated to
study surface scattering effects, and will therefore be expected to approximate perfect
conductors. While numerical control is capable of milling metals such as aluminum
directly, it is common practice to proof numerical control part programs in a material that is
less expensive and easier to machine. Commonly, the part is milled in wax, wood or
foam. These materials are more highly expendible and in most instances can be cut at a
faster feed rate. Since the scatter target will have a conducting surface, it is possible to use
foam as the finished target in many instances by metalizing the surface after milling. In fact,
16 pounds per cubic foot, polyurethane foam was used as the material for the two test
patches described below. As future targets are constructed and tested, it might be desirable
to mill surfaces with specific dielectric properties directly so that volume scattering effects
can be studied.

While numerical control mills exist which can process parts as large as the
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desired target (here about 1 m by 1 m), many cannot. Additionally, large amounts of data
are necessary in defining the surface and commands to create it so that memory size can be a
factor. Construction of a full target can be accomplished in smaller sections, as indicated in
figure 4-8. The preprocessing for such a construction is handled by blocking the matrices
that describe the surface. It should be noted that the surface must be numerically generated
as a whole however, to insure matching at block edges. Also the blocking should include
some overlap at all edges so that the blocks can be closely fit together. Once each block is
constructed, they can be smoothed to match each adjoining block and dowel-pinned or
otherwise joined together. This method will allow for ease in transport as well since the
target can be temporarily broken into the original blocks. For perfect conductors, some
method of insuring electrical continuity across edges must be implemented, such as metallic
tape, paint , etc. The two blocks marked as I and II in figure 4-8 were constructed as tests
of the generation process. Results of this construction are presented in the following
chapters.

Once all surface coordinates have been defined and the data has been modified to
include proper offset, it remains to instruct the numerically controlled mill. A variety of
instruction input methods exist. Some machines are directly connected to mini- or
microcomputers, some read magnetic tape and others use data from paper tape or
keypunched cards. There are two methods of defining cutter movements as well, absolute
or incremental. In absolute definition systems, each new point is given as a set of
coordinate points relative to a previously defined origin. In incremental systems the amount
of movement in each direction is provided as input. The Spindle-Wizard Model I used in
the test generation originally used paper tape input, and can use either type of definition.
To minimize the number of characters in the command input, incremental definition was

chosen. This allows the operator to eliminate unused coordinates in the control input. Each
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Figure 4-8. Blocking of full target for milling in realizable sections.

paper tape was limited to about 10,000 characters and the machines memory has not been

increased, so conservation of characters is critical in a part program such as that needed to
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construct a random surfare. A crmmand format routine was written to eliminate le22ine
and trailing zeros, and to eliminate incremental definitions in which the movement was less
than the minimum machine step (0.003 mm). Spaces are also eliminated and point numbers
are kept to a minimum by rotating the point count at 999.

The numerical surface generated as in Chapter 3 can be transformed to a physical
surface by converting the numerical definition to numerical commands for the N/C mill.
The transformation must be accompanied by corrections to the problems of scallop induced
by a ball-end cutter and the overcut due to finite size of the cutter. Scallop height can be
minimized by use of a large radius cutter. The overcut can be corrected for by a prescribed
offset. When these corrections are incorported into a properly formatted command
structure, the machine can generate a sculptured surface with statistics remarkably close to
those input to the generating system. A test of the process is discussed in the following

chapter.




CHAPTER FIVE

RESULTS

The method of surface generation outlined in Chapters 3 and 4 was implemented
using the set of Fortran 77 programs listed in appendix A. A random surface with Gaussian
distributed heights with a correlation length of 2 cm in each of the coordinate directions was
generated. Additionally, two small portions were constructed as a test of the milling
process. Results are presented here. It should be noted that the surface generated is
rougher than would normally be used as a scatterometer target, based on the criteria in
Chapter 2, but adequate construction of this extreme surface insures that less severe targets

can be generated.

omputer Generated Surfa

A random surface of 1 m? was generated numerically. The surface was generated
in two steps. First a relatively sparse surface (40,000 points in 1 m by 1 m) was created
using the technique of the first part of Chapter 3. Figure 5-1 is a plot of the probability
density function for the numbers generated in the computers intrinsic random number
generator. The random deviates, after conversion to a normal distribution by the method
of Muller and Box [25], were also checked, and the probability distribution for them is
shown in figure 5-2. These plots indicate the excellent results that can be obtained from the
direct approach to generation of Gaussian distributions. The surface generated
consists of a set of heights (z-coordinates) for each point in a square grid. The

statistics of this surface were checked, including the probability density of the heights and
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Figure 5-1. Probability density function of the uniform random numbers generated by
VAX 11/785 intrinsic function.

0.45
0.40
0.35

0.30 }

Probability 0.25 }
Density o |

0.15 ¢

0.10
0.05

0.00 |

0 Generated
— Theor.

Figure 5-2. Probability density function of normal random numbers generated by the
method of Muller and Box [25].
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slopes and the antocorrelation function in hoth the x and v directions. The surface was
generated at a square grid spacing of two points per centimeter, so that a sampling rate of
four points per corvelation length was used. Even at this wide spacing, the surface
sampling included 40,000 points. This matrix of surface heights was then passed to the
bi-cubic surface patch routine. The bi-cubic routine defined the surface fully, so that a
larger number of samples could be obtained. A sampling interval of 600 points per meter
was chosen so that a sufficient number of points would be available for the milling process.
The statistics of this 360,000 point surface were also calculated. Both sets of surface
statistics, along with theoretical curves, are shown in figures 5-3 through 5-6. The first
plot, figure 5-3, indicates the agreement of the numerical surface with the desired
input statistics. Normalizing insured that the mean and variance were correct at 0 and 1
respectively. As shown, the surface does accurately represent one with a normal
distribution of heights. The distribution of the patched surface also shows excellent
agreement, however a slight change in the mean (0.001) and variance (0.996) occurred.

These changes are negligible, but could easily be corrected for by renormalizing. The

0.45 p

0.40 t

0.35 }

0.30 r a Surface Heights
Probability 0.25 — Theor.

Density 020 | O After Bi-cubic Patch

0.1§6
0.10
0.05

0.00

Figure 5-3. Probability density function of computer generated random surface.
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Figure 5-4. Average normalized autocorrelation function in the x direction of 50 profiics of
the computer generated random surface.
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Figure 5-5. Average normalized autocorrelation function in the y direction of S0 profiles of
the computer generated random surface.
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Figure 5-6. Normalized probability distribution function in dB of the computer generated
surface slopes in degrees.

normalized autocorrelation functions are shown in figures 5-4 and 5-5. These were taken
by averaging the autocorrelation of 50 profiles along each coordinate direction. As shown,
the agreement between the functions before and after bi-cubic surface patching is
remarkable. Additionally, the calculated correlation lengths of 1.94 cm in the x direction
and 1.96 cm in the y direction before surface patching and 1.96 in x and 1.94 in y after
bi-cubic surface patching are in good agreement with those input (2 cm in each direction).
Finally, figure 5-6 indicates that the probability density of slopes did not change
significantly due to the surface patch process.

For normally distributed surfaces, it would appear that the numerical generation
of the surface by bi-cubic patching the sampled surface provides an excellent representation
of the surface so that the numerically controlled milling process can be used to adequately
reproduce the surface. If a larger number of points is needed for a better milled surface, the
bi-cubic patch can easily be used to generate any number of additional points without

significantly altering the surface statistics. This is due to the combination of the smooth
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process of bi-cubic surface patching and the smooth nature of the surface, so that the
surface is very accurately represented numerically by the equations generated to define it in

bi-cubic patching.

Numerically Milled Test Surfac

From the full sized surface generated numerically, two small blocks were
arbitrarily chosen to test the milling process. These blocks were chosen to be adjacent so
that the ability to create the target in blocks and piece them together could also be tested.
The blocks chosen were 10 cm on each side, with an overlap of approximately 4 mm each
(a total overlap on a side of 8 mm). The mill control was generated from the surface
definition, and was then fed to a Spindle-Wizard Model I CNC mill. The mill was
instructed to create the two blocks, shown in figures 5-7 and 5-8. Photographs of the

blocks cut appear in figures 5-9 and 5-10. Measurements of the milled test blocks were

Figure 5-7. Plot of test surface Block 1.




' Figure 5-8. Photograph of milled Block 1.

Figure 5-9. Plot of test surface Block 2.
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Figure 5-10. Photograph of milled Block 2.
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Figure 5-11. Plot of surface height probability density for the two test blocks.




46

made with a depth gauge, and the data collected (tabulated in appendix B) indicates that the
agreement with input statistics was satisfactory. Figures 5-11 through 5-14 are plots of the
statistics of the two test blocks.

The plot of surface height distributions, fiugre 5-11, indicates general agreement
in the measured surface heights and numerically generated surface heights and the normal
distribution sought is somewhat apparent. While exact agreement is not present, the lack of
a perfectly normal distribution in the numerical surface indicates that the test blocks most
likely were not extensive enough, and enough samples of height to obtain a good measure
of the statistics of such a rough surface were not provided. The autocorrelation function
plots (figures 5-12 and 5-13) show excellent agreement well past the autocorrelation length
measured to be approximately 1.9 cm. Errors in the tails of the curves are most likely
attributable to the small extent of the surface so that a window of measurable values is
placed on the surface, causing a ringing in the function measured. The plot of slopes shows
a large variation in the first point for each graph. This offset due to the larger number of
zero slope values; all indeterminant edge slopes are set to zero, and this can become a
significant percentage in surfaces with fewer measured measured or generated points.
Therefore, the graphs are each normalized by the value of the zero slope point of the patched
surface for comparison. The overall trend in all three surfaces is, however, similar. Again,
errors are likely due to measurement limitations.

Most of the differences in measured values are probably due to measurement
errors, attributable to difficulty in making the measu;'ements, as opposed to actual
differences in the surfaces generated numerically and physically. The accuracy limitation of
the mill (on the order of .001 inches, or .0004 cm) far exceeds measurement accuracy

available in any standard measurement scheme. Approximately 600 heights were measured
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for the two blocks, on a superimposed square grid. This small number of measurements
can not be expected to provide absolute accuracy. Future measurements are expected to be
made on a CNC device so that a much larger set of data can be obtained with excellent
accuracy. For instance, the Spindle-Wizard Model I CNC mill can be made to measure the
surface heights to an accuracy even greater than that to which milling can be controlled, and
data can be directly transfered to a computer for analysis.

The process of generating a random surface with the statistics specified prior to
generation was tested with excellent results. While the measured statistics of the surfaces
generated were not identical to those input, the agreement is reasonable considering the
small size of the generated surface and the limitation on measurements. The process is
discussed with consideration of some improvements in the following chapter, with an

emphasis on future additions to the generation process.
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Figure 5-12. Plot of averaged normalized autocorrelation in the x direction of the two test
blocks
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Figure 5-13. Plot of average normalized autocorrelation in the y direction of the two test
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Figure 5-14. Plot of normalized slope probability density for the two test blocks.
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CHAPTER SIX

CONCLUSIONS

In Chapter 3, the development of a process for generating numerically a random
surface with predetermined statistics was presented. The surface so generated can then be
constructed using the tcrhniques outlined in Chapter 4. As indicated in the results, the
generation of a Gaussian surface can be implemented using these methods. The resultant
target will provide a basis for testing the theories proposed to explain scattering from
random surfaces, since the statistics can be set to any reasonable and desirable values. In
fact, the generation of such a target with various statistics should be achieved in the very
near future. Several aspects of the generation technique have been presented, and for the
most part each is independent. Generation of the surface on a different mill for instance,
with a different control language would only necessitate changes in one step of the process,
that of formatting the commands from the generated surface. Likewise, generation of
surface with other than strictly normal statistics, such as two-scale rough surfaces, Rayleigh
distributed surfaces, etc, would only require a change in the original surface generation
process. Once the surface had been defined at a number of given points, the mechanical
generation process would be identical to that described here. In this respect, the desired
generic nature of the process has been achieved.

