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0. Introduction

\T£>The traditional task of geodetic astronomy as seen from the viewpoint of prac-
tical geodesy is the determination of three spatial orientation parameters of
a vertically set up observation instrument relative to a global reference frame
fixed in the earth. For this horizontal and vertical directions are measured
at registered instants tc stars, whose coordinates are assumed to be known in

a space fixed reference frame; the time dependent orientation of which, rela-
tive to the earth fixed frame, is also presumed to be known.

> The required parameters are the xstronomical Longitude A’and the astronomical
laiiiude-@f'which fix the direction of the local gravity vector relative to the
earth fixed reference frame, and the horizontal orientation unknown .p of the in-
strument, which yields the astronomical azimuths A in connection with the mea-
sured horizontal directions to terrestrial objects.

A spatial reference frame is here understood as a triad of orthonormal base vec-
tors, which is fixed to a distinct origin point and which is taken as being ro-
tationally and translationally invariable in time. -

The models used traditionally in geodetic astronomy are described in the stan- -
dard textbooks (for example, K. Ramsayer, 1970, see Appendix A.1) mainly by
making use of spherical trigonometry. >The presentation used in this report is
based upon orthonormal triads of base vectors of different reference frames. A
compact and strictly systematical presentation is obtained by a commutative dia-
gnam of transformations between the respective bases, which is introduced in
chapter 1 %rFundamental relations between the parameters of geodetic astronomy
result from this commutative diagram. ~Tn chapter 2 these relations are trans-
formed after the linearization with suitable approximate va]ues‘Tnjﬁuch a way
that a system of condition equations with unknowns ensures, the Gaup-Helment
model of the adjustment calculation. \ This system is specified for different
combinations of observations. In chaﬁter 3 the accuracies in the determination
of A,9 and T, which are expected for different configurations of stars, are es-
timated in simulation studies according to the GauB-Helmert model and then the
results are illustrated in diagrams.
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The underlying principles for this report were taken from the dissertation of
B. Richter, “Entwurf eines nichtrelativistischen geoddtisch-astronomischen
Bezugssystems", Deutsche Geoditische Kommission Heft €322, Munich, 1986, and
from the manuscript of the lecture "Geodetic Astronomy", which B. Richter
gives at the University of Stuttgart, Federal Republic of Germany.
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1. Relations between the reference frames in geodetic astronomy

First of all in this chapter the fundamental relations in geodetic astronomy
between observations, unknowns and given coordinates shall be derived which
will be needed further.

1.1 The systematical structure of the reference frames

The reference frames used in geodetic astronomy may be arranged on different
levels which are numbered in turn or indicated by symbols: 0 corresponds to ',
1t to*, 2to-, 3 too. One fundamental vector yi belongs to every level i.

In details this is as follows:

Vi=V' =12 the position vector from the point of observation to
- the target object (terrestrial or celestial), which is
generally a star;

Py

the negative gravity vector;
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=V =Q the earth rotation vector (it has the direction of the
- axis of the earth, points to the North Pole and has the
value of the earth rotation rate);

the ecliptic normal vector (it points to the northern
"~ pole of the ecliptic).
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An orthonormal reference frame gt belongs to every level with its base vectors
as follows: B

m
[N
L}

norm !i : (1-1)

m
-
[}]

<2 norm (!i+1 X Yi) (1-2)

Ey = E xEj (1-3)

m
-
1]

Here "norm" denotes the abbreviation for the normalization of a vector, and "x"
the vector product.

New reference frames are at the lower end the observational frame E' of the level
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"0", whose third base vector is located in the direction of the observation and
which is unique since it is not a reference frame in the literal sense, because
there are no vectors described with regard to this frame, and at the upper end
the ecliptic frame §°, which has hardly any practical importance.

In addition to the systematical E- triads, F-triads also appear on each level.
These systems have the common th1rd base vector with the appertaining E -frame,
nevertheless the direction of the first and second base vector does not follow
from the systematic structure of the fundamental vectors yi, yi+1
more or less arbitrary definition.

, but from a

A new F triad is the theodolite frame F* whose first base vector F , lies in
the d1rect1on "zero" of the azimuth c1rc]e of a theodolite which is set up in
the astronomical horizon. The longitudinal angle (see below) of an observed
direction in the local horizon frame is the horizontal direction T and is re-
corded systematically 4n the clockwise direction, but conventionally counten-
clockwise, Ts = —Tc. The latitude angle (see below) is the vertical direction
as in the horizon frame E*.

The transformation from a frame E to the appertaining frame F is always a
counter-clockwise rotation round the common third axis with the orientation
angle HE
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R, is the rotation matrix, which describes a rotation of a frame round the

third axis. It is
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Corresponding to eqn. (1-5) the rotation matrices for the rotations round the
first and second axis read
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R (a) = 0 cosa sina (1-6)
| 0 -sina cosa J
[ cosB 0 -sian

R,(8) = 0 1 0 (1-7)
i sinB 0 cosB_

R,» R, and R, are also called elementary rotations. The orientation angles Ht
(see eqgn. (1-4) ) are in detail:

H =H* =1L the orientation unknown of the theodolite which has
been set up;
H2 = H. = 8 the Greenwich sidereal time;
Gr,s
H3 = KO the angle between the line of intersection of the eclip-

tic with the mean galaxy plane and the direction to the
vernal equ1nox +90°,

For the transformation from a frame Ei+1 to the underlying frame E one needs

the long1tud1na1 angle x and the 1at1tude angle ¢‘ of the fundamenta]
vector V' with regard to the frame El+1

i+l _

i_ o_al i+1
E' = R,(90°-07, ) R,(x; = Re(X[,, 505, 0)E

)

1t m

i+l

(1-8)

i+l
RE(X1+1’ J.+1)E

R is the special case of a rotation matrix of Eulerian type, in which the three
elementary rotations are connected in a row as follows:

first rotation round the third axis, 83(y1)

second rotation round the new second axis with the angle (90°-8),R (90°-B)

third rotation round the new third axis, 83(y2) .

b

BT w A e,

~3|

-

(|
b ¢

.z . [, SUp PR Ty P ™ -y EmyT A Pty , " 'i‘
-,""n -.‘.‘\'i 1'-‘,.‘0.0'? c" -)'l.o ..!.'u .‘d“."‘-t"-."\ﬁhq!.‘d.'ﬂ.’\".c‘ »'-..0 ..!...A‘c l’"l'n !.!.t.- UL o 408,50 w (354 ) -.' M Ly I‘n "l : '! Cot \(' ‘..' ¥ ' .’ ') w Y



o e e DO IR £ 75573 R RSSO G == L P el icdut il OECA AR DOCEC A, OO A A A A
: S
swe1}
€~ T~ 1 -~ o~ z~ ~ €~
axh @ ="'d A¢>xm>vsuo= = "% v>Euoc = g AxeTeb sbeaaae
= 14
vm
eu 8AUOD
xoutnbs (TRUOT3IUDAUOD) - e .- AmmeMmA ot3drTo® 8yl (TeoTIRWDISAS)
I~ aurex3 Teotadiioe omuxo 9=°49 apexane ayl uTr) jo ajod uxsyjiou | swexl Teo13dTIOA
euxan ‘° =~ ~ o~ ~ ~ ~ = ~
1 4 od A9x¢>veuoc = omm Aurou = omm od A ° £
ueTpTIOW (yaxes
3y ur pPIXTI) (9oeds ut pox13)
YO TMUIDIAD e~ .z~ 1~ xoutnbs uumine at1od yzaou
surex3y terIozenbas | *tax*vy = *'3x swexl Tetzozeunbs
P o < ~ o~ ~ ~ ~ = ~
U3 ur J e (z5%h) wrou = 23 IOU = £ 3 ) . z
y3nos ases yatuez auwexl TeIVOZTIOY
93 T1OpPO =] o
ITTOPOSYl 3yl I ouexz
9TOITO ynuwrze ~ ~ ~ ~ ~ - ~ - =
T 4 837T0PORY3 *ax*ly - *lg (1) xpyuzou = *&3 (T-)uzou = *t3 »d
wﬂ.\# MO :OHQN: = ’
I~ «d ..IHI 1
votyoaxtp ‘*'a *
(sueid UOT3IDIITP surexy
.mmx_mm = .ﬁm Te3uozTIoy 8yl ut) | TPUOTIBAIISO TRUOTIRAXSSCO
Amxpnveuoc = .Nm 7 wIou = .mm .w m . 0
= = Hh
= aurex3-J = od = uexy-J m ®
awexj-4 ¥yl 3Jo swexi-g ay3l Jo swexz-d aya Jo auexy-g ayy jJo Y =
sy3 jo aureu sya jo auweu o g .W <
Io300a aseq 1 I03089A @seq °1 I030°2A 9Seq ‘2 I0309a @seq °f oo 9 e
pue UOT3Ie3ON pue UOTJIBION | - .
ol
Salledy; 3duaLajas 4 pue 3 Ul [ 29Vl
< Ay

[RET 1
STy Ly
PR LY

I

. .,‘:
RABSRETAS

)

N
-
"

X

.
i

IR
AOHNGHSS

!

o .y
i A 0-|Q.I.

