
Reliable BroadcastPrtcl

ToasA. Joseph
Kenneth P. Birman

TR 88-918
~- -'~June 1988

0 t

'A' ZISTRIB1lON TA-tEf A

Apprvedforpublic reloe.;
Diatrtbution nrt

Reliable Broadcast Protocols*

Thomas A. Joseph
,9 Kenneth P. Birman

TR 88-918
June 1988

.,...APPROVED FOR PUBLIC RELEASE- i

5T-r

DISTRIBUTION UNMTT

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

DTIC
SftELECTE

JUN 2 0 1988
~H

This work was supported by the Defense Advanced Research Projects Agency (DoD) under ARPA order
6037. Contract N00140-87-C-8904, and also by a grant from the Siemens Corporation. The views, opinions,

and findings contained in this report are those of the authors and should not be construed as an official

Department of Defense position, policy, or decision.

,.-

* :/

SECURITY CLASSIFICATION OF THIs PAGE ,,

REPORT DOCUMENTATION PAGE 0M No J0 0,198
, . ___________________u_____O.______9____

4 REPORT SECURITY CLASSIFICATION lb RESTRICTide MARKINGS
Unclassified

2 SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION IAVAILABILITY OF REPORT
Approved for Public Release

2b DECLASSIFICATION / DOWNGRADING SCHEDULE D ist r ibut ion Unlimited

A PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

TR 88-918

So NAME OF PERFORMING ORGANIZATION f6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

Kenneth P. Birman, Assist. Pro (if applcabui Defense Advanced Research Porject Agency/IST

CS Dept., Cornell University
6c. ADDRESS (City. State, and ZIP Code) 7b ADDRESS(City, State. and ZIP Code)

Defense Advanced Research, Project Agency

Attn: TIO/Admin., 1400 Wilson Blvd.
Nrlington, VA 22209-2308

Ba NAME OF FUNDING/SPONSORING IBb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

DARPA/ISTO

8c. ADDRESS (City, State. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT

See 7b. ELEMENT NO NO- NO ACCESSION NO

I I TITLE (Include Security Classification)

Reliable Broadcast Protocols

2 PERSONAL AUTHOR(S)

Thomas A. Joseph Kenneth P. Rirman

13a TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year. Month, Day) I S PA G E COUNT

Techical (Special FROM TO June 1988 26

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

"' 19 ABSTRACT (Continue on reverse if necessary and identify by block number)

This is a preprint of material that will appear in the collected lecture

'..0 notes from Arctic 88, An Advanced Course on Operating Systems, Trimso, Norway,

July 3-14, 1988. The lecture notes will appear in book form later this year.

1

S.4

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

"UNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0 DTIC USERS

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) 22c OFFICE SYMBOL

DO FORM 1473. 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION Of THIS PAGE

All other edition% are obsolete

-S

"Reliable Broadcast Protocols*

Thomas A. Joseph
Kenneth P. Birman

Department of Computer Science
Cornell University
Ithaca, NY 14853

June 1, 1988

\'I

This is a preprint of material that will appear in the collected lectur notes from Arctic 88, An
Advanced Course on Operating Systems, Trfmso. Norway, July 5-14. 1988. The lecture notes will appear
in book form la this year.

Aco-ession For
NTIS GRA&I
DTIC TAB fl
Un.n o u-n ced U]

, Jus>t i1ontiorn

""" Distributiona/

. Olic-N Av¢ 1%b11ty Codos
copy !Avail and/or

#GS.EC.L" 'Dtst ,' Se0ial

'I:

This work was mppoited by the Defense Advanced Reseatch Projts Agency (DoD) undet ARPA order 6037, Cotract
S. N00140-87-C-8904, and also by a grant from the Siemens Corporation. The views. opinios and ndinis contained in this Iwon an

thoe oft the authors ard should not be constued as an official Depamnen of Defense position. policy, or decision.

S.2

Arctic 88 Course Outline

1. Introduction
1.1. Evolution of Distributed Systems
1.2. Five perspectives on Distributed Systems
1.3. Architecture
1.4. Distribution transparency
1.5. An architecture for selecting transparency

V.. 1.6. Modelling systems

2. Technology
2.1. Hardware Substrates and relevant software

1'., 2.2. Networks

3. Communication
3.1. Interprocess Communication
3.2. Reliable Broadcast protocols
3.3. Remote Procedure Call

4. Naming and Protection
* 4.1. Naming

% 4.2. Cryptography
...% 4.3. Protection

5. Concurrency and Consistency,
5.1. Transactions
5.2. Using transactions in distributed applications
5.3. Theory of (nested) transactions

V 5.4. Using replication to enhance availability and fault-tolerance in distributed systems
5.5. Virtual synchrony for building distributed systems

6. File Systems
6.1. Basics
6.2. Why distributed file systems?
6.3. Brief history
6.4. Clarification of nomenclature
6.5. Andrew File System
6.6. Context
6.7. Design
6.8. Future

7. System Management
7.1. Management Architectures
7.2. Debugging, Recomflgwuaion control
7.3. Accounting
7.4. Effects of scale

* 8. Formal methods
8.1. The tools of formal logic
8.2. Representing behaviour in LOTOS
8.3. High-level specifications for distributed programs

9. Conclusions

Chapter 1
U.

Reliable Broadcast
Protocols

U ,

The distinguishing feature of a distributed program is not just that its var-
ious parts are distributed over a number of processors but that these parts
communicate with one another. The hardware in a distributed system allows
a processor to send messages to other processors; the operating system usu-
ally extends this facility to allow a process on one machine to send messages
to a process on another. The operating system may also provide facilities
to set up virtual circuits between processes and may include protocols that
ensure a certain degree of reliability in the communication. From the point
of view of a programming language, however, these facilities are still rather

*' low-level, and this has led to a search for appropriate high-level abstractions
for inter-process communication. Some researchers suggest that distribution
be completely hidden from the programmer. They argue for an abstraction
that looks like a global shared memory. This abstraction has the advantage
that it is simple to program with; writing a distributed program is no dif-
ferent from writing a non-distributed one. However, hiding distribution is
not appropriate for all applications; some app"caunsf -e-d to have explicit

* knowledge of location, either to obtain fault-tolerance or for better perfor-
mance. Moreover, implementing the abstraction of a global shared memory
on a network of computers could be extremely inefficient, especially if the
network is large. It becomes increasingly difficult to justify the overhead
of a shared memory abstraction as the network size becomes larger and a

-. typical application runs only on a small fraction of the sites in the network.