A number of improvements are available to the i)rocess however. For instance,
there are numerically controlled mills that can produce sculptured surfaces such as those of a
random target using a method referred to as five-axis-control. In these machines, the

ball-end cutter is maintained at a normal to the surface at all times by allowing additional
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motion in azimuth and elevation along with control of the three coordinate axes. Such a
machine would be able to generate a random surface much faster and with a much smaller
amount of preprocessing.

Future research in scattering phenomenon will require more complex targets,
some with different statistics and others with changes in other various parameters. The use
of a two-scale rough surface would allow the measurement of the target at both ends of the
roughness spectrum using only one decade of frequency variation. For instance,
illumination over a range of 2-18 GHz could be accomplished on a surface constructed with
roughness statistics as follows. For large scale roughness, equation (2-3) is applied to the
A = 1.7 cm frequency, giving k; = 377 so that1> 1.5cm and 6 < 0.5 cm . For the small
scale, A = 15 cm and k = 42. Applying equation (2-4) gives 6, < 0.7 cmand 1 > 4 cm.

Volume scattering could be studied by use of a non-metalized target, if a
machineable material with an appropriate dielectric constant can be obtained. The addition

of other scatter sources to a background of a rough surface is anticipated, for instance, the
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Figure 6-1. Multi-layer rough interface.
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addition of an artificial canopy. The effects of multiple layered scattering could also be
studied by generation of two surfaces, with compatible surfaces so that the two would make
a fit such as that shown in figure 6-1. Such generation would actually be fairly simple, a
change in the sign of the z-coordinate movement of the mill from one surface to the next,
while maintaining all other controls identical would provide such an interface. The top
surface could have an identical surface, or any other of interest.

Another improvement in the measurement process might be the comparison of
numerical simulations to those of the identical target in a real environment by using the same
surface generated numerically for the simulation as the basis for the physical target
generation. Such a test would likely provide a great deal of insight into the scattering

phenomenon as well as verifying the simulation process.
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SURFACE GENERATOR
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PROGRAM GENERATES A GAUSSIAN DISTRIBUTED RANDOM SURFACE

53

PARAMETER (NXCM=4,NYCM=4 NPTCM=1 NWX=63, NWY=63,CLXCM=2.0,

+ CLYCM=2.0,STDH=1.0)
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* *«*+INPUT PARAMETERS ARE*** *
* NXCM,NYCM = DIMENSIONS IN X AND Y DIRECTIONS (IN CM) *
* NPTCM = NUMBER OF GENERATED POINTS IN EACH CENTIMETER *
* NWX, NWY ARE EXTENTS OF WEIGHTS IN X AND Y DIRCTNS *

*  (TAKEN TO POINT WHERE WT<= 1E-63 *
* CLXCM, CLYCM ARE CORRELATION LNGTHS INX, Y DIRCTNS ~ *
* STDH = STANDARD DEVIATION OF HEIGHTS DESIRED *
e 3k e e b e e ke e e e 2 e e 3 e e ke e e e sk ok 3k e 3k ke o o e k3 ok 3k 3 ok 3 e 3k 3k e e e Sl e e S 3 s 3 ok 3k Sk ok sk 3 sk ok o ok ok
DECLARATIONS:

REAL Z(NXCM*NPTCM,NYCM*NPTCM)

REAL RINXCM*NPTCM+NWX NYCM*NPTCM+NWY)
REAL WINWX,NWY), SIINXCM*NPTCM,NYCM*NPTCM)
REAL X(NXCM*NPTCM), Y(INYCM*NPTCM)

REAL S2(NXCM*NPTCM,NYCM*NPTCM)

REAL S3(NXCM*NPTCM,NYCM*NPTCM)

e e o de s ke e o s s s e o ok o o s e sl e e e e sk ke ke ok e e s sk o sk ak ok ok ok s s ok ok o 3k ok e e 3 i sl el e ek ok ok ook ok sk ok ok sk ok

* ** MATRICES USED** *
* Z =THE Z COORDINATES (IN CM) OF THE SURFACE *
* R = A MATRIX OF RANDOM NUMBERS *
* X, Y = COORDINATES OF THE GRID IN CM *
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* W = MATRIX OF GAUSSIAN WEIGHTS *
* S1 =dz/dx FOR EACH GRID POINT *
* S2 =dz/dy AT EACH GRID POINT *
* §3 = CROSS DERIVATIVE d2z/dxdy AT EACH GRID POINT *
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CONVERT UNITS PER CENTIMETER TO UNITS:

NX = NXCM*NPTCM
NY = NYCM*NPTCM
CLX = CLXCM*NPTCM
CLY = CLYCM*NPTCM

FIND SIZE OF RANDOM NUMBER MATRIX

NRX = NX+NWX
NRY = NY+NWY

ke e e e o e o e e e e o e e e e e e s o e s e e el ake e ke ke ke ek ek kol ok ke ke e g ke ok 3ol ok ok sk ok sk ok ok ke ok ok ok

THE SUBROUTINES WFCTION, GRANDOM, AND SURFACE
WERE ADOPTED FROM ALGORITHMS OF
DR. A. K. FUNG & DR. M. F. CHEN
At Aok o ke ol okl koo o ko ok ok ok ke e ok ek ek Rk ook ko ok ko e
PRINT*,'WEIGHTS'
CALL WFCTION(W NWX NWY,CLX,CLY)

THE SUBROUTINE WFCTION RETURNS AN NWX X NWY MATRIX OF
WEIGHTS

REPRESENTING A DIGITAL FILTER THAT WILL GENERATE
CORRELATION

LENGTHS OF CLX AND CLY IN THE X AND Y DIRECTIONS
RESPECTIVELY
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PRINT*,’'RANDOM NUMBERS'
CALL GRANDOM(R,NRX,NRY)

THE SUBROUTINE GRANDOM RETURNS A NRX X NRY MATRIX OF
GAUSSIAN DISTIBUTED RANDOM NUMBERS BASED ON AN INTRINSIC
UNIFORM RANDOM NUMBER GENERATOR

PRINT*,'SURFACE'
CALL SURFACE(Z.R,W NX,NY NWX NWY)

tHE SUBROUTINE SURFACE RETURNS AN NX X NY MATRIX Z OF
SURFACE
HEIGHTS WITH A DISTRIBUTION LIKE R'S AND CORRELATED BY W

CALL NORMLZ(Z NX,NY,STDH)

THE SUBROUTINE NORMLZ RETURNS A NORMALIZED VERSION OF Z IN
Z

NORMALIZED SO THAT THE STANDARD DEVIATION OF Z IS STDH
(INPUT)

OUTPUT THE SURFACE

OPEN(UNIT=5,FILE='{B943AJB.ROCHIER.DATAISURFACE_ZS.DAT,
*  RECORDTYPE=SEGMENTED'STATUS="UNKNOWN,
*  FORM=UNFORMATTED") )

WRITE(5) NX,NY

WRITE(S) Z

CLOSE(S)

PRINT* 'SLOPES'
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CALL SLOPES (X,Y,Z NX,NY,NPTCM,S1,52,S3)

THE SUBROUTINE SLOPES DETERMINES THE DERIVATIVES OF THE

Z MATRIX BASED ON EQUAL SPACING IN X AND Y DIRECTIONS USING
CENTERED DIFFERENCEING. S1 CONTAINS DZ/DX, S2 DZ/DY, AND S3
D2Z/DXDY. INDETERMINATE EDGE SLOPES ARE SET TOZERO. X AND Y
GRID COORDINATES ARE RETURNED IN ARRAYS X AND Y. THE
SUBROUTINE

INCLUDES CALLS TO SUBROUTINE GRID AND SUBROUTINE GRADIENT.

OUTPUT THE GRID COORDINATES

OPEN(UNIT=8,FILE=[B943AJB.ROCHIER. DATA]SURFACE_XS.DAT,
RECORDTYPE=SEGMENTED',STATUS='UNKNOWN,
FORM=UNFORMATTED")

OPEN(UNIT=5,FILE=[B943AJB.ROCHIER.DATA|SURFACE_YS.DAT’,
RECORDTYPE=SEGMENTED'STATUS='UNKNOWN/,
FORM="UNFORMATTED"

WRITE(8) NX

WRITE(8) X

WRITE(S) NY

WRITE(S) Y

CLOSE(8)

CLOSE(5)

OUTPUT THE SLOPES

OPEN(UNIT=5,FILE={B943AJB.ROCHIER.DATAIDZDX.DAT",
RECORDTYPE='SEGMENTED',STATUS="UNKNOWN',
FORM=UNFORMATTED)

OPEN(UNIT=8,FILE={B943AJB.ROCHIER.DATA]DZDY.DAT',
RECORDTYPE=SEGMENTED',STATUS="UNKNOWN,
FORM='"UNFORMATTED)
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OPEN(UNIT=11,FILE=[B943AJB.ROCHIER.DATA]D2ZDXDY.DAT,

* RECORDTYPE='SEGMENTED'STATUS="UNKNOWN',
*  FORM=UNFORMATTED)

WRITE(5) NX,NY
WRITE(S) S1
WRITE(8) NX,NY
WRITE(8) S2
WRITE(11) NX,NY
WRITE(11) S3
CLOSE(5)
CLOSE(8)
CLOSE(11)

STOP
END

************************SUBROUTINES**********************

SUBROUTINE WFCTION (W,NWX,NWY,CLX,CLY)
REAL W(NWX NWY),CLX,CLY
IW = (NWX+1)/2
JW = (NWY+1)/2
COE = 2./SQRT(3.14159265*CLX*CLY)
DO1J=1NWY

DO2I1=1NWX

W(LJ) = COE*EXP(-2.*({I-IW)/CLX)**2-

+ 2.X((J-JW)/CLY)**2)

CONTINUE
CONTINUE
RETURN
END
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SUBROUTINE GRANDOM(R,NRX,NRY)
REAL R(NRX,NRY)
ISEED = 3339
DO 1J=1 NRY
DO 21=1NRX-1,2
R1 = RAN(ISEED)
V1 = SQRT(-2.*ALOG(R1))
R2 = RAN (ISEED)
T1 = 6.2831853*R2
R(LJ) = VI*COS(T1)
R(I+1,J) = VI*SIN(T1)
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE SURFACE (S,R,W NX,NY . NWX NWY)
REAL S(NX,NY), RINX+NWX NY+NWY),W(NWX NWY)
DO 1L =1NY
PRINT*’ROW #'.L
DO2K=1NX
S(K,L) =0.0
DO3M=1NWY
DO 4J=1NWX
S(K,L) =S(K,L) + WI,M)*R(K+J-1,L+M-1)
CONTINUE
CONTINUE
CONTINUE
CONTINUE
RETURN
END
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SUBROUTINE NORMLZ (Z,NX,NY,STDH)
REAL Z(NX,NY)
CALL STANDARD(Z NX,NY,STDEV,AMEAN)
PRINT*,PRENORMALIZED ST DEV =" STDEV
PRINT*,MEAN =', AMEAN
DO3J=1NY

DO41=1NX

Z(1J) = (Z(1,])-AMEAN)*STDH/STDEV

CONTINUE
CONTINUE
RETURN
END

SUBROUTINE SLOPES (X,Y,Z NX,NY ,NPTCM,S51,582,S3)
REAL Z(NX,NY), SI(NX,NY), S2(NX,NY), S3(NX,NY), X(NX),Y(NY).DI
D1 = 1.0/NPTCM
CALL GRID(X,NX,D1)
CALL GRID(Y,NY,D1)
THE SUBROUTINE GRID RETURNS AN ARRAY OF EQUALLY SPACED
VALUES
EQUAL TO D1
CALL GRADIENTS (Z,X,Y ,NX,NY,51,52,S3)
THE SUBROUTINE GRADIENTS RETURNS THE FINITE DIFFERENCE
DERIVATIVES IN EACH DIRECTION AND THE CROSS DERIVATIVE
RETURN
END