LR} » b
L o bV

0'.0

R -
W REST,

SO

n
i

.
WA ST e

OOCOUNOOUDUDAN IO

’

v A
At

*
W

DRI N



rea
-

T T

Ty

p,’L’ :?J' e .*.,,.:o'(.‘-:- e

<
-
Y
LS
-
P
¥
T2
P
T

M 3 X
B T

?ﬁ.

D "',t\’ A \‘. ‘,

In the matrix R the second rotation round the second axis would take place
with the angle 8,R,(8).

These longitudinal and latitude angles are in detail:

x? = X, = As the azimuth of the observational direction;
Q? = ¢ = B the vertical direction

x; = x¥ = 6 the sidereal time

¢; = 0% = ¢ the astronomical latitude.

For the transformation from a frame EX*? to the frame F* lying diagonally under-

neath, one needs additionally the orientation angle Hi—(see Fig. 1):

ke
-

_ i i iy-i+1 _
For the transformation from a frame Fi+1

neath, one needs the ]ong1tud1na1 ang]e At i1
fundamental vector V with regard to the frame F

to the frame E lying diagona]]y under-
and the 1at1tude angle @ of the

i+l |
i _ i i i+l -
'BﬂAu1&y4E . (1-10)

The latitude angles are the same as above, the longitudinal angles are in de-
tail:

Af = A, =T the horizontal direction of the observation direction,
systematically measured counter-clockwise, conventionally
in the clockwise direction, Ts = -TC;

A2 = A* = A the astronomical longitude;
2 e
A3 = Ao = 90°
and
¢§ = ¢; = 90°-¢ the orthogonal complement to the inclination of the

ecliptic.
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lTevel 5

level 4, mean galaxy frame

level 3 (°), ecliptical frame

level 2 (°), equatorial frame (fixed in
space, fixed in the earth)

Tevel 1 ('), horizontal and theodolite
frame

Commutative diagram with reference frames in geodetic astronomy
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For the transformation from a frame Fi+1 to the underlying frame Fi, one

needs additionally the orientation angle H': 3
o3 _ i i iypitl -
Foo= Ro(Ay 07, oHF (1-11)

The transformation in the opposite direction results from the respective trans-
posed of the rotation matrix.

1.2 The commutative diagram and the fundamental equation of geodetic astronomy

In the rotations introduced up to this point the right ascension a and the de-
clination § are still missing; these describe the observation direction E.
to a star with regard to the space fixed equator frame, namely in the same way
as A and B do this with regard to the horizontal frame. Indeed, the rotation
BE(a,d)g' does not lead to the frame E'; in E"= BE(a,6)§° the second base vec-
tor Ez“ lies in the equatorial plane, but in E' the vector Ez' lies in the hori-
zontal plane (east). Of course E' and E" have the common third base vector,

but they differ by a rotation round this vector with an angle £ :

E' = Ry(8)E' . | (1-12)

A serial connection of several transformations is called a diagram in the alge-
bra. If the transformations which have to be reversibly unequivocal, form a
closed circle, this is called a commutative diagram. Then one is able to express
a transformation by means of the others. Such a commutative diagram is presen~
ted in Fig. 1 by the lines which are thickly marked. For example the trans-
formation E* ~ E' can be expressed by

E' = Ry(T,B)R,(Z)E* (1-13)
or
E' = R3(E)R(a,6)R3(0: IRE(A,0)EX (1-14)

As the representation of the triad E' with regard to the triad E* is unequi-
vocal, it follows that: B -



Re(T.BIR,(2)=R;(EDR, (o, 6)R3 (8, IRE(A,0) (1-15)
This equation reads with the right-hand side written in full length

R (TsBIR,(Z)=R(-£)R,(90°=6)R ()R, (-0, IR, (-A)R,(#-90°) (1-16)
and can again be reduced to

Re(T+2,8)=R_(£,8-90°)R7 (6, +A-0,2) (1-17)

These are the desired fundamental refations between the parameters appearing
in geodetic astronomy.
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2. The observation equations of geodetic astronomy

. The fundamental equation (1-17) consists as a matrix equation of nine sepa-
rate equations, of which only three are independent of each other because of
the property of orthonormality of the rotation matrices. These three inde-
1 » pendent equations represent condition equations with unknowns for every star
(if T,8 and 8, are measured at one instant).

The matrices on the left and right-hand side of equation (1-17) read as fol-
lows when they are multiplied respectively:

- cos(Z+T)sinB sin(Z+T)sinB -cosB

0 -sin(z+T) cos(z+T) 0

".—'it

i cos(Z+T)cosB sin(Z+T)cosB s1nBJ

g

g and

N
4,' — —_
Bt Column 1:
L o
Bt . i i . . .

o s1n®cos(eGI+1 u)s1n6cosg-s1n®s1n(eGr+A-a)s1ng+cos®cosécos£
? o L

E: sin@cos(eGr+A-a)sindsin£+sin@sin(eGr+A-a)cos£+cos¢cosésing
"
My < . .

R~ s1n®cos(eGr+A-a)cosd-cos¢s1n6

Q: o
X
i Column 2:

‘A-" - - - 3 - - »
?.: s1n(eGr+A a)sindcosE cos(eGr+A a)sing
e e CNes . )
B s1n(6Gr+A a)s1n651ng+cos(q3r+A a)CcosE
. '
KM .
. ~sin(6; +A-a)coss
W S
;,:, Column 3:

N
%™
< cos¢cos(BGI+A-a)sinécosg-cos¢sin(eGr+A-a)sing—sin@cosécosg
LAY

o cos¢¢os(eGr+A-a)sindsing+cos¢sin(q3r+A-a)cos£—sin®cosésing
*.
s
[Ny
i costcos(6; +A-a)coss+sindsing
Qr - -
;l
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In the right-hand matrix the elements in the third row are the shortest and at
the same time the only ones which do not contain the angle £. Therefore, it
is the obvious thing to do to select two equations from this row as indepen-
4 dent equations. As a third equation one could take an element from another

row of the matrices whereby the angle £ , in which one is not actually in-
terested, would indeed appear as an additional unknown. So one, therefore,
dispenses with such an equation and there remain only two independent equa-
tions for one complete observation (T,B and eGr) with the three unknowns A,

¢,I:

:% sinB = cos¢cos(8, +A-a)cosé+sinésing (2-1)
sin(Z+T)cosB = -sin(8,_+A-a)coss (2-2)
cos(Z+T)cosB = sin¢cos(eGr+A-a)cosa-cos¢sind (2-3)

Equations (2-1) and (2-2) are independent of each other, equation (2-3) is
dependent on them both. It will be used later only for the determination of
approximate values. The appearing variables be summarized once more:

astronomical longitude
astronomical latitude
right ascension of the star
declination of the star

+A - hour angle

o o0 R O >

]
D

Gr
orientation unknown of the instrument (theodolite)
horizontal direction; observed

