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0. Introduction

"-'The traditional task of geodetic astronomy as seen from the viewpoint of prac-

tical geodesy is the determination of three spatial orientation parameters of

a vertically set up observation instrument relative to a global reference frame

fixed in the earth. For this horizontal and vertical directions are measured

at registered instants to stars, whose coordinates are assumed to be known in

a space fixed reference frame; the time dependent orientation of which, rela-

tive to the earth fixed frame, is also presumed to be known.

The required parameters are the attonomicaZ Zong tuLde.A and the atonoinicaZ

£tatude-W, which fix the direction of the local gravity vector relative to the

earth fixed reference frame, and the horizontal orientation unknownj of the in-

strument, which yields the astronomical azimuths A in connection with the mea-

sured horizontal directions to terrestrial objects.

A spatial reference frame is here understood as a triad of orthonormal base vec-

tors, which is fixed to a distinct origin point and which is taken as being ro-

tationally and translationally invariable in time.

The models used traditionally in geodetic astronomy are described in the stan-

dard textbooks (for example, K. Ramsayer, 1970, see Appendix A.1) mainly by

making use of spherical trigonometry. 'The presentation used in this report is

based upon orthonormal triads of base vectors of different reference frames. A

compact and strictly systematical presentation is obtained by a comuta ve dia-

gam of transformations between the respective bases. which is introduced in

chapter 1.*-Fundamental relations between the parameters of geodetic astronomy

result from this commutative diagram., n chapter 2 these relations are trans-

formed'after the linearization with suitable approximate values tn such a way

that a system of condition equations with unknowns ensures, the Ga$-Het.me,-t

modeZ of the adjustment calculation. This system is specified for different

combinations of observations. In chapter 3 the accuracies in the determination

of A,O and Z, which are expected for different configurations of stars, are es-

timated in simulation studies according to the GauB-Helmert model and then the

results are illustrated in diagrams.
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The underlying principles for this report were taken from the dissertation of

B. RichtXA, "Entwurf eines nichtrelativistischen geod~tisch-astronomischen

Bezugssystems", Deutsche Geod~tische Kommission Heft C322, Munich, 1986, and

from the manuscript of the lecture "Geodetic Astronomy", which B. Richter

gives at the University of Stuttgart, Federal Republic of Germany.
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1. Relations between the reference frames in geodetic astronomy

First of all in this chapter the fundamental relations in geodetic astronomy

between observations, unknowns and given coordinates shall be derived which

will be needed further.

1.1 The systematical structure of the reference frames

The reference frames used in geodetic astronomy may be arranged on different

levels which are numbered in turn or indicated by symbols: 0 corresponds to '

1 to *, 2 to ., 3 to o. One fundamental vector V1 belongs to every level i.

In details this is as follows:

V° = V' = Z the position vector from the point of observation to
~ ~the target object (terrestrial or celestial), which is

generally a star;

V1 = V* = -r the negative gravity vector; p

V2
V V = 2the earth rotation vector (it has the direction of the

S ~axis of the earth, points to the North Pole and has the
value of the earth rotation rate);

V = V0 = the ecliptic normal vector (it points to the northern
pole of the ecliptic).

An orthonormal reference frame El belongs to every level with its base vectors

as follows:

E norm V' (I-11
-3

E' norm (V'1 x V') (1-2)
-2

E EE (1-3)~2 -3

Here "norm" denotes the abbreviation for the normalization of a vector, and "x"

the vector product.

New reference frames are at the lower end the observational frame E' of the level

A
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"0", whose third base vector is located in the direction of the observation and

which is unique since it is not a reference frame in the literal sense, because

there are no vectors described with regard to this frame, and at the upper end

the ecliptic frame E , which has hardly any practical importance.

In addition to the systematical E-triads, F-triads also appear on each level.

These systems have the common third base vector with the appertaining E-frame,

nevertheless the direction of the first and second base vector does not follow

from the systematic structure of the fundamental vectors V , V'+1 , but from a

more or less arbitrary definition.

A new F-triad is the theodolite frame F*, whose first base vector F * lies in

the direction "zero" of the azimuth circle of a theodolite which is set up in

the astronomical horizon. The longitudinal angle (see below) of an observed

direction in the local horizon frame is the horizontal direction T and is re-

corded systematically in the clockwise direction, but conventionally counteA-

clockwise, T = -T . The latitude angle (see below) is the vertical direction

as in the horizon frame E*.

The transformation from a frame E' to the appertaining frame F is always a

counter-clockwise rotation round the common third axis with the orientation

angle H',

F' = R3(H')E'. (1-4)

53 is the rotation matrix, which describes a rotation of a frame round the

third axis. It is

Fcosy siny 0
SR 3(y) = -siny cosy 0 (1-5)

Corresponding to eqn. (1-5) the rotation matrices for the rotations round the

first and second axis read
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1 0 0

Rl(ax) 0 cosa sina (1-6)

0 -sin Cosa
LW

cos 0 -sin-

R 0 1 0 (1-7)
-2(

sina 0 cosa

Rt R2 and R are also called elementary rotations. The orientation angles Hi

(see eqn. (1-4)) are in detail:

H1 =H*= the orientation unknown of the theodolite which has
been set up;

* 2H = H = 0Gr,s the Greenwich sidereal time; 4

Grrs

H3  H°  the angle between the line of intersection of the eclip- -

tic with the mean galaxy plane and the direction to the
vernal equinox ±900.

For the transformation from a frame E i+ 1 to the underlying frame E one needs

the longitudinal angle X1 and the latitude angle D of the fundamental
i+1 i+1

vector Vi with regard to the frame E

El R (9004 1 ) R (x i ) -1  R (X ' 3.i )E+ i+
- 2 -+) 3(Xi+1)z - +

(I-8)

R Xi+l1 q) " E+

RE is the special case of a rotation matrix of Eulerian type, in which the three

elementary rotations dre connected in a row as follows:

- first rotation round the third axis, R3(y1)

- second rotation round the new second axis with the angle (90-$),R 2(900-B)

- third rotation round the new third axis, R 3(y 2
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In the matrix R the second rotation round the second axis would take place-ewith the angle $,R 2  .

These longitudinal and latitude angles are in detail:

0
X = x, = A the azimuth of the observational direction;

= = B the vertical direction

X2 = = the sidereal time

D = = the astronomical latitude.
2

i+1t

For the transformation from a frame E'+1 to the frame F' lying diagonally under-

neath, one needs additionally the orientation angle H (see Fig. 1):

i ,iEi+1

= RE(X+,+. i H )E (1-9)

For the transformation from a frame F i+ 1 to the frame El lying diagonally under-

neath, one needs the longitudinal angle A' and the latitude angle 0 of the
2. .+ i. I +1fundamental vector V with regard to the frame F1+

E -RE(A+1 'i )F (1-10)

The latitude angles are the same as above, the longitudinal angles are in de-

tail:

A0 Al T the horizontal direction of the observation direction,
1 = S, systematically measured counter-clockwise, conventionally

in the clockwise direction, T = T;
S C

A A* A the astronomical longitude;
2

A A 900
3 0 d

and

(P o 900-C the orthogonal complement to the inclination of the
3 0 ecliptic.