SUBROUTINE GRID (X,NX,D1)
REAL X(NX),D1
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DO 1J=1NX
X(J)=(J-1)*D1

CONTINUE

RETURN

END

SUBROUTINE GRADIENTS (Z,X,Y,NX,NY,DZDX,DZDY,DZDXY)
REAL Z(NX,NY), X(NX), Y(NY), DZDX(NX,NY), DZDY(NX,NY)
REAL DZDXY(NX,NY)
DO 1J=2NX-1
DO2 K =2, NY-i
DZDX(J,K) = (ZJ+1,K)-Zd-1,K)(XI+1)-XJ-1))
DZDY(,K) = (ZJ,K+1)-Z(J K- D/(YEK+1)-Y(K-1))
DZDXY(J,K) = (Z(0+1,K+1)-Z(+1,K-1)-Z(J-1, K+ 1)+
ZJ-1LK-D)XE+1D)-XA-1)*(Y(K+1)-Y(K-1)))
CONTINUE
CONTINUE
DO3J=1NY
DZDX(1,J) = 0.0
DZDXY(1,]) = 0.0
DZDX(NX,J) = 0.0
DZDXY(NX.J) = 0.0
CONTINUE
DO4J=1,NX
DZDY(J,1) = 0.0
DZDXY(J,1) = 0.0
DZDY(,NY) =00
DZDXY(J,NY) = 0.0
CONTINUE
DO 51 =2NY-1
DZDY(1,J) = (Z(1,J+1)-Z(1,J- 1)AYJ+1)-Y(J-1))
DZDY(NX,J) =/ ‘NXJ+1)-Z(NX J- )Y (J+1)-Y(J-1))
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CONTINUE
DO 6J=2NX-1
DZDX({J,1) = (Z(3+1,1)-ZJ-1,1)/(XJ+1)-X(J-1))
DZDX(J,NX) = (Z(J+1,NX)-Z(J-1,NX))/(X(J+1)-X(J-1))
CONTINUE
RETURN
END

SUBROUTINE STANDARD(Z NX,NY,STDEV,AMEAN)
REAL Z(NX,NY)
SUMSQ =0.0
SUM =00
NP = NX*NY
DO1J=1NY
DO2I=1NX
SUMSQ = SUMSQ+Z(L,H)*Z(1,1))
SUM = SUM + Z(1.J)
CONTINUE
CONTINUE
SQSUM = SUM*SUM
RNP = FLOAT(NP)
STDEV = SQRT((SUMSQ*RNP-SQSUM)/((RNP-1)*RNP))
AMEAN = SUM/RNP
RETURN
END
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BI-CUBIC SURFACE PATCH
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PROGRAM GENERATES AN EXPANDED (IN NUMBER OF POINTS)
SURFACE

PARAMETER (NXMAX=200,NYMAX=200,NSDV=10)
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. ++*INPUT PARAMETERS ARE: *
* NX,NY = DIMENSIONS IN X AND Y DIRECTIONS *
*+ NSDV = NMBR OF ADDITIONAL SEGMENTS GENERATED BY THE  *
* BI-CUBIC SURFACE PATCH *
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DECLARATIONS:

REAL Z(NXMAX,NYMAX)

REAL X(NXMAX), YINYMAX), SIINXMAX,NYMAX), S2(NXMAX,NYMAX)

REAL S3(NXMAX,NYMAX)

REAL XEX((NXMAX-1)*NSDV+1), YEX((NYMAX-1)*NSDV+1)
REAL ZEX((NXMAX-1)*NSDV+1,(NYMAX-1)*NSDV+1)

REAL S1IEX((NXMAX-1)*NSDV+1,(NYMAX-1)*NSDV+1)
REAL S2EX((NXMAX-1)*NSDV +1,(NYMAX-1)*NSDV+1)
REAL S3EX((NXMAX-1)*NSDV+1,(NYMAX-1)*NSDV+1)
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* ** MATRICES USED *
* Z =THE Z COORDINATES (IN CM) OF THE SURFACE *
* X, Y =COORDINATES OF THE GRID IN CM *
* S1 =dz/dx FOR EACH GRID POINT *
* 82 =dz/dy AT EACH GRID POINT *
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* §3 = CROSS DERIVATIVE d2z/dxdy AT EACH GRID POINT *
* 2.X,Y,51,52,53 HAVE CORRESPONDING MATRICES IN THE *
EXPANDED AREA -- INDICATED BY ZEX, XEX... *
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OPEN(UNIT=5,FILE=[B943AJB.ROCHIER. DATA]SURFACE_ZS.DAT,
& RECORDTYPE=SEGMENTED'STATUS='OLD' ,FORM="UNFORMATTED")
OPEN(UNIT=8,FILE=[B943AJB.ROCHIER.DATA]SURFACE_XS.DAT',
& RECORDTYPE=SEGMENTED',STATUS='OLD',FORM="UNFORMATTED)
OPEN(UNIT=11,FILE=[B943AJB.ROCHIER.DATA]SURFACE_YS.DAT,
& RECORDTYPE='SEGMENTED'STATUS='OLD" FORM="UNFORMATTED")

FIND DIMENSIONS OF EXPANDED MATRICES

READ(S) NX,NY
PRINT*,NX,NY
READ(8) DUMMY
READ(11) IDUMMY

READ INPUT SURFACE AND GRID MATRICES

READ(SX((Z(1.)),I=1,NX),J=1,NY)
READ(8)X(I),I=1,NX)
READ(11XY(3),J=1,NY)
CLOSE(S)

CLOSE(8)

CLOSE(11)

OPEN(UNIT=5,FILE=[B943AJB.ROCHIER. DATA|D2ZDXDY.DAT,

& RECORDTYPE=SEGMENTED',STATUS='OLD'FORM="UNFORMATTED')
OPEN(UNIT=8,FILE=[B943AJB.ROCHIER.DATA]DZDX.DAT',

& RECORDTYPE=SEGMENTED'STATUS='OLD'FORM="UNFORMATTED)
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OPEN(UNIT=11,FILE={B943AJB.ROCHIER.DATA]DZDY.DAT",
& RECORDTYPE='SEGMENTED'STATUS='OLD' ,FORM="UNFORMATTED)

READ SLOPE MATRICES

READ(5) IDUMMY,IDUMMY
READ(8) IDUMMY,[DUMMY
READ(11) IDUMMY,IDUMMY
READ(5)((S3(1,J),I=1,NX),J=1,NY)
READR)(S1(LD),I=1,NX),J=1,NY)
READ(11)((S2(1,J),I=1,NX),J=1,NY)
CLOSE(S)

CLOSE(8)

CLOSE(11)

OPEN(UNIT=5,FILE=[B943AJB.ROCHIER.DATA|SURFACE_ZS.DAT,
& RECORDTYPE='SEGMENTED',STATUS="UNKNOWN’,
& FORM=UNFORMATTED")
OPEN(UNIT=8,FILE=[B943AJB.ROCHIER.DATA]SURFACE_XS.DAT,
& RECORDTYPE='"SEGMENTED',STATUS="UNKNOWN,
& FORM='UNFORMATTED")
OPEN(UNIT=11,FILE=[B943AJB.ROCHIER.DATA]SURFACE_YS.DAT',
& RECORDTYPE=SEGMENTED',STATUS='UNKNOWN',
& FORM='UNFORMATTED")

FIND EXPANDED DIMENSIONS

NXEX = (NX-1)*NSDV+1
NYEX = (NY-1)*NSDV+1

WRITE(5) NXEX,NYEX
WRITE(8) NXEX
WRITE(11) NYEX




C

CALL SURFPATCH(ZX,Y,S1,52,S3,NX,NY ,NSDV,ZEX,XEX,YEX)

THE SUBROUTINE SURFPATCH RETURNS AN EXPANDED ZEX MATRIX
VERSION OF Z BASED ON THE INTERPOLATION TECHNIQUE OF
BI-CUBIC SURFACE PATCH-- NSDV INDICATES DESIRED NUMBER

OF NEW SEGMENTS FOR EACH OLD ONE. IN ADDITION, MATCHING

X AND Y GRID COORDINATES ARE DETERMINED AND RETURNED

IN XEX AND YEX. SURPATCH CALLS SUBROUTINE SUBDIVIDE AND
SUBROUTINE BCUCOF.

OUTPUT THE EXPANDED SURFACE AND GRID

OO0 0O0O0O0000000n

WRITE(S) (ZEX(1,J),I=1,NXEX),J=1, NYEX)
r WRITE(8) (XEX(I),I=1,NXEX)
WRITE(11) (YEX(J),J=1,NYEX)
CLOSE(5)
CLOSE()
CLOSE(11)

OPEN(UNIT=5,FILE=[B943AJB.ROCHIER.DATAID2ZDXDY.DAT,
& RECORDTYPE=SEGMENTED',STATUS="UNKNOWN/,
& FORM='UNFORMATTED)
OPEN(UNIT=8,FILE={B943AJB.ROCHIER.DATA]DZDX.DAT,
& RECORDTYPE='"SEGMENTED',STATUS="UNKNOWN/,
& FORM=UNFORMATTED)
OPEN(UNIT=11,FILE=[B943AJB.ROCHIER.DATA]DZDY.DAT,
& RECORDTYPE="SEGMENTED',STATUS='UNKNOWN,
& FORM='UNFORMATTED)
C
CALL GRADIENTS (ZEX,XEX,YEX,NXEX ,NYEX,S1EX,S2EX,S3EX)
C
C  SUBROUTINE GRADIENTS RETURNS EXPANDED SLOPE MATRICES




C
100 FORMAT(4(F13.9,',2X),F13.9)
110 FORMAT(I5)

120  FORMAT(2I5)

STOP

END

o000
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S1EX (dz/dx), S2EX (dz/dy), AND S3EX (d2z/dxdy).
OUTPUT THE EXPANDED SLOPES

WRITE(5) NXEX,NYEX
WRITE(8) NXEX,NYEX
WRITE(11) NXEX,NYEX

WRITE(S)((S3EX(L)),I=1,NXEX), J=1 NY EX)
WRITE(8)((S1EX(L,J),I=1 NXEX),J=1 ,NYEX)
WRITE(11)((S2EX(1,3),I=1,NXEX),J=1 ,NYEX)

CLOSE(5)
CLOSE(8)
CLOSE(11)

********************SUBROUTINES*************************

SUBROUTINE GRADIENTS (ZX,Y,NX,NY,DZDX,DZDY,DZDXY)
REAL Z(NX,NY), X(NX), Y(NY), DZDX(NX,NY), DZDY{NX,NY)
REAL DZDXY(NX,NY)
DRINT* 'SLOPES!
DO 1J=2NX-1
PRINT*/ROW # ']

DO2 K=2,NY-1

DZDX(JK) = (Z(J+1 K)-ZJ-1,K)Y/(X(J+1)-X(J-1))
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DZDY(J K) = (Z(J K+1)-Z{J K- 1)/(Y(K+1)-Y(K-1))
DZDXY(J,K) = (Z(J+1,K+1)-Z(J+1,K-1)-Z(J-1,K+1)+

ZJ-1LK-D)HY((XJ+1)-XT-))*(Y(K+1)-Y(K-1))
CONTINUE
CONTINUE
DO3J=1NY
DZDX(1,J)=0.0
DZDXY(1,)) =0.0
DZDX(NX,J) =0.0
DZDXY(NX.,) =0.0
CONTINUE
DO4J=1NX
DZDY(J,1)=0.0
DZDXY(J,1) = 0.0
DZDY(J,NY) = 0.0
DZDXY(J,NY) =0.0
CONTINUE
DO S5J=2NY-1
DZDY(1,J) = (Z(1,J+1)-Z(1,J-1)/(YJ+1)-Y{-1))
DZDY(NX,J) = (ZINXJ+1)-Z(NXJ-IN/(Y(T+1)-Y(J-1))
CONTINUE
DO 61J =2,NX-1
DZDX(J,1) = (Z(J+1,1)-ZJ-1,1)/(XJ+1)-XJ-1))
DZDX(J,NX) = (Z(J+1,NX)-Z(J-1,NX))/(X(J+1)-X(J-1))
CONTINUE
RETURN
END

SUBROUTINE SURFPATCH(Z,X,Y,S1,52,S3,NX,NY,NSDV,

ZEX XEX,YEX)
REAL Z(NX,NY),X(NX),Y(NY),SI(NX,NY),S2(NX,NY),S3(NX,NY)
REAL ZEX((NX-1)*NSDV+1,(NY-1)*NSDV+1)
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REAL XEX((NX-1*NSDV+1)
REAL YEX((NY-1)*NSDV+1)
REAL V(4),V1(4),V2(4),V3(4), XT(100),YT(100)
REAL ZT(100,100)
DO 1K =1,NX-1

PRINT*,/ROW # K

DO2L =1NY-1

CALL SUBDIVIDE(Z,NX,NY,S1,582,S3,K,L,V,V1,V2,V3)

SUBROUTINE SUBDIVIDE RETURNS A SINGLE PATCH OF THE SURFACE,
INCLUDING THE FOUR CORNER HEIGHTS, SLOPES, AND TWISTS.

