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Abstract

A general model for the actuarial Risk Reserve Process as a superposition

of compound delayed-renewal processes is Introduced and related to previous

models which have been used in Collective Risk Theory. It Is observed that

nonstationarity of the portfolio age-structure"9'within this model can have a

significant impact upon probabilities of ruin. When the portfolio size Is

constant and the policy age-distribution is stationary, the moderate- and

large- deviation probabilities of ruin are bounded and calulated using the

strong approximation results of Csorgo, Horvath and Steinebach (1987) and a

large-deviation theorem of Groeneboom, Oosterhoff, and Ruymgaart (1979). One

consequence Is that for non-Poisson claim-arrivals, the large-deviation proba-

bilities of ruin are noticeably affected by the decision to model many paral-

lel policy lines in place of one line with correspondingly faster __

claim-arrivals.

J

Key words: risk-reserve process; compound delayed-renewal process; super-

position; moderate- and large- deviations; strong approximation.



1. Modelling the risk-reserve process.

The problem of exact and asymptotic calculation of ruin probabilities for

a (large) insurer has a long and well-documented history. Early work by

Lundberg and Cramer [see Cramer 1955 for historical references] modelling

portfolios of fixed size in which claim-arrivals follow a Poisson process, has

led to voluminous contributions in a few main directions. In case claims are

taken to arrive according to a renewal process, Thorin (1982) surveys the

large literature on exact evaluation of ruin probabilities by Wiener-Hopf and

complex-analytic methods. Cramer himself had a largely actuarial motivation

for initiating the study of large-deviatlon probabilities for sums of Indepen-

independent random variables: a summary of results along this line for ruin

probabilities can be found in the book of Beekman (1974). The point of view

that rescaled risk-reserve processes should be well-approximated distribution-

ally by Wiener processes with linear drift has led (Iglehart 1969; Harrison

1977) to asymptotic formulas for ruin probabilities as portfolios become

large. Other recent work attempts to use martingale or Markov process struc-

ture to generlaize the classes of risk-reserve process models for which formu-

las for ruin-probabilities can be written down (e.g. Dassios and Embrechts

1987). Martingale inequalities generalizing Kolmogorov's classical

Exponential Bounds to Martingales have been exploited by Slud (1989) to obtain

universal upper-bounds on ruin probabilities in terms of means and variances

of claim amounts and inter-occurrence times.

The following model for an insurer's risk reserve is slightly more gener-

al than the authors have seen written down elsewhere. Indeed, it probably has

too many parameters to yield useful general information. However, the model

does incorporate the main features of actuarial risk for life insurance and

annuities, as described by about eighty years of work by actuaries and
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probabilists.

Let the index k = 1,2,....m enumerate the independent "lines" of

insurance/annuitity policies of a large insurer; let ek a 0 denote the

chronological time at which policy number k is first in force, and assume

for simplicity that the policy lines, once started, never terminate but are

renewed Instantaneously at the successive times t of deaths, at which
kj

times the claims Xkj (positive for insurance, negative for annuity) are

presented to the insurer. We assume throughout that the times between the

J'th and (J+1)'th claims for policy line k (for J 2 1) are independent

and identically distributed positive random variables Y with hazard rate

function hk(.) and expectation Ak < w. The waiting-time YkO- yk(ek)

from ek until the first claim by the k'th policy line is assumed to be

independent of the later inter-claim times (Ykj : j  1); here yk(ek) is

interpreted as a nonrandom initial age at time ek of the first individual

insured under policy line k, and YkO is taken to be distributed according

to the conditional distribution of Yk1 given that Yk1 > yk(ek). Thus the

chronological claim-times tkj can be expressed by the formula

(1.1) tkj = ek+ (YkO-yk(ek)) +Ykl + "'" + YkJ' j = 0,1 .....

The assumptions about the stochastic behavior of the policies are completed by

taking the claim amounts (Xkj : j 1 1) for policy line k to be independent

are identically distributed with finite positive mean Ak' and by taking the

Inter-claim times and claim amounts for different policy lines to be mutually

independent. Finally, policy line k is assumed to pay premiums continuously

to the insurer at the nonrandom constant rate (1+-k)Pkok/Ak for all chrono-

logical times greater than ek.

In this model, the parameters ek'yk(ek). A kP k and p k as well as the

2



functions hk(-) are taken to be nonrandom and fixed. The stochastic aspects

of policies and claims arise solely from the arrays Xkj : J > 1) and

Ykj : j 2 0) of independent random variables.