SA =2 + T - azimuth

90° - 2z vertical direction, angle between horizon and star; observed

or Greenwich apparent sidereal time; observed

n - ™

D O
n

2.1 Linearization and matrix representation

The equations (2-1) and (2-2) are now linearized by developing them into a
Taylor progression (and stopping after the first order term):
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§§ sinBo+cosBoéB s cos¢0cosh0cosd+51n¢051n6 ¢
L_:"; . ol
i -cos¢os1nh0cosé(6esr+6A) (2-4) 7
%3 7
s, . .
?%; +(-s1n¢0coshocosd+cos¢051na)6@ '
.,
:.:~. .:
¢§ sxn(20+T0)cosBo+cosAocosBo(62+6T)-s1nAos1nBOGB (2-5) .
E:."..: ) ..
: 2 -s1nhocosé-coshocosd(69Gr+6A) 2
i Zi
¥ Equations (2-4) and (2-5) contain the terms of (2-1) and (2-2) taken at the :
N point of developing (underlined). By assuming that there are given approxi-
i - mate valuesfor the unknowns A,¢ and L (these are A, ,I)) one can calculate f
Y- values for B and T, so that equations(2-1) and (2-2) (and (2-3) because of the 4
7 ambiguity of sine and cosine) are satisfied for these approximate values. There- by
= fore, in equations (2-4) and (2-5) the terms underlined, taken at the Taylor- j
N point, compensate. So it follows from (2-4) and (2-5) if one in addition places Y
A '
2 equation (2-3) in (2-4): f
-cosBoaB-cos¢os1nhOcosd(deGr+5A)-cosAocosBoé¢ 20 (2-6) .
- inA_ SinB. 6B~ . 2-7 '
0 cosAocosBO(62+6T)+51nAos1nBodB c?shocosd(éeGr+6A) 0 (2-7) ¢
:
;i; From thcse equations one obtains the onset for the conditional equations in
;i% respect of the adjustment problem by introducing the vector g of inconsistency.
§4f 8B, 8T and GeGr represent in this case the difference between the actual ob-
;" servations to one star at one instant and the approximate values which go into N
K the coefficients of the conditional equations:
..; 3 Y
3 8 = B-B, _ - .
constitute the vecton of observations y = |-8T .
ST = T - TO -8B
k. => Byl =y-¢ . :
15y - _ _ ':
R 6r = Oar 7 Sero | er A
[i - -
;f This i5 taken into consideration in equations (2-6) and (2-7); these equations
B are now remodelled: ':
U
N
.

B
Dpird
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-cos¢os1nhocosa-6A-cosAocosBo~6¢-cosBo-sB-cos¢os1nhocosé-e

0Gr
(2-8)
= +cosBo-6B+cos¢os1nhocosé°seGr

-coshocosé~6A-cosAocosBo-éz-cosAocosBo-eT+s1nAos1nBo-eB -

(2-9)
-coshocosd-seGr = cosAocosBo-dT-sonsmBo-GB+coshocosé-69Gr

If observations are carried out in respect of several stars the general re-

presentation for the GauB-Helmert model of conditional equations with unknowns
is

Ax + Be =By - ¢ (2-10)
Equation (2-10) runs in the case of consistent approximate values (c = 0):

Ax + Be = By : BeE{y} = Ax (2-11)

A and B are the coefficient matrices for all observations to all stars obser-
ved. In the case of three unknowns A,®,Z and of observations to n stars A

has the size 2n x 3 and B 2n x 3n and contain submatrices Ai and Bi for every
triplet of observations to every star:

(2-12)

(2-13)
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The elements aik of the submatrices Aj and the elements bzm of the submatrices
Bj respectively are now introduced.

In schematized form it, therefore, follows that:

a116A+a126¢+blzeB+b13€eGr = -blde-b1366Gr (2-14)

a216A+a2362+b218T+b2265+b23eeGr = -b216T-b2268-b2366Gr (2-15)

In matrix form this then becomes:

[sn| e, | [L67 ]
3, 3, 0 0 b, Bys 0 b, Py3
801+ eg F -8B | (2-16)
a,; 0 43 byy  Dyy Dy b,y byy  byg
-86
ST € L G}
Rl i eGlZ
Asx, 53¢ i B5¥; (2-17)

Hence A, and Bj are

3
-cos¢051nhocosé -s1n¢ocoshocosd+cos¢os1n6 0
Aj = (2-18)
i -coshocosé 0 -cosAocosB0
0 -cosB0 -cos¢os1nh0cosa
Bj = (2-19)
'COSAOCOSBO SinAOSinBo -coshocosd

= b = b

One perceives that a,y = b 230 253 2y *
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One

a)
b)
c)
d)
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The different types of observations

can observe for every star

vertical direction and time of observation or

horizontal direction and time of observation or

horizontal direction, vertical direction and time of observation or
horizontal direction and vertical direction (without time).

Case c) corresponds to the construction in (2-14) to (2-19). The other cases

are
=1

computed as follows. Thereby the starting point was taken as equation (2-6)
and equation (2-7) = II, because one is only interested in the respective

matrices A, and B..
j 3

2.2.

For
real

sinB

whic

-CO0S

Then

[b1

N

For

1 Case a): Vertical direction and time

every pair of observables (that is the vertical direction B and the side~

time eGr) one obtains one conditional equation of type I:
= cos@cos(eGr+A-a)cosa+sin®sin6 (2-20)
h gives in linearized form
BOGB-cos¢051nh0cossg66Gr+6A)+(-s1n¢0cosh0cosé+cos¢051n6)6@ = 0. (2-21)
the matrices read
[b12 b13] = [-cosB -coséosin(SGro+A0-a)c056] (2-22)
La a,. .l =
11 12 (2-23)
= [-cos¢os1n(eGro+Ao-a)cosa -s1néocos(eGr0+A0-a)coss+cos¢os1n6]
;] SA
. b13] + [a11 a12] = 0 (2-24)
GGGr 8¢

n pairs of observations one obtains the nx2 matrix A and the nx2n matrix B.
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2.2.2 Case b): Horizontal direction and time

8B must be eliminated in II. For that purpose equation I is solved for &B:

§ b a a
13 11 12
6B = - 80 - Sh - 50 (2-25)
b, ©6r by, b, ,

and this is then inserted into II:

Wk XAy "v.-.“v-‘A 5
R 7 ¥t L

= b, a a
" - 11y cnl 12 - _
“ b 6T+(b23 22 '5-—)69 Gr ( b22 m)(SA b22 '5-]; 6¢>+a2362 0 (2 26)
ff Thereby B0 must be calculated from equation I.
ﬁi Then the matrices read:
D b
- - _ 13
N Bj - [b21 bz b22 ET"
L (2-27)

[-cosAocosB0 -coshocosé-s1nA0tanBOcos¢os1nh0cosél

3, 45 NP
Ay =1lay-b,, 5., b, b, 3,551

(2-28)

E-coshocosd-s1nA0tanBocos¢os1nhocosé -s1nA0tanBo(51n¢ocoshocoss-cos®os1n6)

5:; -cosA cosB ]
- . s
"_:;1 GT
)~ b a a
B _ 13 _ 11 - 12 _
3 by, Dy3 by, 1 + lay-by, 5o b= 2yl |8 =0
2 12 12 12
K ) (2-29)
x 62 |
Al -
?v; For n pairs of observations one obtains the nx3 matrix A and the nx2n matrix B.
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2.2.3 Case c): Horizontal direction, vertical direction and time

Case c) is represented in equations (2-14) to (2-19).

2.2.4 Case d): Horizontal direction and vertical direction

GeGr must be eliminated in II. For that purpose equation I is solved for seGr:

b a a
12 11 12
66 = - éB - SA - 8¢ (2-30)
Gr b, b, 3 b, 5

and then this is inserted into II:

b a a

12 11 12 _ _

b216T+(b22- b23)68+(a21- b23)6A- b236¢+a2362 = 0 (2-31)
13 13 13
As stated above a,, = b13, a,, = b23 .
This yields
31 :

3, " By = 0 L (2-32)

13
From this one obtains the final conditional equation

b, , g7

b216T+(b22- EI; b23)68 - BI; b236¢+a2362 = 0 (2-33)

Hence it follows that A cannot be estimated. The reference of the Greenwich
meridian for Oy and as a result the longitude A is in principle chosen arbi-

trarily so that A is not definable without time eGr.
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g The matrices read ]
L 4
.
b 4
_ _ 12 :
Bj = by, bzz b b23] ,
13 '
4
cosBo 'y
- . . . !
L cosAocosBo smAOsmBO coso tan ] N
0 0 .:
) D) ;
% A, =C ra“ b ] 3
- = L- a ;
s -
:
N = -si - -
F- [tan¢ocosh0cothocosa 51n<5coth0 ;osAocosBol ﬁ
3
‘
i For n pairs of observations one obtains the nx2 matrix A and the nx2n matrix B. :
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3. Numerical studies

3.1 The adjustment model

As shown in chapter 2 the observations and unknowns are connected with each other
in linearized form according to equation (2-10) or, in the case of consistent pa-

rameters, according to equation (2-11). This leads to the GauB-Helmert model of
condition equations with unknowns:

Ax + Be = By (2-11)

In the realized simulation calculations one is actually not interested in the es-
timation of the unknowns x, but only in the accuracy with which the unknowns can
be estimated dependent upon the actual configuration of the stars. Thus one is
only interested in the variance-covariance matrix of the unknowns. To determine
this matrix the coefficient matrices for the present case of observations are
first of all prepared: the parameter matrix A and the condition matrix B. Be-
sides this the variance-covariance matrix I, i.e. the dispersion matrix D(y)= I
of the observation vector y, has to be stipulated which is in general assumed to
be a diagonal matrix.