XL = X(K)
XU = X(K+1)

YL = Y(L)

YU = Y(L+1)

CALL BCUINT(V,V1,V2,V3XL,XU,YL,YU,NSDV ZT XT,YT)

SUBROUTINE BCUINT RETURNS AN EXPANDED PATCH BASED ON THE
BICUBIC INTERPOLATION TECHNIQUE. THE SUBROUTINE BCUCOF IS
CALLED.

DO3J=1NSDV+1
INI = (K-1)*(NSDV)+J
IN2 = (L-1)*(NSDV)+J
XEX(IN1) = XT()
YEX(IN2) = YT(J)
DO41=1NSDV+1
IN2=(L-1)*NSDV+I
ZEX(IN1,IN2) = ZT(J,])
CONTINUE
CONTINUE
CONTINUE




r SUBROUTINE SUBDIVIDE(Z,NX,NY,S1,§2,S3,K,L,V,V1,V2,V3)
REAL Z(NX,NY),SI(NX,NY),S2(NX,NY),S3(NX,NY)
REAL V(4),V1(4),V2(4),V3(4)

V(1) =Z(K,L)
V(2) = Z(K+1,L)
V(3) =Z(K+1,L+1)
V(4) =Z(K,L+1)

f C

Vi(1) =S1(K,L)
V1(2) = SI(K+1,L)
V1(3) = SI(K+1,L+1)
V1(4) = SI{K,L+!)

V2(1) = S2(K,L)
V2(2) = S2(K+1,L)
V2(3) = S2(K+1,L+1)
V2(4) = S2(K,L+1)

V3(1) =S3(K,L)
V3(2) =S3(K+1,L)
V3(3) =S3(K+1,L+1)
V3(4) = S3(K,L+1)

RETURN
END

O O
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SUBROUTINE BCUINT(V,V1,V2,V3 XL XU,YL,YU,NSDV.ZT XT,YT)
REAL V(4), V1(4), V2(4), V3(4), ZT(100,100), XT(100)
REAL YT(100), C(4,4)

XDIF = XU-XL

YDIF = YU-YL

DX = XDIF/(NSDV)

DY = YDIF/(NSDV)

CALL BCUCOF(V,V1,V2,V3 XDIF,YDIF,C)

SUBROUTINE BCUCOF RETURNS IN C 16 COEFFICIENTS
CORRESPONDING TO THE EQUATION OF THE PATCH

DO 1J=1NSDV+1
XT) = (J-DH)*DX+XL
YT(J)=(J-1)*DY+YL
CONTINUE
DO 2J=1,NSDV+]
U =(YT()-YL)/YDIF
DO 31=1NSDV+1
T = (XT(I)-XL)/XDIF
A=0.0
DO4K =4,,1
A=T*A+((C(K,4)*U+C(K,3))*U+C(K,2))*U+C(K, 1)
CONTINUE
ZTAH=A
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE BCUCOF(V,V1,V2,V3 XDIF,YDIF,C)
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REAL V(4), V1(4), V2(4), V3(4), C(4,4)
REAL CL(16), X(16), WT(16,16)
DATA WT/1,0,-3,2,4%0,-3,0,9,-6,2,0,-6,4,8%0,3,0,-9,6,-2.0,6,
* _4,10%0,9,-6,2*0,-6,4,2*0,3,-2,6%0,-9,6,2*0,6,-4,
* 4%0,1,0,-3,2,-2,0,6,-4,1,0,-3,2,8%0,-1,0,3,-2,1,0,-3,2,
* 10%0.,-3,2,2*0,3,-2,6*0,3,-2,2*0,-6,4,2*0,3,-2,
* 0,1,-2,1,5%0,-3,6,-3,0,2,-4,2,9%0,3,-6,3,0,-2,4,-2,
* 10%0,-3,3,2*0,2,-2,2*0,-1,1,6%0,3,-3,2%0,-2,2,
* §%01,-2,1,0,-2,4,-2,0,1,-2,1,9%0,-1,2,-1,0,1,-2,1,
* 10%0,1,-1,2%0,-1,1,6%0,-1,1,2*0,2,-2,2%0,- 1,1/

D2 = XDIF*YDIF
DO11=1,4
X(D) = V()
X(1+4) = VI(D*XDIF
X(I+8) = V2(I)*YDIF
X(1+12) = V3()*D2
CONTINUE
DO21=1,16
XX=0.0
DO3K=1,16
XX = XX+WT(LK)*X(K)
CONTINUE
CL(D) = XX
CONTINUE
L=0
DO4I=14
DOS5J=14
L =L+l
C@1J) = CL(L)
CONTINUE
CONTINUE
RETURN
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RADIUS TEST AND CORRECTION PROGRAM
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PROGRAM CHECKS FOR APPROXIMATE MINIMUM RADIUS OF
CURVATURE

THEN CORRECTS X AND Y COORDINATES ACCORDING TO INPUT OF
DESIRED RADIUS OF BALL END CUTTER.

PARAMETER(NXMAX=130,NYMAX=130)
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*

*

%

***INPUT PARMATERS ARE*** *
NX,NY = DIMENSIONS OF SURFACE IN EACH DIRECTION *
R = RADIUS OF A BALL END CUTTER *
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DECLARATIONS:

REAL ZINXMAX NYMAX), XOLD(NXMAX),YOLD(NYMAX)
REAL XNEW(NXMAX,NYMAX),YNEW(NXMAX,NYMAX)
REAL SIINXMAX,NYMAX), S2(INXMAX NYMAX)

REAL XINCR,YINCR,ZINCR,R
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**MATRICES USED** *
Z = SURFACE HEIGHTS *
XOLD, YOLD = 1-D INPUT ARRAYS OF COORDINATES *
XNEW,YNEW = 2-D OUTPUT GRID VALUES *
S1.82 = SLOPES IN THE X AND Y DIRECTIONS *
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INPUT THE SURFACE HEIGHTS
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OPEN (UNIT=S,FILE=[B943AJB.ROCHIER.DATA]SURFACE_ZS.DAT',
& RECORDTYPE=SEGMENTED'STATUS='OLD' FORM="UNFORMATTED)

READ(5) NX,NY

PRINT* NX,NY
READ(S)((Z(1)),I=1,NX),J=1,NY)
CLOSE(S)

INPUT THE GRID

OPEN (UNIT=5,FILE="[B943AJB.ROCHIER.DATA]SURFACE_XS.DAT,
& RECORDTYPE=SEGMENTED'STATUS='OLD',FORM="UNFORMATTED")

READ(5) IDUMMY
READ(5)(XOLD(),I=1,NX)
CLOSE(S)

OPEN (UNIT=5,FILE='[B943AJB.ROCHIER.DATA]SURFACE_YS.DAT",
& RECORDTYPE=SEGMENTED'STATUS='OLD FORM="UNFORMATTED)

READ(5) IDUMMY
READ(5)(YOLD(I),I=1,NX)
CLOSE(S)

INPUT THE SLOPES

OPEN (UNIT=5,FILE=[B943AJB.ROCHIER.DATA]DZDX.DAT,
& RECORDTYPE=SEGMENTED',STATUS="OLD' | FORM="UNFORMATTED)

READ(S5) IDUMMY IDUMMY
READ(S)((S1(L)),I=1,NX),J=1,NY)
CLOSE(S5)
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OPEN (UNIT=5,FILE=TB943AJB.ROCHIER.DATA]DZDY.DAT,
& RECORDTYPE=SEGMENTED'STATUS='OLD',FORM=UNFORMATTED")

READ(S) IDUMMY,IDUMMY
READ(5)((S2(L)),I=1,NX),J=1,NY)
CLOSE(5)

FIND THE MINIMUM RADIUS OF CURVATURE

RMIN=999
XINCR=XOLD(2)-XOLD(1)
DO 1J=1,NY
ZLAST=Z(1,])
DO21=2NX-1
ZINCR=Z(I,))-ZLAST
ZLAST=Z(1,])
IF(ABS(Z(1+1,1)-ZLAST).GT.ABS(ZINCR))

& ZINCR=Z(1+1,])-ZLAST

IF (S1(I+1,J).GE.0.AND.S1(I-1,).LE.0) THEN
R=(ZINCR*ZINCR+XINCR*XINCR)/(2.*ZINCR)
IF(ABS(R).LT.RMIN) THEN

RMIN=ABS(R)
IS=I
ANE
ENDIF
ENDIF
CONTINUE
CONTINUE

YINCR=YOLD(2)-YOLD(1)
DO31=1NX
ZLAST=Z(IL,1)
DO 4 J=2,NY-1
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ZINCR=Z(1,])-ZLAST
ZLAST=Z(1])
IF(ABS(Z(1,J+1)-ZLAST).GT.ABS(ZINCR))
ZINCR=Z(1,J+1)-ZLAST
IF (S2(I,J+1).GE.0.AND.S2(1,J-1).LE.O) THEN
R=(ZINCR*ZINCR+YINCR*YINCR)/(2.*ZINCR)
IF(ABS(R).LT.RMIN) THEN
RMIN=ABS(R)
PRINT* ,RMIN
IS=I
IS=]
ENDIF
ENDIF
CONTINUE
CONTINUE

OUTPUT (INTERACTIVE) THE MINIMUM AND GET THE DESIRED
RADIUS OF CUTTER

PRINT*,'MINIMUM RADIUS IS:',RMIN,/CM ='RMIN/2.54, INCHES'
PRINT*,AT 'IS,JS

PRINT*, INPUT RADIUS TO BE USED (IN CMY

READ(*,*) R

FIND ThE CORRECTED GRID VALUES

RMAXCHG=0
DO 5 J=1,NY
DO 6 I=1,NX
XNEW(L,J) = XOLD(D)+R*SIN(ATAN(S 1(L,))))
YNEW(L)) = YOLD(J)+K*SIN(ATAN(S2(1,])))
IF(RMAXCHG.LT.ABS(R*SIN(S1(L))))) RMAXCHG=R*SIN(S1(1,]))
IF(RMAXCHG.LT.ABS(R*SIN(S2(1,)))) RMAXCHG=R*SIN(S2(1.]))




