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I. INTRODUCTION

The objective of this work was to investigate the axisymmetric, unsteady, viscous,
incompressible liquid flow in a rapidly rotating right circular cylinder. Understanding of
this internal flow is necessary in the design of gun-launched projectiles which carry liquid
payloads. Liquid-filled projectiles exhibit flight instabilities that are not observed for the
same vehicle with a rigid payload. These instabilities have been described by Stewartson.1

The Stewartson principle states that resonance between the inertial wave frequency in the
rotating liquid and the nutation frequency of the projectile can cause projectile instability.
A numerical procedure for solving the unsteady Navier-Stokes equations was developed
for the present study. From a computational viewpoint, this problem is instructive since
it represents a class of internal flow problems for which computational experiments can
reveal details of the flow that cannot be easily measured experimentally. This study of
axisymmetric free surface flow represents the initial stage of an investigation of the three-
dimensional problem.

Theoretical and experimental work examining the flow within a rotating cylinder has
concentrated on full cylinders.2 Experimental evidence3 indicates that the effect of a free

* surface on enclosed rotating liquids is important. Particular interests include shear layers
that may form on the liquid-air interface, the role of liquid viscosity and interior flow
circulation in restoring the disturbed fluid to a state of rigid body rotation, the pressure
and shear forces exerted on the cylinder walls by the liquid, and the resulting liquid roll
moment on the container.

Computational work for this problem has taken several forms. Kitchens4 adapted a
predictor-correct or, multiple-iteration scheme, which was developed by Rubin and Lin 5 for
steady flows, combined with a Gauss-Seidel iteration scheme to solve the time-dependent
flow in a cylinder spinning up from rest. Chakravarthy 6 composed two time accurate
shemes to compute the time-dependent flow for the spin-up problem. In one scheme the
finite-differenced equations in primitive variable form were solved using an implicit approxi-
mate factorization procedure. The second scheme solved the equations in stream function-
vorticity form using a Gauss-Seidel relaxation procedure. Kitchens and Chakravarthy
produced comparable results for filled cylinders. Homicz and Gerber' extended a model
by Goller and Ranov8 and produced a finite-difference scheme for spin-up from rest in a

t partially-filled rotating cylinder. This analysis assumed columnar flow (i.e. flow velocities
and pressure are independent of the axial coordinate) and thus the azimuthal momentum
equation was the sole equation considered. This equation was solved using an implicit
Crank-Nicolson scheme.

Shadday9 conducted an experimental and numerical investigation of the internal flow-
field of a liquid centrifuge. He considered a partially-filled right circular cylinder in rapid
rotation with the internal flowfield induced by the differential rotation of one endwall
with respect to the rest of the container. Shadday gathered axial and azimuthal velocity
data along radii of the cylinder using a laser-Doppler velocimeter (LDV). In addition. a
numerical scheme was formulated in primitive variables and used a modified marker-and-

• cell (.MAC) implicit scheme. This scheme included an explicit treatment of the governing
equations with the exception of the Coriolis acceleration terms. The numerical study used

0/?



1:2" a coarse grid in the radial direction. An inadequate correlation between numerical and

experimental data at the liquid free surface was noted.

The aim of the present numerical investigation was to simulate the time dependent

liquid flow in a closed, partially-filled cylindrical container. The spinrate of the cylinder was
- sufficiently large so that the liquid free surface was also cylindrical and centered on the spin

axis. In this state the fluid was considered to be in solid body rotation. The spinrate was

then perturbed by an instantaneous acceleration to a new steady spin resulting in a time

dependent response of the fluid to the change in rotation of the cylinder. The partially-

filled cylinder problem had two special requirements. The computational grid had to be

sufficient to resolve a possible free surface shear layer, as well as, boundary layers on the
,4 solid walls of the container (sidewall and endwalls). In addition, the boundary conditions

on the free surface had to be posed in a compatible way with the numerical framework.

In this study the Navier-Stokes equations were written in cylindrical coordinates.
Since the symmetry axis of the cylindrical container was identical to the spin axis of the sys-
tem, the formulation was written assuming an axisymmetric flowfield. The Navier-Stokes
equations were written in stream function-vorticity form. This choice permits solution of
the equations using standard methods without the use of artificial compressibility.

* The method of artificial compressibility was developed by Chorin10 to solve the prim-

itive variable formulation of the incompressible Navier-Stokes equations. In this form an
inherent numerical difficulty is created due to the absence of a time derivative in the
continuity equation. To facilitate the construction of an implicit, approximately factored
numerical method, a fictitious time-dependent term, designed to vanish as steady state is
approached, is used to modify the continuity equation. However, approximately factorized
schemes incur errors due to the factorization. When this type of scheme is combined with
the artificial compressibility terms in the continuity equation, the momentum equations
are then contaminated by this factorization error.

The choice of nonprimitive variables allows the solution of the governing equations
without augmentation with artificial terms. The Navier-Stokes equations were discretized
on a gid utilizing logarithmic stretching to cluster grid points near solid boundaries and the
free surface. Second-order finite-differences were used for all derivative terms in the gov-
erning equations except the convection terms for which upwind differencing was employed.
Finally, the equations are numerically relaxed using a Gauss-Seidel iteration method.

II. FREE SURFACE CONSTRAINTS

0 For this numerical investigation the angular velocity of the cylinder is considered to
be large enough that the fluid forms an annulus of near uniform thickness on the vertical
wall. The following conditions are assumed:

1. Initially, the container is rotating with spin rate Qj and the fluid is in a state of rigid-
0 body rotation (i.e. the azimuthal component of velocity is directly proportional to

radial position, V = iRJ and all other components of velocity are zero).