We next define notations related to policy ages and to the Risk Reserve

Process of a life insurer. For each k, let tkj be as in (1.1) and put

(1.2) Nk(t) = 1+max(J : t ; t kj) if t 2 tkO

0 if tkO > t 0

3t -mx(tkj : J 0 and t > tkj) if t 2 tkO
(1.3) Yk(t) (e)tek

[Yk(e k +t-e k If t kO ;- t a e k '

Then N k-) is the delayed-renewal counting process for the occurrence of

claims under the k'th policy, and yk( . ) is the corresponding current-age or

current-life proces. The proces yk ( ) is left-continuous, and it is a
t

standard fact that Nk(t) -J ohk(yk(s))ds is a martingale with respect to t

for each k.

Letting

N(t) z Nk(t) and n(t) = (1+7k) k max (t-ek, O}

k=1 k=1

respectively denote the total number of claims and total premiums paid up to

time t on all policy lines, and denoting by U = R(O) the insurer's cash

risk-reserve at time 0, we define the risk-reserve process

Nk(t)

(1.4) R(t) = UL+(t)- Xkj.

k=l j=1

This process consists of a deterministic upward drift minus a superposition of

independent compound delayed-renewal counting-process. The primary task of

3S



actuarial risk theory for a life Insurer Is to study the level-crossing proba-

bilities

(1.5) P(t) = P{R(t) 0 for some t e [O,T]}, T :5

The model which we have just described contains far too many parameters

for a general analysis. Therefore, the simplification to a single class of

policies (i.e., to the case where hk(.) = h(.), the law of Xkj is the same

for all k, and 7k = has been common to all theoretical approaches to

this subject. A further simplification which has virtually always been

assumed is that the portfolio Is of fixed size m at all times t ? 0, i.e.,

that ek = 0 for k = 1,... m. The reason for these simplifying assumptions

is not that the complexities modelled by parameters, ekkTAk, kP, etc., do

not exist in practice, but rather to limit difficulties of analysis and varle-

ties of phenomena. Under the simplified model of this paragraph,

(1.6) {XkjljZ 1 and {Ykjljal are each I.I.d. arrays, ek M 0

for all k, and 7k * does not depend on k.

In the special case h(.) a A, we have Cramer's (1955) famous Collective Risk

model, where the process N(.) is a superposition of m independent

Poisson (A) processes, and the age-parameters yk(ek) y yk(0) play no role.

Precisely the same model arises if h(,) a A Is replaced by Am, with T

replaced by mT and m by 1. For this reason, when Iglehart (1969) wished

to analyze a more general model with nonexponential random times between claim

occurrences, he fixed m = 1 (and y1 (0) = 0). Our model for nonconstant

h(*) allows for a number m of independent policies or policy-classes which

In realistic cases will be much larger than the finite time-horizon T over

which ruin-probabilities should be calculated. [Iglehart in taking m = 1

naturally regarded the time-horizon mT as very large.] In this situation,

4



the initial policy-"ages" {yk(O : k 1_... ,m} may be very nonstationary,

in the sense that the empirical measure for {Ykt) : k = 1.... m} might be

seriously nonconstant as t varies. Such a case would arise if the policy-

holders at t = 0 were at much higher risk (through self-selection or some

other selection mechanism) than the general population of potential "age-O"

policyholders and if h(.) were a monotonically increasing function. It is

not surprising that such nonstationarity could dominate other stochastic

effects contributing to the values of ruin-probabilities (1.5). Since actua-

ries do not typically attempt to produce theoretical models of nonstationarity

among their insured populations, we are naturally led to the further assump-

tion, which we adopt from now on, that the policy-age processes ykt) are

for each k strictly stationary stochastic processes in t, i.e., (Karlin and

Taylor 1975), that

Yk(0) has density 1 exp h(x)dxJ.

In the strictly stationary fixed-portfolio-size setting Just described,

we set ourselves the task of describing the asymptotic behavior of the ruin-

probability (1.5) as m gets large and (1.5) gets small, where U, T and

are allowed to depend on m but where h(.), A, and p are not. We do not

treat in detail the opposite case where U, T, and y vary with m and

behave In such a way that P(T) defined in (1.5) has a finite limit as

T--*. This case is adequately covered by the following Theorem, which is

proved either by the same methods as Iglehart's (1969) main result, or alter-

natively by the discussion In Section 4 of Csorgo et al (1987a) in case m

remains bounded.

5



Theorem 1.1. Suppose that X a {Xk, i k 1, 1 a 1} and Y a 1Yk,J k > 1,

J > 1) are independent arrays of i.i.d. random variables with

EX1 1 = gi, Var (X1 1) a 2 EY = A, Var (Y ) 32

t
and PY 1 > t} expf-Joh(x)dx} for 0 < t < w. In addition, let

((Yk(O)'Yk,o)1k=1 be an i.i.d. sequence of random pairs independent of ,

with joint density of (y1 (0),Y 1,0) at (s,t) given by

A-1h(t) exp-J h(x)dx} for 0 < s < t, and by 0 for other (s,t). For
0u

each k, let N kt) be defined by

0 if Yk,o-yk(O) > t
l+max{j : Y k, o+Yk,1+ ...+Yk ,j > Yk(O)+t} if Yk,o-yk(O) : t

(i.e., as above with ek 3 0).