= ' ,m • F- ' .l - i - '- f-
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l evel 5

level 4, mean galaxy frame

E0  F level 3 (0,ecliptical frame

R (90 E)-e

~3(Or~s) F level 2 (0,equatorial frame (fixed in
space, fixed in the earth)

E

RB3~
E*- F level 1 (',horizontal and theodolite

frame

(AIB) R(T ,B)

R( l-

-.
3

Fig. I Comutative diagram with reference frames in geodetic astronomy
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For the transformation from a frame F to the underlying frame Fi, one

needs additionally the orientation angle H

3. i+1
Fi RE(A+lA +H = (1-11)

%

The transformation in the opposite direction results from the respective trans-

posed of the rotation matrix.

1.2 The commutative diagram and the fundamental equation of geodetic astronomy

In the rotations introduced up to this point the right ascension a and the de-

clination 6 are still missing; these describe the observation direction E

to a star with regard to the space fixed equator frame, namely in the same way

as A and B do this with regard to the horizontal frame. Indeed, the rotation

RE(a,6)E" does not lead to the frame E'; in E"=R E(a,6)E" the second base vec-

tor E lies in the equatorial plane, but in E' the vector E2, lies in the hori-

zontal plane (east). Of course E' and E" have the common third base iector,

but they differ by a rotation round this vector with an angle E

El = R3(E)E' . (1-12) '

A serial connection of several transformations is called a diagram in the alge-
bra. If the transformations which have to be reversibly unequivocal, form a

closed circle, this is called a commutative diagram. Then one is able to express

a transformation by means of the others. Such a commutative diagram is presen-

ted in Fig. 1 by"the lines which are thickly marked. For example the trans-

formation E* E can be expressed by

El RE(T,B)R3(E)E* (1-13)

or

= R(E)R(,6)R( )RT(A)E*14)

E "3 R3 (6G r)RE (A ,I-t,

As the representation of the triad E' with regard to the triad E* is unequi-

vocal, it follows that: ]
-. .~* ? *d " PI



R _T,)3(Z) B3( ~ B3Gr (1-15)

This equation reads with the right-hand side written in full length

RE(TB )3(Z=B3(-E) 2 900-)R (aR 3 -e r ) 3 (A)R2 (D-90) (-1.

and can again be reduced to

These are the desired 6undamentaZ teta.tionz between the parameters appearing
in geodetic astronomy.



.- - 11W- -.

2. The observation equations of geodetic astronomy

The fundamental equation (I-17) consists as a matrix equation of nine sepa-

rate equations, of which only three are independent of each other because of

*i the property of orthonormality of the rotation matrices. These three inde-

pendent equations represent condition equation4 with unknownz for every star

(if T,B and 0G are measured at one instant).

The matrices on the left and right-hand side of equation (1-17) read as fol-

lows when they are multiplied respectively:

cos(E+T)sinB sin(E+T)sinB -cosB

-sin(E+T) cos(Z+T) 0

Lcos(E+T)cosB sin(E+T)cosB sinB

and

Column 1:

sin4Dcos(OG +i osincos -sinsin(eGr+A-a)sin +cosDcos6cos&
isinocos(e Gr+A-ot)sin6sin +sin~sin(eG +A-a)cos +cosocos~sinE

sincos(eG+A-a)cos6-cosDsin6

*: Column 2:

-sin(eG +A-a)sin6cosC-cos(eG+A-x)sin&

-sin(e +A-c)sinsinE+cos(eGr +A-cx)cos&
Gr G

-sin( G +A-t)cos6

Column 3:

COS(P Gr +A-a)sin6cosE-cosPsin(6Gr+A-)snE-sinDcos6cos

cos'cos( G+A-a)sin6sin +cos(sin( Gr +A-a)cosE-sin(cos6sin

cosDcos(Gr +A-a)cos6+sinDsin6
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In the right-hand matrix the elements in the third row are the shortest and at

the same time the only ones which do not contain the angle C. Therefore, it

is the obvious thing to do to select two equations from this row as indepen-

dent equations. As a third equation one could take an element from another

row of the matrices whereby the angle , in which one is not actually in-

terested, would indeed appear as an additional unknown. So one, therefore,

dispenses with such an equation and there remain only two independent equa-

tions for one complete observation (T,B and e G) with the three unknowns A,

sinB = cosccos(eG+A-)cos6+sin~sin6 (2-1)

sin(E+T)cosB = -sin(e Gr+A-)cos6 (2-2)

cos(E+T)cosB = sinPcos(eG +A-a)cos6-cosPsin6 (2-3)

Equations (2-1) and (2-2) are independent of each other, equation (2-3) is

dependent on them both. It will be used later only for the determination of

approximate values. The appearing variables be summarized once more:

* A astronomical longitude

P astronomical latitude

a right ascension of the star

6 declination of the star

h =G + A -a hour angle

orientation unknown of the instrument (theodolite)

T horizontal direction; observed

=>A E + T azimuth

B = 900 - z vertical direction, angle between horizon and star; observed

6Gr Greenwich apparent sidereal time; observed

2.1 Linearization and matrix representation

The equations (2-1) and (2-2) dre now linearized by developing them into a

Taylor progression (and stopping after the first order term):

I'
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sinB0 +cosB6B - cosocosh cos6+sino sin6

-cososinhocoS6(66 +6A) (2-4)

+(-sincoshocoS6+cosD sin6)6?

sin(E +T )cosBO+cosA cosBO(6Z+6T)-sinA sinB06B~(2-5)

S-sinhocos6-coshocos6(6eG +6A)

Equations (2-4) and (2-5) contain the terms of (2-1) and (2-2) taken at the

point of developing (underlined). By assuming that there are given approxi-
mate valuesfor the unknowns A,O and E (these are AOOO one can calculate
values for B and T, so that equations(2-1) and (2-2) (and (2-3) because of the
ambiguity of sine and cosine) are satisfied for these approximate values. There-

fore, in equations (2-4) and (2-5) the terms underlined, taken at the Taylor-
point, compensate. So it follows from (2-4) and (2-5) if one in addition places
equation (2-3) in (2-4):

-cosB 6B-coS 0sinh coS6(6 G +6A)-cosA cosBo60 &D 0 (2-6)

-cosAocosBo(6E+6T)+sinAosinBo6B-coshocOS6(6Gr+6A) 0 0 (2-7)

From thcse equations one obtains the onset for the conditional equations in
respect of the adjustment problem by introducing the vector c of inconsistency.
6B, 6T and 60Gr represent in this case the difference between the actual ob-
servations to one star at one instant and the approximate values which go into

. the coefficients of the conditional equations:

6B = B - B 0
constitute the vec-tor o6 obsevavtion = -6T

6T = T- TO
0  -B:> E{y} y -_ ..

6Gr Gr -Gr 
-6GJi

This iS taken into consideration in equations (2-6) and (2-7); these equations

are now remodelled:



- 1 4 -V WI VI V W'.a V
14'

-cOSos inhocos6•6A-cosAocosBo.•D-cosBo.•B-coSsinhocoS6 •

(2-8)
= +cosBo .6B+cos o sinhocoS6•6 eGr

-coshocos6.6A-cosAocosBO•6E-cosAocosB o.sT+sinAosinBo•s -6

(2-9)

-cosh o°S6" = cosAocosBO.6T-sinAo sinBo•6B+coshocoS.•eG.

