Technical Evaluation Report
on the
Flight Mechanics Panel Symposium
on
Rotorcraft Design for Operations
AGARD Advisory Report No.243

TECHNICAL EVALUATION REPORT
on the
FLIGHT MECHANICS PANEL SYMPOSIUM
on
ROTORCRAFT DESIGN FOR OPERATIONS

by

Dott.-Ing. F. Reina
Technical Director
Costruzioni Aeromarine
Giovanni AGUSTA S.p.A.
Cascina Costa di Samarate
Varese
Italy

This Advisory Report was prepared at the request of the Flight Mechanics Panel of AGARD.
THE MISSION OF AGARD

According to its Charter, the mission of AGARD is to bring together the leading personalities of the NATO nations in the fields of science and technology relating to aerospace for the following purposes:

- Recommending effective ways for the member nations to use their research and development capabilities for the common benefit of the NATO community;
- Providing scientific and technical advice and assistance to the Military Committee in the field of aerospace research and development (with particular regard to its military application);
- Continuously stimulating advances in the aerospace sciences relevant to strengthening the common defence posture;
- Improving the co-operation among member nations in aerospace research and development;
- Exchange of scientific and technical information;
- Providing assistance to member nations for the purpose of increasing their scientific and technical potential;
- Rendering scientific and technical assistance, as requested, to other NATO bodies and to member nations in connection with research and development problems in the aerospace field.

The highest authority within AGARD is the National Delegates Board consisting of officially appointed senior representatives from each member nation. The mission of AGARD is carried out through the Panels which are composed of experts appointed by the National Delegates, the Consultant and Exchange Programme and the Aerospace Applications Studies Programme. The results of AGARD work are reported to the member nations and the NATO Authorities through the AGARD series of publications of which this is one.

Participation in AGARD activities is by invitation only and is normally limited to citizens of the NATO nations.

The content of this publication has been reproduced directly from material supplied by AGARD or the author.

Published March 1988
Copyright © AGARD 1988
All Rights Reserved
ISBN 92-835-0450-X

Printed by Specialised Printing Services Limited
40 Chigwell Lane, Loughton, Essex IG10 3TZ
PREFACE

The expanding roles of the helicopter and the intensified threat perceived by its potential users have led to proposals for future rotorcraft with characteristics significantly different to existing types. The resulting rapid evolution of rotorcraft configurations, in response to user demands, now requires a translation into design criteria to permit the aerospace R&D community to provide appropriate and cost effective responses to these demands. The objective of this symposium was to explore the impact of operational needs on the evolution of rotorcraft design. The result will be to provide a review of the present status of rotorcraft design and to identify priorities and neglected topics. Three specific issues were central:

- The translation of operational mission requirements into design criteria
- The evaluation of techniques to incorporate user defined needs into the design and methods of test and verification
- The identification of design areas where unusual or new user needs are demanding special or radical features.

All papers were obtained by invitation.

The Conference Proceedings, commissioned by the AGARD Flight Mechanics Panel are published separately as AGARD CP 423.

Le rôle croissant de l'hélicoptère et de la menace, de plus en plus pressante, perçue par les utilisateurs potentielles, ont conduit à la formulation de propositions pour des nouvelles voitures tournantes dont les caractéristiques seront très différentes de celles des modèles existants. En réponse aux demandes de l'utilisateur, l'évolution rapide des configurations des voitures tournantes impose maintenant la traduction en critères d'étude, afin de permettre à la communauté de R&D aéronautique de fournir les réponses appropriées et le coût réel de ces exigences. Ce symposium avait pour objet de passer en revue l'état actuel de la conception des voitures tournantes et d'identifier les priorités et les omissions. Trois points spécifiques étaient au centre du problème:

- La traduction des exigences requises pour les missions opérationnelles en critères conceptuels
- L'évaluation des techniques pour tenir compte des besoins de l'utilisateur au niveau de la conception et des méthodes d'essais et de vérification
- L'identification des domaines d'étude ou les besoins nouveaux ou inhabituels de l'utilisateur demandent des caractéristiques spéciales ou essentiellement différentes.

Toutes les communications ont été obtenues par voie d'invitation.

Le compte rendu du symposium demandé par la Commission Mécanique du Vol de l'AGARD est disponible de façon séparée, référence AGARD CP 423.
CONTENTS

PREFACE
1. INTRODUCTION iii
2. LIST OF PAPERS 1
3. SUMMARY OF SYMPOSIUM PAPERS 1
4. PRESENTATION DISCUSSION 2
5. ROUND TABLE DISCUSSION 3
6. CONCLUSION 7
7. RECOMMENDATION 8

Page
iii
1
1
2
3
7
8
9
A TECHNICAL EVALUATION REPORT FOR THE SYMPOSIUM ON "ROTORCRAFT DESIGN FOR OPERATIONS"
(Amsterdam -The Netherlands,13-16 October 1986)
by: Dott.-Ing. F. REINA
(Giovanni AGUSTA S.p.A.)