2
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2. The lice surface is cylindrical and centered on the spin axis. This implies that the
.a( .al acceleration is much greater than the gravitational acceleration (g), or the
rroude number. Fr = £a/g > 1 for a cylinder of radius a. This constraint on Q,
results in a Froude number that is larger than the Ekman number, E = v/fic2 where
c is the cylinder half-height and v is the kinematic viscosity of the liquid.

Winchl" and Gerber 2 derived a set of equations that describe the shape of the free
surface in a partially-filled cylinder in steady state axial rotation. These equations verify
that a chosen set of conditions (Fr, cylinder aspect ratio and fill ratio) will result in a
vertical free surface. For a right circular cylinder that is partially-filled with liquid and
that is suddenly rotated at a constant angular velocity Of, the fluid will rise along the
sidewall of the cylinder and form a parabolic free surface. When the fluid finally attains
the angular velocity of the cylinder, a steady state or equilibrium shape is reached and is
defined by:

Z, Z Z + 2g 
(1)

Equation 1 describes a parabola with a vertex that intersects the spin axis of the
* cylinder at a height of Zo. Using Equation (1) and conservation of liquid mass. Gerber 1 2

' has derived an equation for the shape of the free surface when the free surface intersects
both endwalls of the cylinder:

z- i +c+-f (R 2  2)  (2)
4cg 2g

where c is the cylinder half-height, a is the radius, and Zi is the initial (Qf = 0) liquid
- level in the cylinder.

Nondirensionalizing z = Z/a and r = R/a and defining the fill ratio, f Zi/(2c),
and aspect ratio, a c/a. we write Equation (2) as,

Fr.%2- a + - (r -1+ f) 3

When the free surface intersects both the bottom wall (z = 0) and the top wall
* (z = 2o) of the cylinder, we can define the radial location of the free surface at z = 0.

= [i-~ ~]1/2= 1 f -(4)
,-_-.r
and the radial location of the free surface at z = 2a,

2= 1-f + _ (5)

For a given set of parameters (f = 0.95, a = 3.0), Figure 1 shows the difference in
* free surface radial location between the cylinder endwalls (r 2 - rj) as a function of Froude

number. The free surface first intersects both end walls at about Fr = 109.

3
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The free surface is essentially vertical for Fr above 900. For this Fr (a = 0.1 meters),
Q2 a = 8829 meters/sec2 > g = 9.81 meters/sec and the slope of the free surface is

f
nearly infinite. An equation for the radial location of the free surface can be derived from

conservation of liquid mass' 3 , or by setting Fr = co in Equation (4) or (5).

= (1 -f) 

(
2

where ri = 0.2236 for the parameters specified above.

III. GOVERNING EQUATIONS

The motion of fluid within a rotating cylinder is governed by the unsteady, incom-

pressible Navier-Stokes equations. The natural coordinate system for this problem is the
cylindrical system (r, 0, z) where u, v, and w are the radial, azimuthal, and axial veloc-
ity components respectively. Disturbances to the motion of the cylindrical container are
axisymmetric, thus, the flowfield is axisymmetric. The equations are written in axisym-
metric form by eliminating all 0 derivatives. The dimensionless form of the equations in

* the nonrotating reference frame are;

Continuity equation

I10(ru) Ow+ =o (7)
r Dr Dz

Momentum equations

au au Dlt v 2  Dp 1 (D'u 1au D~u U+ U- + 5 +  o +  + 2 (8)
D r Dr D r Dr Re \Or2  r Or DZ2  r2

av cv v uv 1 (D2v l Ov D2v V
rr-+  + Wz + -+ + (9)

Dr r ar2 rDrr az2 r 2

Dw Dw Dw Dp 11 (D ,ow (1)
D -r + t- ' 1Z + Dr2 + r- r Dz 2

where,

r=R/a, zZla, u= U/a, v = V/a, w= / = W a
p = P/pffla2, r = TQf, Re = Qfa2/

%,

The stream function-vorticity form of the Navier-Stokes equations is used in the so-
"% lution scheme. The definition of these variables are:

4
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Stream function -, = ru (11)

0, = -rw (12)

Vorticity = - wr (13)

Circulation -, = rv (14)

The governing equations cast in this form are obtained as follows. The first equation
of the new system is derived from the definition of vorticity (Eq. 13) using the definition
of stream function (Eqs. 11,12). This equation is elliptic and is in the form of a Poisson

9equation. The radial momentum equation (Eq. 8) is differentiated with respect to z
and from this equation the r derivative of the axial momentum equation (Eq. 10) is

4 subtracted. This cross-differentiation eliminates pressure and yields a parabolic vorticity
transport equation. The azimuthal momentum equation (Eq. 9) is recast into a parabolic
equation using the definition of circulation (Eq. 14). The stream function-vorticity form
of the Navier-Stokes equations are:

+ (15)•Or2 0-z1 r Or

a( a( +~ O u 2-y a-y 1 (02( 02( +o 1 a+
- - -- - + -32r2] (16)07- Or z r r Oz Re ar r Or r

and the circulation equation is:

a-- +  - +  - + (17)
19 Ora± az Re kar2  a,,2  r Or/

Equation 16 is nonlinear in the convective terms L + wL) since u and u are functions of

the dependent variable ( via Equation 13. The equation is parabolic in time and poses an
initial value problem. The same is true of the circulation equation (Eq. 17). The stream
function equation (Eq. 15) is elliptic and poses a boundary value problem which can be
solved by iterative methods. Equation 15 is de-coupled from the vorticity equation (Eq.
16) and the circulation equation (Eq. 17), As a result, Equations 16 and 17 can be solved
first, followed by the separate solution of Equation 15 with vorticity as a source term.