If observations are carried out in respect of several stars the general re-

presentation for the Gaug-HetCmeApt mode2 of conditional equations with unknowns

is

Ax + Be = By- (2-10)

Equation (2-10) runs in the case of consistent approximate values (c = 0):

Ax + Be =B BE{} =Ax (2-11)

A and B are the coefficient matrices for all observations to all stars obser-

ved. In the case of three unknowns A,DE and of observations to n stars A

has the size 2n x 3 and B 2n x 3n and contain submatrices A. and B. for every

triplet of observations to every star:

A'

2x3

A2

2x3
A---' (2-12)

A3
2x3

B1

2x3

B3
2323 2x3' (213

I_ I

l4
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The elements ajk of the submatrices A. and the elements b.m of the submatrices
)

B. respectively are now introduced.J

In schematized form it, therefore, follows that:

a11 A+a126bB+ +b 3OGr -b 12 6B-b 1360Gr (2-14)

a2 6A+a 2 36E+b 2 CT+b22 B+b23 G = -b2lT-b22TB-b 23 60G (2-15)

In matrix form this then becomes:

6A ET  -6T

&D B -B (2-16)
L a,10 a 3b2 b 22 b 2 3- b 21 b 22 b 23- -

EE L8 -G r

"~ G1

':A~x. B. ., Bj (2-17)

No summation over the same indices!
.

Hence A and B. are

-cosDosinh 0coS6 -sin cosh oCOS6+COSo sin6 0

A. (2-18)
-coshocoS6 0 -cosAocosB

F0 -cosB -cos(Dsinh COS60 0 O0
B. =j(2-19)L -cosA 0cosB0  sinA 0sinB0  -coshocoS6

One perceives that a11 = b13, a21 = b2 3, a2 3 = 21

0
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2.2 The different types of observations

One can observe for eveAy star

a) vertical direction and time of observation or

b) horizontal direction and time of observation or

c) horizontal direction, vertical direction and time of observation or

d) horizontal direction and vertical direction (without time).

Case c) corresponds to the construction in (2-14) to (2-19). The other cases

are computed as follows. Thereby the starting point was taken as equation (2-6)

= I and equation (2-7) = II, because one is only interested in the respective

matrices A. and B..

2.2.1 Case a): Vertical direction and time

For every pair of observables (that is the vertical direction B and the side-

* real time eGr) one obtains one conditional equation of type I:

sinB = coScos(G +A-cx)cos6+sinDsin6 (2-20)

which gives in linearized form

-cosBo 6B-cos(osinhocoSs(6G +6A)+(-sin4ocoshocoS6+cososin)6p = 0 . (2-21)

Then the matrices read

B. = [b12  b 13= -cosB -cos 0sin( Gr0+A o-c)COS6] (2-22)3 2 13] 0 Gr

T. Aj 11 [l a12]a1  a9(2-23)

= -coso0sin(e Gr+A O-a)cos6 -sinoOS(OG r+AO-Ccos6+Cos4osin6]

G0 Q

F6B7 SAl
[b12  b13] + [a11  a12 = 0 (2-24)

66 r j otD t

For n pairs of observations one obtains the nx2 m~atrix A and the nx2n matrix B.
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2.2.2 Case b): Horizontal direction and time

SB must be eliminated in II. For that purpose equation I is solved for 6B:

b a a12
6B 66 t - b 6A -T- (2-25)

12 12 12

and this is then inserted into II:

b 1 3 ~ a 1 1 6 a 1 ( ~ E0( -6b 6T+(b23-b22 b-)66G +(a -b .b-)6A-b a a(
21 2 21 22 22 23

Thereby Bo must be calculated from equation I.0

Then the matrices read:

B. [ bb21  b b 1321 ]23 b2 2 F
12, (2-27)

= [-cosAocosB °  -coshocos6-sinAotanBocOSO sinhocoS6]

A [a b all - a 12 aA. = La21-b a11  -b22 b a2 3]

221 2  12

(2-28)

[ L-coshocos6-sinAotanBoCOSOsinh ocS6 -sinAotanBo(sin(ocoshocoS6-COS4osin6)

-cosAocosB-]

b 13 a11  a12
Lb21  b23 b22 1-- + a 2-b2 -b22 F a2] 23

2322 2 12 12 212 Gri (2-29)

For n pairs of observations one obtains the nx3 matrix A and the nx2n matrix B.
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2.2.3 Case c): Horizontal direction, vertical direction and time

Case c) is represented in equations (2-14) to (2-19).

2.2.4 Case d): Horizontal direction and vertical direction

soGr must be eliminated in II. For that purpose equation I is solved for 6eGr:

b 12 all a 12Gr 1368Gr = - 8- ^- (2-30)
13 13 13

and then this is inserted into II:

b a1  a
b-21 6T+(bb2 2  b 23 )6B+(a21  b 2 3 6+a 23 E 0 (2-31)

13131

As stated above a11 = b13, 21 = b

This yields

a1 = 0! (2-32)a21 - 23

13

From this one obtains the final conditional equation

br2 b2 3 )5B a12
b12  - 12 b23 +a z = 0 (2-33)

13 13

Hence it follows that A cannot be estimated. The reference of the Greenwich

meridian for aGr and as a result the longitude A is in principle chosen arbi-

trarily so that A is not definable withouttime a

Gr'i
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The matrices read

b
B. =[ 21  b22 2

13

- -cosA cosB sinA sinB + cosB 0  J
0 0 0 0 cos7anh0 0

1323 2

- tan(D0cosh 0coth 0cos6-sin~coth0  -cosA 0cosB 0

For n pairs of observations one obtains the nx2 matrix A and the nx2n matrix B.
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3. Numerical studies

3.1 The adjustment model

As shown in chapter 2 the observations and unknowns are connected with each other

in linearized form according to equation (2-10) or, in the case of consistent pa-

rameters, according to equation (2-11). This leads to the Gau3-Hefmeut model of

condition equations with unknowns:

Ax + Be = By (2-11)

i In the realized simulation calculations one is actually not interested in the es-
. timation of the unknowns x, but only in the accuwacy with which the unknowns can
4 be estimated dependent upon the actual configuration of the stars. Thus one is

only interested in the variance-covariance matrix of the unknowns. To determine
this matrix the coefficient matrices for the present case of observations are

first of all prepared: the parameter matrix A and the condition matrix B. Be-

sides this the variance-covariance matrix E, i.e. the dispersion matrix D(y)= Z

of the observation vector , has to be stipulated which is in general assumed to
be a diagonal matrix.

With this the normal equation matrix N can be calculated:

N = BEB (3-1)

Finally the variance-covariance matrix Q of the unknowns follows from that as

Q3M = [AN Al- [AT(BEBT)-iA]- ' (3-2)

'1 The square roots of the diagonal elements of Q are now the accuracies required

'* with which the unknowns can be determined.