[,

CONTINUE
CONTINUE

PRINT*,RMAXCHG,' MAX OFFSET
OUTPUT THE NEW GRID VALUES

OPEN (UNIT=5,FILE=TB943AJB.ROCHIER.DATA|SURFACE_XS.DAT,
& RECORDTYPE=SEGMENTED',STATUS='OLD',FORM="UNFORMATTED")

WRITE(5) NX,NY
WRITE(S)(XNEW(LJ)),I1=1,NX),J=1, NY)

CLOSE(5)
OPEN (UNIT=5,FILE=[B943AJB.ROCHIER.DATA]SURFACE_YS.DAT,
& RECORDTYPE='SEGMENTED'STATUS='OLD' | FORM=UNFORMATTED)

WRITE(S) NX,NY
WRITE(S)((YNEW(1,]),I=1,NX),J=1,NY)

CLOSE(S)
STOP
END
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SURFACE BLOCKER
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PROGRAM CONVERTS A SINGLE SURFACE INTO OVERLAPPING BLOCKS

FOR CONSTRUCTION IN PARTS

PARAMETER (NXMAX=118§ NYMAX=118 NBLX=2,NBLY=2)
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* ***INPUT PARAMETERS ARE: *
* NX,NY = DIMENSIONS IN X AND Y DIRECTIONS *
* NBLX, NBLY = NMBR OF BLOCKS WRITTENINEACHOF X &Y  *
* DIRECTIONS *
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DECLARATIONS:

REAL ZINXMAX,NYMAX),X(NXMAX,NYMAX),Y(NXMAX,NYMAX)
REAL ZBT(NXMAX/NBLX+4,NYMAX/NBLY +4)

REAL XBT(NXMAX/NBLX+4,NYMAX/NBLY+4)

REAL YBT(NXMAX/NBLX+4,NYMAX/NBLY+4)

CHARACTER*14 FILENAME1$/SURFACE_ZS DAT//
CHARACTER*14 FILENAME2$/SURFACE_XS.DATY/
CHARACTER*14 FILENAME3$/SURFACE_YS.DAT'/
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* ** MATRICES USED *
* X,Y,Z =THE COORDINATES (IN CM) OF THE SURFACE *
* XBT,YBT,ZBT ARE TEMPORARY BLOCKS OF Z *
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INPUT THE SURFACE COORDINATES
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OPEN (UNIT=8,FILE="[B943AJB.ROCHIER.DATA]//FILENAMEI1S,
& RECORDTYPE='SEGMENTED',FORM="UNFORMATTED'STATUS='OLD)
READ (8) NX,NY
READ(8)((Z(1,)),I=1,NX) J=1,NY)
CLOSE(8)

OPEN (UNIT=8,FILE=B943AJB.ROCHIER.DATA]//FILENAME?2S,
& RECORDTYPE=SEGMENTED'FORM="UNFORMATTED',STATUS='0OLD)
READ (8) DUMMY,IDUMMY
READ(8)((X(IL)),I=1,NX),J=1,NY)
CLOSE(@8)

OPEN (UNIT=8,FILE='[B943AJB.ROCHIER.DATA]//FILENAME3$,
& RECORDTYPE=SEGMENTED'FORM="UNFORMATTED',STATUS='0OLD")
READ (8) IDUMMY,IDUMMY
READ(8)((Y(L)),I=1,NX),J=1,NY)
CLOSE(8)

FIND BLOCK DIMENSIONS

NXB = INT(FLOAT(NX+1)/FLOAT(NBLX)+0.5)
NYB = INT(FLOAT(NY+1)/FLOAT(NBLY)+0.5)

PRINT*,’EACH OUTPUT: ,NXB+2,’X'NYB+2

LOOP TO SURDIVIDE THE EXPANDED MATRICES FOR PROCESSING IN
BLOCKS

DO 1K =1NBLY
DO2L =1,NBLX
PRINT*/'CALLING', (K-1)*NBLY+L
CALL BLOCK(Z,X,Y,K,L,NX,NY,ZBT,XBT,YBT,NXB,NYB)




0

SUBROUTINE BLOCK DIVIDES THE MATRICES INTO SMALLER,
OVERLAPPING SECTIONS

a0

CALL OPENFILE (K,L,NBLX,NBLY)

THE SUBROUTINE OPENFILE OPENS 3 OUTPUT FILES FOR
UNFORMATTED, SEGMENTED WRITING OF THE BLOCKS
OF Z, X AND Y COORDINATES

OO0 o0oao0n

WRITE(5) NXB+2,NYB+2
WRITE(S) (ZBT(,1),1=1,NXB+2),J=1 NYB+2)
CLOSE(S)
WRITE(8) NXB+2,NYB+2
WRITE(8) ((XBT(1.J),I=1,NXB+2),J=1 NYB+2)
CLOSE(8)
WRITE(11) NXB+2,NYB+2
WRITE(11) ((YBT(L)),I=1 NXB+2),J=1,NYB+2)
CLOSE(11)
pA CONTINUE
1 CONTINUE
C
C
100 FORMAT(4(F13.9,,,2X),F13.9)
120 FORMAT(QIS)
C
STOP
END

***********************SUBROUTH\IES***********************

O 000

SUBROUTINE BLOCK (Z,X,Y K,LNX,NY,ZT,XT,YT,NXB,NYB)
REAL Z(NX,NY),ZT(NXB+3,NYB+3)

80
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REAL X(NX,NY),XT(NXB+3,NYB+3)
REAL Y(NX,NY),YT(NXB+3,NYB+3)

PRINT*NXB,NYB
ISTARTY = (K-1)*NYB-2
ISTARTX = (L-1)*NXB-2
IF(ISTARTX.LE.O) ISTARTX = 1
IF(ISTARTY.LE.Q) ISTARTY =1
DO 1J=0,NYB+2
DO 21=0NXB+2
I1 = ISTARTX+I
I2 =ISTARTY+J
IF(I1.LE.NX.AND.I2.LE.NY) THEN
ZT(I+1,J+1) = Z(11,12)
XTA+1,J+1) = X(11,12)
YT(I+1,J+1) = Y(I1,12)
ENDIF
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE OPENFILE(K,L, NBLX,NBLY)
CHARACTER*14 NAME1$,NAME2$,NAME3$
CHARACTER*2 BLOCKNUM$

NUMB = (K-1)*NBLY + L

GOTO (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), NUMB
PRINT*, 'FILE NUMBER OUT OF RANGE'
RETURN

BLOCKNUMS =01’
GOTO 500

BLOCKNUMS ='02'

g1




GOTO 500
3 BLOCKNUMS =03’

GOTO 500
4  BLOCKNUMS = '04'
GOTO 500
5  BLOCKNUMS = '05'
GOTO 500
6 BLOCKNUMS = '06'
GOTO 500
7 BLOCKNUMS = 07"
GOTO 500
| 8  BLOCKNUMS = 08’
GOTO 500
\ 9  BLOCKNUMS = 09
' GOTO 500
10 BLOCKNUMS ="10'
GOTO 500
11 BLOCKNUMS ="11'
GOTO 500
12 BLOCKNUMS =12
GOTO 500
13 BLOCKNUMS ='13"
GOTO 500
14 BLOCKNUMS =14
GOTO 500
15 BLOCKNUMS ='15'
GOTO 500
16 BLOCKNUMS ='16'
GOTO 500
500 NAME1S$ ='Z_BLOCK_//BLOCKNUMS//.DAT'
NAME2$ = 'X_BLOCK_//BLOCKNUMS$//.DAT'
NAME3$ ='Y_BLOCK_//BLOCKNUMS// .DAT'

OPEN(UNIT=5,FILE=[B943AJB.ROCHIER.DATA]//NAME1$,
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* RECORDTYPE='SEGMENTED',FORM="UNFORMATTED',
* STATUS='UNKNOWN')

OPEN(UNIT=8 FILE=[B943AJB.ROCHIER DATA]//NAME2S,
* RECORDTYPE='SEGMENTED',FORM="UNFORMATTED',

* STATUS=UNKNOWN')
OPEN(UNIT=11,FILE=[B943AJB.ROCHIER DATA]//NAME3S$,
* RECORDTYPE='SEGMENTED',FORM="UNFORMATTED!,

* STATUS="UNKNOWN)

RETURN

END




OO0 nn

oOooo0n00o00an

OO0O0O0O0O000000an

84

N/C COMMAND FORMATTING PROGRAM
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PROGRAM CONVERTS SURFACE HEIGHT AND GRID INFORMATION
TO COMMANDS FOR AN INCREMENTALLY CONTROLLED N//C MILL

PARAMETER(NYMAX=62,NXMAX=62)
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* **INPUT PARAMETERS** *
*  BLKNMS$ = BLOCK NUMBER OF THE SURFACE TO BE *
* FORMATTED *
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DECLARATIONS:

CHARACTER*1 LIST(30)/30*" '/

CHARACTER*1 OUTLINE(9000), CR/13/, LF/10/

CHARACTER*1 TEMP(8)

CHARACTER*2 BLKN$

INTEGER COUNT, TOTCHAR, TNUM, YCHG/1/

INTEGER GTOTAL

REAL ZINXMAX ,NYMAX), X(NXMAX,NYMAX),Y(NXMAX,NYMAX)
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* #**V ARIABLES*** *
*  ZX.Y = SURFACE COORDINATES IN CM *
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* THE PROGRAM GENERATES INCREMETS AND OUTPUTS THEM *
* UNTIL EITHER 1) A TAPE HAS 450 COMMANDS OR *
* 2) A TAPE HAS 9000 CHARACTERS *
* THE BLOCK IS CONTINUED AUTOMATICALLY ON TIIE NEXT *
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* TAPE *
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GET BLOCK NUMBER

PRINT*,’FILE NUMBER (Z_BLOCK_?.DAT)'
ACCEPT*, BLKN$

INPUT THE COORDINATES

OPEN (UNIT=8, FILE='{B943AJB.ROCHIER.DATA]Z_BLOCK_//BLKNS//
& .DAT,RECORDTYPE="SEGMENTED' ,FORM="UNFORMATTED'
& ,STATUS='OLD")

READ(8) NX,NY
PRINT*NX,NY
READ(8)((Z(1,J),I=1,NX).,J=1,NY)
CLOSE(®)

OPEN (UNIT=8, FILE=[B943AJB.ROCHIER.DATA]X _BLOCK _//BLKNS//
& .DAT,RECORDTYPE='SEGMENTED' FORM="UNFCRMATTED'
& ,STATUS='OLD"

READ(8) IDUMMY,IDUMMY
READ(8)((X(LN),I=1,NX),J=1,NY)
CLOSE(8)

OPEN (UNIT=8, FILE=[B943AJB.ROCHIER.DATA]Y_BLOCK_'//BLKNS//'
& .DAT,RECORDTYPE='SEGMENTED',FORM="UNFORMATTED'
& ,STATUS='OLD")

READ(8) IDUMMY ,IDUMMY
READ(S)((Y(1,J),I=1,NX),J=1 NY)
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CLOSE(8)

Cc
C CONVERT CENTIMETERS TO MILLIMETERS
C
DO 101=1NX
DO 20J=1NY

Z(1.)) = Z(1,1)*10.
X)) = X(1,J)*10.
YD) = Y{ILH*10.
20 CONTINUE
10 CONTINUE
C
C  SET UPINITIAL VALUES
C
COUNT =0
GTOTAL=1
NM=0
ZLAST = 1.75%25.4
XLAST=X(1,1)
YLAST=Y(1,1)
NUMY =0
TNUM =1
CALL WRITBLOCK (TNUM,BLKNS)

THE SUBROUTINE WRITBLOCK OPENS AN UNFORMATTED,
SEGMENTED OQUTPUT FILE, WHOSE NAME IS A FUNCTION
OF THE BLOCK NUMBER (BLKN$) AND TAPE NUMBER (TNUM)