0

..y...,A common high-level abstraction for inter-process communication is the

U.

64

2 T. Joseph and K. Birman

remote procedure call (RPC), introduced by Birrel and Nelson [Birrel84]. A
process communicates with another using an interface that looks just like a
call to a procedure. The advantage of this abstraction is that it simplifies
distributed programming by making communication with a remote process
look like communication within a process. Its limitation, however, is that it
is limited to two-way communication, namely communication between a call-
ing process and a called process. Remote procedure calls are therefore most
useful in distributed programs that fit the "client-server" model - client
processes request services from server processes; server processes accept such
requests and respond to each of them individually. However, RPC is not
the most convenient abstraction when a distriltuted program is composed of
a number of processes that have a high degree of inter-dependence on one
another and the communication among them reflects this inter-dependence.
In such programs the communication often takes place from one process to
a number of processes rather than from a calling process to a called process,

*l as in RPC's. An example of such a program would be a server that, for
reasons of fault-tolerance or load sharing, is implemented as a group of pro-
cesses on a number of sites. It would be convenient if a client requesting a
service from such a server could send request to the group as a whole rather
than have to be aware of the group's membership and pick one to commu-
nicate with. This is especially convenient if the server group could change
its membership or location from time to time. Also, if the members of the
group wish to divide up the work of responding to a request, each of them
must ensure that its actions are consistent with what the other members
are doing, and so they will need to communicate with one another. What
is needed here is a facility that enables a process to send a message to a set
of processes. We will call the act of sending a message to a set of processe-
a broadcast 1 .

In its simplest form, a broadcast causes a copy of a message to be sent
to each of the destination processes. What makes broadcasts interesting
is that they must handle the possibility that some of the processes taking
part in the broadcast may fail in the middle of the broadcast. For example,

*l a failure could cause a broadcast message to be delivered to some but not
all of its intended destinations - a possibility that never occurs when only
two processes communicate with each other. To be useful to a program-

I Our use of the term broadcast does not refer to any hardware broadcast facility. On
*- the contrary, we assume only that the network provides point-to-point communication.
4 If the network does have a broadcast capability, some of the protocols described in this

chapter can be optimized to take advantage of it.

I

- -i.~ - - ~

Reliable Broadcast Protocols 3

mer, a broadcast must have well-defined behavior even when failures may
•. 9 occur. Broadcasts that provide such guarantees are called "reliable broad-

casts." Reliable broadcasts are implemented using special protocols that
detect failures and/or take compensating actions. Our definition of broad-
cast is general enough to cover protocols like 2- and 3-phase transaction
commit protocols, and indeed some of the broadcast protocols we describe
in this chapter are similar to these protocols. We begin our discussion with
a description of our system model and our model of failures.

4- 1.1 System model

Figure 1.1 shows our model of a distributed system. It consists of a number
* of processors (sites) connected to one another by a communications network.

Each processor may have a number of user processes executing on it. There
* is no shared memory between sites and so the only form of communication
e"-".. between sites is through the network, which enables messages to be trans-

mitted from any processor to any other processor in the system. Message
transmission is asynchronous: sending and receiving processes do not have

8._ to wait for one another for communication to occur, and message transmis-
sion times are variable. Figure 1.2 shows the structure of the communication

sub-system at each site 2 (the meaning of the arrows will be described later).
'-4. The transport layer contains the hardware and the software that enables

a message to be sent from one processor to another. We assume that the
transport layer provides reliable, sequenced point-to-point communication.
By this we mean that a message sent from one site to another is eventually
delivered (unless the sending or the receiving site fails), and that messages
between any pair of sites are delivered in the order they were sent. This form
of reliability is achieved using protocols that sequence messages, detect lost

- or garbled messages (with high probability), and retransmit such messages.
Many such protocols are described in [Tannenbaum8l]. These protocols are
not the subject of this chapter, which deals with the broadcast layer.

* The broadcast layer implements the facility to send a message from one
process to a set of processes, possibly on different machines. A process wish-
ing to perform a broadcast presents the broadcast layer with a message and

': a list of destination processes for that message. The broadcast layer uses the

2The communication sub-system may be part of the operating system kernel, a separate
* system process, part of the user process, or any combination of these. We are concerned

more with its function rather than its location.

0

.n..,
- ..' V - -

I

4 T. Joseph and K. Birman

PROCESSES

PROCESSORS

COMMUNICATIONS NETWORK

* Figure 1.1: System model

.

APPLICATION LAYER

BROADCAST LAYER

TRANSPORT LAYER

LL

Site 1 Site 2 Site 3

Figure 1.2: Communication sub-system
{I __ _

I'

" .,*mp . *~~ WPv ~

Reliable Broadcast Protocols 5

destination list to compute a set of sites that must receive this message, and
uses the transport layer to send a copy of the broadcast message to each of
these sites. It typically includes other information with the message, which
is used by the broadcast layer at the receiving site. Depending broadcast
protocol being executed, there may be further rounds of communication
among the sites before the message is finally delivered to the destination
processes at each of the sites. In what follows we will call the site from
which a broadcast is made its initiator, and the sites to which it is sent its

recipients. The arrows in Figure 1.2 shows a pattern of message exchange
that could arise when a process at site 1 does a broadcast to processes at
sites 2 and 3. In this figure, the broadcast layer at site 1 sends a message
to the broadcast layers at sites 2 and 3, which engage in further communi-
cation with the broadcast layer at site 1 before they deliver the message to
the application.

The protocol executed by the broadcast layer depends on the level of
.• fault-tolerance it provides and on the way in which it orders the delivery
. of broadcasts relative to one another. We will consider a number of such

broadcast protocols and examine their cost-performance trade-offs. We will
begin with a protocol that achieves a simple form of fault tolerance and go_,..-'

-. on to more complex protocols that provide various ordering properties on
broadcasts. Our detailed examples will be the broadcast protocols in the
ISIS system [Birman87a,Birman87b], but we will also point to other similar
protocols.