Now suppose that {T 1}0 { = , iy(n , and {U * aren n-= nn-1 n= n n=i

sequences of positive constants such that as n--*w, mn and Tn are bounded

below, with m *T -- w and T -- T < w andn n n

1/2 - 1/2(m T )I7(n)---a < o and (mnTn)/u - u < w.nn nn n

Let

m N(t)

(1.7) Rn(t) M U + (1+(n))m t 0 -5 t : Tn n n ..'
k=1 j=l

Then, as n--)oo,

(1.8)

PfRn(T) 5 0 for some t E [O,T I--Plsup(W(o 2 )-all-u :0 s 5 1) > 0}
n n s

where W(-) is a standard Wiener process and

6 .
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f Tw,

s ( 2s+ 2 T-1 Var(N (sT))) if T <.

In the remainder of this paper, we retain the setting of Theorem 1.1

(i.e., of (1.6) - (1.7))) except that the parameter sequence {mn), {T ,n n

{W(n)}, and U n } will be assumed to behave in such a way that P{R n(t) : 0

for some t e [O,T n]}-0 as n--w. This restriction corresponds to the

actuarial requirement which motivateQ Cramer's development of Large Deviations

theory, namely that the probability of ruin should become small In a definite

way as a function of parameters when the scale of an insurer becomes large.

2. Moderation-Deviation Ruin Probabilities.

Throughout the rest of the paper, we assume

(A.1) The random variables Xkj and Y have finite moment generating

functions E exp(sXkj) and E exp(sYkj) for 0 < s so; also Ykj

has a finite density h(O) at 0.

(A.2) As n--*, U/(mT n)+ (n) = 0() and (mT ) 1/2
n nannsn+ n

a (U/(m T (n) .

Since our primary goal is to find asymptotic expressions for P (T). P{R (t)
n n n

- 0 for some t e [0,T n]}, we will repeatedly apply the following technical

result on tail-probabilities for parameterized sums of i.i.d. random

variables.
.5

Lemma 2.0 [essentially proved as Theorem 10 of Chapter VIII In Petrov 1972].

For a fixed subset e of R, let f (e)} be a family of mean-0 random

7
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variables which satisfies for some r > 0

sup E er (6) < 0, Inf E{f(9)}2 > 0
68 GEB

For each 0, let f(k(0)k, be an independent Identically distributed

sequence of random variables with the same law as (8). Then there exist

constants d,n > 0 not depending upon 0, and a family of analytic functions

0(-,0), such that for all x e [O,n], 0 E 0, and n Z 1,

Ilog [P k (0) > mx(E 2 (0)) 1/21/(,-O(xml/2)) ]_ mx 3 (x,e)l :5 d.(m- 1/2+x).

Here 0(0,8) = EC (0)/[6(E 2()) 3/2] is 1/6 times the "skewness" of ().

The problem we have set ourselves is to understand the asymptotics of

ruin probabilities on the time-interval [0,T ]. In realistic settings, there
n

will be a minimum time t > 0 (not depending upon n) before the first

claims can be filed, and this will make certain results easier to state on

tOT n]. It turns out that when 7(n) = O(U n/m n ) the same results are true

with t replaced by 0, while If U /m = o(7(n)) the ruin-probabilities0it t relcdb OwiefUn n

on [O,t ] for sufficiently small t can be shown to have the same behavior

as if claim-arrivals were Poisson - a situation covered by Theorem 2.3 below.

Lemma 2.1. Suppose that {X kj} and {Y kj satisfying (A.1) are as in

Theorem 1.1, and suppose that R Ct) is as defined in that theorem exceptn

that the nonrandom sequence- {m n {U n , {j(n)} satisfy (A.2). Then ifn n .

a - a is any sequence of positive numbers such that 6 - 0 as n--4w,n n

there exists c 0 > 0 such that for all t 0

sup P{R nt) 5} P{ inf R nt) 0)
nn0 nto05t5T n to0t5T n



c m6 1/3
T 0 n n 1/2
1n n e  + PIR n Q8)

J: t 0 SJ6STn

Proof. The first inequality is obvious. To prove the second, observe that

P( Inf R Mt S 0} 5 1- Pf inf 50
to~_Tnn- J6St (J+1 )6^Tn0 : n J:t 0 J5T n

where XAy denotes min{x,y}, while If 0 : a < b = a+6 T

n

m Nk(t)