With this the normal equation matrix N can be calculated:
N = BzBT , (3-1)

Finally the variance-covariance matrix Qxx of the unknowns follows from that as

Q_ - AT A1t = caT(ezBT) ta1! (3-2)

The square roots of the diagonal elements of Qxx are now the accuracies required
with which the unknowns can be determined. -

3.2 Simulation calculations

Simulation calculations have been carried out for the four different possible cases
of observations of stars. Thereby the coordinates right ascension o and declina-
tion § of fictitious stars were determined in dependence on the sidereal time in
such a way that they approximately lay 1in defined directions as seen from the ob-
servation point. In accordance with this the simulation calculations were carried
out, whereby the results in the diagrams are linked to the respective star configu-




rations as follows:

the stars which are observed here are positioned approxi-
mately in the meridian of the observation point, both in }

the South as well as in the North (azimuth = 0° and 180° P A
respectively);

————————— the stars are positioned approximately in the first verti- ¢
cal; this is the great circle through the directions East
and West (azimuth = 90° and 270° respectively);

-------------- the stars have the hour angle h=6" and h=18" respectively,
i.e. considered in the equatorial frame they have the an-
gular distance +90° from the meridian of the observation
point measured along a parallel of latitude;

A o

——————meim e this line contains stars which are distributed over the
whole firmament: meridian and first vertical;

the stars of this set of observations are located partially
‘ inhthe meridian and partially they have the hour angle 6 and
K 18" respectively.

In the illustrations the mean errors (or standard deviations) of the unknowns as-
tronomical longitude A, astronomical latitude ¢ and orientation unknown of the |
theodolite © (as determinable in the different cases), which are to be expected, 'y
are drawn in dependence upon different parameters. For the four different cases

of observations the accuracies in the determination of the unknowns are given first
of all in depehdehcéaﬁbén the number of the observed stars and subsequently in de-
pendence upon the accuracy of the observations (horizontal and vertical direction

; or time measurement); here the calculations were carried out with ten observed

’ stars.

For the calculation of the accuracy of the unknowns with the free parameter "num- '
ber of stars" the accuracy of the observations has been supposed as:

A horizontal direction : Op = 1"

e N e

vertical direction T o "

time measurement 0.1sec

%

The accuracy of measuring the vertical direction 05 is completed by the accuracy \
of the determination of the refraction, which can be calculated in dependence upon
the vertical direction according to the equations in Appendix A.1. These results
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ﬁ differ, however, only by a few hundredths of a second of arc from those, which A
g would follow when one neglects the inaccuracy of the refraction. In some illu- e
strations the ordinate axis is drawn as a broken line. This means that the f

scale in the upper part of the diagram does not coincide with the scale in the i'
lower part. The corresponding values are explicitly given. o
0
The results shown in the different illustrations are strictly speaking valid only é{

for the "observations" which have been supposed here. They are certainly depen- -
dent upon the constellation of the stars in the respective group of the observed };
stars. The tendency of the results will be correct anyway. e

I

: <
P 3.2.1 Case a): Vertical direction and time >
v‘:
0f course only accuracies for longitude and latitude could be calculated here '.:::

¢
because no horizontal directions were measured. 2
9.

4
i

n

”

r

A \@39 '-

‘i;\ 13 % \\\ )

™ " W ,4‘.

51 r 25 o

o
4
o
Y

X

2 4 6 8 0 2 A 6 8 0 »

number of stars: number of stars !

Fig. 2 and Fig. 3: Accuracies in dependence on the number of stars ]
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Horizontal direction and time

3.2.2 Case b):
In the figures 8 to 10 the curves do not already begin with the observation of
two stars because there is only one condition equation available for every star;

thus at least three stars have to be observed.
¢y 20
o | [ ° \\\\\\l\\\‘_____ 5
Q) [ ] 37 (&5 ]
127 ne - e he
: E | e ;
o | 0 S iok
84 8 44 L
64 6 \\ 3
\\‘ ‘\‘ \\
S % ‘\ N . 24 ‘\
2 2 N . \\\\ 1 ’
0 , 0 , et
2 4 6 8 ) 2 & 6 [} 0 °2 4 6 8 0
number of stars number of stars mumber of stars
Figures 8,9 and 10: Accuracies in dependence upon the number of stars
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Figures 11,12 and 13: Accuracies in dependence upon the accuracy of the measured
angles (10 stars, o = 0.1 sec)
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3.2.3 Case c):
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Accuracies in dependence upon
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the accuracy of the time

Horizontal direct{on, vertical direction and time

Figure 24 shows that in this case an inaccurate time measurement has hardly any
effect on the determination of the astronomical latitude (if a sufficient number
of stars have been observed).

Please see following page forn figures 17 - 19,

A RAUTNAMGE p L 2w Ry

R’ N W PP
i A iy . A

05

accuracy of tise
observation [sec)

PP rr 22 Q- - oy PP LOr

‘
W
(St
l‘

P g

-

4

N\

X AT T A AT e A A S T R PR N AT A
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Fig. 23,24 and 25: Accuracies in dependence upon the accuracy of the time
measurements (10 stars, o, = o , = 1")
3.2.4 Case d): Horizontal direction and vertical direction
I
. . . . . . i
As shown in 2.2.4 the astronomical longitude cannot be determined without measuring L
- the time; thus the accuracy of the longitude cannot, of course, be specified ei-
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. Fig. 26 and Fig. 27: Accuracies in dependence upon the number of stars
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3.3 Com

:r programmes

Two computer programmes have been developed in FORTRAN 77, which are implemented
e in a PDP11/23+ computer. The first programme APPROX simulates the observation
‘f; of a star. After the input of approximate values for the astronomical longitude
5 and latitude of the observation point, the orientation unknown, right ascension
and declination of a star and the sidereal time the programme calculates consis-
tent values for horizontal and vertical direction with the equations (2-1) to

4 : (2-3) and writes the complete data set for every star onto a data file APPVAL.
By choosing the respective parameters the observation directions required (see

ig; 3.2) can be computed.
The second programme ASTRO calculates the accuracies with which the unknowns can
- be estimated. In order to be able to do this it needs two data files as the in-

: put:
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B [
. - the first field contains the chosen data sets of the observed stars consisting i
: of the observations (according to case a) to d)) and the coordinates of the A
- star, right ascension and declination (the value in the cases a), b) and d), \
) 1
’g which is not an "observation", i.e. horizontal direction, vertical direction d
;ﬁ or time, completes the data set as an approximate value); .
2 ~ the second file contains three approximate values for the unknowns A,® and L. v
-". - b
.f% The values have to be written onto the file in the format deg(or h)'(or min)" ;
- (or sec), for example 256 17 23.4 or 17 12 49.8. In Appendix A.2 the first pro- A
'E gramme APPROX and the second programme ASTROC for case c) are listed. ‘
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APPENDIX

A The reduction of the observed vertical direction owing to refraction

A.1.1 The reduction formuila

The vertical direction B to a star is influenced by the astronomical refraction.
Therefore the measured vertical direction B' must be corrected by the value
of the influence of refraction:

B'-R ' (A-1)

R is the refraction, which is calculated by taking as a basis an atmospheric
model and using temperature and atmospheric pressure measurements. The first step
for calculation is the determination of the normal refraction Ro which is valid
for the following conditions at the observation point:

atmospheric pressure Py = 760Torr = 1013,25 hpa

temperature to = 0°C

vapour pressure € é6Torr

According to K. Ramsayer [Handbuch der Vermessungskunde, Band Ila: Geoditische
Astronomie, 1968, p. 115ff]1 the normal refraction can be calculated with high pre-
cision by the approximation

RO = 60",1012 + cotB - 0",06483 - cot’B (B>20°) (A-2)

This equation is based on refraction indices of the atmosphere which are calculated
for different altitudes with a mean distribution of atmospheric pressure and tem-
perature, which by the way is in good agreement with the U.S. Standard Atmosphere
1962.