3.2 Simulation calculations

Simulation calculations have been carried out for the four different possible cases
-A of observations of stars. Thereby the coordinates right ascension a and declina-

tion 6 of fictitious stars were determined in dependence on the sidereal time in
such a way that they approximately lay in defined directions as seen from the ob-
servation point. In accordance with this the simulation calculations were carried

out, whereby the results in the diagrams are linked to the respective star configu-

I

N-i



-21 -

rations as follows:

the stars which are observed here are positioned approxi-
mately in the meridian of the observation point, both in
the South as well as in the North (azimuth z 00 and 1800
respectively);

------------ the stars are positioned approximately in the first verti-
cal; this is the great circle through the directions East
and West (azimuth = 900 and 2700 respectively);

the stars have the hour angle h6 h and h=18 respectively,
i.e. considered in the equatorial frame they have the an-
gular distance ±900 from the meridian of the observation
point measured along a parallel of latitude;

this line contains stars which are distributed over the
whole firmament: meridian and first vertical;

the stars of this set of observations are located partially
inhthe meridian and partially they have the hour angle 6 and
18 respectively.

In the illustrations the mean errors (or standard deviations) of the unknowns as-

tronomical longitude A, astronomical latitude P and orientation unknown of the

theodolite E (as determinable in the different cases), which are to be expected,

are drawn in dependence upon different parameters. For the four different cases

of observations the accuracies in the determination of the unknowns are given first

of all in dependence upon the number of the observed stars and subsequently in de-

pendence upon the accuracy of the observations (horizontal and vertical direction

or time measurement); here the calculations were carried out with ten observed

stars.

For the calculation of the accuracy of the unknowns with the free parameter "num-

ber of stars" the accuracy of the observations has been supposed as:

horizontal direction : aT = I"

vertical direction : aB'= 1"

time measurement : a= 0.sec

The accuracy of measuring the vertical direction aB' is completed by the accuracy

of the determination of the refraction, which can be calculated in dependence upon

the vertical direction according to the equations in Appendix A.1. These results
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p

differ, however, only by a few hundredths of a second of arc from those, which

would follow when one neglects the inaccuracy of the refraction. In some illu-

strations the ordinate axis is drawn as a broken line. This means that the

scale in the upper part of the diagram does not coincide with the scale in the

lower part. The corresponding values are explicitly given.

The results shown in the different illustrations are strictly speaking valid only

for the "observations" which have been supposed here. They are certainly depen-

dent upon the constellation of the stars in the respective group of the observed

stars. The tendency of the results will be correct anyway.

3.2.1 Case a): Vertical direction and time

Of course only accuracies for longitude and latitude could be calculated here

because no horizontal directions were measured.

174;
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Fi g 2nd FUg. 3: Accuracies in dependence on the number of stars -2- 
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3.2.2 Case b): Horizontal direction and time

In the figures 8 to 10 the curves do not already begin with the observation of

two stars because there is only one condition equation available for every star;

thus at least three stars have to be observed.

E*1

10 S

. 8
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2 2'
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Figakes 8,9 and 10: Accuracies in dependence upon the number of+ stars
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Fowte4 11,12 and 13: Accuracies in dependence upon the accuracy of the measured
angles (10 stars, a = 0.1 sec)
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3.2.3 Case c): Horizontal direction, vertical direction and time

Figure 24 shows that in this case an inaccurate time measurement has hardly any

effect on the determination of the astronomical latitude (if a sufficient number

of stars have been observed).

Pteaze zee folowing page 6or figuAes 17 - 19.

"I
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3.2.4 Case d): Horizontal direction and vertical direction

As shown in 2.2.4 the astronomical longitude cannot be determined without measuring

the time; thus the accuracy of the longitude cannot, of course, be specified ei-
ther.

2.5 25S
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FiLg. 26 and Fige. 27: Accuracies in dependence upon the number of stars
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3.3 Coni r programmes

Two computer programmes have been developed in FORTRAN 77, which are implemented

in a PDP11/23+ computer. The first programme APPROX simulates the observation
of a star. After the input of approximate values for the astronomical longitude

and latitude of the observation point, the orientation unknown, right ascension
and declination of a star and the sidereal time the programme calculates consis-
tent values for horizontal and vertical direction with the equations (2-1) to

(2-3) and writes the complete data set for every star onto a data file APPVAL.
By choosing the respective parameters the observation directions required (see

3.2) can be computed.

The second programmie ASTRO calculates the accuracies with which the unknowns can
be estimated. In order to be able to do this it needs two data files as the in-

put:

accuacy e aelg acv. y of A.
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the first field contains the chosen data sets of the observed stars consisting

of the observations (according to case a) to d)) and the coordinates of the

star, right ascension and declination (the value in the cases a), b) and d),

which is not an "observation", i.e. horizontal direction, vertical direction

or time, completes the data set as an approximate value);

- the second file contains three approximate values for the unknowns A,D and E.

The values have to be written onto the file in the format deg(or h)'(or min)"

(or sec), for example 256 17 23.4 or 17 12 49.8. In Appendix A.2 the first pro-

gramme APPROX and the second programme ASTROC for case c) are listed.

ig

I
.4!
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APPENDIX

A.J The reduction of the observed vertical direction owing to refraction

4 A.1.1 The reductiun formula

The vertical direction B to a star is influenced by the astronomical refraction.

Therefore the measured vertical direction B' must be corrected by the value

of the influence of refraction:

B =B'-R (A-1)

R is the refraction, which is calculated by taking as a basis an atmospheric

model and using temperature and atmospheric pressure measurements. The first step

for calculation is the determination of the normal refraction R which is valid

for the following conditions at the observation point:

atmospheric pressure po = 760Torr = 1013,25 hpa

temperature to = 00C

vapour pressure eo = 6Torr

According to K. Ramsayer EHandbuch der Vermessungskunde, Band IIa: Geodatische

Astronomie, 1968, p. 115ff] the normal refraction can be calculated with high pre-

cision by the approximation

R0 = 60",1012 • cotB - 0",06483 - cot3B (B>200 ) (A-2)

This equation is based on refraction indices of the atmosphere which are calculated

for different altitudes with a mean distribution of atmospheric pressure and tem-

perature, which by the way is in good agreement with the U.S. Standard Atmosphere

1962.

In the second step there follows the reduction to another atmospheric pressure p
and to another temperature t at the observation point. The equation for this

reads as follows:

- .- ' I
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R = R o  •__ _ 273,15 (A-3)

and with the abbreviations

G= ha] K 273,15 (A-4)
1013,25hpa K 273,15t

is

R = R *G-K (A-5)

The reduction to another vapour pressure e is calculated as follows:

dR = -0 ,011(e-6) • K • cotB

or in consideration of equation (A-2)

dR =-0,00018 • Ro  K • (e-6) (A-6)

This reduction can generally be neglected.

A.1.2 The accuracy of the reduced vertical direction

The accuracy of the vertical direction depends firstly on the measuring accuracy

and secondly on the accurcy of the calculation of the refraction. This problem

will now be studied.

A.1.2.1Deviations.from the normal state of the atmosphere

According to K. Ramsayer the equation of refraction is valid:

n n0
R0  P(nO-1)cotB-cotB. . f h.d(-d-) + -P(no-1)2 cot3B

n
0

n

-cot B - f h.d(-2) (A-7)
a n

no0

with

p = (180-3600/r ["

°° 
'.W" - . v q 'VW YVWW3 -~v -- 3 > -<, ' ' , : ; :. ¢ ' ;, , ' ; -. ' , . : , , ; . - ' , ' ' , , 5
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no  = refraction index at the observation point

a = radius of the osculating sphere at the observation point ("earth radius")

n = refraction index of a stratum of the atmosphere in the altitude h.