P{ sup x x - Lt -a1P1 611/2m(n)}
aStSb k= =N )+

m Nk(t)

- p : + "n 61 2 m(n)

J=Nk(a)+l

m Nk(6)
,+ (1/2 ___ )

I Y Xkj 0 --- -)n

m

: P{ N 62/ 3 or x + 2: (6/ -_ )mP k(S) -> mn  E~ •inj

k= 2/3m
j n

+

Here x denotes max(x,0}. By two applications of Lemma 2.0, using

Var N (6) = 6/A+ 0(6a ) as n--4w, we find
n n n

m n

( 2/3 1 E=1 ...... m ( 2/3-6/A)
P N(a) m f1(6) ] /  J n

k n 1/21/
m Var N (6)] [m Var N (6)]1/2

n 1n I

= 0((6 2/36 M.m /Var N (6)] 1/2}W(1+O(m- /2))
A n 1n

9



- - - . . - - A ,A , - , i * . L

1 m1/3exp{-com0 n

and

[2/3m ]

1/2- 45 P/ 2/1 +

= [ .31/2 0(mn-1/2] 1/2 1/2
a 1/3 -Va X+I n n

1 1/3)

< exp(-cmn/

for some c0 > 0 and all n. The Lemma follows immediately from these

estimates. 3

The message of Lemma 2.1 is that asymptotically as n--*w, in very

general circumstances the ruin-probability P{ Inf R nt) < O} differs from
t otST n

sup P{R (t) < O} by a factor which is at least 1 and in most examples
0 n

satIsfying (A.1) - (A.2) can be bounded by a constant not depending on n.

The assumption which makes P n(T ) a moderate-deviation probability is

(A.3) Un/(mnTn ) + r(n) =a(1) as n--*w.

For the present, assume also that T n T < w. The main result of thisn

section is

Theorem 2.2. Assume (1.6) together with (A.1) - (A.3), where T E T < w,n

and define es  as in Theorem 1.1. Fix tO > 0, and put

U +m i(n)iit/A
ZnCt)
z 1/2t n n min z (t).mn t StST n

n t 0



Then for some positive constants c0  (as in Lemma 2.1), c1  and c2,

- 1/2 3

n1- ( n))e - Il n  n < P{Rn(t) 0 for some t e t oTI)

1/ 1/2 C3 
1/3_(Zn(jn) - nn clmn n + c0 n n

J: to<jnnT ja n  n

where {n} Is arbitrary subject to 6 n--+0 and m n6 n--w as n--4m. In

particular, taking d mn2 4 we find
n n n

Iln [Rnt) 5 0 for some t e [toTlI/(1-0( n))] :5 c3mn  Cn

where c3  is another positive constant not depending on n.

Proof. By Lemma 2.0 with t = 0 e 8 s [toT] and Ck(0) = Nk(t) -gt/A for

k = 1,...,m , there is a finite constant cI > 0 not depending on n or t

such that

NIln[Ru (t 0}/{ l-C'z (M)) 1: C cm 1/2z3 ()

The rest follows Immealately from Lemma 2. 1. If n = mn Cn' then it is

easy to check that uniformly for JSn e tOT]

Jn 0

and
1/2n3 /

Iln SnI € (mn 1-(Z (J n- n 1M)) 1/3
nn n n n n

nn

as n--*, where An K Bn  means the same thing as An = a(Bn).

While Lemmas 2.0 and 2.1 can be made to yield more delicate estimates of

11



ln[Pn(T)/{1-O(Cn)}] than the one in Theorem 2.2, the main point of the theo-

rem is that under (A.1) - (A.3), with T n T < w, the asymptotically domi-
n

1 2 1 ~ U n+m n (n)jgt/A 2

nant term in ln P{ inf R(t) < 0} is 1 2 = infT m
[t0 TJ n 2n 2 t StST m /2e -

n 0 n1 n- t

Another setting in which this same statement holds Is the standard one where

Tn  becomes large but mn does not.

Theorem 2.3. Assume that (A.i) - (A.3) hold but that T --4m while m z m
n n

remains bounded. Then with the same notations (it, Zn(t), and nas in

2 2 2 -12 -32 2
Theorem 2.2, and et replaced by t 62, where 0 NA a + A -

P{R (t) 5 0 for some t e [tIT n]} =

U n+m n(n)pt/A+d (log Tn -xd3xn
= P(max{W(t) - n 0 5 t S T n} 0) + d2 e

n

for an arbitrary sequence x n}, where Id I for I = 1,2 are bounded by

finite constants not depending on n, and where d3 > 0. When x =

a((mnTn )1/2 ), Un/(m T ) v2(n) = a(xn ), and to = 0, as n---o
n nn nnn

(2.1) in P{R (t) < 0 for some t S T n} 0min n 2n

n n 2O0!t:ST 2m t
n n

Proof. Apply Theorem 1.1 of Csorgo et al (1987b) to each of the independent
N kt)

compound renewal processes E X k, for k = 1.... m, to conclude that on
i=1

a possibly larger probability space there exist independent Wiener processes

W (.),...,WmC.) such that

NkCt)

k -Cx

P{ sup I Xki -t/A-OWkkt)I A log Txn  n Be

O~ n 1=1

12



for some positive constants A,B,C and arbitrary {x n}. Therefore, defining

the new Wiener process W(t) a m- 1/2(W 1 (t)+...+W (t)), we havem

m N k(t)