1. INTRODUCTION

The 69th Symposium of The Flight Mechanics Panel on "Rotorcraft Design for operations" was held in Amsterdam from the 13th to 16th October 1986.

Attendance was 150.

The meeting subject was selected on the basis of the following rationale:
- All nations face the evidence that defense programs tend to become fewer, more expensive, and are characterized by increasing technical risk.
- Recent experience of mid-program difficulties indicate that a clear method to translate operational requirement in design criteria should be pursued and tentatively outlined.
- Since most of the parameters affecting Life Cycle Cost (LCC) are decided upon during the preliminary design phases (feasibility + definition) it is at this stage that a severe cross check between requirement and design must be exercised.

Experience has indicated that during the preliminary design phase of a program, companies risk in mis-interpretations of the requirement and the Government procurement is vulnerable to over-sight of some characteristics of the proposed design which may later prove marginally acceptable. It must be considered that the mutual interference of requirement and design should be a two way exercise, with the design feeding back risk, time, cost implications for eventually re-define the requirement.

The passage from requirement statement to design specification definition is a critical program point because the users must resist the temptation to over-specify requirements and the industry the temptation to accept unrealistic commitments just to get the job and the program going. A method imposing severe two-way audits at this stage may avoid many problems later and could be more effective in avoiding unnecessary design efforts and the adoption of less than totally satisfactory designs. It is important to note that the concern for a continuous two way requirement / design interaction is not limited to the basic aircraft definition, but extends to cover the areas of avionic and mission system packages.

Once again it is the total requirement for the rotorcraft system which must be clearly understood by the designers and the total design definition which should be clearly visible to the users. With this rationale as background the FMP quite properly proposed papers offering contributions on:
- "Operational Requirements"
- "Design and Testing"
- "New Programs"

2. LIST OF PAPERS

SESSION I - OPERATIONAL REQUIREMENTS

(Session Chairmen : J.-M. DUC,FR & D.L.KEE,US)
1) "Le dialogue "opérationnels-ingénieurs": nécessité d'une concertation systématique entre constructeurs et utilisateurs pour la réalisation d'un hélicoptère de combat (Gen. G. RAFFLEUF, ALAT, FR)
3) Future civil operational requirements in North Sea oil support operations (F.R.J. SCHAPER, KLM Helicopter, NE)

SESSION II - DESIGN AND TESTING

(Session Chairmen : N.MOOG,ME & G.R.SACHS,GE)
4) Mission-oriented flying qualities criteria for helicopter design via inflight simulation (F. SAMML, H.-J. FAUSDEP & B.GMELIN, DFVLR, GE)
5) Investigation of vertical axis handling qualities ties for helicopter hover and HOE flight (S. BAILLIE & J.M. MORGAN, NAE, CA)
6) Handling qualities criteria for very low visibility rotorcraft HOE operations (R.M. HON, Systems Technology, US)
7) MBF simulation facilities applied for rotorcraft research (F. KRAUSPE & H. BORCHERT, MBB, GE)
8) Simulateurs d'études pour Hélicoptères (M.D. JEROME, CEV, FR)
9) Modelling the XV-15 tilt-rotor aircraft dynamics by frequency and time domain identification techniques
(M.W.Tischler, Army Aeroflight Dynamic Div. J. Kaleka, DFVLR, GE)

10) Operational load measurements on service helicopters (SMP contribution)
(D.M. Wolford, RAE, UK)

11) The flight evaluation of an advanced engine display and monitoring system
(L. Adams, RAE, UK)

SESSION III SPECIAL TECHNOLOGIES
(Session Chairmen: L.M.B.C. Campos, PO & R.R. Lynn, US)

12) Contrôle actif des vibrations sur hélicoptère par commandes multicycliques auto-adaptives
(M. A. Chache, Aerospatiale, FR, & M. Gauvrit, CERT, FR)

13) Controlling the dynamic environment during NOE flight
(D. Halwes, Bell Helicopter Textron, US)

14) Minimisation of helicopter vibration through active control of structural response
(A. E. Staple & S. P. King, Westland Helicopter, UK)

15) Impacts of rotor hub design criteria on the operational capabilities of rotorcraft system
(R. Schindler & E. Pfisterer, IABG, GE)

16) Améliorations des performances du FEHESSTRON (Rotors de queue carénés pour hélicoptère)
(F. Morelli & A. Vuillet, Aerospatiale, FR)

17) Rotorcraft design for the year 2000
(E. Bradenburgh, Sikorsky UTC, US)

18) Helicopter (performance) management. Some ideas on system and hardware realization
(W. Benner & R. Gussman, Dornier, GE)

19) Fly-by-light- ADCCS flight demonstration program (CCP contribution)
(J. M. Davis & N. Albion, Boeing Vertol, US)