In the case of the mean state of the atmosphere equation (A-7) yields with

P0 = 760,3Torr, to = 9,4°C, eo = 4,8Torr at the observation point the refrac-

tional value as follows:

R= 58",282.cotB-0",076.cotB+O",OO82.cot 3 B-O" , 0 762 -cot 3B . (A-8)

The comparison of equation (A-7) and (A-8) proves that the refraction primarily

depends on the refraction index at the observation point and that it is to a

large extent independent of the change of the refraction index which occurs with
the change of the altitude.

Supposing a horizontal and plane stratification of the atmosphere (a-) equa-

tion (A-7) yields

R0  0 (no)-tB (o12cot3B (A-9)

Equation (A-9) shows that in the case of this assumption (a- c) the refraction is

only dependent on the vertical direction and the refraction index at the obser-

vation point and is completely independent of the state of the atmosphere above

it. The fact that the state of the atmosphere does have an effect on the refrac-

tion all the same (in accordance with the integral terms in equation (A-7)) is

the consequence of the curvature of the optical strata of the atmosphere. The
integral terms have the following value for a mean state of the atmosphere

0",076.cotB and O",0762.cot B,

and for B>300 they reach an order of magnitude of only a few tenths of a second

of arc. Hence it follows with the assumption that the optical strata are concen-
tric spheres that even considerable deviations from the normal state of the at-

mosphere (for example caused by a temperature inversion in the lower strata)

can change the refraction at the most by 0",1 to 0",2.
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So an estimation for the loss of accuracy of the refraction because of the de-

viation from the normal state of the atmosphere might be

dR 01",05 • cotB (B>20 ° ) (A-1O)

or for the expected mean error of the determination of refraction because of

the deviation from the normal state of the atmosphere

m= ±0",05 - cotB (B>200 ) (A-11a)

This is equal to the standard deviation:

0= 0",05 • cotB (B>200) (A-11b)

A.1.2.2 Inclination of the strata and deviation from the spherical form
I

Most of the refraction theories postulate that the optical strata, i.e. the

strata with the same refraction index of the atmosphere, are concentric spheres

which are perpendicular to the plumb-line at the observation point. In reality

these assumptions are not exactly complied with. One has to rather reckon with

an inclination of the strata and a deviation from their spherical form.

An estimation of this influence yields

AR 0",084 - h[kmJ dT - cosec2B (A-12)

The altitude of adjustment h specifies up to which altitude one has to reckondT "
with an inclination of the strata. d is the horizontal temperature gradient.

S

From series of observations which Harzer ["Berechnung der Ablenkungen der Licht- I..

strahlen in der Atmosphare der Erde auf rein meteorologisch-physikalischer Grund-

lage", Publ. der Sternwarte in Kiel XirI, Germany, 1922-24] carried out,the influ-

ence of the deviation of the mean real optical surfaces from a concentric spheri-

cal form results in 0",01 for B = 700 and 0",06 for B = 300 respectively.

A valuation for this error might therefore be

02 = 0",015 "cosec2 B (A-13)

060 W M 5- ?-o 54i 60, 1 - - -'.
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A.1.2.3 The influence of the real water vapour pressure

The formula for the normal refraction uses a water vapour pressure of eo = 6Torr.
According to K. Ramsayer the influence of the real vapour pressure e is

AR = O"011(e -e).cotB . (A-14)0

e oscillates seasonably between 4Torr in January and 12Torr in August (in Germany!).

The influence thereby becomes

IARI : 0",07 • cotB (A-15)

Generally it can be neglected. The expected mean error or the standard devi-
ation could be stipulated to

C3 = 0",02 • cotB (A-16)

Hereby one supposed that in general e does not vary much from eO.

A.1.2.4 The influence of the wave-length of the starlight

The refraction is dependent on the wave-length of the light emitted by the stars.
The change of the refraction varies between +O",05.cotB (white fixed stars) and
-0",23.cotB (red fixed stars). Thus the colour correction amounts to some tenths
of a second of arc for B<45° in the case of reddish yellow to red stars, and
should, therefore, be allowed for when calculating the refraction. An estimation

for the mean error is, therefore, not made.

A.1.2.5 The influence of errors in the measurements

Finally, the influence of an error in measuring atmospheric pressure and tempera-
ture must also be considered. Starting from equation (A-3) one obtains the fol-
lowing when assuming the values R - 60".cotB, p = 760Torr,T = 2830K:

dR 0",079.cotB. dp - 0",212.cotB-dT (A-17)

The change to the standard deviation yields with a = 0,lTorr and = 0,10C

05 = cotB- 0,00792+0,02122 = 0",023.cotB (A-18)

".

' ''l'l " BI " ': ' -" . l t' l P~ Nrf'' : ' " ; ,_.5:,-. _ 4.'.,% :,' % , _, -, 4 '4 _.5 r. :4,5 :: S % r '4 ""%n '
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So the influence of an error in pressure and temperature can in general be ne-

glected.

A..2.6 Summary of the different errors

Summing up the proceeding influences on refraction this yields

R 0 2+ 2+ 2+0 2= 1 2  3 0 5

/[(0,05)2+(O",02)2+(O".,023)2]cot2B+(0",015)2cosec4B

and finally

R  = (0",06.cotB)2+(O,015-cosec2B)2 (A-19)

This error has to be added to the observational error a from which the standard

deviation of the corrected vertical direction B results:

o, = I2 + (A-20)
°B 0/ R

A.1.2.7 Comparison with series of observations

Im comparison with equation (A-19) the results of series of observations of meri-

dian vertical directions lasting one and two years carried out by J. Bauschinger

(1898) and L. Courvoisier (1904) are presented. Averaging the differences between

calculated and observed vertical directions one obtains

Bauschinger : v !/(O",31)2+(0.,0035-cosec2B)2  (A-21)

Courvoisier : 1 ,/(0",23)2+(O",032.cosec2B)2 (A-22)

The first terms in the square root denote the influence of the observation errors.

The second terms can be interpreted as the mean influence of the inclination of

the optical strata and represent here the real error of the determination of the

refraction. So the value in equation (A-13) assumed for the influence of the in-
'

5'
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clination of the optical strata lies between those values which were deducted

from observations in equations (A-21) and (A-22). The parts of the errors as

in equations (A-11) and (A-16) do not appear here since convenient conditions
were probably present for the observations. The part of the error from equa-

tion (A-18) could be eliminated by observing diametric stars lying more or less

in the same horizontal distance and by averaging these observations.