P{ sup IE Xkl _mt/A- emll2w(t)I ? m(A log T +Xn )
O:t:Tn k=1 1=1

-Cx
nS Bme

The first part of the Theorem now follows immediately from the definition of

2R n(t). Now by CA.3) it is possible to choose xn so that as n--), =

*(x ) while x = a((m T )1/2 ), and we do so. Then (2.1) with this choice

of x yields P{R (t) < 0 for some t e [O,T ]}n n ni

U +m n (n)gt/A+dd1 (log Tn+xn)
~Pfmax (W(t)- n n ) O}

tST m 1/26
n n

Un + Mn (n ) /s T n/ A+d1 (log Tn+xn a 0),_=P{max (W(s) -1/
O:Ss:S (m T )/2 0

for the Wiener process W(s) * W(sT )/T /2. Now the exact expression for the~n n

last probability, as given by Bartlett (1946), Is

-2a b
1 -(an+b n ) +e n n(1 0 (a -b))

where a = an +d Ilog Tn+d IXN)-(mnTn)-1/2 and b = bn =

pr(n)(mn T n) i/2/(A). Thus, since (A.2) implies that an +b nw as n-w,

we find that in P{R t) < 0 for some t : T } is asymptotic to - -(a +b )2
n n n n

If a Z b and to -2a b if a < b.n n nn n n

In the present setting, where m remains bounded and Tn --+w as n---)

and (A.2) holds, we have (z T +U )/T1 2 --m. Since x has been chosen to
n n n n n

be a(T ), we have log T +x = O(U + T ), so that as n-w
n n n n n n

13



a ~ a' a nnU)(m/T

an n n f n 1

Thus we have proved

-(a' +b)2 if a' a b
(2.2) in P{Rn t) < 0 for some t E [0,T } 2 n n n n

{-2a'b if a' < b
n n n n

It remains only to check that the right hand side of (2.2) coincides with

1 (U+mnz(n)pt/A)2 1 [ a'+bS]2
1~ min2n n - minnm
2 OStST 0mt 2 Osl S s J

n n

which follows easily by elementary calculus.

Remarks. (i) The theorems of this section cover the cases where T Is fixed
n

and mn  gets large or where mn  is fixed and Tn  becomes large as n--+w.

Of course, with small changes the proofs of these theorems remain valid under

some other assumptions concerning the limiting behavior of sequences {m n}

and fT }. For example, Theorem 2.2 remains valid as stated if T isn

replaced by a sequence T n} which becomes large in such a way that

In(T /5n ) = ( 2) as n--+w. Similarly, minor changes In the proof of
n n n

Theorem 2.3 yield the same result if the constant m is replaced by a

sequence m n } converging to w in such a way that

m log T +U2/T + Mn72(n) = o(U +v(n)m Tn)
n n unfinT n n n n

(ii) When the random variables Y are exponentially distributed with

mean A- , i.e., when the claim-arrival processes N t) are Poisson with
k

rate A, the "memoryless" property of claim arrivals immediately implies that

the probabilities P{Rn t) 0 for some t : T nI depend on im n}, T n} only

14



through the products m *T . Writing these probabilities with m andnfn n

Tn to  replaced by T' a t > 0 and m' m T we find from Theorem 2.3

that as n--4w

1 (Un+m n(n)pt/A)
2

in P{T n(t) < 0 for some t e [O,to]} ~- 2mnO~st~t0 02mnt

Just as In (2.2), the expression on the right can be written explicitly as a

continuous function of to, A, Un , mno and 7(n).

Now, if {Y kj} are i.1.d, with a nonexponential distribution with mean

A, then it is easy to show that for each t0 > 0 there are numbers A*(t 0 ) <

Ao A (tO ) such that (Nk(t) : 0 5 t < tO ) Is (stochastically) larger than a

Poisson process Nk.(t) with rate (A*(to))-I and is (stochastically)

smaller than a Poisson process NkM with rate (A (to)) , and such that

A (t) - A(t0)--O as t0--O. Then for each t0 > 0, ln P{R (t) < 0 for

some t e [O, t]} lies asymptotically for large n between the values

21 2
- min (U +m 7(n)t)2/(m t----)2 n n A5  n0 t~St0  A

1 ml )-t)2/ 22 )
- m2 Un+mn (n) /n _____ 'U

OSt~t0  A n A

By taking t arbitrarily small but still positive, we conclude that under

the hypotheses of Theorem 2.2, the conclusion of that theorem holds if t0  is

allowed to take the value 0.