In the second step there follows the reduction to another atmospheric pressure p
and to another temperature t at the observation point. The equation for this
reads as follows:

A N




_ Chpal . 273,15 -
R = R, o326 © 275,155 (A-3)

and with the abbreviations

_ Lhpal _ 273,15 -
=103, 25hpr KT imet (A-4)
is
R = R0 <G -K (A-5)

The reduction to another vapour pressure e is calculated as follows:

dR = -0",011(e-6) = K = cotB
or in consideration of equation (A-2)
dR = -0,00018 - R0 *+ K« (e-6) (A-6)

This reduction can generally be neglected.

A.1.2 The accuracy of the reduced vertical direction

The accuracy of the vertical direction depends firstly on the measuring accuracy
and secondly on the accurcy of the calculation of the refraction. This problem
will now be studied.

A.1.2.1Deviations. from the normal state of the atmosphere

According to K. Ramsayer the equation of refraction is valid:

n

1 n
= - [ ] - .e. L] .—o- 1. L ] - 2. 3
RO = p(n0 1)+cotB-cotB 3 r{ h d(n ) + 5P (nO 1)“+cot™B
0
n
1 n
-cot3s-%- [ohed(=2) (A-7)
n
0
with
o = (180-3600)/n ("]

..... .
LN

AR WL WATRIN G o T TN WS TN N WA W

-y YRS TP IR T PP TR 0 0 Y N SN i R s 2 i ’
\m%’b'} i\:'ﬂ'_".r_\ .1':' FASRI G s TP, PRSP P P -'\.H\Jl\.l.':-!\%



B AR A K I AT LR PR ISR S UK SRRV, ¥
DR

- A3 -

POy

refraction index at the observation point
radius of the osculating sphere at the observation point ("earth radius")

refraction index of a stratum of the atmosphere in the altitude h.

In the case of the mean state of the atmosphere equation (A-7) yields with
Po = 760,3Torr, tO = 9,4°C, e = 4,8Torr at the observation point the refrac-
tional value as follows:

R, = 58" ,282+cotB-0",076-cotB+0",0082+cot>B-0",0762-cot’8 . : (A-8)

The comparison of equation (A-7) and (A-8) proves that the refraction primarily
depends on the refraction index at the observation point and that it is to a
large extent independent of the change of the refraction index which occurs with
the change of the altitude.

Supposing a horizontal and plane stratification of the atmosphere (a»») equa-
tion (A-7) yields

R0 ~ p(n0-1)-cotB+ %(n0-1)2-cot38 (A-9)

Equation (A-9) shows that in the case of this assumption (a»«) the refraction is
only dependent on the vertical direction and the refraction index at the obser-
vation point and is completely independent of the state of the atmosphere above
it. The fact that the state of the atmosphere does have an effect on the refrac-
tion all the same (in accordance with the integral terms in equation (A-7)) is
the consequence of the curvature of the optical strata of the atmosphere. The
integral terms have the following value for a mean state of the atmosphere

0",076-cotB and 0“,0762-cot3B R

and for B>30° they reach an order of magnitude of only a few tenths of a second
of arc. Hence it follows with the assumption that the optical strata are concen-
tric spheres that even considerable deviations from the normal state of the at-
mosphere (for example caused by a temperature inversion in the lower strata)

can change the refraction at the most by 0",1 to 0",2.
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- So an estimation for the loss of accuracy of the refraction because of the de- t‘
. viation from the normal state of the atmosphere might be t‘
5 R~ 0,05+ cot8  (B>20°) (A-10) ;8
. . "i
or for the expected mean error of the determination of refraction because of :
Z the deviation from the normal state of the atmosphere :5
% mo= +0",05 + cotB (B>20°) (A-11a) .

ot
3 r

A o bt

; This is equal to the standard deviation:

MY

o, = 0",05 - cotB (B>20°) (A-11b)

~
-

o
%

AR 3 - AR I

- A.1.2.2 Inclination of the strata and deviation from the spherical form b
¥ )
o Most of the refraction theories postulate that the optical strata, i.e. the by
- strata with the same refraction index of the atmosphere, are concentric spheres | vj
- which are perpendicular to the plumb-line at the observation point. In reality o
g W
N these assumptions are not exactly complied with. One has to rather reckon with ;'
;f an inclination of the strata and a deviation from their spherical form. E;
- Y
2 An estimation of this influence yields R
1t n . | I 2 ) L
: AR ~ 0",084 + hLkml T [l « cosec’B (A-12) ¥
: ~y
~ ‘N
- The altitude of adjustment h specifies up to which altitude one has to reckon N
with an inclination of the strata. g%-is the horizontal temperature gradient. "

)

From series of observations which Harzer ["Berechnung der Ablenkungen der Licht- g

strahlen in der Atmosphdre der Erde auf rein meteorologisch-physikalischer Grund- %

i lage", Publ. der Sternwarte in Kiel XIII, Germany, 1922-24] carried out,the influ- v

. s !
ence of the deviation of the mean real optical surfaces from a concentric spheri- N

" cal form results in 0",01 for B = 70° and 0",06 for B = 30° respectively. v
A o
: B
A valuation for this error might therefore be o

” : 2 1
0, = 0",015-cosec”B (A-13) o
:~
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A.1.2.3 The influence of the real water vapour pressure

The formula for the normal refraction uses a water vapour pressure of e, = 6Torr.

According to K. Ramsayer the influence of the real vapour pressure e is
AR = 0“011(e0—e)-cotB . (A-14)

e oscillates seasonably between 4Torr in January and 12Torr in August (in Germany!).

The influence thereby becomes

IARI ¢ 0",07 « cotB ~ (A-15)

Generally it can be neglected. The expected mean error or the standard devi-
ation could be stipulated to

gy = 0",02 - cotB (A-16)

Hereby one supposed that in general e does not vary much from €,-

A.1.2.4 The influence of the wave-length of the starlight

The refraction is dependent on the wave-length of the light emitted by the stars.
The change of the refraction varies between +0",05-cotB (white fixed stars) and
-0",23+cotB (red fixed stars). Thus the colour correction amounts to some tenths
of a second of arc for B<45° in the case of reddish yellow to red stars, and
should, therefore, be allowed for when calculating the refraction. An estimation
for the mean error is, therefore, not made.

A.1.2.5 The influence of errors in the measurements

Finally, the influence of an error in measuring atmospheric pressure and tempera-
ture must also be considered. Starting from equation (A-3) one obtains the fol-
lowing when assuming the values R = 60"-cotB, p = 760Torr,T = 283°K:

dR =~ 0",079+cotBs dp - 0",212-cotB-dT (A-17)

The change to the standard deviation yields with o, = 0,1Torr and O = 0,1°C

o, = cot8+/ 0,0079%40,0212° =  0",023-cotB (A-18)
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So the influence of an error in pressure and temperature can in general be ne-
glected.

A.1.2.6 Summary of the different errors

Summing up the proceeding influences on refraction this yields

/2, 2 2
01+02+c3+o

2
5

Q
"

/ T(0",05)2+(0",02)2+(0",023) 21cot2B+(0",015) %cosec?B

and finally

o = / (0",06-cotB)2+(0",015-cosec8)? . (A-19)

This error has to be added to the observational error % from which the standard
deviation of the corrected vertical direction B results:

o = og +c§ (A-20)

A.1.2.7 Comparison with series of observations

Im comparison with equation (A-19) the results of series of observations of meri-
dian vertical directions lasting one and two years carried out by J. Bauschinger
(1898) and L. Courvoisier (1904) are presented. Averaging the differences between
calculated and observed vertical directions one obtains

Bauschinger : o /(0“,31)2+(0“,0035~cosec28)2 (A-21)

Q@

Courvoisier : ¢ /QO",23)2+(0“,032-cosec28)2 (A-22)

]