7-/
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A. 2 Programe listings

A.2.1 Programe APPROX

PROGRAM APPROX
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
REAL MM
CHARACTER*1 DUMMY
P1=4.*ATAN(1.)
OPEN (1. Fl LE=IAPP VALI .STATUS=' NEW')

1WRITE(5,100)
*100 FORMAT (5X,'astronomical longitude (deg "N'

READ(5,*)G,BMBS
CALL OUT(GBMBS,AL,l)
WRITE(5,101)

101 FORMAT5M, 'astronomical latitude (deg IT
READ(5,*)G,BM,BS
CALL OUT(GBMBSAB,2)
WRITE(5,102)

102 FORMAT (5X,'orientation unknown (deg"
READ(5,*)G,BM,BS
CALL OUT(C.BM,BS,OU,3)
WRITE(5,103)

103 FORMAT5M, 'right ascension (h min sec)')
* READ(5,*)H,MMSS

CALL OUT(H,MMSSRA,4)
WRITE (5,104)

104 FORMAT5M, 'declination (deg
READ(5,*)G.BM,BS
CALL OUT(G,BM,BS.D,5)
WR I T E (5,1 05)

105 FORMAT (5X,'Greenwich sidereal time (CAST) (h min sec)')
READ(5,*)H,MMSS
CALL OUT(H,MMSSTH,6)
SINB=DCOS(AB)*DCOS(TH+AL-RA)*DCOS(D)+DSIN(AB)*DSIN( D)
B=DASIN(SINB)
SINAZ=..DSIN(TH+AL-RA)*DCOS(D)/DCOS(B)
AZ1=DASIN(SINAZ)
COSAZ=(DSlN(AB)*DCOS(TH+AL-RA)*DCOS(D)-DCOS(AB)*DSlN(D))

+ /DCOS(B)
AZ2=DACOS( COSAZ)
IF(SINAZ.GE.0..AND.COSAZ.GE.0.) AZ=AZ2
IF(SINAZ.GE.0. .AND.COSAZ.LT.0.) AZ=AZ2
IF(SINAZ.LT.O. .AND.COSAZ.LE.O.) AZ=2.*PI-AZ2
IF(SINAZ. LT.0.. .AND. COSAZ. GT.O.) AZ=2.*PI-AZ2
T=AZ-OU
IF(T.LT.0.) T=T+2.*Pl

C Output to the terminal
WRITE(5,(///,5X, "longitude: I,F12.6, I deg")' AL*180./PI
WRITE(5,(5X, "latitude:",F12.6," deg")) AB*180.IPI
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WRITE(5,'(5X, "orientation unknown:", F12.6,' deg'))
-'+ OU*180. /P I

WRITE(5,'(5X. "right ascension: "IF12.6,11 hII)' )RA*180. /15. /PI
WRITE(5'(5X, "declination: ",F12.6," deg")') D*180./PI
WRITE(5.'(5X, "sidereal time: I,F12.6" 11 WIN TH*180./15.IPI
WRITE(5'(5X, "vertical direction: IIF12.6. " deg" )')B*180. /PI
WRITE(5,'(5X. "horizontal direction: I,F12.6. " deg").)

+ T*180. /P I
WRITE(5,'(5X, "azimuth:", F12.6, " deg")' AZ*180. /PI
WR ITE(5'(5X"sin (azimuth):",.F12.6) 1) SINAZ
WR ITE(5A5X "cos (azimuth):'.F1 2.6) 1) COSAZ
B=B*180./PI
T=T*180./PI
AZ=AZ*180. /P I
I G=INT (B)
IF(B.LT.0.) IG=-IG
BM=ABS(B-IG)*6O.

A IBM=INT(BM)
BS=(BM-IBM)*6O.
WR ITEC 1.106 ) G. IBM. BS

106 FORMAT (5X'vertical direction:', 14, 'deg', 13, "F5. 1 ,"
I G= INT (T)
BM=(T-lG)*6O.
IBM=INT(BM)
BS= (BM- IBM) *60.
WR ITE( 1, 107) IG. IBM, BS

107 FORMAT(SX'horizontal direction:', 14, 'deg', 13,""F5. 1,""
IG=INT(AZ)
BM=(AZ-IG)*60.
IBM=INT(BM)
BS=(BM-IBM)*6o.
WR I TE (1, 108 ) 1 G, IBM, BS

108 FORMAT M, 'azimuth: 1, 14, 'deg[, 13,""F5. 1,""
WR ITE (1'(5X, "sin (azimuth): ",F1 2.6,5X, "cos (azimuth):"

+ F10.01') SINAZ.COSAZ
WRITE(5,'(5X, "Should a new data set be calculated (YINU ?

+ I'))

READ(5,'(A1)') DUMMY
IF(DUMMY. EQ.'Y'.OR. DUMMY. EQ. Iy'.OR OUJMMY.EQ.1) GOTO 1
STOP
END

C
C
C
C
C

2 2 2 Q SL% 2
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SUBROUTINE OUT(G.BM,BS.RET,N)
DOUBLE PRECISION G,BMBS,RET,Pi

C Output to the data file APPVAL
Pk=4.0*ATAN( 1.0)
IG=INT( C)
IBM=INT(BM)
IF(N.GT.1) COTO 10
WR ITE( 1, 200) IC, IBM, BS

200 FORMAT(/ /I,5X, 'astronomical longitude: ', 14, 'deg', 13.,
+ FS.1,."')

RET=(G+BM/60.+BS/3600. )*PI/1lao
COTO 60

10 IF(N.GT.2) GOTO 20
WR ITE( 1.201) IC .IBM. BS

201 FORMAT(5M, 'astronomical latitude:', 14,'deg', 13,"" F5. 1,')
RET=(G+BMI6.+BS/3600.)*P11180.
GOTO 60

20 IF(N.GT.3) GOTO 30
WR ITE( 1, 202 ) IG, IBM, BS

202 FORMAT5M, 'orientation unknown:', 14,'deg', 13,"", F5. 1,""
RET=(G+BM/60.+BS/3600. )*Pl/18o.

30 OTO 60
30 IF(N.CT.li) GOTO 40
WR ITE( 1.203 ) IC, IBM, BS

203 FORMAT I5X. right ascension:', 14,'hW, 13, 'min', F5. 1,'Isec')
RET=(G+BM/60.+BS/3600.)*PI/180.*15.
GOTO 60

40 IF(N.GT.5) COTO 50
WR ITEC 1.204 ) IG, IBM, BS

204 FOR MA TM 'decl ination:',14,'deg ', 13,""F5. 1,""
R ET= (G+BM60. -BS /3600. )P I /180.
GOTO 60

50 CONTINUE
WR ITE( 1,205 ) IC. IBM, BS

205 FORMAT (5X, 'Greenwich sidereal time:', 14,'h', 13,'min',F5. 1 'sec')
RET=(G+BM!60.+BS/3600. )*15.*Pl/18o.

60 RETURN
END

7'
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A.2.2 Progranme ASTROC

PROGRAM ASTROC
REAL MM
PARAMETER (KK=1O)
DIMENSION SIGMA(3*KK),U(3),DISP(3,3)
DIMENSION Y(KK,3),SIGY(3*KK,3*KK),A(2*KK,3),

+ B(2*KK,3*KK),BT(3*KK,2*KK),AT(3,2*KK),RN(2*KK,2*KK),
+ ATN(3,2*KKLHILF(2*KK,3*KK),NUM(2*KK),D(2*KK).+DELTA(KK),
+ ALPHA(KK)

CHARACTER FRAGE*1
DATA RN/L&O*.DO/

C
C

CHARACTER *25 FNAME1,FNAME2
-~ LOGICAL LOG

C
C
C

H=O.
G=O.
MM=O.
BM=O

BS=O. -

PkL4.*ATAN(1..)
WRITE(5'(/f,5X, "name of the data file?'1 )'
READ(5, '(A25)' )FNAME1
WR ITE(5'(/I,5X, "name of the file with the approximation values",