20) Conduite de tir hélicoptère: Intérêt d'une poursuite automative de cibles
(R. Cerutti, SFIM, FR)

SESSION IV NEW PROGRAMMES
(Session Chairmen: S. R. M. Sinclair, CA & A. A. Woodfield, UK)

21) Development, testing and evaluation of a night vision goggle compatible Bo105B for night low level operation
R. H. Friedericy, Royal Neth. Army, NL

22) A129 advanced solution for meeting today's combat helicopter requirement
G. Virti, Agusta, IT

23) Apache for the battlefield of today and the 21st century
J. B. Morke, McDonnell Douglas Helicopter, US

24) Mission de recherche et sauvetage – système SAR
M. Ricche, Aerospatiale, FR

25) The EH101 Integrated project: a naval, utility and commercial helicopter system
P. Alli & B. Baldassarri, Agusta, IT

26) Influence of operational requirements on the design of the V-22 tilt-rotor-aircraft
S. Blake & T. Garvey, Boeing Vertol Co, US

3. SUMMARY OF SYMPOSIUM PAPERS

1) The Operational Requirements Session. Paper 1) provided an excellent expression of the difficult task of defining a realistic requirement and highlighted the need for a continuous dialogue between operational experts and designers. Paper 2) provided details on the requirement definition process for the LHX, while paper 3) expressed a full range of civil requirements which presently are not adequately answered and for which more specific attention should be provided.
2) The Design and Testing Session has been characterized by papers assessing the efforts to provide advance evaluation of the designs via simulation (papers 4, 5, 7, 8, 9). These capabilities of realistic early identification of the most important design characteristics are indeed much needed for a safe development program launch. The other three papers (6, 10, 11) propose:
- advanced criteria to quantify the degree of compliance with old ambitious requirements of ROE (flight with reduced visual cues)
- an improved life prediction on the basis of complex fatigue monitoring systems
- more efficient cockpit management via advanced displays for the propulsion system

3) The New Programs session provided direct experience from new programs which have completed their definition cycle and have reached various levels of operational verification. Updated information on the AH64 Apache, the BO 105 for night low level operation and the Dauphin SAR system were presented as well as the A129 light AntiTank helicopter which has just entered in production and the KHI01 which will take its first flight.

4. PRESENTATION DISCUSSION

SESSION 1 - OPERATIONAL REQUIREMENTS
Starter with an outstanding contribution by Gen. G. Baffaleuf, ALAT, FR and was centered on the critical importance of the quality of the dialogue between "Operatives" and "Engineers" within the military environment and in the military-industrial relationship. The quality of this dialogue which is normally based on good personal relationship must be improved to becomes a more formal method of verification and promote a change of behavior on both sides. This dialogue must be a two way exercise and provide both parties with the information required to carry on the specific responsibilities which can be synthesized as follows:
- for the operational staff:
 1) appreciation and expression of realistic requirements, avoiding to require impossible or unuseful capabilities but keeping a watchful eye on the future technical opportunities.
 2) timely launch of development programs to avoid unrealistic development time scales and immature fielding of equipment not completely developed or debugged.
For the engineers:
 1) best adaptation of the new designs to the military requirement
 2) effective cost and time estimations and control
 3) correct schedule management

Finally the point of view of the ALAT on the attack helicopter design was outlined as follows:
- the "dedicated" helicopter alternative is preferred to the multifunction option: weight, size and detectability must be minimized to improve survivability on the battlefield and special emphasis must be placed on low detectability characteristics.
An immediate example of a disciplined method to translate operations requirement in design criteria has been provided by paper n.2) presented by M. R. Tomine, U.S. Army AVSCOM. This paper addresses the concept formulation process of the US Army LHX (Scout & Light Attack plus Light Utility).

This process is supported by the wide experience of the US Army on helicopter development and although structured around a rather rigid scheme, in actual practice it is complemented by an intense dialogue (such as that suggested in paper 1) among AMC, TRADOC and Industry.

In this program extensive innovations are demanded by a challenging threat definition which includes ground based weapons, air-to-air and NBC components. Equally ambitiously the LCC (Life Cycle Cost) target appears to reduce the cost of ownership of the new LHX fleet by 40% over the cost of today’s fleet of UH-1, RH-6, OH-58.

Paper 1) and 2) stressed from two different aspects the point that the most careful attention must be focused on the requirement definition and on the preliminary design phases of any new rotorcraft development. The implication is that today’s methodology to carry through these phases is not completely satisfactory and should be improved.