The first terms in the square root denote the influence of the observation errors.
The second terms can be interpreted as the mean influence of the inclination of
the optical strata and represent here the real error of the determination of the
refraction. So the value in equation (A-13) assumed for the influence of the in-
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clination of the optical strata 1ies between those values which were deducted
from observations in equations (A-21) and (A-22). The parts of the errors as
in equations (A-11) and (A-16) do not appear here since convenient conditions
were probably present for the observations. The part of the error from equa-
tion (A-18) could be eliminated by observing diametric stars lying more or less
in the same horizontal distance and by averaging these observations.
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A.2  Programme listings Il
| o
Al A.2.1 Programme APPROX !
[ ),
™
5 :
PROGRAM APPROX '
X IMPLICIT DOUBLE PRECISION (A-H,0-Z) ,
. REAL MM
8 CHARACTER*1 DUMMY o
% Pl=4.*ATAN({1.) e
OPEN(1,FILE='APPVAL',STATUS='NEW')
Lg 1 WRITE(5,100)
[ 100 FORMAT(5X, 'astronomical longitude (deg " "}') ' pé
> READ(5,*)G,BM,BS )
& CALL OUT(G.BM,BS.AL.1) '8,
: WRITE(S,101) '
< 101 FORMAT(5X, 'astronomical latitude (deg " ")') 3
N READ(5,*)G,BM,BS t
CALL OUTI(G.BM,BS.AB,2) )
3 WRITE(5,102) )
< 102 FORMAT(5X,'orientation unknown (deg ' ")') N
: READ(5.*)G,BM,BS s
CALL OUT(G,BM,BS,0U,3)
'- WRITE(5,103) |8
103 FORMAT(5X, 'right ascension (h min sec)') o
READ(5.*}H,MM,SS )
CALL OUT(H.MM,SS,RA . 4) E:’
WRITE(5, 104) ' N
104 FORMAT(5X, 'declination (deg '' ")') "
o READ(5.*)G,BM,BS v
* CALL OUT(G,BM.BS,D.5) N
» WRITE(5,105) \
> 105 FORMATI(5X,'Greenwich sidereal time (GAST) (h min sec)') =)
READ(5,*)H, MM, SS Ay
| CALL OUT(H,MM.,SS,TH,6) o
i SINB=DCOS(AB)*DCOS(TH+AL-RA)*DCOS(D)+DSIN(AB)*DSIN(D) r
B=DASIN(SINB) o
SINAZ=-DSIN(TH+AL-RA)*DCOS(D)/DCOS(8B) '
: AZ1=DASIN(SINAZ) 3
COSAZ=(DSIN(AB)*DCOS(TH+AL-RA)*DCOS(D)-DCOS{AB)*DSIN(D)) ~
. + /DCOS(B) 3
AZ2=DACOS(COSAZ) g
IF(SINAZ.GE.0..AND.COSAZ.GE.0.) AZ=AZ2 4
IF{(SINAZ.GE.0..AND.COSAZ.LT.0.) AZ=AZ2 )
IF(SINAZ.LT.0..AND.COSAZ.LE.0.) AZ=2.*PI1-AZ2 N
3 IF(SINAZ.LT.0..AND.COSAZ.GT.0.) AZ=2.*Pi-AZ2 N,
T=AZ-OU N
, IF(T.LT.0.) T=T+2.*PI N
C Output to the terminal Dy
) WRITE(5,'(///,5X, " longitude:" ,F12.6,' deg')') AL*180./PI
WRITE(5,'(5X, ""latitude: " ,F12.6," deg')') AB*180./PI ‘
2
]
"
)

%3

- ¢
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t
i
|
|

WRITE(5,'(5X, "orientation unknown:'",F12.6,'" deg')')
+ 0U*180./PI
WRITE(S5,'(5X,'"right ascension:"F12.6,'" h")')RA*180./15./PI
WRITE(5,'(5X, "declination:" ,F12.6,'" deg')') D*180./PI
# WRITE(5,'(5X,"sidereal time:'',F12.6," h'')') TH*180./15./PI|
N WRITE(S5,'(5X, "vertical direction:'',F12.6.' deg')')B*180./Pl
* WRITE(5,'(5X, "horizontal direction:',F12.6,' deg')')
+ T*180./PI
WRITE(S,'(5X, "azimuth:" F12.6,'" deg')') AZ*180./PI
WRITE(5,'(5X,"sin(azimuth):',F12.6)') SINAZ
WRITE(S5,'(5X,"cos(azimuth):'"' ,F12.6)') COSAZ
B8=B*180./PI
T=T*180./PI
AZ=AZ*180./PI
IG=INT(B)
IF(B.LT.0.) IG=-IG
BM=ABS(B-1G)*60.
IBM=INT(BM)
.. BS=(BM-I1BM)*60.
.5 WRITE(1,106)iG,IBM,BS
- 106 FORMAT(5X,'vertical direction:',4,'deg*,13,'"" F5.1,"")
. IG=INT(T)
BM=(T-1G)*60.
IBM=INT(BM)
¥ BS=(BM-1BM)*60.
. WRITE(1,107)IG,IBM,BS
0 107 FORMAT(5X, 'horizontal direction:',|4,'deg',13,"" F5.1,'")
N IG=INT(AZ)
g BM=(AZ-1G)*60.
IBM=INT(BM)
X . BS=(BM-1BM)*60.
3 WRITE(1,108)1G,IBM,BS
N4 108 FORMAT(5X,'azimuth:', 14, 'deg", I3,""" F5.1,'"")
R WRITE(1,'(5X."sin(azimuth):',F12.6,5X. " cos{azimuth):',
3 + F10.6)') SINAZ,COSAZ
o W;?I)T-E(S,'(SX,"Should a new data set be calculated (Y/NU ?
8 + (IR
READ(5,'(A1)') DUMMY
. IF(DUMMY.EQ.'Y'.OR.DUMMY.EQ.'y'.OR NUMMY.EQ.'1') GOTO 1
B STOP
g END
L
i

i
i
i
!
i
i
!
i
|
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. ¥
i K
, ’
: »
g SUBROUTINE OUT(G,BM,BS,RET,N) ;
_ DOUBLE PRECISION G,BM,BS,RET,PI \
- Cc Output to the data file APPVAL Lo
2 Pl=4.0*ATAN(1.0) .
2 IG=INT(G) ! t
IBM=INT(BM) .
: IF(N.GT.1) GOTO 10 -
WRITE(1,200)1G, IBM,BS _
- 200 FORMAT(///.5X,'astronomical longitude:',i4,'deg',13,"", 2
3 + F5.1,'") -
g RET={G+BM/60.+BS/3600. }*P1/180. .
GOTO 60 N
- 10 IF(N.GT.2) GOTO 20
- WRITE(1,201)1G,1BM,BS 4
201 FORMATI(5X, 'astronomical latitude:',14,'deg', 13", F5.1,'") 7
RET=(G+BM/60.+BS/3600.)*PI/180. !
GOTO 60 )
. 20 IF(N.GT.3) GOTO 30 By,
< WRITE(1,202)IG, 1BM,BS =9
= 202 FORMAT(5X, 'orientation unknown:',|4,6'deg', 13" F5.1,""") :
b RET=(G+BM/60.+BS/3600.)*P1/180. "
2 GOTO 60 |y
> 30 IF(N.GT.4) GOTO u0 : A
- WRITE(1,203)IG,|BM,BS 8
203 FORMATI(5X, 'right ascension:' i4,'h', 13,'min',F5.1,'sec') -
RET=(G+BM/60.+BS/3600.)*P1/180.*15. *
GOTO 60 ‘ Y
. 7 40 IF(N.GT.5) GOTO 50 5
- WRITE(1,204)1G, IBM,BS Nyt
., 204  FORMAT(5X, 'declination:', |4, 'deg', 13, """ ,F5.1,""") e,
] RET=(G+BM/60.+BS/3600.)*P1/180. ’
b GOTO 60 Py
5 50 CONTINUE <
K. WRITE(1,205)1G, IBM,BS )
P 205 FORMAT(5X,'Greenwich sidereal time:',i4,'h',i3,'min' F5.1,'sec') N
) RET=(G+BM/60.+BS/3600. )*15.*P!/180. "1
» 60 RETURN
. %
. b
"
%
"l
i
¢
v
s 2
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A.2.2 Programme ASTROC

Q-
o
15
PROGRAM ASTROC

- REAL MM
N PARAMETER (KK=10)
: DIMENSION SIGMA(3*KK),U(3).DISP(3,3)
R - DIMENSION Y(KK,3),SIGY(3*KK.3*KK).,A(2*KK.,3).
7-"] + B{(2*KK,3*KK),BT(3*KK,2*KK),AT(3,2*KK),RN(2*KK,2*KK},
0~ + ATN(3.2*KK),HILF(2*KK,3*KK),NUM(2*KK},D(2*KK).DELTA(KK]},
- + ALPHA(KK)
CHARACTER FRAGE*1
N DATA RN/400*0.D0/
C
o c
K CHARACTER *25 FNAME1,FNAME2
= LOGICAL LOG
3 Cc

C
Ny < C
k i H=0.
G=0.
. MM=0.
1y BM=0.
I SS=0.