+ "' for the unknowns ?'')')
READ(5,1 IA25)' )FNAME2
WRITE(5'(//,5X, "accuracy of horizontal directions ")?"1))
READ15, *) BS
GHR=BS
CALL DEZIG(G,BM.BS,SIGMA(l))
CALL RADI (SIGMA (1), PH
WRITE(5,'(//,5X, "accuracy of vertical directions()?")
READ(5,*)BS
GHD=BS
WR ITEl 5,'(/ / ,5X, "consideration of the accuracy of refraction",

+ '' (YIN) ?'"N'
READI 5. '1Al)' )FRAGE
WRITE(5,'(//,5X, "accuracy of time observations (sec) ?"1)')

READ(5,*)SSI
CALL DEZIH(H,MM,SS,SIGMA(3))
CALL RADI(SIGMA(3),P1)

AC
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C
C

OPEN (1, .FI LE=FNAME1 . ACCESS='SEQU ENT IAL, ,STATUS='OLD')
OPEN (2, FlI LE=FNAME2, ACCESS='SEQU ENT IAL', STAT US=QOLD')
OPEN (3, Fl LE='OUTC. DAT' ,STATUS='NEW')

C
C
C

READ(2,*)G,BM,BS
IG=INT(G)
IBM=INT(BM)
CALL DEZIG(GBMBSU(1))
CALL RADI(U(1LPIJ
READ(2,*)G,BM,BS
IG=INT(G)
IBM=INT(BM)
CALL DEZIG(GBMBSU(2))
CALL RADI(U(2),PI)
READ(2,*)G,BMBS
IG=INT(G)
IBM=INTf BM)
CALL DEZIG(GBMBSU(3))
CALL RADI(U(3),PI)

C
C
C
C
C

WRITE(3,700)
700 FORMAT(/III,5X , 'observations', / ,5x, 'turn: horizontal '

+ 'direction '.-'(deg-")', /.,1 ix, 'vertical direction 1
+ ' (deg-"-")',I 11 X, 'sidereal time (GAST) (h-min-sec)',
+ I .11X'and,/,1lX,'right ascension (h-min-sec)',/,11X,
+ 'declination (deg-"-")

K=1
25 REAb(1,*,END=20i

K=K'-1
GOTO 25

20 K=K15
REWIND I

C
C

DO 10 i=1,K
WRITE(3,f/)')
DO 30 1=1,2
READ( 1,*)GBM..BS
IG=INT(G)
IBM=INT( BM)
WR ITE( 3, 800 ) IG, IBM, BS

800 FORMAT5M, 14, 'deg', 13,""F5. 1,""
CALL DEZIG(G,BM,BS,Y(J,I))
CALL RADI(Y(,l),PI)
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IF(I.EQ.2) THEN
B3S=SQRT(GHD*GHD+(.06/ FAN(Y(..)))**2.+

+ (0.015/ (SIN (YO, I)))**2. )**2.)'9TE
I F (FRAGE. EQ. I'N. OR . F RAGE.- EQ. 'n'. . FR A GE. EQ. 0 TE
BS=GHD
END IF
CALL DEZIG(0.,O..BS.SIGMA(3*(J-1)+2))
CALL RADl (SIGMA 3*(J-1)+2). PI)

ELSE

ENDIF
30 CONTINUE

READ(1,*)HMMSS
IH=INT(H)
IMM=INT(MM)
WRITE( 3. (5X, 14,. 11h", 13, ''min', F5. 1, 'sec"') 'I H, IMM,SS
CALL DEZIH(H,MMSSY(J,3))
CALL RADI(Y(i,3),PI)
S IGMA (3*WJ-1) )+3) =S IGMA (3)
READ(1,*)H,.MM. 55

4 IH=INT(H)
IMM=INT(MM)
WR ITE( .'(5X,1I4, "h'', 13, ''min'', F5 .1 ,"'sec'') )1H, IMM,SS
CALL DEZIH(H,MM,SS,ALPHA(J))
CALL RADI (ALPHAJW, PI)
READ(1,*)G,BM,BS
IG=INT(G)%
IBM=INT(BM)
WRITE(3.800)IG. IBM..BS
CALL DEZIG(G, BM, BS, DELTA(W)
CALL RADI(DELTA(J),Pl)

10 CONTINUE
WRITE(3,801 )GHR

801 FORMAT( , 5X, 'accuracy of horizontal directions:'1,F6 .2,
+ fill)

WRItE(3,802)GHD
802 FORMAT5M, 'accuracy of vertical directions (observations):

+ , F6.2,""
WRITE(3,803)GZ

803 FORMAT(5M, 'accuracy of time observations: ',F6 .2, 'sec')
C
C
C

DO 11 1=1,3*KK 0
DO 11 J1,3*KK

11 SIGY(l,Jk=O.
DO 12 lzl.2*KK
DO 12 J=1,3

12 A(I,i)=0.
DO 13 Iz1,2*KK
DO 13 J=1,3*KK

13 B(I,J)=0.
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DO 14 1=1,3*K
14 WRITE(3,*)SIGMA(I)*180./PI*3600.

CALL SIGMAS(SIGY,KKKSIGMA)
C SIGMA =vector of the standard deviations of the observations (in (rad))
C SIGY =matrix of the variances of the observations

* FAKTOR=SIGY(1.11
DO 32 1=1,3*K
DO 32 J=1,3*K
SIGY(IJ)=SIGY( I,J)/FAKTOR

32 CONTINUE
CALL AMAT(A.Y, UKK, KALPHA, DELTA)
DO 40 kl.,2*K
WR ITE( 3.300 )( A( I.M),.M=1,3)

300 FORMAT M, 3F18.12)
40 CONTINUE

CALL BMAT(BY, UKKK, ALPHA, DELTA)
1=0
DO 41 J=1,2*K-1,2
WRITE(3,300)(B(JI*3+M),M=1,3)
WRITE(3,300)(B(i+1,. I3+M) .M=1 .3)
WRITE(3.'(/)

41 1=1+1
C
C
C

CALL MATMUL(B,2*KK,2*K,3*KK,3*K,SICY,3*KK,3*K,3*KK,3*K.
+ HILF,2*KK,2*K,3*KK,3*K)

DO 50 1=1,2*K
DO 50 i=1,3*K

50 BT W, 1=13(1, J)
CALL MATMUL(HILF,2*KK,2*K,3*KK,3*KBT,3*KK,3*K,2*KK,2*K. RN.

+ 2*KK,2*K,2*KK,2*K)
*C normal equations matrix

WRITE(3'(5X, "matrix B*SIGY*BT:eI)I)
DO 51 112*K

51 WRITE(3401)(RN(IJ),i=1,2*K)
CALL INVER2(RN,2*K, NUM, LOG, D,2*KK)
WRITE(3,I(5x, "determinant of (B*SIGY*BT):II.

+ 3XE18.10)1)D(1)
WRITE(3,'(5X, "matrix (B*SIGY*BT) -1:11)
DO 52 1=1,2*K

52 WRITE(3,401)(RN(I,J),J=1,2*K)
401 FORMAT(8E15.6)

DO 60 1=1,2*K
DO 60 J=1,3

60 AT(J,Ik=A(IJ)
CALL MATMUL(AT33,2*KK,2*KRN,2*KK,2*K,2*KK,2*KATN,3,3.

+ 2*KK,2*K)
CALL MATMUL(ATN,3,32*KK2*KA,2*KK2*K,3,3DISP,3,3,3,3)
CALL INVER2(DISP,3, NUM, LOG, D,3)
WR ITEt3't5x, "determinant of (AT*( (B*SIGY*BT) -)*)

+ 3XE18.10N'D(i)
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C
C

C variance-covariance-matrix of the unknowns
DO 70 1=1,3

70 WRITE(3,500)(DISP(IJ)*FAKTOR,J1,3)
500 FORMAT(3F22.16)

DO 90 1=1,3
DISP(1,l)=SQRT(DISP(l.I))*180./PI*SQRT(FAKTOR)
DISPH 1)=DISP(1,1 )*3600.