IV. BOUNDARY CONDITIONS

The governing equations are applied to the domain of interest as shown in Figure
2. In the case of a cylinder full of liquid the boundaries of the domain are the endwalls
(Z = 0 and Z = 2c), the sidewall (R = a) and the geometric axis (R = 0) about which
the cylinder spins. For the partially-filled cylinder, the boundary at R = 0 is replaced by
a free surface located at R = Ri. The location of the free surface was discussed in Section
II and given by Equation 6. The boundary conditions for the free surface will be discussed

6later in this section.

5
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The governing equations are written in the inertial (nonrotating) reference frame, thus,
the no-slip boundary conditions on the cylinder walls are: U = W = 0, V = Qf a for R = a;

U = TV = 0,V = QfR for Z = 0; and U = W = 0, V = QfR for Z = 2c. These no-slip
boundary conditions are made dimensionless using the same definitions employed for the
governing equations and become:

r = 1: u = w =0, v = 1 (18)

z = 0: u = w = 0, v = r (19)

z = 2a : u = w =0,v r (20)

The boundary conditions for the cylinder axis are derived from the nondimensional
continuity equation in primitive variable form (Eq. 7):

10(ru) Ow Ou Ow0 or r-+u+r-= (21)
r ir az O ir z (1

Now, setting r = 0, we obtain u = 0. Multiplying both sides of the axial momentum
equation (Eq. 10) by r and setting r = 0 we obtain the condition Ow/Or = 0. Multiplying
both sides of the azimuthal momentum equation (Eq. 9) by r 2 and setting r = 0 we obtain
the condition v = 0. Hence,

r = 0 : u = v = 0, - = 0 (22)
O~r

Because of flow symmetry we restrict the domain bounded by 0 < r < 1, 0 < z < 2a
to a computational domain bounded by 0 < r < 1, 0 < z < a (Figure 2). In Reference 13,
computational verification of flow symmetry was performed over the domain z = 0 to 2a
for a cylinder full of liquid. We term this situation the "gyroscope problem" since the
entire cylinder undergoes the same motion. Once the flowfield for 0 < r < 1,0 < z < a
(one quadrant) is computed, the flowfield in the rest of the cylinder can be obtained.
This domain restriction creates an additional boundary, the symmetry plane, requirin_ a
boundary condition. On the symmetry plane we require no axial flow and no axial fleNv
gradients for the radial and azimuthal velocity components. Thus,

Ou Ov
z = a:w =O, - =Ozz =0 (23)

* The above restriction of the domain using symmetry arguments does not apply when
different parts of the cylinder have different angular velocities as in the "centrifuge prob-
lem". In this case, the bottom wall and the side wall of the cylinder have an angular
velocity, f, that is not the same as the angular velocity of the top wall, Q,. As a result
two quadrants (0 < r < 1, 0 < z < 2a) of the flowfleld must be considered as the flow

is symmetric about the spin axis but not the midplane of the cylinder. This adds the
boundary condition:

z= 2a: u = w = 0, V= -r (24)

The boundary conditions are written in the variables of stream function, vorticity,
and circulation. For the gyroscope problem the conversion of boundary conditions to the
nonprimitive variables is as follows:

6



Axis: r = 0 with Equations 11 and 12 yields: = 0
(r=0)

u = w, = 0 with Equation 13 yields: 0
v = 0 with Equation 14 yields: - = 0

= 0, C = 0, - = 0 (25)

Sidewall: u = w = 0 with Equations 11 and 12 yields: V) = 0
(r=1)

U" = 0 with Equation 13 yields: = -w= =Or
v = 1 with Equation 14 yields: y =1

0 0, C = Or, - = 1  (26)

Endwall: U = w 0 with Equations 11 and 12 yields: k = 0
~(z = 0)

U,0 = 0 with Equation 13 yields: u= = )zz

v = r with Equation 14 yields: - = r2

=, r =i , -=r 2  (27)
r

Symmetry Plane: w = 0 with Equations 11 and 12 yields: ' = 0

u, = w =0 with Equation 13 yields: =0
Z"=0 with Equation 14 yield': =0

0 = 0, C = 0, -=0 (28)

For the centrifuge problem the fluid is driven by the top wall of the cylindrical con-
* tainer. This top wall has a steady spinrate that is not the same as the spinrate for the rest

of the cylinder. As noted in the derivation of the governing equations, the spinrate used
to yield dimensionless equations is Qf. The boundary condition on the symmetry plane
(Eq. 28) is replaced by:

Endwall (z = 2a): = 0, 1= -* I = f r2 (29)
r '

The free surface boundary conditions on -f and 4 can be derived from the assumption
that the free surface does not support tangential stress (i.e. 70r = 7,, = 0).

0 P [r a(r) + =2L r r =2L r =0 or v/-r = 0 (30)
T~ ~jOr rOi9 2jj Or J 2[ Or 0 r r =0 ()

7



__ FOu u' Ou~ 21
P [Ou +Ow] -- ±+-± 2i-- ±t'f =0 or

Or 21 9 azj2 r
(31)

Since the stream-function equation (Eq. 15) is elliptic and its solution represents a bound-
ary value problem, the boundary condition for stream function on the free surface should
be a Dirichlet or Neumann condition. Since the condition 4 = 0 is imposed on the other
boundaries (eniwalls and sidewall) of the cylinder, the Dirichlet condition V) = 0 is also
imposed on the free surface. This condition is equivalent to setting u = 0 on the free
surface and is consistent with the vertical free surface assumption made in Section II. As
a result, the free surface is characterized as a "slippery rod" of radius ri. The free surface
(r = ri) boundary conditions are prescribed as:

0=O, = O, (32)

From Equation 32, values of -y on the free surface can be obtained from values of - in
the interior flow using a second order forward finite-difference in the radial direction. Use
of Equation 32 as boundary conditions for the free surface is restrictive. Surface waves and

, free surface shape changes are ignored. Unfortunately, these phenomena have been shown
to exist for rotating and nutating free surface flows. Stewartson1 , in predicting the flow in
a partially-filled cylinder, derived a free surface boundary condition which included small
perturbations to the free surface shape (r + 77). In the present formulation, Stewartson's
condition yields a time-dependent boundary condition for 4 on the free surface. However,
since Equation 15 consists of only spatial derivatives in 4, the boundary condition on V,
cannot be time-dependent. Therefore, Stewartson's condition cannot be used with the
incompressible Navier-Stokes equations in stream function-vorticity form.