Paper 3) presented by F. D. Schaper of KLM Helicopters, NL expressed a similar concern. Helicopter operators active on the offshore oil and gas support industry represent the largest group of civil users. Today they feel that the current rate of progress of the helicopter capabilities to meet their requirement is much too slow. Some unsatisfactory areas are cabin space safety, reliability, cockpit ergonomic and vibration. Again the recommendation is that, in future, the designers should try to harmonize basic military and civil requirements at early stages of the definition process. Unfortunately, while the EH 101 has represented a step in this direction, the LHX NH90 design seems totally dominated by their military requirements. Therefore these basic questions still stand:
achieving an optimization of mission effectiveness.

1) Is the limited diffusion of civil helicopters the cause or the effect of the in-complete compliance of existing helicopters to the civil requirements?

2) Can a common civil requirement be expressed by a reasonable majority of the operators?

3) Can military and civil requirements be integrated to lead to a common basic design in which a balanced trade-off on capabilities will permit significant cost saving to both types of operators?

Session II - Design and Testing, presented several papers on prediction and simulation technology.Clearly the possibility of precise prediction of the helicopter dynamic behaviour and of the cockpit/display effectiveness is a key factor in the process of Rotorcraft design for operation (see ref.4,5,6,7,8,9) and an essential tool in comparing, at an early stage, the requirements with design performance.

Paper 4 - by Hamel, Fauster and Gmelin, reported on the advances in flight simulator, used by DFVLR in Germany to evaluate the flying qualities of future highly augmented rotorcrafts. This simulator is based on a BO 105 airframe modified with a full authority, simplex FBW system which provides the actuation function for a Model Following Control System (MFCS) which can be easily adapted to represent helicopters with different dynamic characteristics. It is felt that this technique is very promising because it allows the direct investigation of the basic handling characteristics at reduced cost, time and risks with a high degree of realism.

Paper 5 - by Bainlie and Morgan, provided a report on an experimental investigation of vertical axis handling qualities using an in-flight simulator at the National Aeronautical Establishment of Canada. The objective of this activity is to provide guidance for the future revision of MIL-8501A in the area of required heave damping levels and thrust-to-weight limits.

Paper 6 - by M. Hoh from Systems Technology Inc. US, also dealt with an experimental activity to support the revision of MIL-8501A in the area of handling qualities criteria for very low visibility rotorcraft NOE operations. The objectives of these experiments were to develop a criterion to account for degraded visual cues in defining the control and stabilization characteristics for the NOE environment. The conclusions are that micro texture visibility (spatial resolution) provides a higher VCR (Visual Cue Rating) than the field of view and that the proposed VCR method can be used to estimate satisfactorily the effectiveness of a display system. Helicopter attitude augmentation can be used to make up for display deficiencies, but it also results in loss of agility, so ultimately it is more effective to try to improve the visual cues characteristics.

Paper 7 - by Krause & Porcher from MBB, GE and paper 8 by J. Jerome from CEV, FR, presented excellent informative details on the simulation facilities available at MBB and Aerospatiale to support rotorcraft design. The application of ground based real-time flight simulators to support the feasibility, definition, specification and development phases requires high flexibility and realism. It is reported that the quality of available hardware and software is now adequate to pick up the challenge and is continuously improving. The total entity of the vehicle and its systems can now be evaluated as a unit providing a much needed opportunity to check the effectiveness of the design solution against the requirements in the early stages.

Paper 9 - by Tischler US and Keletka, GE, dealt with the problem of extracting from flight test data a predictive model of the BO-105 Tilt Rotor Aircraft hover dynamics (no augmentation). Two methods were used: frequency domain analysis and time-domain identification. Both methods were proven to have excellent predictive capabilities and a proposal for a coordinated parameter identification approach using both methods was presented.

Paper 10 - by D.M Holford, UK proposed the results of experimental research work carried out at RAE, Farborough on Operational Load Measurement.

The aim was to substantiate component fatigue lives on the basis of actual operational usage. This is a very attractive field of research in view of the target to obtain an "on condition" maintenance situation for critical parts for which unnecessary calendar replacement is particularly expensive in terms of cost and down-time of the aircraft. The way ahead is promising but does require that the on-board instrumentation is capable of acquiring continuous, reliable data. Today the desired reliability is not yet obtained and the paper draws attention to problem areas that must be addressed in future, comprehensive fatigue monitoring system.

Papers 11, 16, 18, 19, 20 presented test results and analytical studies on critical helicopter subsystems which provide important contributions to the feasibility of new advanced solutions (such as safe single pilot operation for attack helicopter).

Paper 11 - by L. Adams, RAE, UK reported an experimental results from an advanced engine display and monitoring system. The final aim was to allow the pilot to concentrate his attention outside the aircraft while maintaining or improving his safety margin, thus achieving an optimization of mission effectiveness.
Exploiting a balanced use of available technical solutions, such as integrated co-rotor display and synthetic voice outputs, it was demonstrated that engine and transmission data other than rotor torque and r.p.m. can be suppressed and provided to the pilot only when really needed.