C standard deviations of the unknowns (in seconds of arc)
90 WRITE(3,600) DISP(I,I)

600 FORMAT M,.F12.4,1 111)
STOP
END

C
C
C
C

SUBROUTINE DEZIG(GBM,BSRET)
~1C DEZIG transforms the input (degree,minute of arc,second of arc)

C into a decimal value (degree)
RET=G+BM/60 .+BS/3600.
RETURN
END

C
C
C

SUBROUTINE DEZIH(H,MMSS,RET)
C DEZIH transforms the input (hour,minute of arc,second of arc)
C into a decimal value (degree)

REAL MM
RET=(H+MM/60.+SS/3600. )*15.
RETURN
END

C
C
C

SUBROUTINE RADI(RETPI)
C RADI transforms from (degree) to (rad)

RET=RET*Pl/180.
RETURN
END

C,V C
C

FILM' ' 4 *
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SUBROUTINE SIGMAS(SIGY, KKK, SIGMA)
C SIGMAS constructs the variance-covariance-matrix of the observations

DIMENSION SI GY(3*KK, 3*KK), SIGMA3WK K)
DO 10 Ib13*K
SIGY(I,I)=SIGMA(I)*SICMA(I)

10 CONTINUE
RETURN
END

C
C
C

SUBROUTINE AMAT(A, Y, UKK, KALPHA, DELTA)
C AMAT constructs the matrix A

DIMENSION A(2*KK, 3), Y(KK, 3) U(3,ALPHAWKKL DELTA (K K)
* J=1

DO 10 I=1,2*K-1,2
A (1,1)=-COS(U (2)) *SIN (Y (0+1 )/2,3)+U(1 )-ALPHA M) *COS (DELTA M)
A (1,2)=-SI N(U (2))COS(Y ((1+1) /2,3)+U (1) -ALPHA (J))*COS(DELTA M)

++COS(U (2))SI N(DELTA(M)
J=J+1

10 CONTINUE
J=1
DO 20 1=2,2*K,2
A (1,1) =-COS(Y (I /2,3)+U (1 )-ALPHA M))*COS(DELTA W)
A(i.3)=-CQS(U(3) Yl/2. 1))*COSfYII/2,2))
J=J+1

20 CONTINUE
RETURN
END

C
C
C

SUBROUTINE BMAT(B, YU, KK, KALPHA, DELTA)
C BMAT constructs the matrix 8

DIMENSION B(2*KK,3*KK)LY(KK,3),U(3),ALPHA(KK),DELTA(KK)
1=0
DO 10 J=1,2*K-1,2
B 0, 1*3+1 ) =0.

B (J.I*3+3)=-COS(U (2)) *SIN (Y (1+1, 3)+U (1) -ALPHA (1+1))
+ *COS (DELTA (1+1))

1=1+1
10 CONTINUE

1=0
DO 20 J=2,2*K,2

B(J.I*3+2)=SIN(U(3)+Y(I+1,1 ))*SIN(Y(1+1,2))
B(J. I*3+3)=COS(Y (1+1, 3)+U (1) ALPHA (+1)) *COS (DELTA H +1))

20 CONTINUE
RETURN

END KAI
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C

C
C

SUBROUTINE MATMUL( RM1,NDZ1,NZ1,NDS1,NS1, RM2,NDZ2, NZ2,
+ NDS2,NS2,RM3,NDZ3.NZ3.NDS3,NS3)

C MATMUL executes the product of two matrices
DIMENSION RM1(NDZ1,NDS1),RM2(NDZ2,NDS2),RM3(NDZ3.NDS3)
DO 10 I=I,NZ3
DO 10 J=1,NS3
RM3II.J)=0.
DO 10 I1=1,NS1RM3(i.J)=RM3(I,J)+RM1(1,1I )*RM2(II,J)

10 CONTINUE
RETURN
END

C
C
C

SUBROUTINE INVER2 (B,NNUM,LOG,D,NA)
C INVER2 executes the matrix inversion

DIMENSION B(NA,NA),NUM(NA),D(NA)
C

CALL NORMEN (BN,N,ZBSBQB,AB,NA)
C

DO 1 1=1,N
1 NUM(I)=o

DET=I.
DO 2 L=1,N
DO 3 M=l,N
IF (NUM(M).NE.0) COTO 5
D(M) = ABS (B(MM))
GOTO 3

5 D(M) = 0.
3 CONTINUE

11 =.1 ,

DO 6 12,N
IF (D(I1).LT.D(I)) 11=1

6 CONTINUE
IF (D(I1).GE.l.E-30) GOTO 31
NUM (11) = L
GOTO 2

31 NUM (11) = L
DO 10 J=1,N
IF (J.EQ.11) GOTO 10
DO 13 I=1,N
IF (I.NE. I1) GOTO 20'"! Dill) = B(I1,J)/BIII1)

GOTO 13
20 D(I) = B(I,J)-B(I.I1)*B(I1,J)/BI1,I1)
13 CONTINUE

DO 14 I=1,N
14 B(I,J) = DI)
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10 CONTINUE
H = 1301,11)
DET = DET*H
DO 15 1=1,N
IF (I.NE.I1) GOTO 17

GOTO 15
17 130,I1) = -B(I.I1)/H
15 CONTINUE
2 CONTINUE

K=O
DO 18 1=1,N

18 K=K+NUM(Ii
KV = (N*(N+1))/2
LOG = FALSE.
IF (K.EQ.KV) LOG=.TRUE.

C
CALL NORMEN tB,N,N,ZB1,SB1,QB1,AB1,NA)
IF (N.GE.6) D(6)=AE.*AB1
IF (N.GE.5) D(5)=QB*QB1

- IF (N.GE.4) D(4)=SB*SB1
IF (N.GE.3) D(3)=ZB*ZB1
IF (N.GE.2) D(2)=1/DET
D(1)=DET
RETURN
END

C
C
C

SUBROUTINE NORMEN (AN,M,Z,S,QAG,NA)
DIMENSION A(NA,NA)

-s C
z=o
DO 1 J=1,N
zS=0
DO 2 K=1,M

2 ZS=ZS+ABS (A (JK))
IF (ZS.GT.Z) Z=ZS

1 CONTINUE
C

S=0
DO 3 K=1,M
ss=0
DO 4 i=1,N

4 SS=SS+ABS(A(J,K))
IF (SS.GT.S) S=SS

3 CONTINUE
C

Q0O
DO 5 i1.,N
DO 5 K=1,M

5 Q=Q+A (J, K) **2



Q=SQRT (Q)
C

AG=O.
DO 6 J=l, N
DO 6 K=1,M
AB =ABS (A(i.K))
IF (AG.LT.AB) AG=AB

6 CONTINUE
RETURN
END