Free surface boundary conditions such as Equation 32 were used by Harlow and
Welch l" in a paper that described the marker and cell method. In this work the marker and
cell technique was applied to the time-dependent flow of an incompressible fluid, the bound-
ary of which was partially confined and partially free. The time-dependent Navier-Stokes
equations were written in primitive variable form and free surface boundary conditions
were required for all variables. Velocity boundary conditions at a free surface were derived
from the continuity equation while the pressure boundary condition was based on a con-
stant external (or applied) pressure. They observed that the pressure condition should be

qbased on the requirement of vanishing normal stress component at the free surface, but
this would be difficult to implement unless the orientation of the surface was known at all
times. They observed that such a determination was unreasonably difficult for a finite-
difference scheme (assuming an Eulerian approach) and equated the pressure on the free
surface to the applied pressure. Harlow and Welch achieved remarkably accurate results

* for a wide class of free surface problems in uncontained, nonrotating flow systems.

V. NUMERICAL SOLUTION SCHEME

This section gives the numerical solition scheme for the governing equations with
the boundary conditions presented in preceding sections. First an overview of the solution

8
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methodology is presented which is similar to those used in previous references.15 ,16 ,17, 18 The

computational domain for the gyroscope problem is bounded by one cylinder endwalI, the

symmetry plane, the cylinder sidewall and the free surface (Figure 2). For the centrifuge

problem the domain is bounded by the cylinder endwalls, the cylinder sidewall and the

'" free surface. A grid is constructed in the domain, and the solution is computed at mesh

points on the grid. The computation begins with initial values for tP, C, --Y, u, v, and w at

,* every mesh point and at time equal to zero. For a time accurate solution where transient

flow phenomenon are of interest, the initial solution corresponds to a real flow condition:

.=0, , =0, r2, U=0, v=- , W = 0 (33)

At time level 7 = - + A7, the computational cycle begins with the simultaneous solution of

the finite-difference analog of Equations 16 and 17 for C and -Y at all interior mesh points.

The governing equations are discretized directly on a stretched grid. This procedure has

been used by other researchers6 . The next step is to solve the finitc difference analog of

Equation 15 at all interior mesh points. This equation involves computed values of ( as a
Jh source term. These equations are solved by Gauss-Seidel relaxation using successive over-

relaxation (SOR). At this point new velocity components are evaluated from the definitions

of stream function (Equations 11 and 12) and circulation (Equation 13). Finally, the

boundary conditions are imposed. Iterative solution of the flowfield for the current time
step is continued until convergence. The computational cycle is repeated until the desired
time is reached.

"' . Stretching of the grid in the computational domain is accomplished with the following

equation (after Roberts19 ):

s,. d{[(d+ 1)/(d- 1)]a - 1}r I+[(d + 1)1(d- 1)]11 (34)

where a uniformly spaced coordinate, /3(x), can be transformed into a nonuniform coor-

dinate, r(z), that varies continuously throughout the domain but is clustered near the
boundaries. 9 The parameter d < 1 is the control to achieve desired clustering with very
fine boundary spacing for d < 1. Similarly for the axial direction, a uniformly spaced
coordinate, 77(x), can be transformed into a nonuniform coordinate, z(x), using:

Z = a(1 -b+(1 + b)[(b + 1)/(b - 1)]7 - 1) (35)
* z =

1 + [(b+ 1)/(b - 1)]n - I

The parameter b < 1 is defined in the same manner as d. These formulas are derived in

Reference 13. For a full cylinder, grid points are clustered at R = a and Z = 0. For a
partially-filled cylinder, grid points are clustered at R = a, R = R, and Z = 0. Figures 3

* and 4 show typical grids for the full and partially-filled cases (c/a = 1.0).

The finite-difference analog of the governing equations' 3 are obtained using central and

upwind difference expressions for the derivative terms. The convective terms of Equations

16 and 17 are represented using upwind differencing (see Appendix C, Reference 13). All
other derivative terms are represented using central differences. All spatial derivatives are

* represented by three-point second order finite-difference formula. The time derivative is

represented by a second order difference formula.
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The iterative solution of the governing equations is accomplished using Gauss-Seidel
relaxation. 17 ,20 Gauss-Seidel iterations converge very rapidly provided that a condition
of diagonal dominance exists for the ceefficient matrix of the system of equations. For
the governing equations formulated in stream function, vorticity and circulation variables,
diagonal dominance has been shown to exist." The present study uses a modification of the
Gauss-Seidel method called successive over-relaxation (SOR). This technique accelerates
the convergence of the algorithm and as a result reduces the required computational time.
As the Gauss-Seidel iteration is applied to the system of simultaneous algebraic equations
several iterations are made before convergence to an acceptable level is achieved. During
this process we observe the direction of the change in the unknown at a grid point between
two successive iterations and anticipate that the same trend will continue on to the next
iteration. To accelerate convergence, an arbitrary correction to the intermediate values of
the unknown is made:

.~i = u + i-W\ (i -U1

Here, k denotes iteration level and ut is the most recent value of uij calculated fromk''

the Gauss-Seidel procedure, u ' is the value from the previous iteration as adjusted by
previous application of this formula, and uit l' is the guess for uij at the k + 1 iteration[level. The formula is applied immediately at each point after u -l has been obtained and

ut+ ' replaces ,t in all subsequent calculations in the cycle. The relaxation parameter is
w. For over-relaxation 1 < w < 2. For convergence w < 2. In the present study a constant
value of 1.75 was used.