1.2 Failure model

To talk about reliable broadcasts we must first talk about what kinds of
' failures we are trying to overcome. The simplest failure model is the "crash

model." In this model, the only kind of failure that can occur in the system
is that a processor may suddenly halt, killing all the processes that may be
executing there. Operational processes never perform incorrect actions, nor
do they fail to perform actions that they are supposed to. Furthermore, all
operational processes can detect the failure of a processor. For most of this
chapter we assume that only crash failures can occur. There are a couple

'p.- of reasons for restricting our attention o crash failures. First, the abstrac-
. tion of crash failures can be implemented on top of a system subject to more

0 complex failures by running an appropriate software protocol. The ISIS fail-
ure detector [Birman87a] and the protocol in [Schlichting83] are examples of

..

.

6 T. Joseph and K. Birman

such protocols. Second, techniques are available to automatically translate
a protocol that tolerates crash failures into protocols that tolerate larger

V.• classes of failures [Neiger88]. Since protocols that tolerate only crash fail-
ures are simpler to develop and to understand, it is easiest to describe such
protocols here and use these translation techniques to obtain more complex
protocols if desired.

1.3 Atomic broadcast protocols

One of the simplest properties provided by a broadcast protocol is atornic-
ity, that is, a broadcast message is either received by all destinations that
do not fail or by none of them3 . Moreover, non-delivery may occur only if
the sender fails before the end of the protocol. An atomic broadcast protocol
will never cause a message to remain undelivered at some non-faulty des-
tinations if it has been delivered at some others (even if some destinations
fail before the protocol completes). This is a very useful property because a
process that receives such a broadcast can act with the knowledge that all
the other intended destinations will also receive a copy of the same message.
This reduces the aanger of a recipient taking actions that are inconsistent

8' with the others. Consider the case where a number of processes each main-
tain a copy of a replicated set of items. Let us say that a broadcast is made

- to these processes requesting them to add a particular item to this set. If
an atomic broadcast protocol is used, each recipient can add the item to its
copy of the set with the knowledge that all other destinations will also do
so, and so their sets will all contain the same items. Without atomicity, the
implementor of the replicated set will have to take steps to ensure that a
failure will not cause some processes to miss updates, which would result in
the copies of the set becoming inconsistent.

At first glance, an atomic broadcast protocol might seem trivial to im-
plement, especially if the transport layer gives reliable point-to-point trans-
mission. The initiator could simply send the message to each destination

* site, and a recipient could simply deliver it to any destination process at that
site. But what happens if the initiator crashes after it has sent the message
to some but not all of the destination sites? Now we are left in precisely the
situation that we are trying to avoid: some destinations have received the
message, while others have not. To make matters worse, the destinations

• "Some researchers have used the term atomicuty to refer to stronger properties. Here,
we use it to only mean all-or-nothing delivery.

A..:

'";-'

,0",, ,,

,A _-1,7%

,:::::

01

Reliable Broadcast Protocols

At the initiator:

send message m to all sites where there is a destination process

At a site receiving message m:

if message m has not been received already
send a copy of m to all other sites where there is a destination

process
deliver m to any destination process at this site

Figure 1.3: A simple atomic broadcast protocol

that have not received the message have no idea that they should receive
one. So it is necessary for one or more of the recipients to detect that the
initiator has failed and to forward the message to the sites that did not
receive it. This, of course, means keeping a copy of the message around for
a while - at least until it is known that all destinations have received it.
Since we cannot keep copies of messages around forever, some means must
also be provided for a recipient to obtain the knowledge that a message has
been received everywhere, so that it can then discard the message. So we
see that what seemed to be a trivial problem turns out to be not so trivial
after all!

Figure 1.3 gives a simple protocol that implements an atomic broadcast
that tolerates crash failures. It is similar to the algoithm in [McCurley86].
When a site receives a message for the first time, it retransmits a copy of
the message to all the destinations. Hence if a sit, receives a message and
remains operational, all the destinations will receive a copy of the message.

* Thus atomicity is guaranteed. However, this property is achieved at the
expense of increased communication because of the retransmissions. The

'C protocol also takes up memory space because the message (or some part
of it) must be stored at a recipient till all the retransmitted copies arrive,
otherwise there will be no way of identifying these copies as duplicates of the
first one. We could modify this protocol to retransmit messages only if the
initiator is seen to fail. Then most of the extra communication would occur

N,' ,- N.I',

.

02

8 T. Joseph and K. Birman

only when a failure occurs, which is more reasonable. But even ;. ,.i .,.ilures
do not occur, this protocol would incur extra storage and communication
costs. Each recipient must store the message until it is notified that it
has been delivered at all its destinations, and this notification will require
some message overhead. In general, depending on the properties that it
achieves, a broadcast protocol will incur a cost in terms of latency (the time
between when a message is sent and when it is delivered at its destinations),
communication (because of extra messages or larger messages), and memory
space.

1.4 More complex protocols

We considered a simple broadcast protocol that achieves atomicity. There
are two directions in which one could go to arrive at more sophisticated pro-
tocols. One is to expand the class of failures that the protocol tolerates. The
other is to consider protocols that provide stronger guarantees than atomic-

Nity. An example of a larger class of failures than crash failures is "omission
failures." In this failure model, a faulty processor could occasionally fail

Sto send or to receive messages that it should (or it could crash). This is a
realistic model for processors connected by communications links that may
lose messages, or if is is possible for their transmission buffers to overflow
occasionally, causing messages to be lost. Interestingly enough, the protocol
described above achieves atomicity even with this class of failures. We could
go even further, and consider failure models like Byzantine failures, where
processes may malfunction by sending out spurious or even contradictory
messages. In the rest of this chapter, however, we restrict ourselves to crash
failures, but consider protocols that are more complex because they achieve
stronger properties than atomicity. For protocols that deal with omission
and Byzantine failures, the reader is referred to [Perry86] and [Lamport82]
respectively.