CREATE THE TAPES

OO0 o0o00on

DO 7 NUMX=1,NX
6 NUMY-=NUMY+YCHG
IF (NUMY.GT.NY.OR.NUMY.EQ.0) THEN
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YCHG=-YCHG
GOTO7
ENDIF
LIST(1) ='N'
TOTCHAR=1
COUNT = COUNT+1
CALL CONVRT(COUNT+24.,TEMP, NUMUSED)

THE SUBROUTINE CONVRT RETURNS ASCII CHARACTER
REPRESENTATION OF THE INPUT NUMBER, EXCLUDING
LEADING AND TRAILING ZEROS, IN THE ARRAY TEMP,
NUMUSED IS A COUNT OF HOW MANY CHARACTERS ARE
RETURNED

DO 1J=1,NUMUSED
LIST(TOTCHAR+J) = TEMP(J)
CONTINUE
TOTCHAR = TOTCHAR+NUMUSED
GTOTAL = GTOTAL+NUMUSED

LIST(TOTCHAR) = 'X'
XINCR=X(NUMX,NUMY)-XLAST
XLAST=X(NUMX,NUMY)
CALL CONVRT(XINCR,TEMP,NUMUSED)
DO 2 J=1,NUMUSED

LIST(TOTCHAR+I) = TEMP(J)

CONTINUE

TOTCHAR = TOTCHAR+NUMUSED
GTOTAL = GTOTAL+NUMUSED

LIST(TOTCHAR) =Y’
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YINCR=Y(NUMX,NUMY)-YLAST
YLAST=Y(NUMX,NUMY)
CALL CONVRT(YINCR,TEMP,NUMUSED)
DO 4 J=1,NUMUSED

LIST(TOTCHAR+J) = TEMP(J)

CONTINUE

TOTCHAR = TOTCHAR+NUMUSED
GTOTAL = GTOTAL+NUMUSED

LIST(TOTCHAR) ='Z

ZINCR = Z(NUMX,NUMY) - ZLAST
ZLAST = ZINUMX,NUMY)
CALL CONVRT(ZINCR,TEMP,NUMUSED)
DO 5] =1,NUMUSED

LIST(TOTCHAR+)) = TEMP(J)

CONTINUE
TOTCHAR = TOTCHAR+NUMUSED
GTOTAL =GTOTAL + NUMUSED

DO 31 MM=1,TOTCHAR-1
OUTLINE(MM+NM)=LIST(MM)
CONTINUE
OUTLINE(MMM+NM)=CR
OUTLINE(MMM+NM+1)=LF
NM = NM+MM+1
DO 30J =1,TOTCHAR
LISTQ)=""
CONTINUE

IF (GTOTAL.GT.8960) THEN
PRINT*, TAPE #,TNUM,' FINISHED'
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PRINT*,'DUE TO TOTAL CHARACTERS',GTOTAL
TNUM = TNUM+1
WRITE(8,900)(CUTLINE(MM),MM=1,NM)
CLOSE(8)
CALL WRITBLOCK(TNUM,BLKNS$)
TOTCHAR =1
GTOTAL =1
NM=0
COUNT =0

ENDIF

IF (COUNT.GE.450) THEN
PRINT*, TAPE #, TNUM,' FINISHED'
PRINT*, 'DUE TO 450 POINTS DONE'
TNUM=TNUM+1
WRITE(8,900)(OUTLINE(MM),MM=1,NM)
CLOSE(8)
CALL WRITBLOCK (TNUM,BLKN$)
NM=0
PRINT*, TOTAL CHARACTERS THIS TAPE: ,GTOTAL
GTOTAL =1
COUNT=0

ENDIF

GOTO 6

7  CONTINUE

PRINT*,'BLOCK ',BLKNS$,' FINISHED AT POINT', NUMX-1,NUMY+YCHG
PRINT*,'WITH',GTOTAL, TOTAL CHARACTERS'
PRINT*,'AND WITH',COUNT,' POINTS IN TAPE', TNUM
PRINT*
PRINT*, TOTAL NUMBER OF TAPES IS ', TNUM
WRITE(8,900)(OUTLINE(MM) MM=1,NM)
CLOSE(8)
900 FORMAT(9N00A1)
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STOP
END

*******#*************sUBROUTINES**********************

SUBROUTINE WRITBLOCK (TNUM,B)
CHARACTER*2 B

INTEGER TNUM

CHARACTER*11 FILENAME

GOTO (1,2,3,4,5,6,7,8,9,10), TNUM
FILENAME = 'B//B//T01.DAT

GOTO 500

FILENAME = 'BY//B//T02.DAT'
GOTO 500

FILENAME = 'BY//B//TO3.DAT'
GOTO 500

FILENAME = 'BY//B//T04.DAT'
GOTO 500

FILENAME = 'B//B//T05.DAT'
GOTO 500

FILENAME = 'B'//B//T06.DAT"
GOTO 500

FILENAME = 'BY//B//T07.DAT'
GOTO 500

FILENAME = 'BY//B/fTO8.DAT'
GOTO 500

FILENAME = 'BY//B//T09.DAT"
GOTO 500

FILENAME = 'B'//B//T10.DAT'
GOTO 500




500 OPEN (UNIT=8,FILE=[B943AJB.ROCHIER.TAPEFILE]//FILENAME,
* CARRIAGE CONTROL="NONE',RECL=12000,STATUS="UNKNOWN")
RETURN
END

@]

SUBROUTINE CONVRT(VAL, TEMP, CNT)
INTEGER CNT, I1,12,13,14,15,16
CHARACTER*1 TEMP(8), CHAR(10)

DO 1231=1,8
TEMP(I) ="'
123 CONTINUE

CNT =1

CHAR(1) ='0'
CHAR(2) ="'
CHAR(3) ="2'
CHAR®4) ='3'
CHAR(S5) = '4'
CHAR(6) ='S'
CHAR(7) ='6'
CHAR(8) ="7'
CHAR(9) ='8'
CHAR(10) ='9'

T1=0
IF (VAL.NE.O) T1 = VALJABS(VAL)

VAL = ABS(VAL)
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I1 = VAL/100
12 = (VAL-100*11)/10
I3 = (VAL-100*11-10*12)

T2 = VAL-INT(VAL)

14 =T2*10

IS = T2*100-14*10

16 = T2*1000-14*100-15*10

IF(I1.NE.O) THEN
TEMP(CNT) = CHAR(I1+1)
TEMP(CNT+1) = CHAR(12+1)
TEMP(CNT+2) = CHAR(I3+1)
CNT = CNT+3

ENDIF

IF(11.EQ.0.AND.I2.NE.0) THEN
TEMP(CNT) = CHAR(I2+1)
TEMP(CNT+1) = CHAR(13+1)
CNT =CNT+2

ENDIF

IF(I1.EQ.0.AND.I2.EQ.0.AND.I3.NE.0) THEN

TEMP(CNT) = CHAR(I3+1)
CNT =CNT+1
ENDIF

IF (16.NE.0) THEN
TEMP(CNT) ="
TEMP(CNT+1) = CHAR(I4+1)
TEMP(CNT+2) = CHAR(I5+1)
TEMP(CNT+3) = CHAR(I6+1)




CNT =CNT +4
ENDIF

IF (I6.EQ.0.AND.I5.NE.O) THEN
TEMP(CNT) ="'
TEMP(CNT+1) = CHAR(14+1)
TEMP(CNT+2) = CHAR(I5+1)
CNT =CNT +3

ENDIF

IF (16.EQ.0.AND.I5.EQ.0.AND.I4.NE.O) THEN
TEMP(CNT) ="
TEMP(CNT+1) = CHAR(14+1)
CNT =CNT+2
ENDIF
IF(T1.EQ.-1.AND.CNT.NE.0) THEN
DO 1J=CNT+1,2,-1
TEMP({J) = TEMP(J-1)
CONTINUE
TEMP(1) ="'
CNT = CNT+1
ENDIF
IF (CNT.EQ.1) CNT=0
RETURN
END
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STATISTICS GENERATOR
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PROGRAM GENERATES A SET OF STATISTICS FOR INPUT FILE

PARAMETER (NXMAX=598 NYMAX=598 NTSTPT=31)
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* **+*INPUT PARAMETERS ARE: *
* NX,NY = DIMENSIONS IN X AND Y DIRECTIONS *
* NTSTPT = NUMBR OF TEST POINTS IN STATISTICAL PLOT *
* GENERATION *

3¢ 2 e o e e e e s e 2 2k ok e e 2 e e e s ke s e sk e o e e e ke e e 2k 3 e e ok e 3 e 2B sk ke ke e ok sk 3k s 206k e e sk 2k ok ok sk ok i ok F K ok K

DECLARATIONS:

REAL Z(NXMAX,NYMAX),STATS(2,2*NTSTPT)
REAL STDEV, AMEAN
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* ** MATRICES USED *
* Z =THE Z COORDINATES (IN CM) OF THE SURFACE *
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INPUT THE SURFACE

OPEN(UNIT=8,FILE=[B943AJB.ROCHIER.DATA]SURFACE_ZS.DAT',

& RECORDTYPE='SEGMENTED',STATUS='OLD',FORM="UNFORMATTED)

READ(8) NX,NY
PRINT* NX,NY
READ(8)((Z(1,)),I=1,NX),J=1 NY)
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CLOSE(8)

FIND PROBABILITY DISTRIBUTION, STANDARD DEVIATION
AND MEAN OF MATRIX Z

CALL STATISTICS(Z NX,NY,STATS NTSTPT,STDEV,AMEAN)

SUBROUTINE STATISTICS RETURNS THE PDF, OF Z IN ARRAY
STATS, THE STANDARD DEVIATION AND MEAN ARE RETURNED
IN STDEV AND AMEAN. SUBROUTINE STANDARD IS CALLED.

OUTPUT THE STATISTICS

OPEN(UNIT=8,FILE='[B943AJB.ROCHIER.DATA|STATS.DAT',
STATUS="UNKNOWN")

WRITE(8,140) STDEV,AMEAN

WRITE(8,110) (STATS(1,1),STATS(2,1),J=1,NTSTPT)

WRITE(8,120)

WRITE(8,130) (STATS(2,5),J=1,NTSTPT)

CLOSE(8)

FIND THE AUTOCORRELATION IN THE X DIRECTION
PRINT*’AUTOCORRELATION'
PRINT*,’ INX'

CALL AUTOCORX(Z NX,NY,2*NTSTPT,STATS)

SUBROUTINE AUTOCORX RETURNS THE AVERAGE NORMALIZED
AUTOCRRELATION OF 50 (VARIABLE) 'Y-CUTS' OF Z

OUTPUT THE AUTOCORRELATION

OPEN(UNIT=8, FILE=[B943AJB.ROCHIER.DATA]JAUTO_X.DAT,
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* STATUS="UNKNOWN)
WRITE(8,110) (STATS(1,J),STATS(2,)),J=1,NTSTPT)
WRITE(8,120)

WRITE(8,130) (STATS(2,J),J=1,NTSTPT)
CLOSE(8)

OO0

FIND THE AUTOCORRELATION IN THE Y DIRECTION
PRINT*' INY'
CALL AUTOCORY(ZNX,NY 2*NTSTPT,STATS)

SUBROUTINE AUTOCORY RETURNS THE AVERAGE NORMALIZED
AUTOCRRELATION OF 50 (VARIABLE) X-CUTS' OF Z

OUTPUT THE AUTOCORRELATION

O0O000a0

OPEN(UNIT=8,FILE='[B943AJB.ROCHIER.DATAJAUTO_Y.DAT,
* STATUS="UNKNOWN)

WRITE(8,110) (STATS(1,J),STATS(2,]),J=1,NTSTPT)

WRITE(8,120)

WRITE(8,130) (STATS(2,]),J=1,NTSTPT)

CLOSE()

110 FORMAT(2(E11.3,3X))

120 FORMAT(/)

130 FORMAT(E11.3)

140 FORMAT( STAND DEV ='F8.3,/, MEAN ='F8.3,//)

STOP
END
C
C

C *********************SUBROUTINES*******************
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SUBROUTINE STATISTICS (FN1F,N2F,STATS,NP,STDEV,AMEAN)

REAL F(N1F,N2F),STATS(2,NP),DELTA,RNF
INTEGER INDX
CALL STANDARD(F,N1F,N2F,STDEV,AMEAN)

STANDARD RETURNS THE STANDARD DEVIATION AND MEAN

OF MATRIX F.