- BS=0

Pi=4.*ATAN(1.) .

: WRITE(5.'(//.5X. " "name of the data file?''})')

3% READI(5,'(A25)')FNAME1

~ WRITE(S,'(//,5X.""name of the file with the approximation values',

i ¥.

- + ' for the unknowns ?'')')

K- READI(5,'(A25)')FNAME2

WRITE(5,'(//.5X,"accuracy of horizontal directions (") ?'')')
2. READ(5,*)BS

3 GHR=BS

"3 CALL DEZIG(G,.BM,BS,SICMA(1))

o CALL RADI(SIGMA(1),PI)

WRITE(5,'(//,5X. "accuracy of vertical directions (") 2')*)
Kl READ(5,*)BS

: CHD=BS

-3 WRITE(5,'(//,5X. " consideration of the accuracy of refraction',
+ " (Y/N) 1))

% READ(5,'(A1)')FRAGE

pC WRITE(S,'(//,5X."accuracy of time observations (sec) ?')')
- READ(S5,*)SS

. GZ=SS
Y : CALL DEZIH(H,MM,SS,SIGMA(3))
CALL RADI{SIGMA(3),PI)
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00

OPEN(1,FILE=FNAME1, ACCESS='SEQUENTIAL',STATUS='0OLD')
OPEN(2,FILE=FNAME2,ACCESS='SEQUENTIAL',STATUS='0OLD")
OPEN(3,FILE='OUTC.DAT',STATUS='NEW')

eXele]

READ(2.*)G,BM.,BS

IG=INT(G)

IBM=INT(BM)

CALL DEZIG(G,BM,BS,U(1))

CALL RADH(U(1),PI)

READ(2,*)G,.BM,BS !
IG=INT(G) i
IBM=INT(BM) ;
CALL DEZIG(G,BM.BS.U(2))

CALL RADI(U(2),PI)

READ(2,*)G,BM.,BS

IG=INT(G)

IBM=INT{BM)

CALL DEZIG(G,BM,BS,U(3))

CALL RADI(U(3),PI)

WRITE(3,700) .
700 FORMATI(///,5X,'observations',/,5x,'turn: horizontal ',
'direction ','(deg-'"-")',/,11x,'vertical direction ',
'(deg-''-")',/,11X,'sidereal time (GAST} (h-min-sec)’,
/.11X,'and',/, 11X, 'right ascension (h-min-sec)',/,11X,
'declination (deg-'*-")')
K=1
25 READ(1,* END=20)

K=K+1

GOTO 25
20 K=K/5

REWIND 1

eleXeNelNe

++ + +

aOn

DO 10 J=1,K
WRITE(3.'(/)")
DO 30 [1=1,2
READ(1,*)G.BM,.BS
IG=INT(G)
IBM=INT(BM)
: WRITE(3,800}IG,IBM,BS
800 FORMATI(5X,I4,'deg',13,"" F5.1,'"")
CALL DEZIG(G,BM,BS,Y(J,1))
CALL RADI(Y(J,1),PI)
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13

IF(1.EQ.2) THEN
BS=SQRT{GHD*GHD+(0.06/ TAN(Y(J,1)))**2.+
(0.015/(SIN(Y(J,1)))**2,.)**2.)

IF(FRAGE.EQ.'N'.OR.FRAGE.EQ.'n'.OR.FRAGE.EQ.'0') THEN

BS=GHD
ENDIF
CALL DEZIG(0.,0.,BS,SIGMA(3*(J-1)+2))
CALL RADI(SIGMA(3*(1-1)+2),PI)
ELSE
SIGMA(3*(J-1)+1)=SIGMA(1)
ENDIF
CONTINUE
READ(1,*)H,MM,SS
IH=INT(H)
IMM=INT (MM)
WRITE(3,'(5X,14,"h*,13,"min'' ,F5.1,"sec'')') IH, IMM,SS
CALL DEZIH(H,MM,SS,Y(J,3))
CALL RADI{Y{J,.3).Pl]}
SIGMA(3*(J-1)+3)=SIGMA(3)
READ(1,*)H.MM,SS
IH=INT(H)
IMM=INT (MM) .
WRITE(3,'{5X.14,"h",I3,"min"",F5.1,'"sec'")')IH, IMM,SS
CALL DEZIH(H,MM,SS,ALPHA(J))
CALL RADI(ALPHA(J),PI)
READ(1,*)G,BM,BS
IG=INT(G)
iBM=INT(BM) T T
WRITE(3,800)1G, I1BM,BS
CALL DEZIG(G,BM,BS,DELTA(J))
CALL RADI(DELTA(J),PI)
CONTINUE
WRITE(3,801)GHR
FORMAT(/,5X,'accuracy of horizontal directions:',F6.2,

llll)

WRITE(3,802)GHD

FORMAT(5X, 'accuracy of vertical directions (observations):'

,FG.Z,'"')
WRITE(3,803)Gz
FORMAT(5X, 'accuracy of time observations:',F6.2,'sec')

DO 11 [=1,3*KK
DO 11 J=1,3*KK
SIGY(i,J)=0. -
DO 12 [=1,2*KK
DO 12 J=1.3
A(l,J)=0.

DO 13 |=1,2*KK
DO 13 J=1,3*KK
B(1,J)=0.

.............................

R P A R

- e

4:-—~ -

FE

------
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DO 14 |=1,3*K
WRITE(3,*)SIGMA(1)*180./P1*3600.
CALL SIGMAS(SICY.KK,K,SIGMA)

, C SIGMA = vector of the standard deviations of the observations (in (rad))
. o SICY = matrix of the variances of the observations

R

- 300
40

¥ 41

eNeXe]

50

2 +

FAKTOR=SIGY(1,1)

DO 32 I=1,3*K

DO 32 J=1,3*K
SIGY(1,J)=SIGY(!1,J}/FAKTOR

CONTINUE

CALL AMAT(A.Y,U,KK,K,ALPHA ,DELTA)
DO 40 |=1,2*K
WRITE(3,300)(A(1,M)} ,M=1,3)
FORMAT(5X,3F18.12)

CONTINUE

CALL BMAT(B.Y,U,KK,K,ALPHA DELTA)
1=0

DO 41 J=1,2*K-1,2
WRITE(3,300)(B(J,1*3+M),M=1,3)
WRITE(3,300) (B(J+1,1*3+M) ,M=1,3)
WRITE(3,'(/)")

1=1+1

CALL MATMUL(B,2*KK,2*K,3*KK,3*K,SICY,3*KK,3*K,3*KK, 3*K,
HILF,2*KK,2*K,3*KK,3*K)

DO 50 1=1,2*K T o

DO 50 J=1,3*K

BT(J,1)=B(l,J)

CALL MATMUL(HILF,2*KK,2*K,3*KK,3*K,BT,3*KK, 3*K,2*KK,2*K,RN,
2*KK,2*K,2*KK, 2*K)

R - C  normal equations matrix

51

52
401

WRITE(3,'(5X, ""matrix B*SIGY*BT:')")

DO 51 i=1,2*K

WRITE(3,401)(RN(1,J),J=1,2*K)

CALL INVER2(RN,2*K,NUM,LOG,D,2*KK)

WRITE(3,'(5x%, ""determinant of (B*SIGY*BT):",

3X,E18.10)")D(1)

WRITE(3,'(5X, ""matrix (B*SIGY*BT) ~1:%)')

DO 52 1=1,2*K

WRITE(3,401)(RN(1,J1).J=1,2*K)

FORMAT(8E15.6)

DO 60 [=1,2*K

DO 60 J=1.3

AT(J,1)=A(1,))

CALL MATMUL(AT.3,3,2*KK,2*K,RN,2*KK,2*K,2*KK,2*K,ATN, 3.3,
2*KK,2*K)

CALL MATMUL(ATN,3,3,2*KK,2*K,A,2*KK,2*K,3,3.DISP,3.3.3,3)
CALL INVER2(DISP,3,NUM,LOG.D,3)

WRITE(3,'(5x,""determinant of (AT*{(B*SIGY*BT) -1)*A):",
3X.E18.10)')D{1)

- - i

I i Ve

Lo

A XA -t

- -

vy "'ﬁ,'



v sl e i e A e 2% e’ " e et a ") 18 % a4ty g e R e 8t Pa® 2% Uat 0a% et Pad 8.8 U Bad R, 8 " Ra 8 Rat N UR LWLV U S WAWUWVITUSIA WL AN