(III) A result like Theorem 2.3, but somewhat weaker, can be proved by

appealing to Lemma 2.1. As can be seen from Remark (1) above, even Theorem

2.3 cannot be made to cover all Interesting cases where T is of larger
n

15



order of magnitude than m n. What Is lacking is a strong approximation result

with optimal rate for superpositions of large numbers of renewal processes

over large times.

3. Large-Deviation Ruin Probabilities.

We continue our study of the asymptotics of P n(T) = P{R nt) 0 for

some t e [O,T n]} under hypothesis (A.i), but now (A.2) - (A.3) Is replaced

by the following condition characterizing the "large-deviation" setting.

U
(A. 2) As n-, n4--4w and T(n)! --4p, where w,p 0 are such thatm TA

nn
0+ p > 0.

Note that (A.2') implies (A.2), so that Lemma 2.1 still applies. As in

Section 2, we treat first the case where T T remains bounded.

Theorem 3.1. Assume that {X kj) and fY kj are as In Theorem 1.1 and satis-

fy (A.1), and that {mn ), {U n}, {f(n)} satisfy (A.2') where Tn m T e (0,m).

Then, as n--->,

-1
m log P(R (t) 0 for some t e [0,T1} -- sup InfN-(wT+(p+!!)t)g
n n Ot:ST A

(3.1) +log

where pN(t) (s) for each t denotes the probability generating function

E PfN 1(t) = J}s
j of N k(t), and where Vx Is the moment generating func-

J=O

tion of the Xkj random variables.

Proof. For each fixed t > 0, Chernoff's (1952) Theorem, as given for

example by Bahadur (1971, Section 3) says that as n--w,

16



N lt)

log P{R (t)M O} - inf{-(wT+(p+!!)t)C + log E exp[C 11]

nk=1

= 1nf{-(wT+(p+!)t)C+ log p ( (CM

where the right hand side is strictly negative and continuous in t, and is

also the limit of m log P{R (t) 5 6 1/2m if 6 Is any sequence of con-
n n n n n

-1/2
stants tending to 0. Apply Lemma 2.1 with 6 a m to deduce (3.1). o

n n

The preceding result takes a simple form because it gives information

only about the logarithmic order of magnitude of P (T). Nevertheless, then

large-deviation "rate" given as the limit in (3.1) has played some historical

role in the collective-risk literature under the name "adjustment coefficient"

in cases where claim arrivals are Poisson. (See Moriconi 1985 for literature

references and extensions to other claim-arrival processes.) Moreover, as

with the adjustment-coefficient ("the Lundberg-de Finetti inequality"), the

large-deviation rate in (3.1) can be used to provide exact upper bounds for

the left hand side of (3.1) for finite n. Indeed, since the limit in

Chernoff's (1952) theorem is actually an upper bound, the method of proof of

Theorem 3.1 yields:

Corollary 3.2. Under assumption (A.1), for each finite n

2/3

log PfRn(t) S 0 for some t e [O,T]l ranT e On

1/2 I+m T exp[ sup inf{-(U -m l+m (1+z(n))-t)C + log pN(V(x))
n O5t5T C n n n A

where c is as in Lemma 2.1 and can be written explicitly in terms of large-

deviation rates In Chernoff's Theorem for random variables XI and Y
lj lj.

17
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It remains to find analogues for Theorem 3.1 in the case where m n m

is bounded and T -). Again the result will follow from Lemma 2.1 togethern

with known results in Large PNviations Theory. It should be noted that the

method of Strong Approximation by a Wiener process with drift cannot possibly
-3xn

yield a Large-Deviation rate under (A.2') because the error-term e in

Theorem 2.3 would become the dominant term

Theorem 3.3. Assume (A.1) and (A.2') In the setting of Theorem 1.1, where

m a i < w and T --)o as n--. Then the limit as n-- w ofn n

n log P{R (t) 5 0 for some t E [0,T ]}n n n

exists and is given by the formula

sup inf{ r log 0x(to) t -Wt + r log 0y(-(P+E)t-t )  tlt 0 > 0}.