1.5 Ordered broadcast protocols

When we introduced atomicity, we considered the example of a number of
processes cooperating to maintain a replicated set of items. We saw that
atomicity was sufficient to ensure that all the copies of the set contained the

* same items. But what if the processes were maintaining a queue of items in-
stead of a set? In this case, the order of the items is required to be the same

0

0

Reliable Broadcast Protocols

in all the copir-. A'cmicity is not enough here because there are no guaran-
tees on the order in which different broadcasts will be delivered (especially
if they originate from different senders). Given a broadcast protocol that
had the additional guarantee that messages will be delivered in the same
order everywhere, implementing a replicated queue is simple: this protocol

* is used to broadcast items to the processes maintaining the queue, and each
recipient adds items to its copy of the queue in the order that it receives
them. Atomicity ensures that all operational copies will contain the same
set of items; the ordering property ensures that these will be in the same

= order in all the copies. Without the ordering property, the implementor of a

replicated queue will have to include code to ensure that all the copies agree
on the order in which items are added to the queue, which makes devel-
oping this application a more difficult task. The availability of an ordered

* .. broadcast can simplify the implementation of many distributed applications,
and consequently much work has been done in developing protocols for such

* broadcasts. We describe a few here.
A!j If two sites broadcast messages to overlapping sets of destinations, it

is possible for these messages to arrive at the overlapping destinations in
different orders. The essential feature of an ordered broadcast protocol, then,
is that an incoming message is delivered only when all the recipients have
agreeed on how to order its delivery relative to other messages. This usually
increases the latency, results in additional communication, and requires that
the message be stored for the duration of the protocol. The algorithms we
study below differ in the way they trade these costs off against one another.

The first protocol we study was proposed by Dale Skeen and is described
.5" *,in detail in (Birman87a] under the name ABCAST. It operates by assigning

each broadcast a timestamp 4 and delivering messages in the order of times-
tamps. When a site receives a new message, it stores it in a pending queue,
marking it as undeliverable. It then sends a message to the initiator with a
proposed timestamp for the broadcast. This proposed timestamp is chosen
to be larger than any other timestamp that this site has proposed or received

5, in the past. (To make the timestamp unique, each site is assigned a unique
* number that it appends to its timestamps as a suffix). The initiator collects

the timestamps from all the recipients, picks the largest of the values it re-
ceives, and sends this value back to the recipients. This becomes the final

" timestamp for the broadcast. When a recipient receives a final timestamp, it

'These timestamps need have no relation to real time; all that is required is an increa&-
*... ing sequence of numbers.

.. %2"

10 T. Joseph and K. Birman

assigns the timestamp to the corresponding message in the pending queue,
and marks the message as deliverable. The pending queue is then reordered
to be in order of increasing timestamps. If the message at the head of the
pending queue is deliverable, it is taken off the queue and delivered. This is
repeated until the queue is empty or the message at the head of the queue is
undeliverable (if there are deliverable message after this undeliverable one,
they are not delivered at this time; they remain in queue until the messages
ahead of them are all deliverable).

Figure 1.4 illustrates how this protocol works. Let us assume that (pro-
cesses at) at three sites are trying to broadcast messages mi, m2 and m 3 to
the same set of destinations at sites 1, 2 and 3. Assume that the largest
timestamps seen at sites 1, 2 and 3 are 14, 15 and 16 resp. Step 1 shows the
messages arriving at the recipients in different orders. They are all placed
in the pending queues marked as undeliverable (u), with proposed times-
tamps as shown. Notice how the site number is used to disambiguate equal

* timestamps. In Step 2, the sender of m1 collects its proposed timestamps
(16.1, 17.2 and 17.3), computes the maximum (17.3), and sends this value
to the recipients as the final timestamp. The recipients mark the message
as deliverable (d) and reorder their pending queues as shown. Since there

•-e. ae no undeliverable messages ahead of ml at site 3, m, can be taken of the
queue and delivered there, but it cannot be delivered at sites 1 and 2. Step
3 shows the pending queues after the sender of m 2 sends its final timestamp,
and Step 4 shows the queues after the sender of m3 does the same. At this
point, all the messages can be taken off the pending queues and delivered.
Observe that the messages are delivered at all sites in the order ml, m 3 and
then M 2 , which was the order of their final timestamps.

The ABCASTprotocol assigns each broadcast a unique final timestamp,
and all messages are delivered in the order of their final timestamps. This
ensures that broadcasts are delivered in the same order at all destinations.
Because the sender picks the largest of the proposed timestamps, changing
the timestamp of a message from its proposed one to the final one can only

,.-.

cause it to be moved behind other messages in a pending queue, and never
* ahead of them. So a message might have to wait for other messages to be

delivered before it gets delivered, but there will never be a situation where
it is necessary to deliver a message before one that has already been taken
off the queue and delivered (which would cause this protocol to fail).

Let us examine the costs associated with this protocol. First, observe
that a message cannot be delivered as soon as it is received; it has to remain
in the pending queue until at least a second round of message exchange has

.7

kv.

, 1". Reliable Broadcast Protocols 11

SITE I SITE 2 SITE 3

SM3 m1 m2 m2 M1 I M3 mI M3 12

15.1 16.1 17.1 "" 16.2 17.2 18.2 17.3 18.3 19.3 .

U U U U UI U U I

Step 1

% M3 M 2 M I mM2 ml IM3 Ml I M3 I M2

15.1 17.1 17.3 ... 16.2 17.3118.21 ... 17.3 18.3 19.3

f uU d Lu Iv

Step 2

M3 mI M2 M1 JM 3 M 2 1M3 M2

15.1 17.3 19.3 ... 17.3 18.2 19.3 ... 18.3 19.3...

ds dd djau d U ii d

Step 3

MlI M3 M2 M3 M2 JM3 m2

., 17.3 18.3 19.3 ... 18.3 19.3 -" 18.3 19.3

d d d d d

Step 4

Figure 1.4: The ABCAST protocol

%

".-.'.

,. .,

12 T. Joseph and K. Birman

occurred, and it has been assigned a committed timestamp. It has also to
wait for all messages with smaller timestamps to be delivered. This repre-
sents the latency cost. Second, each broadcast results in a higher communi-
cation overhead beyond the act of sending the message to each destination
site. Each recipient must also send proposed timestamps back to the initia-
tor and the initiator must respond to all of them with the final timestamp.
Finally, the message must be saved in the pending queue from the time it
is received till the time it is delivered. This represents the storage cost.
(Actually, the storage cost is higher than this. Some information about a
message has to be maintained at each recipient until it is known that it has
been delivered at all the destinations.)