3
- A15 - ’
|
I'
| v
C .
Cc
o
C variance-covariance-matrix of the unknowns \
DO 70 I=1.,3
70  WRITE(3,500)(DISP(1,J)*FAKTOR, J=1,3)
500 FORMAT(3F22.16)
DO 90 I=1,3
DISP(1,1)=SQRT(DISP(1,1))*180./PI*SQRT(FAKTOR) "
DISP(1,1)=DISP(1,1)*3600. A
C standard deviations of the unknowns (in seconds of ar'c) “r
2 90 WRITE(3,600) DISP(I,1) B
s 600 FORMATI(5X,F12.4,' ")
- sTOP
END
) C )
. Cc '
= C 3
o C
c b
SUBROUTINE DEZIG(G.BM,BS,RET) .
C DEZIG transforms the input (degree,minute of arc,second of arc) i
C into a decimal value (degree) i
RET=G+BM/60.+BS/3600.
o RETURN o
& C 3
’ C - - 4]
c A
S SUBROUTINE DEZIH(H,MM,SS,RET) h
o DEZIH transforms the input (hour,minute of arc,second of arc)
< C into a decimal value (degree)
REAL MM
RET=(H+MM/60.+SS/3600. )*15. d
= RETURN v
N END :
; C
§- - Cc ,
g C L
SUBROUTINE RADI(RET.PI) 3
C RADI transforms from (degree) to (rad) '
RET=RET*PI/180. )
- RETURN
B END !
A C B
, ¢ 4
: C
[ N
]
A '
’ N ".‘ ‘.' "' L] 1“'.0.‘ '. ..A"‘ DOCOTOO R \'-'C'- I'-‘I Ay, .‘.- W, AR K it 0.0‘, (L% ' h0Hh i"‘u.n !’u , 'o.l‘o ‘ 3 0. : - et
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SUBROUTINE SICMAS(SIGY,KK.K,SIGMA)
C SIGMAS constructs the variance-covariance-matrix of the observations
DIMENSION SIGY(3*KK,3*KK),SIGMA (3*KK)
DO 10 I1=1,3*K
- SIGY(1,1)=SIGMA(1)*SIGMA(])
: 10  CONTINUE V)
RETURN
END

e T e e ot
oo
L e ew m

SUBROUTINE AMAT(A,Y,U,KK,K,ALPHA,DELTA) ;
AMAT constructs the matrix A
: DIMENSION A(2*KK,3),Y(KK.3),U(3),ALPHA(KK).DELTA(KK)
3 - J=1
- DO 10 1=1,2*K-1,2
. A(1,1)=-COS(U(2))*SIN(Y((1+1)/2,3)+U(1)-ALPHA(J))*COS(DELTA(J)})
. A(1,2)=-SIN(U(2))*COS(Y((1+1)/2,3)+U(1)-ALPHA(J))*COS(DELTA(J))
+ +COS(U(2))*SIN(DELTA(J))
g8 J=i+1
o 10 CONTINUE ;
P J=1 <
B DO 20 1=2,2*K,2 {
N A(1,1)=-COS(Y(1/2.3)+U(1)-ALPHA(J))*COS(DELTA(J))
‘ A{1,3)=-COS(U{3)+Y(1/2,1))*COS(Y(1/2,2))
J=J+
. 20 CONTINUE
;. RETURN -
END :

5“""
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SUBROUTINE BMAT(B,Y,U,KK,K ,ALPHA,DELTA) b
BMAT constructs the matrix B N
DIMENSION B(2*KK,3*KK),Y(KK,3),U(3),ALPHA(KK),DELTA(KK) h
1=0 )
DO 10 J=1,2*K-1,2
: B(J,1*3+1)=0.
. B(J.1*3+2)=-COS(Y(1+1,2))
K- B(J,1*3+3)=-COS(U(2))*SIN(Y(1+1,3}+U(1)-ALPHA(1+1))
w + *COS(DELTA(1+1))
v I=1+1
10 CONTINUE
: 1=0 3
3 DO 20 J=2,2*K,2
g B(J,1*3+1)=-COS(U(3)+Y(1+1,1))*COS(Y(1+1.,2)) b
B(J,1%*3+2)=SIN(U(3)+Y(1+1, 1) )*SIN(Y(i1+1,2)) ~
B(J.1*3+3)=-COS(Y(1+1,3)+U(1)-ALPHA(1+1))*COS(DELTA({I1+1))
‘ 1=1+1
N 20 CONTINUE
‘. RETURN
END
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SUBRQUTINE MATMUL(RM1,NDZ1,NZ1,NDS1,NS1,RM2,NDZ2,NZ22,
+ NDS2,NS2,RM3,NDZ3,NZ3,NDS3,NS3)
C MATMUL executes the product of two matrices
DIMENSION RM1(NDZ1,NDS1),RM2(NDZ2,NDS2),RM3(NDZ3,NDS3) ;
DO 10 1=1,NZ3 i
DO 10 J=1,NS3 ?
RM3(1,))=0. ;
DO 10 |1=1,NS1 . }
RM3(1,J)=RM3(1,J)+RM1(1, I1)*RM2(11,]) :
10 CONTINUE f
RETURN -
END

SUBROUTINE INVER2 (B,N,NUM,LOG,D,NA)
INVER2 executes the matrix inversion
DIMENSION B(NA.NA),NUM(NA).D(NA)

CALL NORMEN (B,N,N,ZB.SB.QB,AB.NA)

O O 0 000

DO 1 I=1,N
1 NUM(1)=0
DET=1.
DO 2 L=1,N
DO 3 M=1,N :
IF (NUM(M).NE.O) GOTO 5§
D(M) = ABS (B(M,M))
GOTO 3
D(M) = 0.
CONTINUE
{1 =.1
DO 6 1=2,N
IF (D(11).LT.D{1)) 1=l
6 CONTINUE
IF (D(11).GE.1.E-30) GOTO 31
NUM (11) = L
GOTO 2
31 NUM {11) = L
DO 10 J=1,N
IF (J.EQ.I1) GOTO 10
DO 13 |=1,N
IF (1.NE.I1) GOTO 20
D(11) = B(11,J)/B(11,11)
GOTO 13
© 20 D(1) = B(1,J)-B(I,.11)*B(11,))/B(11,11)
13 CONTINUE
DO 14 I=1,N
1 B(1,J) = D)

wuwm
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10 CONTINUE

H = B(I1,11)
DET = DET*H ;
DO 15 {=1,N ]
“ - IF (1.NE.I1) GOTO 17 ,
B(I.11) = 1/H :
GOTO 15
17 B(1,11) = -B(I.11)/H ;
15 CONTINUE :
2 CONTINUE 4
K=0
DO 18 I=1,N
18 K=K+NUM(1) ‘
KV = (N*(N+1))/2 ‘
LOG = .FALSE. ]

IF (K.EQ.KV) LOG=.TRUE.

C

CALL NORMEN (B,N,N,ZB1,SB1,QB1,AB1,NA)

IF (N.GE.6) D(6)=AE*ABH

IF (N.GE.5) D(5)=QB*QBH1

IF (N.GE.4) D(4)=SB*SB1 ]

IF (N.GE.3) D(3)=ZB*ZB1 .

IF (N.GE.2) D(2)=1/DET ¥

D(1)=DET ‘
¥ RETURN ;
END » (
- B O )
o C '
SUBROUTINE NORMEN (A,N,M,Z,S,Q.AG.NA) :
P DIMENSION A(NA,NA}
be- > C '
o Z=0 )
-y DO 1 J=1,N 3
. 25=0
DO 2 K=1,M
2 ZS=2S+ABS (A(J.K)) u
o . IF (2ZS.GT.Z) 2=2S ]
1 CONTINUE b
; " Cc
, S=0
DO 3 K=1,M
_,', Ss=0 q
" o DO 4 J=1,N b
e 4 SS=SS+ABS(A(J,K))
IF (SS.GT.S) S=SS ,
3 CONTINUE '
g c '
o Q=0 :
DO 5 J=1,N ' \
- DO 5 K=1,M \

5 Q=Q+A(J,K)**2

---------
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Q=SQRT (Q)

AG=0.

DO 6 J=1,N

DO 6 K=1,M

AB = ABS (A(J.K))

IF (AG.LT.AB) AG=AB
CONTINUE

RETURN

END

X = W ®