A similar experience has been presented by paper 19 by Davis and Albion, Boeing Vertol, US. Boeing Vertol experiments and flight experience confirm the feasibility of the concept provided a specific avionic package was added to the basic FTR configuration. The package includes a new cockpit layout with NVG compatible "lighting, three axis stabilization system and a Doppler navigator which the total Rotor Isolation System".

A group of papers (12, 13, 14) dealt with different approaches to the objective of vibration minimization. This goal has been, and still is, extremely important as vibrations level today constitutes the first limit to improvement of basic operational capabilities such as speed and stability.

A completely different approach was presented in paper 13 by B. Cerutti, SIX, FR. By using a passive approach based on six "LIVE" links (Liquid Inertia Vibration Eliminator) this passive system, called TRIS (Total Rotor Isolation System), has demonstrated a capability to reduce main rotor induced vibration to below the 0.04 g level, having isolated over 95% of the loads generated by the main rotor. This passive system, called TRIS (Total Rotor Isolation System), has demonstrated a capability to reduce main rotor induced vibration to below the 0.04 g level, having isolated over 95% of the loads generated by the main rotor. In addition, the TRIS installation has demonstrated a significant improvement in helicopter flying qualities to a point where artificial stability augmentation is no longer required.

The most significant advantage over the Bell 206 baseline isolation system was obtained at lower speeds (< 50 kts) where the main rotor was the dominant vibration source. The weight penalty is estimated to be less than 1% of the max gross weight for the 206 LM helicopter. The movements of the pylon (typically 3/4" displacement and 2.5\(^\circ\) torsion) probably limit this solution which is therefore most suited for light helicopters.

In this approach high frequency forces are superposed on the dominant vibratory forces in a active manner within the helicopter structure. In the case of the Westland WG 30
these forces are generated by active elastomeric isolators placed between the Main Gear Box "raft" and the cabin roof. The active isolators are capable of a movement of 0.5 mm. This system has been fully defined through extensive research studies and has shown significant potential for vibration reduction. Control algorithms have been fully developed and a demonstrator program is now underway based in Westland 30 series 100 helicopter. Flight trials are expected to begin later this year (1986).

The final three papers of section 3 on Special Technologies (15,16,17) offered a very good update on general configuration issues on the main rotor, the tail rotor and on the complete rotarycraft.

Paper 15 - by R. Schnieder and E. Pistorius, IABG, GE, presented a comprehensive summary of the development history of main rotor heads. Several existing configurations (approx 13) have been developed at different times to meet differing needs of the users and are described in this paper.

Future rotor system will be required to provide high manouvrability, unelitical stability behavior, low vibration behavior. These functional performances must be complemented with life-cycle costs and logistic improvements. Merging capabilities and present the most promising configuration for light and medium helicopters.

Paper 16 - by F. Morelli and A. Venditt, Aerospatiale, FR, presented recent analytical and experimental development of the fan-bladed (fanrotor) configuration of the main rotor system. The configuration was originally developed to improve the safety in case of external collisions, but with continuous improvements it has now reached a performance figure of merit which compares favourably with advanced four-bladed conventional tail rotors. The latest performance improvements are obtained with optimized airflow and stator blades in the diffuser. This newest configuration allows a reduction of the thrust width which results in forward flight without penalty.

Generally speaking and in consideration of performance as well as safety, reliability, detectability and vulnerability this configuration may be considered as the best anti-torque system for light and medium size helicopters.

Paper 17 - by E. A. Fredenberg, Sikorsky U.T.C., US, examined some of the rotorcraft concepts that can offer higher speeds than pure helicopters, including the compound helicopter and tiltrotor configurations. All of these are potentially practical aircraft. Economic considerations seem to dictate that the pure helicopter, here to stay, is cheaper. However, speedier designs allow for cost saving in the future.

The heavy lift requirement (30 tons typical) was examined with the conclusion that a super-large helicopter is unaffordable. A more cost-effective solution is to use the twin-twin technique to transport the occasional extremely heavy load.

The final groups papers (18,19,20,21,22,23) reported valuable, hands-on experience on new programs at different stages of development.

Paper 22 - by Vihturi, C.A., Agusta, Italy, provided a detailed overview of the development process of the AW609 helicopter and of its advanced technical solutions to meet its operational requirement. Key points of this design are:
- advanced technology subsystems
- extremely high level of integration
These concepts have been applied to the vehicle design as well as to the mission, package and systems. This is very flexible and efficient configuration, which obtained a significant cost effectiveness by keeping weight and dimensions within strict limits. The helicopter mission weight for the Italian army is 4630 kg. This decision has just transitioned to production after having been tested on 5 prototypes (two of which fully test mission equipped).