sup r lo 0 1 0 Y A010-r>O

Proof. Since it makes no difference in the result, we assume for convenience

in this proof that the "age" y0  at time 0 is 0, so that the new policy-

lifetime Yl,0 begins at time 0. If R n(t) 5 0 for some t e [0,T n, then

M-1 M-1 M
for some integer M, : Y T and also U + (l+7(n)) 0 YI- x

EY n n A 11- E_ ljJ=O nJ= J=
0. For each a,b,T > 0 and each integer M, let

M-1 M-I M

p(a,b,M,T) P{YI Yi 4 T, aT+b z Yi-Y' XlJ : 0}.

j=o J=o J=1

Then for each n,

(3.2) max p(U/Tn, (I+7(n))!,M,T) S P{R (t) 5 0 for some t e [0,Tn 5

2_ 2T2 - 1iT
n n

p :5 P( ! T} + p(Un/Tn(1+(n))E.MT)"

J=O M=1

18



T -_12
n c

Since P{ E Yt < Tn} = a(e n) for some c > 0, the idea of our proof is
J=o

to find lim T In p(a,b,[rT],T] for each a,b,r and to observe that this
T-,w

limit varies continuously with respect to a and b.

As in Chernoff's (1952) Theorem, a simple upper bound for p(a,b,M,T)

suggests the form for its logarithmic order of magnitude when M = [rT] =

greatest Integer less than or equal to rT:

p(a,b,M,T) -< EII M-1 M-1 M
= YIJ : T aT+b E YIJ- E x l  0]

M H-I M-1
toIJ X1J - b E YU - aT]+tl4T JE YIji J=O

M-1 M

-t aT+t T (-bt0 -t1 ) Yij to Xj
< Ee 0 1 e J=O e J=1

Therefore

(3.3)

T log p(a,b,M,T) inf ato +t 1 +- log My(-bto-tl) +M log Ox(to)
t o , too F

Moreover, Theorem 5.1 of Groeneboom, Oosterhoff, and Ruymgaart (1979) Implies

for each a,b,r > 0 that

(3.4) lrm T- 1 log p(a,b,[rT],T) = p.(a,b,r) =

T"#w

= Inf {r log *x(to) + r log *y(-bto-t1 ) +t 1 - a t0to t 0
0 t 12
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and It is easy to see that the expression (3.4) varies monotonically and con-

tinuously with respect to a and b, and that its maximum over r i 0 is

achieved. It now follows Immediately from (3.2) - (3.4) and (A.2') that for

arbitrarily small 6 > 0 and all large n,

sup log p (W6,9p+S,r)-6 : T - log P{R t) 5 0 for some t 5 T I
rOA n n n

-12 -1
T log (T n)+T nsup log p.(W-3, p-6,r)+3.Tnn

r>-O

Taking limits as first n--*o and then 6--)0 completes the proof. 3

N' -1

Remarks. (I) If claim arrivals are Poisson, i.e., if 0y(S) = (i-As) , then

it is an Instructive exercise to verify that the formula Just proved agrees

with (3.1) with T 1 1, m a Tn

(i) In the setting of Theorem 3.3 If m n  m 2 2, then a slightly more

complicated application of Groeneboom, Oosterhoff and Ruymgaart's (1979)

Theorem 5.1 yields the large-deviation rate. Thus a result analogous to

Theorem 3.3 holds for general m.

(ill) There is another way of proving that the limit in Theorem 3.3

exists. If the variables YIi are assumed to be essentially bounded, then

N 1(t)

+ y _ Z Ylj Xl N 1 tM +1

lt J=O

defines a Markov process in t which satisfies the hypotheses of Theorems 6.9

and Corollary 7.21 of Stroock (1984). The large-deviation rate calculated in

(3.4) of Theorem 3.3 above therefore coincides with a more complicated general

expression given by Stroock.

(iv) If the claim-counting processes Nk t) are allowed to be non-

20



Poisson with independent increments, then Lynch and Sethuraman (1987) provide

abstract large-deviation expressions analogous to Theorem 3.3.

The large-deviation rates calculated in Theorems 3.1 and 3.3 give two

different possible meanings to the logarithmic order of magnitude of the ruin

probability under (A.1) and (A.2'). This rate is Interesting as the proper

generalization of the classical "adjustment coefficient" mentioned Just after

Theorem 3.1 above. It should therefore also be interesting to observe that

the rate-numbers arising in these Theorems do differ in generall That Is, for

non-Polsson claim arrivals the asymptotics of the logarithm of the ruin-

probability as a multiple of m nT depends on whether m is large or Tnrbblt s utpeo m.n n n

is. For example, If the variables X are independent and exponentially
ij 1

distributed with mean p, and if the Y are Gamma(2, A), then for

various combinations of parameter-values WA,w, and 7 we display in the

following table the large-deviation rates obtained in Theorems 3.1 and 3.3.
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Table 1. Large-deviation rate numbers from Theorems 3.1 and 3.3 for various

combinations of parameters A, 7, and w, where the claim-interoccurrence

times Y are r(2,1A) and the claim amounts X are exponential with mean p
2

standardized to 1 unit.

