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‘ approximation results of Csorgo, Horvath, and Steinebach (1987) and a

) large~deviation theorem of Groeneboom, Qosterhoff, and Ruymgaart (1979).

One consequence is that for non-Poisson claim-arrivals, the large-devia-

tion probabilities of ruin are noticeably affected by the deciczic: to

: model many parallel policy lines in place of one line with corresponding-
ly faster claim-arrivals.
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1. Modelling the risk-reserve process.

The problem of exact and asymptotic calculation of ruin probablilities for
a (large) insurer has a long and well-documented history. Early work by
Lundberg and Cramer [see Cramer 1855 for historical references] modelling
portfolios of fixed size in which claim-arrivals follow a Poisson pricess, has
led to voluminous contributions in a few main directlons. In case claims are
taken to arrive according to a renewal process, Thorin (1982) surveys the
large literature on exact evaluation of ruin probabilities by Wiener-Hopf and
complex-analytic methods. Cramer himself had a largely actuarial motivation
for initlating the study of large-deviatlion probabilities for sums of indepen-
independent random variables: a summary of results along this line for ruin

probabilities can be found in the book of Beekman (1974). The point of view

that rescaled risk-reserve processes should be well-approximated distribution-

ally by Wiener processes with linear drift has led (Iglehart 1969; Harrison
1977) to asymptotic formulas for ruin probabilitles as portfolios become
large. Other recent work attempts to use martingale or Markov process struc-
ture to generlaize the classes of risk-reserve process models for which formu-
las for ruin-probabilities can be written down (e.g. Dassios and Embrechts
1987). Martingale inequalities generalizing Kolmogor?v’s classical
Exponential Bounds to Martingales have been exploited by Slud (1889) to obtailn
universal upper-bounds on ruin probabllities in terms of means and varlances
of clalim amounts and inter-occurrence times.

The following model for an insurer’'s risk reserve is slightly more gener-
al than the authors have seen written down elsewhere. Indeed, it probably has
too many parameters to yleld useful general 1nformhtion. However, the model
does incorporate the main features of actuarial risk for life insurance and

annuities, as described by about eighty years of work by actuaries and
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probabllists.
h Let the index k = 1,2,...,m enumerate the independent "lines" of
insurance/annuitity policles of a large insurer; let ey 2 C denote the "
J

chronological time at which policy number k 1is first in force, and assume

PP
O e e e

for simplicity that the policy lines, once started, never terminate but are

§ renewed instantaneously at the successive times th of deaths, at which ) ‘
z; times the claims XkJ (positive for insurance, negative for annuity) are ‘
ib presented to the insurer. We assume throughout that the times between the
5 J'th and (J+1)’th claims for policy line k (for J 2 1) are independent '
i\
%, and ldentically distributed positive random variables YkJ with hazard rate E
: function hk(-) and expectation Ak < w. The waliting-time Yko-yk(ek) )
?: from 2% until the first claim by the k'th policy line is assumed to be
5 independent of the later inter-claim times (YkJ : J 2 1); here yk(ek) is %
A interpreted as a nonrandom initial age at time e of the first individual
A insured under policy line k, and YkO is taken to be distributed according d
j' to the conditional distribution of Ykl given that Ykl > yk(ek). Thus the E
?‘ chronological claim-times th can be expressed by the formula ;
i
;i (1.1) th =e + (Y v (e D)+, 4 '*'YkJ' J=0,1,... . ;
w; The assumptions about the stochastic behavior of the policies are completed by '
i taking the claim amounts (ka : J 2 1) for policy line k to be independent ;
i are identically distributed with finite positive mean e and by taking the t
3 inter-claim times and claim amounts for different policy lines to be mutually .
;i independent. Finally, policy line k 1s assumed to pay premiums continuously 5

to the insurer at the nonrandom constant rate (1+7k)pkck/Ak for all chrono-

logical times greater than e, o

In this model, the parameters e (ek). Ak’ T and o, Bas well as the

k' Yk
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functions hk(') are taken to be nonrandom and fixed. The stochastic aspects
of policies and claims arise solely from the arrays ka : J>1) and
YkJ : J 2 0) of independent random variables.