T=0.0
AMAX =-9999.0
AMIN =9999.0
DO41=1NIF
DO S5J=1N2F
IF (AMAX.LT.F(1,J)) AMAX =F(LJ)
IF (AMIN.GT.F(1,J)) AMIN = F(.])
CONTINUE
CONTINUE
DELTA = (AMAX-AMIN)/(NP-1)
RNF = 1.0/FLOAT(N1F*N2F)
DO 6J=1NP
STATS(2,J)=0.0
STATS(1,J) = AMIN + (J-.5)*DELTA
CONTINUE
DO21=1,NIF
DO3J=1N2F
INDX = INT((F(1,J)-AMIN)/DELTA+1)
IF(INDX.GE.1.AND.INDX.LE.NP) THEN
STATS(2,INDX) = STATS(2,INDX) + RNF/DELTA
T=T+RNF
ENDIF
CONTINUE
CONTINUE
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PRINT*,/MAX='AMAX
PRINT*,'MIN=',AMIN
PRINT*, TOTAL PROB =T
RETURN

END

SUBROUTINE STANDARD(Z,NX,NY,STDEV,AMEAN)
REAL Z(NX,NY)
SUMSQ=0.0
SUM =00
NP = NX*NY
DO1J=INY
DO21=1NX
SUMSQ = SUMSQ+(Z(LI)*Z(1.]))
SUM = SUM + Z(1.])
CONTINUE
CONTINUE
SQSUM = SUM*SUM
RNP = FLOAT(NP)
STDEV = SQRT((SUMSQ*RNP-SQSUM)/((RNP-1)*RNP))
AMEAN = SUM/RNP
RETURN
END

SUBROUTINE AUTOCORX (Z,NX,NY NTSTPT,STATS)
REAL Z(NX,NY), STATS(2,NTSTPT)

INTEGER NAVG

NAVG =50

IF (NY.LT.NAVG) NAVG=NY

DX =1/FLOAT(NX-1)
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DO 1 K = LLNTSTPT
STATS(1,K) = (K-1)*DX*100.
STATS(2,K) =0.0

CONTINUE

NDIV =0
DOSL=1,NY, NY/NAVG
NDIV = NDIV+1
SMSQ =00
DO2K=1NX
SMSQ = SMSQ+Z(K,Ly*Z(K,L)
CONTINUE
DO 4J =1NTSTPT
AUTO=0.0
DO 31=1.NX-J+1
AUTO = AUTO + Z(L,LY*Z(1+J-1,L)
CONTINUE
STATS(2,)) = STATS(2,J) + AUTO/SMSQ
CONTINUE
CONTINUE

DO 6 K = I,LNTSTPT
STATS(2,K) = STATS(2,K)/NDIV
CONTINUE

RETURN
END

SUBROUTINE AUTOCORY (Z NX,NY ,NTSTPT,STATS)
REAL Z(NX,NY), STATS(2,NTSTPT)

NAVG =50

IF (NX.LT.NAVG) NAVG=NX
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DY =1/FLOAT(NY-1)

DO 1 K =1,NTSTPT
STATS(1,K) = (K-1)*DY*100.
STATS(2,K)=0.0

CONTINUE

NDIV =0
DO 5L =1, NX, NX/NAVG
NDIV = NDIV+1
SMSQ=0.0
DO2K=1NY
SMSQ = SMSQ+Z(L,K)*Z(L,K)
CONTINUE
DO 4J=1NTSTPT
AUTO=0.0
DO 31=1,NY-J+1
AUTO = AUTO + Z(L,)*Z(L,I1+J-1)
CONTINUE
STATS(2,J) = STATS(2,J) + AUTO/SMSQ
CONTINUE
CONTINUE

DO 6 K = I, NTSTPT
STATS(2,K) = STATS(2,K)/NDIV
CONTINUE

RETURN
END
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SLOPE STATISTICS GENERATOR
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PROGRAM GENERATES THE STATISTICS OF THE SLOPES OF A RANDOM
SURFACE

PARAMETER (NXMAX=598 NYMAX=598 NTSTPT=31)
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* ***INPUT PARAMETERS ARE: *
* NX,NY = DIMENSIONS IN X AND Y DIRECTIONS *
* NTSTPT = NUMBR OF TEST POINTS IN STATISTICAL PLOT *
* GENERATION *
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DECLARATIONS:

REAL STATS(2,NTSTPT), SIINXMAX,NYMAX)
REAL S2(NXMAX,NYMAX)
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* ** MATRICES USED *
* S1 =dz/dx FOR EACH GRID POINT *
* S2 =dz/dy AT EACH GRID POINT *
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INPUT THE SLOPES

OPEN(UNIT=8,FILE=[B943AJB.ROCHIER.DATA]DZDX.DAT’,
RECORDTYPE='SEGMENTED',FORM="UNFORMATTED,
STATUS="UNKNOWN)

READ(8) NX,NY
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PRINT* NX,NY
READ(8) ((S1(LJ),I=1,NX),J=1,NY)
CLOSE(8)

OPEN(UNIT=8 FILE=[B943AJB.ROCHIER.DATA]DZDY.DAT,
RECORDTYPE='SEGMENTED', FORM='UNFORMATTED/,
STATUS="UNKNOWN)

READ(8) IDUMMY,IDUMMY

READ(8)((S2(1,]),I=1,NX),J=1,NY)

CLOSE(8)

CALL SLOPESTAT(S1,S2NX,NY,STATS,NTSTPT)

SUBROUTINE RETURNS THE DISTRIBUTION OF SLOPE ANGLES
IN DB IN THE ARRAY STATS.

OUTPUT THE STATISTICS

OPEN(UNIT=8,FILE=[B943AJB.ROCHIER.DATA|SLOPE_STATS.DAT,
STATUS='UNKNOWN")

WRITE (8,110) (STATS(1,3),STATS(2,)),J=1,NTSTPT)

WRITE(S,120)

WRITE(S,130) (STATS(2,J),J=1,NTSTPT)

CLOSE(8)

110 FORMAT(2(E11.3,3X))
120 FORMAT(/)
130 FORMAT(E11.3)

C

STOP
END
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****************#**SUBROUTINES******#*************

SUBROUTINE SLOPESTAT(S1,S2,NX,NY,STATS,NP)
REAL S1I(NX,NY), S2(NX,NY), STATS(2,NP), DELTA, RNF
INTEGER INDX
AMAX = -9999.0
CVRT = 57.29577951
T=0.0
DO1J=1INY
DO21=1NX
IF(AMAX.LT.ABS(ATAN(S1(ID))AMAX=ABS(ATAN(SI(L))))
IF(AMAX LT.ABS(ATAN(S2(1,)))) AMAX=ABS(ATAN(S2(L,))))
CONTINUE
CONTINUE
PRINT*,/’'MAX SLOPE =, AMAX*CVRT
DELTA = AMAX/(NP-1)
DO5J=1NP
STATS(2,J)=0.0
STATS(1,J) = J-1)*DELTA*CVRT
CONTINUE
RNF = 1.0/FLOAT(NX*NY*2)
DO3J=1NY
DO41=1,NX
INDX = INT(ABS(ATAN(SI(1)))/DELTA) + 1)
IF(INDX.GE.1.AND.INDX.LE.NP) THEN
STATS(2,INDX) = STATS(2,INDX)+RNF
T = T+RNF
ENDIF
INDX = INT(ABS(ATAN(S2(I.J))/DELTA) + 1)
IF(INDX.GE.1.AND.INDX.LE.NP) THEN
STATS(2,INDX) = STATS(2,INDX)+RNF
T = T+RNF
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ENDIF
CONTINUE
CONTINUE
AMAX=0.0
DO71=1,NP
IF(AMAX.LT.STATS(2,I)) AMAX = STATS(2,)
CONTINUE
DO6I=1,NP
IF (STATS(2,I).LE.0.0) STATS(2,I) = 1E-8
STATS(2,I) = 10*LOG10(STATS(2,1))/AMAX)
CONTINUE
PRINT*, TOTAL PROB =T
RETURN
END




APPENDIX B

MEASURED SURFACE HEIGHTS
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X
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.677
0.677
0.677
0.677
0.677
0.677
0.677
0.677
0.677
0.677
0.677
0.677

BLOCK 1 MEASURED HEIGHTS (ALL VALUES IN CM)

Y
0.000
0.677
1.355
2.032
2.709
3.387
4.064
4.741
5.419
6.096
6.773
7.451
8.128
8.805
9.483

10.160
0.000
0.677
1.355
2.032
2.709
3.387
4.064
4.741
5.419
6.096
6.773
7.451

Z
1.426
1.807
2.569
3.500
3.331
2.654
2.103
1.553
1.341
1.257
1.045
0.833
0.833
1.214
1.680
2.019
1.553
1.849
2.569
2.950
2.569
1.934
1.299
0.876
0.876
1.172
1.172
0.918

X
5.419
5.419
5419
5.419
5419
5419
5.419
5.419
5.419
5.419
5.419
5.419
5.419
5.419
5419
5.419
6.096
6.096
6.096
6.096
6.096
6.096
6.096

"6.096

6.096
6.096
6.096
6.096

Y
0.000
0.677
1.355
2.032
2.709
3.387
4.064
4.741
5.419
6.096
6.773
7.451
8.128
8.805
9.483

10.160
0.000
0.677
1.355
2.032
2.709
3.387
4.064
4.741
5.419
6.096
6.773
7.451

Z
0.325
0.749
0.537
0.325
0.198
0.325
0.071

-0.691
-1.664
-2.257
-2.596
-2.680
-2.384
-1.622
-0.564
0.241
0.622
0.283
-0.183
-0.564
-0.648
-0.437
-0.394
-0.310
-1.664
-2.130
-2.342
-2.215
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0.677
0.677
0.677
0.677
1.355
1.355
1.355
1.355
1.355
1.355
1.355
1.355
1.355
1.355
1.355
1.355
1.355
1.355
1.355
1.355
2.032
2.032
2.032
2.032
2.032
2.032
2.032
2.032
2.032
2.032
2.032
2.032
2.032

8.128
8.805
9.483
10.160
0.000
0.677
1.355
2.032
2.709
3.387
4.064
4.741
5419
6.096
6.773
7.451
8.128
8.805
9.483
10.160
0.000
0.677
1.355
2.032
2.709
3.387
4.064
4.741
5419
6.096
6.773
7.451
8.128

0.876
1.130
1.722
1.976
1.172
1.426
1.722
1.976
1.892
1.468
0.960
0.664
0.706
1.045
1.384
1.214
1.087
1.553
1.765
2.019
0.791
1.045
1.257
1.553
1.680
1.511
1.172
0918
0.876
1.172
1.384
1.172
1.172

6.096
6.096
6.096
6.096
6.773
6.773
6.773
6.773
6.773
6.773
6.773
6.773
6.773
6.773
6.773
6.773
6.773
6.773
6.773
6.773
7.451
7.451
7.451
7.451
7.451
7.451
7.451
7.451
7.451
7.451
7.451
7.451
7.451

8.128
8.805
9.483
10.160
0.000
0.677
1.355
2.032
2.709
3.387
4.064
4.741
5.419
6.096
6.773
7.451
8.128
8.805
9.483
10.160
0.000
0.677
1.355
2.032
2.709
3.387
4.064
4.741