Paper 23 - by J. T. Blake, MDHC, US, was a very erluminating presentation on the verification of the performance of a very innovative design after 5 years of production. The AH-64 Apache helicopter was developed in the 1970's as a complete antisatellite system capable of day, night and adverse weather operation. This was an extensive technical effort which was largely successful and resulted in fielding, in 1983, a very advanced attack helicopter providing an antisatellite effectiveness never before achieved. However, in 1986, changes were made in operational requirements, as the threat and in the antisatellite technology, which lead to the identification of a list of possible technology updates which would provide further enhancements to the system mission effectiveness. While the US Army is currently evaluating the relative value of the available options, it has been recognized that the area allowing the largest payoffs in terms of future growth capability and effectiveness enhancement is that of avionics, controls and displays. The precise definition and evaluation of the possible new avionic solutions will need accurate methods and tools such as simulation, hot bench and flight validation. Previous papers during this symposium have indicated that these methods and tools are indeed available and capable of providing an affordable and reliable basis for an update program.

Paper 24 - by G. Fiocchi, Aerospatiale, FR, described the most advanced search and rescue mission package now available for helicopter use. This system optimized the SAR mission effectiveness of the AS Saphyre helicopter providing the following automatic functions:
- trajectory sterilization during the search pattern flight
- the approach maneuver.
'have made during the rescue operation.

Cockpit management control of four colour multifunction (MFD) displays.
Once again a difficult and demanding mission, has been made quite realistic with the optimization of the man-machine interface and by reducing the operator's work load.

Paper 25 - By P. Atzi, R. Rejasacchi, and others on Auguste. It reported on the development of the Anglo-Italian EH101 "Integrated" program. This design was faced with the challenge of the requirement of two Navies for a medium size ASW helicopter. The military requirement for an utility vehicle and the commercial requirement for a passenger transport. The approach has been to work for an early integration of the three requirements and to aim for a common design which would satisfy the integrated requirement while relegateing to secondary, development the task of generating the national and special-purpose variants. It is unique in this program that the integrated solution has been considered from the early stages of the design, providing the maximum freedom in the technical solutions.

The paper (presented by Mgr. G. Matteocci) provided specific data on the reduction of the non-recurring costs, comparing the costs of dedicated developments to the costs of the integrated program. A figure of 40% cost saving was claimed, while the overall capabilities of the helicopter, often driven by the most demanding requirement, appear to be exceptionally advanced. The weight has been kept lower than the average trend by a factor of 1.5% (4x1.5%)

Paper 26 - By B. S. Luce, Howard Vertoll and J. Gaffey (BHT) from B.S. described the influence of operational requirements on the design of the V-22 VSTOL Aircraft. In this case the requirements are both exceptionally innovative and demanding. Besides the unique requirement for high speed, altitude and range the military needs have imposed a significant challenge to the development of this aircraft. The specific needs were:
- High speed compatibility, direct ramp loading, manoeuvrability, Assad rotor folding.

This innovative configuration has posed significant new engineering problems during the preliminary design phase. This applies to the mission requirements (assault troop transport, long range deployment as well as the subsystem design solutions).

A synthetic aperture has been provided of the results obtained in terms of aircraft efficiency, handling qualities, crashworthiness, component life monitoring and maintainability characteristics.

5. ROUND TABLE DISCUSSION

A round table discussion was held at the conclusion of the presentations of the scheduled papers. Four topics were selected among the issues of more general interest raised during the question and answer period which followed each paper and were assembled as round table speakers as follows:

1. Mr. B. Rodden:
 - Feasibility of Single-Pilot Helicopter Operation
2. 1. Lt. Col. A. Paring
 - Multiple vs. Dedicated Helicopter
3. Mr. R. Bocchi
 - Military vs. Civil Requirements Compatibility
4. Mr. M. Lynn
 - New Developments on Rotorcraft Configuration

Single-Pilot Operation Feasibility

The feasibility of single pilot helicopter operation is not being questioned any more. It is commonly accepted that provided sufficient life and money availability this capability can be achieved with the technology now available. Difficulties have to be expected however in the area of quantitative measurement of pilot's work load in a difficult environment such as any of earth anti-tank missions where the psychological effect of being alone may increase significantly the operational difficulties. In general, methods for quantitative assessment of human engineering parameters are still somewhat obscure and a resistance to structured experiments is common. Therefore a more concentrated effort in this area is needed and recommended.

Additional comments were added to the speaker statement:

Mr. B. Rodden confirmed that single pilot operation is still a requirement for LYNX and that a decision will be taken on the basis of an experimental comparison of the single vs two pilot configuration.

Mr. Bauer of the US Navy pointed out that proper training will play an important role in the success of single pilot operation. On the ASW Lynx the Dutch Navy operates with
single pilot and a navigator since 1965 years on the basis of intensive flight and simulator training.

Bob Lynn expressed a concern on the fact that single pilot operation for complex missions, i.e., LHX, may increase complexity and cost of the avionic package to an unacceptable level.