VI. COMPARISONS WITH PREVIOUS WORK

The computational scheme is initially checked for accuracy by comparison with flow
velocity data from experiments with a filled right circular cylinder. Watkins and Hussey 2'
used LDV to measure the azimuthal velocity component in a cylinder of aspect ratio unity,
spinning up to an angular rate of 1.83 radians per second from rest. The Reynolds number
of the flow was 9741.6 based on the final spinrate of the container. Azimuthal velocity

, .*'. was measured radially across the midplane of the cylinder at various times in the spin-
up process. This is compared to the present work in which a 31 x 31 (r, z) grid was

* used with logarithmic stretching in the radial (d = 0.05) and axial (b = 0.05) directions.
Figure 3 illustrates the computational grid. The solution was started with the cylinder
at rest and instantaneously given the spinrate of 1.83 rad/sec. This process approximates
the experimental procedure in which the container required a small amount of time to
achieve full rotational speed. Watkins and Hussey recorded velocity profile measurements

* at various time intervals between 42.8 and 210 seconds during the spin-up process. The
computation used a small numerical time step (0.0183 seconds) to insure numerical stability
and was checked at 45, 75, 105 and 150 seconds in the spin-up calculation. Figure 5 shows
a comparison between the measured and computed azimuthal velocity profile across the
midplane of the cylinder at these times. In addition, the solution by Kitchens4 is shown.

* In all cases the comparison to measured azimuthal velocity is good. Completion of the
spin-up process is observed after 150 seconds as the azimuthal velocity profile takes on a

-Y linear behavior (V = R).
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A second experimental case by Watkins and Hussey provides an additional comparison
between the numerical code and LDV measurements for a cylinder full of liquid. For this
case the aspect ratio of the cylinder was increased to 1.515 and the Reynolds number
was decreased to 3076. The identical grid and logarithmic stretching constants were used.
Again the cylinder was initially at rest and was instantly given an axial spinrate of 1.34
radians per second. The computational time step was again chosen as 0.0183 seconds
and the computation was checked at 15, 45, 75, and 120 seconds. Figure 6 shows good
comparisons between measured and computed azimuthal velocity profiles on the midplane
of the cylinder. For this case the smaller Reynolds number indicates a shorter spin-up time
and this is indeed observed.

A third computation is compared to the solution of the von Karman problem. This
is the steady flow of an incompressible viscous liquid due to an infinite rotating disk. A
stationary liquid occupies the semi-infinite region on one side of the disk, the motion of
which is rotationally symmetric. The effect of the disk is to move the fluid near its surface
radially outwards, and in turn induce an axial flow. The main interest in this problem is
that, by virtue of assumptions about the velocity components, the Navier-Stokes equations
reduce to a set of ordinary, nonlinear differential equations in a single independent variable.
Several papers have been devoted to the solution of this set of equations, including Rogers

0 22and Lance

For a cylinder of aspect ratio unity, initially at rest and instantaneously accelerated
to an axial spinrate of 1.83 radians per second, the resulting Reynolds number is 9741.6.
Early in the spin-up process the core flow is not rotating (azimuthal velocity is zero), and
only the fluid near the endwalls and sidewall is effected by the container's motion. The
present computation was performed using a time step of 0.0055 seconds and marched to a
time of 4.54 seconds. Figure 7 shows the azimuthal velocity profile very near the endwall
(Z/a = 0.092) and approximately outside the Ekman layer (for this case the Ekman layer
thickness is of order 0.01 or El/2 ). Note that the flow between the cylinder axis and about
R/a = 0.82 is not rotating. This region of fluid meets the criteria for the von Karman
problem, i.e., a rotating disk beneath a fluid at rest. Figure 8 shows the radial velocity
profile at a radius of R/a = 0.76, near the cylinder endwall and in the Ekman layer. The
agreement with Rogers and Lance and the Navier-Stokes solution of Kitchens4 is good.
The radial velocity profile crosses into values less than zero at about Z/a = 0.07. This
is generally defined as the edge of the Ekman layer because the radial velocity profile
passes through zero at one axial point for a particular radial location (exceptions occur for

. transient reverse flow regions). The initial guess for the order of thickness for the Ekman
layer (0.01) is also verified.

Another check on the computation comes from inertial oscillations which occur when
* the angular velocity of the cylinder is suddenly increased. These inertial oscillations are

transients in the flowfield that eventually cease. Warn-Varnas et al23 used LDV to detect
the presence of these oscillations in a cylinder of aspect ratio 0.3182, full of water and
disturbed from an initial state of solid body rotation at 0.6282 radians per second to a
new spinrate of 0.7678 radians per second. The resulting Reynolds number of the flow

0 (based on the final spin rate) was 7334. They collected azimuthal velocity data at several
locations in the flowfield during the spin-up of the liquid. These velocity measurements
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were then reduced to a nondimensional zonal velocity defined by,

Zonal Velocity = (1 - v/r)/(f - £2) (37)

which takes on the value of zero when the fluid has attained a new state of solid body
rotation (v = r). The present computation was performed for this case using a 43x21

%.stretched grid and a time step of 0.0052 seconds. Azimuthal velocity was collected for
every time step at 4 grid points, corresponding to the locations used by Warn-Varnas.