We have not described how this protocol deals with failures. If a recipient
crashes in the middle of the protocol, the initiator simply ignores it and
continues the protocol without it. If the initiator fails, then one of the
recipients must take over and run the protocol to completion.

Chang and Maxemchuck describe another family of protocols that achieve
ordered reliable broadcasts [Chang84]. Their protocols do not require that
the transport layer provide reliable point-to-point transmission - unreliable
datagrams suffice because the retransmission of lost messages is built into
their protocols. In these protocols, one member of each group of processes
is assigned a token and is called the "token site." The token site assigns a
timestamp for each broadcast, and broadcasts are delivered at all destina-
tions in the order of their timestamps. This ensures that all broadcasts to
a group are delivered in the same order at all members of the group. The
protocols require that the token be periodically transferred from site to site.
The list of possible token sites (called the "token list") is maintained at each
of the token sites, and a token site passes the token to the next site in this
list. The protocols operate correctly as long as the number of failures that
occur is less than the size of the token list. The sites go through a "refor-
mation phase" whenever the token list has to be changed - either because
of a failure or because a new site is to be added to the list. The different
members in this family of protocols have different values for the size of the
token list and different rules for when the token is passed to the next site in
the token list. These rules also determine the various costs for the protocols.

In the Chang and Maxemchuck protocols, a message may be committed
and delivered to the destinations only when the token has been passed twice
around the sites in the token list - at the end of the first round it is known
that the message has been received everywhere, and at the end of the second
it is known that it is committed everywhere. Thus the rate at which the

4

V.,

-'! Reliable Broadcast Protocols 13

token is passed from site to site (and the size of the token list) dett. . "es
V# the latency cost as well as storage cost (as information about a message has

to be stored until it is committed). If the token is passed rapidly, the latency
and storage costs are minimized, but the communication costs go up. The
communication costs may be reduced by passing the token infrequently, but
this increases the latency and storage costs. In the limit, if the token is never
passed, the additional communication goes down to one acknowledgement
message per broadcast, but the latency and storage costs go up to infinity
and fault-tolerance is lost.

1.6 Weaker orderings

Protocols that place a total order on all broadcasts are useful for many
applications, but we have seen that they entail substantial latency, commu-

*nication and storage costs. The natural question that arises is whether there
are less expensive protocols that achieve something less that a total order on
broadcasts and that are nevertheless useful for some applications. Within
the ISIS system, much work was done to develop protocols that provided

- sufficient order to obtain consistency in replicated data, but which are asyn-
chronous in the sense that messages can be delivered as soon as they arrive
at a destination (without waiting for further rounds of communication). The
advantage of using such a protocol to transmit updates to replicated data
is that if there is a copy of the data at the sender site, then the latency to
update this copy is almost zero (as a message can be sent from one site to
itself with very little overhead). As a result, a local copy of replicated data
can be updated at almost the same rate as a piece of non-replicated data
(with some background overhead because of messages being sent to the sites
with the other copies). We begin with an example.

Figure 1.5 shows processes P and Q sending broadcasts b, and b2 to a
group consisting of A and B. (The dashed lines represent the passage of time;
the solid lines represent messages being sent.) For some applications, it may

* not be important that broadcasts from different processes be delivered in the
same order, and it may be quite acceptable that A receives b1 before b2 , while

A B receives b2 before bl, for example. On the other hand, because b3 and b4
were sent by the same process P and b4 was sent after b3 , the broadcast b4

could contain information that depends on b3 . For example, if A and B were
* maintaining a distributed data structure and b3 were a message to initialize
-. -this structure and b4 were a message that causes this data structure to be

e 1...

14 T. Joseph and K. Birman

I P I R IA BI

~bl
'b,

b b3j

b N

.',1 4..., .. "1b4

A.,.,

66 b6

Figur.1a-: I"-'., Figure 1.5: Unordered, FIFO, and causal broadcasts

"N:.

\AN€.

Reliable Broadcast Protocols 15

accessed, then b4 depends on b3 . Because of this causal dependency, it is
desirable that b4 be delivered after b3 everywhere. The property we desire
here is a FIFO property, namely that all broadcasts by the same process
are delivered everywhere in the order that they were sent. This property
is achieved automatically if the transport layer gives sequenced point-to-
point communication. But what if P does a broadcast b5, then does a
remote procedure call to R, which then does a broadcast b6 ? The broadcast
b6 is logically part of the same computation as bs and could have exactly
the same causal dependency on bs as b 4 has on b3 (b5 could be a message
to initialize a data structure and b6 one to accesses it). Unfortunately,
because b5 and b6 originate in different processes, the FIFO property makes
no guarantee on the order in which they will be delivered. This is especially
unfortunate because if b6 were a broadcast from within a local procedure
call, a programmer developing this application could take advantage of the
fact that the deliveries would be ordered, but just because the procedure

* call happened to be remote, his task becomes far more complicated. What
would be useful here is a broadcast protocol that guarantees that if the
initiation of a broadcast b is causally dependent (as described above) on the
initiation of a broadcast b, then b will be delivered after b' everywhere. We
first need to formalize the notion of causal dependency.

An event a occurring in a process P can affect an event b in a process
Q only if information about a reaches Q by the time b occurs there. In
the absence of shared memory, the only way that such information can be
carried from process to process is through messages that travel between
them. Accordingly, as in [Lamport78], we can define the potential causality
relation a --+ b (b is potentially causally dependent on a) to be the transitive

closure of the two relations -+ and 2 defined below:

1. a - b if a and b are events that occur in the same process and a occurs
before b.

2. a -2 b if a is the sending of a message and b is the receipt of the same
% message.

Informally, if a is an event in process P and b is an event in process Q, then
a --+ b if and only if there is a sequence of messages Mr,n,. .M.,m. and

processes P = Po, P1,P 2,. .. ,Pn = Q (n > 0) such that message m travels
from Pi- to P and is delivered to Pi before mi+1 is sent from there. Also,
m, is sent from P after event a occurs there, and m, is delivered to Q before

,.. b occurs there. It is the existence of this sequence of messages that enables

%

16 T. Joseph and K. Birman

information about a to be carried to Q and so makes b potentially causally
dependent on a.