© 5.419

6.096
6.773
7.451
8.128

-1.876
-0.902
-0.098
0.622
0.495
0.029
-0.394
-0.818
-0.987
-0.860
-0.648
-0.818
-1.283
-1.495
-1.495
-1.283
-0.860
-0.394
0.410
0.833
0.495
0.029
-0.352
-0.691
-0.013
0.071
0.114
0.071
-0.098
-0.945
-0.775
-0.564
-0.140
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2.032
2.032
2.032
2.709
2.709
2.709
2.709
2.709
2.709
2.709
2.709
2.709
2.709
2.709
2.709
2.709
2.709
2.709
2.709
3.387
3.387
3.387
3.387
3.387
3.387
3.387
3.387
3.387
3.387
3.387
3.387
3.387
3.387

8.805
9.483
10.160
0.000
0.677
1.355
2.032
2.709
3.387
4.064
4741
5.419
6.096
6.773
7.451
8.128
8.805
9.483
10.160
0.000
0.677
1.355
2.032
2.709
3.387
4.064
4.741
5.419
6.096
6.773
7.451
8.128
8.805

1.299
1.384
1.468
0.410
0.706
0918
1.003
1.172
1.384
1.553
1.384
1.29%
1.257
1.045
0.495
0.537
0.579
0.664
0.622
0.029
0.579
0.833
1.087
1.003
1.087
1.341
1.468
1.172
0.706
-0.098
-0.564
-0.818
-0.564

7.451
7.451
7.451
8.128
8.128
8.128
8.128
8.128
8.128
8.128
8.128
8.128
8.128
8.128
8.128
8.128
8.128
8.128
8.128
8.805
8.805
8.805
8.805
8.805
8.805
8.805
8.805
8.805
8.805
8.805
8.805
8.805
8.805

8.805
9.483
10.160
0.000
0.677
1.355
2.032
2.709
3.387
4.064
4.741
5.419
6.096
6.773
7.451
8.128
8.805
9.483
10.160
0.000
0.677
1.355
2.032
2.709
3.387
4.064
4.741
5.419
6.096
6.773
7.451
8.128
8.805

0.325
0.833
1.045
0.749
0.622
0.410
0.241
0.029
-0.394
-0.606
-0.521
-0.479
-0.310
-0.225
0.071
0.495
1.045
1.257
1.426
1.087
1.257
1.468
1.130
0.749
0.156
-0.310
-0.437
-0.352
-0.140
0.114
0.410
1.045
1.722
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3.387
3.387
4.064
4.064
4.064
4.064
4.064
4.064
4.064
4.064
4.064
4.064
4.064
4.064
4.064
4.064
4.064
4.064
4.741
4.741
4.741
4.741
4.741
4.741
4.741
4.741
4.741
4.741
4.741
4741
4.741
4.741
4.741

9.483
10.160
0.000
0.677
1.355
2.032
2.709
3.387
4.064
4.741
5.419
6.096
6.773
7.451
8.128
8.805
9.483
10.160
0.000
0.677
1.355
2.032
2.709
3.387
4.064
4.741
5.419
6.096
6.773
7.451
8.128
8.805
9.483

-0.394
-0.140
-0.140
0.791
1.087
0918
0918
1.045
1.087
0.876
0.283
-0.606
-1.283
-1.834
-1.749
-1.453
-0.691
-0.183
-0.140
0.749
1.130
0.960
0.918
1.045
0.833
0.114
-0.606
-1.622
-2.215
-2.553
-2.342
-1.876
-0.818

8.805
8.805
9.483
9.483
9.483
9.483
9.483
9.483
9.483
9.483
9.483
9.483
9.483
9.483
9.483
9.483
9.483
9.483
10.160
10.160
10.160
10.160
10.160
10.160
10.160
10.160
10.160
10.160
10.160
10.160
10.160
10.160
10.160

9.483
10.160
0.000
0.677
1.355
2.032
2.709
3.387
4.064
4.741
5419
6.096
6.773
7.451
8.128
8.805
9.483
10.160
0.000
0.677
1.355
2.032
2.709
3.387
4.064
4.741
5.419
6.096
6.773
7.451
8.128
8.805
9.483

2.019
2.019
1.341
1.807
1.680
1.341
1.722
0.325
-0.183
-0.225
-0.013
0.198
0.241
0.198
0.495
1.468
2.103
2.315
1.511
1.214
0.833
0.664
0.537
0.452
0.241
0.325
0.325
0.325
0.071
-0.225
-0.098
0.495
1.468
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0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.677
0.677
0.677
0.677
0.677
0.677
0.677
0.677
0.677
0.677
0.677
0.677
0.677
0.677

BLOCK 2 MEASURED HEIGHTS (ALL VALUES IN CM)

Y
0.000
0.677
1.355
2.032
2.709
3.387
4.064
4.741
5.419
6.096
6.773
7.451
8.128
8.805
9.483

10.160
0.000
0.677
1.355
2.032
2.709
3.387
4.064
4.741
5.419
6.096
6.773
7.451

8.128
8.805

Z
1.257
0.833
0.495
0.368
0.452
0.283
0.283
0.029
0.241
0.241

-0.056
-0.352
-0.183
0.452
1.172
1.680
1.045
0.368
0.071
0.114
0.325
0.706
0.622
0.495
0410
0410
-0.013
-0.479
-0.394
0.029

X
5.419
5.419
5.419
5.419
5.419
5.419
5.419
5.419
5.419
5.419
5.419
5.419
5.419
5.419
5.419
5419
6.096
6.096
6.096
6.096
6.096
6.096
6.096
6.096
6.096
6.096
6.096
6.096
6.096
6.096

Y
0.000
0.677
1.355
2.032
2.709
3.387
4.064
4741
5.419
6.096
6.773
7.451
8.128
8.805
9.483

10.160
0.000
0.677
1.355
2.032
2.709
3.387
4.064
4.741
5419
6.096
6.773
7.451
8.128
8.805

Z
0.791
0.452
0.368
0.622
1.172
1.214
0.579
0.410
0.622
1.257
1.511
1.511
1.299
0918
0.664
0.833
0.960
0.622
0.579
1.045
1.553
1.341
0.452
0.156
0.325
0918
1.257
1.087
0.664
0.368

L madm o




0.677
0.677
1.355
1.355
1.355
1.355
1.355
1.355
1.355
1.355
1.355
1.355
1.355
1.355
1.355
1.355
1.355
1.355
2.032
2.032
2.032
2.032
2.032
2.032
2.032
2.032
2.032
2032
2.032
2.032
2.032
2.032
2.032

9.483
10.160
0.000
0.677
1.355
2.032
2.709
3.387
4.064
4.741
5419
6.096
6.773
7.451
8.128
8.805
9.483
10.160
0.000
0.677
1.355
2.032
2.709
3.387
4.064
4.741
5.419
6.096
6.773
7.451
8.128
8.805
9.483

0.749
1.341
0.960
-0.098
-0.394
-0.225
0.410
1.045
0.706
0.114
-0.140
-0.013
-0.098
-0.479
-0.606
-0.437
0.071
0.622
1.003
0.368
-0.437
-0.394
0.198
1.003
0.664
-0.013
-0.267
-0.352
-0.267
-0.521
-0.945
-0.987
-0.648

6.096
6.096
6.773
6.773
6.773
6.773
6.773
6.773
6.773
6.773
6.773
6.773
6.773
6.773
6.773
6.773
6.773
6.773
7.451
7.451
7.451
7.451
7.451
7.451
7.451
7.451
7451
7.451
7.451
7.451
7.451
7.451
7.451

9.483
10.160
0.000
0.677
1.355
2.032
2.709
3.387
4.064
4.741
5.419
6.096
6.773
7.451
8.128
8.805
9.483
10.160
0.000
0.677
1.355
2.032
2.709
3.387
4.064
4.741
5.419
6.096
6.773
7.451
8.128
8.805
9.483

0.283
0.495
1.511
1.087
1.045
1.341
1.680
1.257
0.198
-0.521
-0.691
-0.352
0.325
0.749
0.410
0.071
-0.013
0.198
1.934
1.468
1.299
1.341
1.172
0.537
-0.818
-1.622
-1.791
-1.283
-0.437
0.579
0.368
0.029
0.029




2.032
2.709
2.709
2.709
2.709
2.709
2.709
2.709
2.709
2.709
2.709
2.709
2.709
2.709
2.709
2.709
2.709
3.387
3.387
3.387
3.387
3.387
3.387
3.387
3.387
3.387
3.387
3.387
3.387
3.387
3.387
3.387
3.387

10.160
0.000
0.677
1.355
2.032
2.709
3.387
4.064
4.741
5.419
6.096
6.773
7.451
8.128
8.805
9.483

10.160
0.000
0.677
1.355
2.032
2.709
3.387
4.064
4.741
5419
6.096
6.773
7.451
8.128
8.805
9.483

10.160

-0.310
1.299
0.029

-0.267

-0.437

-0.140
0.241
0.537
0.283

-0.183

-0.352

-0.394

-0.521

-1.072

-1.241

-1.114

-0.733
1.172
0.325

-0.183

-0.267

-0.098
0.283
0410
0.325
0.198
0.071
0.071

-0.140

-0.648

-0.945

-0.987
-0.775

7.451
8.128
8.128
8.128
8.128
8.128
8.128
8.128
8.128
8.128
8.128
8.128
8.128
8.128
8.128
8.128
8.128
8.805
8.805
8.805
8.805
8.805
8.805
8.805
8.805
8.805
8.805
8.805
8.805
8.805
8.805
8.805
8.805

10.160
0.000
0.677
1.355
2.032
2.709
3.387
4.064
4.741
5.419
6.096
6.773
7.451
8.128
8.805
9.483

10.160
0.000
0.677
1.355
2.032
2.709
3.387
4.064
4.741
5419
6.096
6.773
7.451
8.128
8.805
9.483

10.160

0.198
1.765
1.511
1.172
1.003
0.833
-0.098
-1.495
-2.130
-2.172
-1.707
-0.310
0.706
0.495
0.198
0.114
0.241
1.172
1.003
0.495
0.156
-0.098
-0.564
-1.664
-2.257
-2.215
-1.707
-0.648
0.833
0.706
0.283
0.198
0.198
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4,064
4.064
4,064
4,064
4,064
4.064
4.064
4064
4,064
4064
4.064
4.064
4064
4.064
4.064
4.064
4741
4.741
4.741
4741
4741
4.741
4741
4.741

0.000
0.677
1.355
2.032
2.709
3.387
4.064
4.741
5.419
6.096
6.773
7.451
8.128
8.805
9.483
10.160
0.000
0.677
1.355
2.032
2.709
3.387
4.004
4.741

0.960
0.622
0.241
0.071
0.198
0.325
0.283
0.241
0.368
0.622
0.960
0.833
0.368
-0.225
-0.183
-0.013
0.83
0.622
0410
0.452
0.706
0.749
0.452
0.241

9.483
9.483
9.483
9.483
9.483
9.483

9.483
9.483

9.483
9.483
9.483

9.483
9.483
9.483
9.483
9.483
4.741
4.741
4.741
4.741
4.741
4.741
4,741
4741

0.000
0.677
1.355
2.032
2.709
3.387
4.064
4.741
5.419
6.096
6.773
7.451
8.128
8.805
9.483
10.160
5419
6.096
6.773
7.451
8.128
8.805
9.483
10.160

0.749
0.664
0.452
0.029
-0.521
-0.648
-0.183
-2.130
-2.130
-2.045
-1.368
-0.394
0.325
0.114
-0.183
-0.267
0.325
0.833
1.468
1.553
1.130
0.706
0.537
0.537
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APPENDIX C

' POLYURETHANE TEST DATA [44]
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