Figures 9 thru 12 show the comparisons between measured and computed zonal veloc-
ity versus time, for two axial locations at a radial location of R/a = 0.25 (in the core flow
near the spin axis of the cylinder). Figure 9 shows an axial location of Z/a = 0.3182 (at
the midplane of the cylinder) and Figure 10 shows an axial location of Z/a = 0.079 (near
the cylinder endwall). The Navier-Stokes solution of Kitchens' is also shown in Figure 9.
Correlations between computation and measurement are within the experimental accuracy
reported by Warn-Varnas. These plots illustrate the axial structure of the inertial osciia-
tions. The amplitude of the oscillations are nearly the same at both axial locations, but a
phase shift has occurred. Figures 11 and 12 show the comparisons between measured and
computed zonal velocity versus time for the same axial locations, but at a radial location
of R/a = 0.75 (near the cylinder sidewall). Once again the axial structure of the inertial

o. oscillations are observed; however, the amplitude of the oscillations is severely damped.
This more gradual transition to solid body rotation may be due in part to the proximity
of these points to the sidewall boundary layers.

In the case of a partially-filled cylinder, the free surface boundary conditions can be
checked against available data from Shadday.' He measured the axial and azimuthal veloc-
ity components in a partially-filled cylinder initially in a state of solid body rotation and
disturbed by the acceleration of the top wall to a new steady state spinrate. The rotation
rate of the cylinder sidewall and bottom wall was maintained. For this configuration, the
flow is no longer symmetric about the cylinder midplane; thus, the entire flowfield, for one
azimuthal plane, must be computed.

The cylinder was 36.7% full of liquid ten times more viscous than water. In the exper-
iment the entire cylinder was rotated at 1000 rpm until a steady state flow condition was
reached. Then the top wall of the cylinder was accelerated by 5% in spinrate while the rest
of the cylinder was maintained at 1000 rpm. The system was maintained until steady flow

* existed. Based on a spinrate of 1000 rpm, the Reynolds number was 93518.0 (the Ekman
number was 1.0119x10-'). The aspect ratio of the cylinder was 1.028. LDV measurements
of flow velocity profiles were made radially across the flowfield at four specified heights
from the bottom wall (Figure 13).

For the computation of this flowfield, the free surface was assumed to be vertical
* and located at a nondimensional radius of 0.7957. This radial location was measured by

J* I.Shadday continuously during the test and reported to be constant. As a verification, the
method described in Section II was used to check the shape of the free surface under these
conditions. For the axial spinrate in this experiment, the slope of the free surface was
0.690 degrees.

The grid chosen for the computation consisted of 30 points r 1,. radial direction and
61 points in the axial direction (Figure 14). Grid stretching was used to cluster grid points

,12



S/

near the solid boundaries and the free surface. The grid spacing at the cylinder sidewall
and endwalls was .0014 and .0018, respectively. This results in at least 2 grid points within
the wall boundary layers. The thickness of the sidewall and endwall boundary layers are
O(E'1 / 4 ) and 0(E/ 2), respectively. Grid clustering on the free surface was the same as
that used on the cylinder sidewall. Several grid sensitivity studies were conducted to insure
that the chosen grid was adequate.

The LDV measurements of radial velocity profiles were recorded by Shadday after
the top wall was accelerated to a new spinrate and the resultant flow had achieved steady
state. Shadday reports a predicted time of 6.0 seconds for the flow to reach steady state
((c2 /2f v)'/ 2 ). Shadday's time-dependent computation was run for 7.4 seconds. The cur-
rent time-dependent solution was also run for 7.4 seconds and studies were made to verify
that the solution had indeed reached a steady state. It was observed, however, that steady
state was reached well before 6.0 seconds.

Figures 15 through 22 show the comparison between measured and computed velocity
components at axial stations of Z/a = 0.497, 0.9, 1.304, and 1.706. In each case, the nondi-
mensional axial and azimuthal velocity is hown as a function of radial position. Figure 13
illustrates the locations of these axial stations relative to the differentially rotating end-

* wall. For the azimuthal velocity, the agreement between measurements and computations,
using both the present code and Shadday's results, is good for all axial stations. For the

l- axial velocity, agreement with measurements for both codes is good except near the free
-: surface. The magnitude of this discrepancy is nearly constant for all axial stations.

The discrepancy between computed and measured axial velocity near the free surface
may be due in part to a velocity bias in the LDV system, as reported by Shadday. This
discrepancy may also be due to the free surface shape and boundary condition assumptions.
Recall that the present work assumes that the free surface is vertical. An attempt was
made to minimize this effect in the experiment by choosing an axial spinrate that yielded a
free surface slant of less that a degree. In addition, the boundary conditions were obtained
using the assumption of inviscid free surface flow (zero tangential shear stress) and constant
normal pressure on the free surface. Although the effect of the inviscid boundary condition
on the final result is not known, this boundary condition would be violated most severely
near the differentially rotating endwall.

VII. RESULTS AND DISCUSSION

In this section, the resultant roll moment exerted on the cylinder is examined for full
and partially-filled cylinders in rapid axial rotation. The container is initially in a state of

* solid body rotation with an axial spin rate that is suddenly accelerated. The parameters
chosen for this study were Reynolds number 1000, cylinder aspect ratio 3.0, initial spinrate
300.0 rad/sec, final spinrate 400.0 rad/sec, cylinder radius 0.1 meters, liquid-fill density
1400 kilograms/meter3 and liquid fill ratios of .95 and 1.0.