What is needed, then, is a broadcast protocol that ensures that if
send(bi) -+ send(b2), then b2 will be delivered after b, at all overlap-
ping destinations. The protocol CBCAST (for causal broadcast) described
in (Birman87a] achieves this. The protocol in [Peterson87 is similar. The
easiest way to explain the CBCAST protocol is to start with a grossly in-
efficient version and derive the actual protocol from it. Imagine that for
each process P the broadcast layer at its site keeps a buffer containing ev-
ery message P has ever sent or received (in order). Any time a broadcast
b is initiated by P, this buffer will then contain every message that could

'-S have causally affected b. Whenever any message m is sent from a site, the
protocol sends the entire contents of these buffers along with m (i.e. it

piggybacks the buffers onto m). At the receiving site, the broadcast layer
adds the piggybacked messages to all its buffers (preserving their order, but

*discarding duplicates) even if the piggybacked messages are n-t destined for
any process at that site. It then delivers (in order) any messages destined
for processes at that site, the last of which will be m.

The reason why the protocol described above works is simple. If b, is
initiated by process P at site S and b2 by Q at T and if send(bi) -- send(b2),
then there must be a sequence of messages as described above from S to
T. The protocol ensures that b, will be piggybacked on this sequence of
messages (and possibly on other messages as well) and so b, will reach T
and before b2 is sent. Since b, will be in Q's buffer when b2 is sent from

there, bl will be piggybacked on b2 and will hence be delivered before b2 at
' any overlapping destination.

The problem with the scheme described above, of course, is that the
amount of information to be piggybacked grows indefinitely. There are a
number of ways in which the protocol described above can be optimized.
First, the buffers can be maintained on a per-site basis instead of a per-
process basis. This reduces the storage overhead. Second, a message does
not have to be piggybacked to a site if it has been sent there already. More
importantly, messages do not have to be piggybacked once it is known that
they have reached all their destinations, because they will be discarded on
arrival anyway. This means that a message needs to be piggybacked only
from the time a broadcast is initiated till the time it reaches at all the des-
tination sites. If we call this time period 6, piggybacking need occur only if
broadcasts are being made at a rate of more than one every 6 time units.
6 is usually a very small window and so unless broadcasts are being made

A:

Reliable Broadcast Protocols 17

rapidly one after another, there need be very little actual piggybacking. The
initiator can stop piggybacking a message when its transport layer receives
an acknowledgement from all the recipients; other sites must continue to do
so until they are informed that the message has reached all its destinations.
The performance of this protocol thus depends on how effectively this infor-
mation is propagated to sites that have a copy of this message. This issue
can be avoided by piggybacking a message only on messages going directly
to the destination sites. Other sites are instead sent a small descriptor that
identifies the message. If a destination receives a descriptor before it receives
the actual message, it must wait for the message to arrive before delivering
any message that may causally depend on it.

Messages sent using the CBCAST protocol can be delivered as soon as
. they reach a destination site. There is no need to wait for additional rounds

of communication and hence no latency cost (except to the extent that
transmitting larger messages may take a slightly longer time). The protocol

0requires no additional messages besides those required to get the message
from the initiator to the destinations, but it does increases the message size.
In most systems, the number of messages (and not their size) is the dominant
factor in the communication cost 5 and so the communication overhead is

minimal. The protocol does have a storage cost because the messages have
to be buffered while piggybacking is going on.

FIFO broadcasts preserve the order of causality in a computation that
runs at one site; causal broadcasts generalize this to distributed computa-
tions. Causal broadcasts can be used to order deliveries when all broadcasts
to a group arise from a computation with a single thread of control, but this
thread of control may span several sites (e.g. because of remote procedure
calls). They can also be used when broadcasts to a group arise from different
computations, but these computations have some other form of synchroniza-
tion relative to one another. An example of this would be broadcasts to a
group that arise from within nested transactions whose sub-transactions may
run on different sites. Here the broadcasts arising from sub-transactions

* of any one transaction will be ordered because they are causally related;
broadcasts arising from different transactions will be ordered because of the
concurrency control mechanism used to implement nested transactions.

* "This is true only up to a point. If a message size gets very large, it may have to be

fragmented into a number of smaller packets before being transmitted.

Sr
-.-(4:..,'.'.';4'.-:,:,' * /* ,"

18 T. Joseph and K. Birman

1.7 Real time delivery guarantees

Another property that may be useful in a reliable broadcast protocol is that
delivery will occur within a specified amount of time after the initiation of
the protocol. This is especially useful in real time systems and in control
applications, where a broadcast that arrives too late may not produce the
desired response. If a broadcast is being made to a set of processes to
instruct them to each begin some action, it might also be desirable that
broadcast deliveries occur within a known time interval of one another, so
that their actions take place with some degree of simultaneity. The protocols
described earlier make no such guarantees - they ensure that broadcasts
will be eventually delivered to all non-faulty destinations, but delivery could
take arbitrarily long.

In [Cristian86], Cristian et al describe several broadcast protocols that
provide real time delivery guarantees. For such protocols, one needs to
have timing bounds on various aspects of system behavior, for example, a
bound on the time it takes for the system to schedule a process for exe-

a.5_9 cution, a bound on the time it takes for a message to travel from one site
to another, the ability to schedule an event to occur within a certain time,
etc. Given such bounds, one can devise broadcast protocols by taking into

S"account worst-case timing behavior. For example, one can achieve simul-
taneous delivery by timestamping each broadcast with the sending time t
and computing A, the maximum time it can take for a message to reach a
destination. Now if a broadcast is buffered at each destination and delivered
only at time t + A, simultaneous delivery is achieved. It should be noted
that "simultaneous" here means that the processors will deliver a broadcast
at the same time as read off their own clocks. In practice, the docks of
individual processors will differ somewhat from real time, and at broadcast
will not be delivered everywhere at exactly the same instant. However, by
using algorithms such as described in (Srikanth87], the docks of the various

%'.. processors can be synchronized to the degree required, thus achieving the
desired level of simultaneity.

* The calculation of the constant A must take into account possible dif-
ferences in clock values as well as possible scheduling and message trans-
mission delays, and is described in detail in [Cristian86]. In addition, this
calculation must account for faulty system behavior. One kind of possible
failure is a "timing fault." Recall that the protocols were based on timing
bounds for certain system activities. If the system violates these timing

* bounds (e.g. a message takes longer to be delivered than the assumed upper
,4.,..,

Reliable Broadcast Protocols 19

bound), we have a timing fault. We could also consider other classes of fail-
ures like omission or Byzantine failures. Cristian et al describe protocols to
achieve reliable real time broadcasts that tolerate increasingly higher classes
of faults, from no faults at all to Byzantine faults.