3) Dedicated or multirole helicopters. The contradictory situation of having the US, which have a large quantitative requirement, and the other European nations with smaller quantities are seeking the dedicated solution as was mentioned in the opening remarks by Paul Campos. Colonel Parke, expressed the view that dedicated helicopters are required for the most specialized missions, such as antitank attack, while commonality is possible on utility-type mission such as transport on SARP.

4) Compatibility of military and civil requirements for basic design driven. The issue has been raised both with regard to the possibility to meet both requirement by a new design and to the capability to provide a satisfactory adaptation of an original military or civil design to a later application in the other field. Mr. Bloche provided an example of successful evolution the history of A.S. Douglas from his civil vehicles to maritime and then military combatant applications. Mr. Fradgenbohurt indicated that in the case of the UH-60 Black Hawk (which obtained a limited civil certification) the air transportability requirement, which is typically military, failed in certain height which is not satisfactory for the civil users and cannot be economically corrected. Similarly the development of a military kit to allow weapons firing from a utility helicopter was successfully achieved but with no intention to substitute the dedicated attack helicopter.

5) New Development of Helicopters. Mr. A. Lyn gave a clear summary of the realistic possibility of development of the helicopter conventional configuration. It is admitted that the maximum speed limit for conventional helicopters is in the range of 100 knots for large machines and 170 knots for smaller ones. Nevertheless the relative importance of speed vs autorotation and hover capability still makes the conventional configuration very attractive than alternatives such as the compound helicopter, if speed is absolutely a key parameter then the tilt wing configuration becomes convenient mostly if it can be associated with high altitude flight profiles. Much can still be done to improve the craft by careful use of advanced technologies. The total contribution of recent advances in individual technologies such as aerodynamics, materials, power plants and electronics may lead to reducing weight and cost by a factor of ten while obtaining increases in safety and productivity by an order of magnitude. In a market term a significant commercial business opportunity for rotorcraft appears to be offered by the increased congestion due to the fixed wing airplanes traffic growth. This congestion can certainly be alleviated by innovative use of advanced rotorcrafts.

6) CONCLUSION

The program was extremely successful both for the quality of the papers which were presented and for the importance of the subjects which were properly tuned to real problems of helicopter design development. Specifically:

- The availability of realistic simulation of the critical design characteristics of the entire helicopter system has been discussed both as a requirement and as a feasible technical achievement.
- The costs and difficulties in developing flexible and convincing simulators are very high. Therefore exchange of information on this subject is extremely important and useful.
- Advanced technology solutions have been presented for new problems as well as for old ones.
- Some problems are now being discussed, cockpit integration, mission management, target tracking and the effective measurement of operational loads to obtain safe on-condition maintenance.
The most significant of the old challenges are vibration reduction, and the identification of improved main rotor and tail rotor configurations. In these areas opportunities for improvements have been actively pursued and a free exchange of information can be seen as a very valuable contribution to the helicopter technology progress.

7. RECOMMENDATIONS

1) The identification of a viable and proven method to translate operational requirements into design targets and to verify the satisfactory level of design results is clearly needed by the military experts as well as by the engineers. It is strongly recommended that such method is extracted from the latest experiences on helicopter developments and tested on new programs.

2) As system simulators appear to be a key tool in this verification, the exchange of information on these facilities and agreements on shared use of existing ones should be encouraged.

3) Helicopter vibration reduction is still a challenge for all manufacturers. Several innovative solutions have been developed to the experimental stage. The exchange of information on achieved test results and support for the ongoing programs should be encouraged both at industrial and government level.
The expanding roles of the helicopter and the intensified threat perceived by its potential users have led to proposals for future rotorcraft with characteristics significantly different to existing types. The resulting rapid evolution of rotorcraft configurations, in response to user demands, now requires a translation into design criteria to permit the aerospace R&D community to provide appropriate and cost effective responses to these demands. The objective of this symposium was to explore the impact of operational need on the evolution of rotorcraft design and to identify priorities and neglected topics. Three specific issues were central:

- The translation of operational mission requirements into design criteria
- The evaluation of techniques to incorporate user defined needs into the design and methods of test and verification
- The identification of design areas where unusual or new user needs are demanding special or radical features.

All papers were obtained by invitation.

The Conference Proceedings, commissioned by the AGARD Flight Mechanics Panel are published separately as AGARD CP 423.

This Advisory Report was prepared at the request of the Flight Mechanics Panel of AGARD.
The expanding roles of the helicopter and the intensified threat perceived by its potential users have led to proposals for future rotorcraft with characteristics significantly different to existing types. The resulting rapid evolution of rotorcraft configurations, in response to user demands, now requires a translation into design criteria to permit the aerospace R&D community to provide...
appropriate and cost effective responses to these demands. The objective of this symposium was to explore the impact of operational needs on the evolution of rotorcraft design. The result will be to provide a review of the present status of rotorcraft design and to identify priorities and neglected topics. Three specific issues were central:

- The translation of operational mission requirements into design criteria
- The evaluation of techniques to incorporate user defined needs into the design and methods of test and verification
- The identification of design areas where unusual or new user needs are demanding special or radical features.