For both the full and partially-filled cases, a 21 x 41 grid was selected with the loga-
rithmic grid clustering at the endwalls, sidewall and free surface. The Ekman number for
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these 'Row conditions is 1.11xl0 -4 and provides guidance for the selection of grid clustering

at the flow boundaries. For the sidewall and free surface, the grid spacing is selected as
.0042 (< E1/4). For the endwall, the grid spacing is selected as .0089 (< El/2). Figures
23 and 24 display the computational grids for cylinders with fill ratios of 1.0 and 0.95,
respectively. The location of the free surface, ri = 0.2236, was found from Equation 6.
Figure 1 shows the difference in free surface radial location at z = 6 and z = 0, Ar, as a
function of Froude number. For the initial spinrate of 300 rad/sec (Fr = 917.43, a = 0.1
meters), the slope of the free surface is about 0.20 degrees. The numerical computation
was carried out for 1000 time steps or to 0.0025 seconds. At this time, the liquid has suf-
ficiently adjusted to the cylinder spinrate; and the resultant liquid roll moment has been
significantly reduced.

An important calculation for this problem is the roll moment exerted on the cylinder
by the liquid fill. The moment is obtained by integrating the shear stress tangent to
the cylinder endwalls and sidewall over the entire cylinder. The contribution to the roll
moment at each grid point on the cylinder endwalls is proportional to re which for the
case of axisymmetric flow is p(v/uz). The contribution to the roll moment at each grid
point on the 7ylinder sidewall is proportional to r,9 which is equal to 1 (Ov/Or - v/r). The
roll moment is made dimensionless using a convention suggested by Murphy 24:

CLRM~f = Roll Moment (38)

A C~M=(liquid mass)(cylinder radius) 2(final spinrate)2

id. where the liquid mass is defined by the container volume and liquid density. The liquid roll
moment is less than zero because the liquid acts to despin the container. When the liquid
is in a state of solid body rotation, before the perturbation to axial spinrate and after the
liquid has adjusted to the perturbation, CLRM is zero. This can be used as an indication
of the liquid spin-up time. Figure 25 shows the time history of the total coefficient of

'Vw, liquid roll moment. CLRM for the partially-filled case is less than that for the full case.
-After a very short time, CLRM approaches zero. The smaller CLRM for the partially-filled

cylinder suggests that either the wall shear stress is different in the partially-filled case or
that the part of the cylinder endwall between r = 0 and r = ri for the full case is a major
contributor to the total moment.

Figures 26 and 27 show the sidewall and endwall components of CLRM. The sidewall

contributes significantly to the total roll moment and shows a marked difference for full
0and partially-filled cylinders. For the cylinder endwall, difference in CLRM for the partially-

filled and full cases is insignificant. Figure 28 shows the azimuthal velocity profiles near the
cylinder sidewall for two axial locations. These values are computed for 0.00025 seconds
after the perturbation. At this time, the largest difference in CLRM between the full and
partially-filled cylinders is computed (see Figure 26). The sidewall component of the shear
stress, and thus CLRM, is proportional to the radial derivative of the azimuthal velocity
(Ov/ar - v/r). The computed difference in this derivative for the two cylinder-fill ratios,
when integrated over the entire sidewall, yields the computed difference in the values of
CLRM.

" Figure 29 shows the relative difference in the computed CLRM for the filled and~part ially-filled cylinders. For this plot the computation was extended to 2000 time steps

or 0.005 secs. Whereas, the difference in CLRM between f = 1 and f = 0.95 approaches
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zero in the limit, the relative difference in CLRM approaches a constant that is greater than
0.3 for this case. Since the relative difference is increasing with time, CLRM for f = 1 is
approaching zero faster than the difference in CLRM for f = 1 and f = 0.95.

VIII. CONCLUSIONS

The internal liquid flowfield in a partially-filled right circular cylinder in rapid axial
rotation has been investigated. Currently, Reynolds numbers up to 100,000 have been com-
puted. The present work uses the axisymmetric Navier-Stokes equations but is restricted
to spin-up of the liquid from one state of solid body rotation to another. Limits on the ax-
ial rotation rate of the container are chosen such that the shape of the free surface remains
vertical. The present work uses the stream function-vorticity form of the unsteady, viscous,

<.4 incompressible Navier-Stokes equations. As a result, the finite-difference analog of these
equations are directly solved, using Gauss-Seidel SOR, without modification with artificial
compressibility terms. Upwind differencing has been selectively employed for the convec-

.tive terms of the governing equations. Logarithmic grid stretching has been employed near
wall boundaries of the flow, as well as the free surface.

Verification of the spatial and temporal accuracy of the numerical scheme has been
demonstrated for a rotating cylinder full of liquid. The required digital computer resources,
such as run time and storage, are minimal with typical cases averaging 30 CPU minutes
on a VAX 8600 mini-computer to attain steady-state solutions (in addition to the time
accurate solutions saved during the run).

Free surface boundary conditions on vorticity and circulation were derived based on
the assumption of zero tangential shear stress. A Dirichlet boundary condition was chosen

for the stream function that was consistent with the assumption of a vertical free surface.
These conditions were also employed by Shadday.' Both computations show an inadequate
correlation with LDV measurements of the axial velocity component at the free surface.
The present work employs a computational scheme based on the stream function-vorticity

-" form of the governing equations that is very different from the scheme used by Shadday.
In addition, the present work uses computational grids that are highly clustered at the

' boundaries of the domain. The similar results generated by these two very different com-
*, putational approaches points to the free surface boundary conditions as the likely source

of discrepancy. However, a possible velocity bias in the LDV measurements near the free
surface was described by Shadday.