There is a basic difference between these protocols and the ones described
earlier. The earlier protocols use explicit message transfer to ensure that
a broadcast has arrived at all its destinations and to agree on an order
for its delivery. These protocols, on the other hand, use the passage of
time (and knowledge of timing bounds on system behavior) to obtain the
same information. As a result, the latter protocols will, in general, have a
lower communication cost. However the latency and storage costs are based
on worst-case system behavior. If the variance in the duration of system
events (e.g. message transmission) is low and one has accurate estimates
of these times, the latency and storage costs are likely to be low. On the
other hand, if the variance is high (as would happen if the load on the

* system is variable), then the fact that these costs are based on worst-case
behavior might make them unacceptably high. The latency is especially
critical, because the perceived speed of an application performing broadcasts
depends on this.

1.8 Broadcasts to dynamically changing groups

Until now, we have considered broadcasts made to a fixed set of destina-
tions. The protocols described above assume that the set of destinations is
known when a broadcast is initiated and that it does not change. For many
applications, it is useful to be able to broadcast a message to a "process
group" - a symbolic name for a set of processes whose membership may
change with time. Such a group may implement some service like a docu-
ment formatting service or a compile service. The reason for implementing
such a service using a group of processes instead of a single one may be
to divide up the work of responding to a user's request over a number of

* machines, to obtain faster response time by executing a user's request on a
*machine best suited to that particular request, to have the service remain

available despite the failures of some machines, or any combination of these.
New members may join the group as the number of requests on the service
increases or as idle machines volunteer their cycles for the service. Members

* may leave the group as the load on the service decreases or when a machine
crashes. It is useful if a user of such a service can use the process group name

6

20 T. Joseph and K. Birman

to communicate with the service without needing to know the mfaio, ;ship
of the group or where the members are located.

To implement broadcasts to process groups, the system must provide
a facility for mapping process group names to sets of processes, and pro-
vide some semantics for what it means to perform a broadcast to a group
whose membership might be changing as the broadcast is under way. The
V system [Cheriton85] provides a means to broadcasts to process groups,
but there are no ordering guarantees on broadcast message delivery. Also, if
the membership changes as a broadcast is in progress, it is possible for the
broadcast to be delivered to some intermediate set of destinations that is nei-
ther the old membership nor the new one. In [Cristian88], Cristian discusses
the problem of agreeing on group membership in systems that have timing
bounds on their behavior, and describes a solution based on the protocols
described in [Cristian86]. The ISIS system provides an addressing mecha-
nism that permits ordered broadcasts to be made to dynamically changing

* process groups. In addition to causal or totally ordered message delivery,
ISIS guarantees that if the membership of a process group is changing as
a broadcast is under way, the broadcast message will be delivered either to
the members that were in the group before the change or to those that were
in the group after the change, and never to some intermediate membership.
In other words, it is never possible for a broadcast to a group to be delivered
to some processes after they have seen a change in the group membership
and to other processes before they have seen that change. Let us see why
this property is useful.

Consider Figure 1.6, which shows processes executing in an environ-
ment where broadcast delivery is not ordered relative to group membership
changes. We see a process P using a broadcast to present a task made up of

% 6 sub-tasks to a group currently consisting of processes A and B. The group
divides up the task equally, with the first process' taking the first set of sub-

% tapks, and so on. Let us suppose that P sends the group another similar task
around the same time that process C attempts to join the group. The figux..
shows A receiving the task before it knows that C joined the group, while

0 B and C receive the task after they see C join. Consequently, A divides the
task on the assumption that the group consists of two members, while B
and C do so on the assumption that there are three members. The result
is an inconsistent division of the task. In this case sub-task 3 gets executed

* 'Any deterministic ordering on process names may be used. Here we have used the
lexicographic order.

-.4

Sa

Reliable Broadcast Protocols 21

N, I I

. P (IA BI)

I (I

000 ' I ,

I I

I I I

•2 3

Figure 1.6: Unordered group membership changes

0_Owe

"22 T. Joseph and K. Birman

twice (which may or may not be acceptable), but if this anomaly arose as

a member was leaving the group instead of joining, some sub-tasks might
end up not being executed by any member (which is clearly unacceptable).
The only way to avoid this problem is for the group members to execute
some protocol that ensures that they all have the same view of the group

%. membership before they respond to any request. However, if the broadcast
delivery were ordered relative to group membership changes, this problem
would not have arisen in the first place.

What the example illustrates is that if broadcast delivery is not ordered
relative to group membership changes, and if the members of the group
have to coordinate the actions they take in response to an incoming request,
then additional protocols are needed to ensure that they respond based
on consistent views of the group membership. This makes the task of the
person programming such an application difficult and adds to the complexity
of the algorithms used. On the other hand if broadcast delivery is ordered
relative to group membership changes, there are no such problems. Each
member can respond to an incoming request based on its view of the group
membership, with the assurance that when the other members receive the
same request, they will all have exactly the same view, and will hence take
consistent actions. Note that group membership may change not only when
a process voluntarily joins or leaves a group, but also when a process drops
out of a group because of a failure. To be completely useful, the process
group mechanism must order broadcast deliveries with respect to the latter
kind of group membership change as well. This might seem impossible to
achieve because the system has no control over when failures occur, but
in fact it can be achieved because what is important is that each process
observes group membership changes and broadcast deliveries in the same
order, or that each process detects failures and broadcast deliveries in the
same order, and not that the failure actually occurs in an orderly fashion.