All papers were obtained by invitation.

The Conference Proceedings, commissioned by the AGARD Flight Mechanics Panel are published separately as AGARD CP 423.

This Advisory Report was prepared at the request of the Flight Mechanics Panel of AGARD.

ISBN 92-835-0450-X

appropriate and cost effective responses to these demands. The objective of this symposium was to explore the impact of operational needs on the evolution of rotorcraft design. The result will be to provide a review of the present status of rotorcraft design and to identify priorities and neglected topics. Three specific issues were central:

- The translation of operational mission requirements into design criteria
- The evaluation of techniques to incorporate user defined needs into the design and methods of test and verification
- The identification of design areas where unusual or new user needs are demanding special or radical features.

All papers were obtained by invitation.

The Conference Proceedings, commissioned by the AGARD Flight Mechanics Panel are published separately as AGARD CP 423.

This Advisory Report was prepared at the request of the Flight Mechanics Panel of AGARD.

ISBN 92-835-0450-X
AGARD does not hold stocks of AGARD publications at the above address for general distribution. Initial distribution of AGARD publications is made to AGARD Member Nations through the following National Distribution Centres. Further copies are sometimes available from these Centres, but if not may be purchased in Microfiche or Photocopy form from the Purchase Agencies listed below.

NATIONAL DISTRIBUTION CENTRES

BELGIUM
Coordinator AGARD — VSO
Etsu-Meur de la Force Aéronautique
Quartier Sainte Elisabeth
Rue d’Evere, 1140 Bruxelles

CANADA
Director Scientific Information Services
Dept of National Defence
Ottawa, Ontario K1A 0K2

DENMARK
Danish Defence Research Board
Ved Industrisparken 4
2100 Copenhagen Ø

FRANCE
C.N.E.R.A. (Direction)
20 Avenue de la Division Leclerc
92320 Châtillon

GERMANY
Pachtinformationszentrum Energie, Physik, Mathematik GmbH
Kerstenstrasse
D-7514 Eggenstein-Leopoldshafen 2

GREECE
Hellenic Air Force General Staff
Aircraft Support Equipment Directorate
Department of Research and Development
Hellenic, Athens, 15500

ICELAND
Director of Aviation
c/o Flugmynd
Reyjavik

ITALY
Aeronautica Militare
Ufficio del Delegato Nazionale all’AGARD
3 Piazzale Adrani
00144 Roma/EUR

LUXEMBOURG
See Belgium

NETHERLANDS
Netherlands Delegation to AGARD
National Aerospace Laboratory, NLR
P.O. Box 150
2600 AC Delft

NORWAY
Norwegian Defence Research Establishment
Att: Biblioteket
P.O. Box 25
N-2007 Kjeller

PORTUGAL
Portuguese National Coordinator to AGARD
Gabinete de Estudos e Programas
CLAPA
Base de Alfragide
Alfragide
2700 Amadora

TURKEY
Ministry of National Defence
ARGE Defence Establishment
 Ankara

UNITED KINGDOM
Defence Research Information Centre
Kensington House
64 Brown Street
Glasgow G2 8EX

UNITED STATES
National Aeronautics and Space Administration (NASA)
Langley Research Center
M/2 180
Hampton, Virginia 23665

THE UNITED STATES NATIONAL DISTRIBUTION CENTRE (NASA) DOES NOT HOLD STOCKS OF AGARD PUBLICATIONS, AND APPLICATIONS FOR COPIES SHOULD BE MADE DIRECT TO THE NATIONAL TECHNICAL INFORMATION SERVICE (NTIS) AT THE ADDRESS BELOW.

PURCHASE AGENCIES

United States
National Technical
Information Service (NTIS)
5255 Port Royal Road
Springfield
Virginia 22161, USA

ESA/Information Retrieval Service
European Space Agency
10, rue Marie Niki
75015 Paris, France

The British Library
Document Supply Division
Boston Spa, Westerby
West Yorkshire LS23 7BQ

Requests for microfiche or photocopies of AGARD documents should include the AGARD serial number, title, author or editor, and publication date. Requests to NTIS should include the NASA accession report number. Full bibliographical references and abstracts of AGARD publications are given in the following journals:

Scientific and Technical Aerospace Reports (STAR)
Published by NASA Scientific and Technical Information Branch
NASA Headquarters (NIT-40)
Washington D.C. 20546, USA

Government Reports Announcements (GRA)
Published by the National Technical Information Services, Springfield
Virginia 22161, USA

Printed by Specalised Printing Services Limited
40 Chigwell Lane, Loughton, Essex IG10 3TZ

ISBN 92-835-0450-X