The relative importance of the free surface was investigated by comparison of a
* Reynolds number 1000 flow in a full and partially-filled cylinder during spin-up from one

state of solid body rotation to another. The sidewall component of the liquid roll moment
for the partially-filled cylinder differed significantly from that of the cylinder full of liquid.
The endwall component was virtually unchanged.
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Figure 1. Difference in free surface radial location at the top wall and bottom wall of the
cylinder as a function of Froude number, 95% fill
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Figure 3. Finite- difference grid (31 x 31) with logarithmic stretching (d =b =0.05) for
full cylinder (c/a =1.0)
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Figure 4. Fini te- difference grid (31 x 31) with logarithmic stretching (d =b =0.05) for
70%A filled cylinder (c/a =1.0)
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Figure 5. Azimuthal velocity profiles at cylinder midplane for a = 1, Re = 9741.6
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* Figure 6. Azimuthal velocity profiles at cylinder midplane for a = 1.515, Re = 3076
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Figure 9. Inertial oscillations during spin-up from a previous state of rigid body rotation

at r = 0.25, z = 0.3182
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Figure 10. Inertial oscillations during spin-up from a previous state of rigid body rotation
0at r =0.25, z =0.0790
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Figure 11. Inertial oscillations during spin-up from a previous state of rigid body rotation
at r = 0.75, z = 0.3182
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ZONAL VELOCITY vs. TIME
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Figure 12. Inertial oscillations during spin-up from a previous state of rigid body rotation
atr =O075, z=.0790
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*Figure 15. Axial velocity profile for Re =93518, a =1.028, 36.7% filled, z =0.497
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Radial Distribution of Axial Velocity
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* Figure 20. Azimuthal velocity profile for Re 93518, a = 1.028, 36.7% filled, z = 1.304
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Radial Distribution of Axial Velocity
Z/a = 1.706

3 0 LDV Data (Ref. 9)
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Figure 21. Axial ve!ocity profile for Re = 93518, a = 1.028, 36.7% filled, z = 1.706
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Radial Distribution of Azimuthal Velocity
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Figure 22. Azimuthal velocity profile for Re = 93518, t = 1.028, 36.7% filled, z = 1.706
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Figure 23. Finite- difference grid (21 x 41) for Re =1000, a =3, full cylinder
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Total Liquid Roll Moment Coefficient
Spinrate :Initial = 300 rad/s, Final - 400 rad/s

0.10

Re = 1000
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I I I
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Time (sec / 1000)

Figure 25. Total liquid roll moment coefficient vs time for Re =1000, ~a =3, 100% and
* 95%( filled cylinders
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Sidewall Liquid Roll Moment Coefficient
Spinrate Initial = 300 rad/s, Final 400 rad/s
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00 0 0.5 1 1.5 2 2.5
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V. Figure 26. Sidewall component of liquid roll moment coefficient vs time for Re = 1000,
a 3, 100% and 95% filled cylinders
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" Endwall Liquid Roll Moment Coefficient
, Spinrate" Initial = 300 rad/s, Final =400 rad/s
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5%'.

* Figure 27. Endwall component of liquid roll moment coefficient vs time for Re = 1000,
= 3, 100% and 95% filled cylinders
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Re =1000 c/a =3.0 t = 0.00025 secs.

1 0 100% Fill
A95% FillZ 0.9
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* Figure 28. Azimuthal velocity profiles for z = 0.009 and 3.0 for Re = 1000, a =3, t
0.00025 sec, 100% and 95% filled cylinders
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Figure 29. Relative difference in total liquid roll moment coefficient for f = 1 and f =

0 0.95 vs time for Re = 1000, a = 3
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.Ne List of Symbols

a cylinder radius
b grid stretching parameter for the z-direction (see Eq. 35)
c cylinder half-height
d grid stretching parameter for the r-direction (see Eq. 34)
CLRM coefficient of liquid roll moment
E Ekinan number, v/ 1f c2 , the ratio of viscous to Coriolis force.
f liquid fill ratio of the cylinder, Z,/(2c)
Fr Froude number, Q2'a/g
g gravitational acceleration, 9.81 ft/sec2

P, p dimensional, nondimensional local pressure, inertial reference framie, p =P/p Q 2a 
2

R, r dimensional, nondimensional radial coordinate, r =R/
ri radial location of the free surface at z = 0 (cylinder bottom wall)
r2 radial location of the free surface at z = 2a (cylinder top wall)
Re Reynolds number, fQa 2 /v
ri radial location of the vertical free surface (see Eq. 6)
T, 7 dimensional, nondimensional time, r = Tgf

* U, u dimensional, nondimensional radial velocity component, u = U/Q a
V, v dimensional, nondimensional azimuthal velocity component, v = V/Qf a
IT'" , dimensional, nondimensional axial velocity component, w = W/Qfa
Z, z dimensional, nondimensional axial coordinate, z = Z/a
Z, liquid level at the cylinder spin axis for zero axial spin.
Z, liquid level at the cylinder spin axis for Of spinrate.

Greek Symbols
a cylinder aspect ratio, c/a
F, dimensional, nondimensional circulation, -y = r/ ]a2

Ar difference in free surface radial location between top and bottom cylinder wall-, r2 - r,

Z, dimensional, nondimensional vorticity, = /
9 azimuthal coordinate
p dynamic viscosity of the liquid fill
V kinematic viscosity of the liquid fill
p density of the liquid fill
9r tangential shear stress in the 0-direction on a surface with normal in the r-direction

Tzr tangential shear stress in the z-direction on a surface with normal in the r-direction
%P', L, dimensional, nondimensional stream function, ¢ = a
Q?, initial axial spinrate of the cylinder (rad/sec)
Of final or steady state axial spinrate of the cylinder (rad/sec)
] axial spinrate of the top wall of the cylinder (rad/sec)

4 aW Gauss-Seidel relaxation parameter
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Subscripts
r first derivative with respect to the radial coordinate
rr second derivative with respect to the radial coordinate
z first derivative with respect to the axial coordinate
zz second derivative with respect to the axial coordinate

Superscripts
k current iteration
k + 1 successive iteration
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