To explain how the process group mechanism is implemented in the ISIS
system, we will first describe a simplistic mechanism and then show how

-" ' it may be modified. For now assume that every site in the system, has a
* table containing the names of every existing process group and their current

membership. When a process at a site initiates a broadcast to a group, the
system simply obtains a list of the current members from the table at that
site and executes the relevant broadcast protocol using that list. When a
process joins or leaves a group, the tables must all be changed. This is done
using a special broadcast protocol whose deliveries are ordered consistently
relative to all other kinds of broadcasts. In ISIS, the other kinds of broad-

.- -'.I1~~i
o

0

Reliable Broadcast Protocols 23

A cast are, ABCAST and CBCAST. and tl~e coriesponding special broadcast
protocol is called GBCAST (for group broadcast). An interlocking mech-
anism is also required to ensure that broadcasts that have been initiated
using the old membership list are delivered before a GBCAST is delivered.
When a GBCAST is delivered at a site, the table at that site is changed
and all interested processes are notified of the membership change. Since
GBCAST is ordered relative to all other broadcasts, all processes observe
membership changes in a way that is ordered consistently with respect to
other broadcast deliveries. It is, of course, impractical to maintain group
membership lists on a system-wide basis and do a system-wide broadcast
whenever the membership of any group changes. What ISIS actually does is
to maintain information about the membership of a group at the sites where
members reside (member sites) and optionally at a few other sites (client
sites). Membership changes are broadcast using GBCAST only to member
and client sites. This ensures that membership changes are ordered relative

* to broadcasts that originate from member or client sites. If a broadcast
.- is made to a group from a site that is neither a member nor a client site,

-. the system first obtains the current membership list from elsewhere (or uses
an old but possibly inaccurate cached list) and then executes the relevant
broadcast protocol. This leaves open the possibility that the membership
may have changed between when the broadcast message wa's initiated and
when it is about to be delivered. The system detects this if it happens and
does not deliver the message. Instead, it sends the new membership list to
the initiator site, which then restarts the broadcast protocol with this new
set of destinations. This protocol will continue to iterate until the mem-

. bership list remains unchanged from the time the broadcast is initiated till
the time it is delivered. This kind of iteration increases the possible latency
cost. This cost can be reduced by increasing the number of client sites, but
the trade-off is that membership changes now become more expensive.

,N "1.9 Conclusion

In this chapter we considered a number of reliable broadcast protocols, with
different kinds of ordering and delivery guarantees. Developing applications
that are distributed over a number of sites and/or must tolerate the failures
of some of them becomes a considerably simpler task when such protocols
are available for communication. Indeed, without such protocols the kinds of

- ,distributed applications that can reasonably be built will have a very limited

S

24 T. Joseph and K. :rman

scope. As the trend towards distribution and decentralization continues, it
-,% will not be surprising if reliable broadcast protocols have the same role in

distributed operating systems of the future that message passing mechanisms
have in the operating systems of today. On the other hand, the problems
of engineering such a system remain large. For example, deciding which
protocol is the most appropriate to use in a certain situation or how to
balance the latency-communication-storage costs is not an easy question. It
is our hope that as our experience with broadcast based systems grows, we
will begin to gain insight into some of these problems.

N

.:
-U;.

'"

SI-.

..

bI ,

Bibliography

(Birman87a] Kenneth P. Birman and Thomas A. Joseph. Reliable Com-
munication in the Presence of Failures. A CM Transactions
on Computer Systems 5, 1 (Feb. 1987), 47-76.

[Birman87b] Kenneth P. Birman and Thomas A. Joseph. Exploiting
Virtual Synchrony in Distributed Systems. Proceedings of
the Ith ACM Symposium on Operating Systems Princi-
ples, Austin, TX, Nov. 1987, 123-138.

[Birrel84] A. D. Birrel and B. J. Nelson. Implementing Remote Pro-
cedure Calls. ACM Transactions on Computer Systems 2,
1 (Feb. 1984), 39-59.

[Chang84] Jo-Mei Chang and N. F. Maxemchuck. Reliable Broadcast
Protocols. A CM Transactions on Computer Systems 2, 3
(Aug. 1984), 251-273.

[Cheriton85] David R. Cheriton and Willy Zwaenepoel. Distributed

Process Groups in the V Kernel. ACM Transactions

Computer Systems 9, 2 (May 1985), 77-107.

.,- [Cristian86] Flaviu Cristian, Houtan Aghili, Ray Strong, and Danny
*Dolev. Atomic Broadcast: From Simple Message Diffusion

to Byzantine Agreement. IBM Research Report, RJ 5244
(54244), July 1986.

[Cristian88] Flaviu Cristian. Reaching Agreement on Processor Group
Membership in Synchronous Distributed Systems. IBM

* Research Report, RJ 5964 (59426), March 1988.

- 25

0%%

0'

26 T. Joseph and K. Birman

% amport78] Leslie Lamport. Time, Clocks, and the Ordering of Events
in a Distributed System. Communications of the A CM 21,
7 (July 1978), 558-565.

[Lamport82] L. Lamport, R. Shostak, and M. Pease. The Byzantine
Generals Problem. ACM Transactions on Programming
Languages and Systems 4, 3 (July 1982), 382-401.

[McCurley86] R. McCurley and F. B. Schneider. Derivation uf a Dis
tributed Algorithm for Finding Paths in Directed Net-
works. Science of Computer Programming 6, 1 (Jan. 1986),
1-10.

[Neiger88] Gil Neiger and Sam Toueg. Automatically Increasing the
Fault-Tolerance of Distributed Systems. Proceedings of the
7th A CM Symposium on Principles of Distributed Corn-

* puting, Toronto, Ontario, Aug. 1988.

(Perry86I Kenneth J. Perry and Sam Toueg. Distributed Agreement
A. in the Presence of Processor and Communication Faults.

IEEE Transactions on Software Engineering, SE-12, 3
(Mar. 1986), 477-482.

[Peterson87] Larry L. Peterson. Preserving Context Information in an
IPC Abstraction. Proceedings of the 6th Symposium on
Reliability in Distributed Software and Database Systems,
March 1987, Williamsburg, VA, 22-31.

[Schlichting83] Richard D. Schlichting and Fred B. Schneider. Fail-Stop
Processors: An Approach to Designing Fault-Tolerant
Computing Systems. ACM Transactions on Computer
Systems 1, 3 (Aug. 1983), 222-238.

[Srikanth87] T. K. Srikanth and Sam Toueg. Optimal Clock Synchro-

* nization. Journal of the ACM 34, 3 (July 1987), 626-645.

[Tannenbaum81] Andrew S. Tannenbaum. Computer Networks. Prentice-
Hall, Inc., Englewood Cliffs, N. J. 07632.

A'-