Parameters Rate for case m=n, T=I Rate for case m=l, T=n

A 7 W
0.1 0.05 2.0 -0.1821 -0.1835

1.0 -0.0688 -0.0693
0.5 -0.0313 -0.0316

0.02 0.5 -0.0156 -0.0157
0.25 -0.00653 -0.00659

, 0.12 -0.00322 -0.00326
0.1 -0.00256 -0.00261
0.06 -0.00152 -0.00157
0.03 -0.00074 -0.00078

0.25 0.05 1.0 -0.1014 -0.1033
0.02 0.5 -0.0255 -0.0260

0.25 -0.00851 -0.00868
0.1 -0.00258 -0.00263

0.5 0.05 1.0 -0.1511 -0.1562
0.02 0.5 -0.0409 -0.0424

0.25 -0.0125 -0.0130
0.1 -0.00302 -0.00315
0.05 -0.00127 -0.00131
0.01 -0.000226 -0.000261

1.0 0.05 1.0 -0.2257 -0.2390
0.5 -0.732 -0.0781
0.25 -0.241 -0.0258
0.1 -0.00644 -0.00693

1.0 0.02 0.5 -0.06617 -0.0707
0.25 -0.0197 -0.0212
0.1 -0.00418 -0.00450

The Table shows that the superposed stationary renewal model (m n,

T = 1, as in Theorem 3.1) generally yields a larger large-deviation rate than

the more usual single renewal process model (m = 1, T = n, as in Theorem

3.3). The difference does not ever seem very large for the Gamma(2,IA)
2

Interoccurrence distribution used in calculating Table 1: the differences

*, range from less than 1X to as much as about 7% for the parameters shown.

As would be expected, the most pronounced differences arise when the expected
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Interoccurrence time A is relatively large compared to the time-horizon

(which was taken in 1 in the case of fixed T), when the reserve U = Wn

and loading V are relatively small.

We next argue that the parameter values chosen in Table 1 are reasonable,

and that the differences shown for the large-deviation rates could make some

practical difference. Imagine a large life-insurer with, say 1,000 policy

lines of average face amount $50,000, and that we are interested in Its sol-

vency over a time-horizon of 50 years. This means our p = 1 is measured

in units of $50,000, and that the unit T of time Is 50 years. For these

n = 1000 policy lines, we assume the loading 7 to be either 2% or 5%,

and the initial risk-reserve for such a company might be of the order of 5 to

20 million dollars, which In our units would mean that w = U/n would lie

somewhere in the range from 0.1 to 2.0. Finally, the expected time until a

claim for a randomly selected policy might be from 10 to 30 years, which In

our units makes A lie in the range of 0.2 to 0.6. Now consider a partic-

ular combination of parameters, say A = 0.25, 7 = 0.02, and w = 0.25. The

upper bound on the probability of ruin provided by the usual "coefficient of

adjustment" (which is how we refer to the large-deviation rat In Theorem 3.3)
-1000*0.00862

would be e = 0.00017, while the corresponding upper bound using

the correct model of superposed renewal processes in Theorem 3.1 would be
* -1000*0.00851

e = 0.00020. While the difference between these upper bounds is

not large, we conclude that with Gamma(2,IA) interoccurrence times (which
no2

have not been chosen to be as different from exponential as might be reason-

able), ruin probabilities should be inflated as much as 15% above what one

would calculate using ordinary collective-risk models. Note that because of

the results of section 2 above, the relative difference between the two ways

of calculating probability of ruin can be noticeable only when the probabili-
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ties themselves are extremely small. For this reason, we might expect the

difference to have practical importance only If the claim Interoccurence-tlme

distributioh. is dramatically different from exponential.

4. Conclusion.

We have In this paper surveyed the asymptotics of actuarial ruin-

probabilities under a family of superposed-compound-renewal-process models.

When the ruin-probabilities are moderate-deviation probabilities (i.e., satis-

fy (A.2) - (A.3)), we found that the top-order asymptotic term in the ruin-

probability is the same under any of our models as long as the product m Tnn

of portfolio-size by time-horizon is the same. However, when the ruin-

probabilities are large-deviation probabilities, the logarithmic order of

magnitude of the ruin-probability can depend noticeably on which of the

superposed-compound-renewal process models is used. Actuaries should be

concerned whether the usual model of Collective Risk Theory (the model with

mn m 1, Tn --*) is as appropriate in modelling a large insurance portfolio as

* the model with many independent lines of insurance (mn--, with T either" n

fixed or a(mn)). We think it is not.
n
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