We next define notations related to policy ages and to the Risk Reserve

Process of a life insurer. For each k, let th be as in (1.1) and put
1+max(j : t 2t ) if t 2t
(1.2) N () = { kJ ko
0 if tkO >t 20
t-max(t : J20 and t >t ) if t 2t
(1.3)  y (t) = { kJ kJ ko
yk(ek)+t-ek if tko 2t 2 e,

Then Nk(') is the delayed-renewal counting process for the occurrence of
claims under the k’th policy, and yk(-) 1s the corresponding current-age or
current-1life proces. The proces yk(-) is left-continuous, and it is a

t
standard fact that Nk(t)-f hk(yk(s))ds is a martingale with respect to t
0

for each k.
Letting

A k’

[+ 4] 00
m
N(t) = :E:Nk(t) and n(t) = :E:(1+7k) X max {t-e, ,0}
k=1 k=1 k

respectively denote the total number of claims and total premiums paid up to

time t on all policy lines, and denoting by U = R(0) the insurer’'s cash i

risk-reserve at time O, we define the risk-reserve process

(1.4) R(t) =U+1t(t)-z X

This process consists of a deterministic upward drift minus a superposition of

independent compound delayed-renewal counting-process. The primary task of
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actuarial risk theory for a life insurer is to study the level-crossing proba-

bilitles
(1.5) P(t) = P{(R(t) <O for some t € [0,T]}, T S w.

The model which we have Just described contains far too many parameters
for a general analysis. Therefore, the simplification to a single class of
policies (i.e., to the case where hk(°) = h(+), the law of XkJ is the same
for all k, and e = 7) has been common to all theoretical approaches to
this subject. A further simplification which has virtually always been
assumed is that the portfolio is of fixed size m at all times t 20, 1i.e.,
that ey = O for k=1,...,m. The reason for these simplifying assumptions

is not that the complexities modelled by parameters, etc., do

ek’ 7k’ Ak! ﬂk’
not exlist in practice, but rather to limit difficulties of analysis and varie-

ties of phenomena. Under the simplified model of this paragraph,

(1.8) {ka}J21 and {YKJ)JZI are each i1.1.d. arrays, e =0

for all k, and 7k = y does not depend on k.

In the special case h(+) = A, we have Cramer’'s (1955) famous Collective Risk
model, where the process N{+) 1s a superposition of m independent

Poisson (A) processes, and the age-parameters yk(ek) = yk(O) play no role.
Precisely the same model arises if h(+) 2 A 1is replaced by am, with T
replaced by mT and m by 1. For this reason, when Iglehart (1969) wished
to analyze a more general model with nonexponential random times between claim
occurrences, he fixed m =1 (and yl(O) = 0). Our model for nonconstant
h(+) allows for a number m of independent policies or policy-classes which
in realistic cases will be much larger than the finite time-horizon T over
which ruin-probabilities should be calculated. [Iglehart in taking m = 1

naturally regarded the time-horizon mT as very large.] In thls situation,

~
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: the initial policy-"ages" {yk(O) : k=1,...,m} may be very nonstatlonary,

I: in the sense that the empirical measure for {yk(t) : k=1,...,m} might be

é seriously nonconstant as t varlies. Such a case would arise iIf the policy-

; holders at t = 0 were at much higher risk (through self-selection or some y
; other selection mechanism) than the general population of potential "age-0"

; policyholders and if h(+) were a monotonically increasing function. It is '

not surprising that such nonstationarity could dominate other stochastic
effects contributing to the values of ruin-probabilities (1.5). Since actua-
ries do not typically attempt to produce theoretical models of nonstationarity

R among their Iinsured populations, we are naturally led to the further assump-

I e -

! tion, which we adopt from now on, that the policy-age processes yk(t) are

& for each k strictly stationary stochastic processes in t, 1i.e., (Karlin and :
E! Taylor 1975), that _
C : ]

yk(O) has density % exp [—J h(x)dx].
0]

b In the strictly stationary fixed-portfolio-size setting just described, y
) we set ourselves the task of describing the asymptotic behavior of the ruin-

t; probability (1.5) as m gets large and (1.5) gets small, where U, T and 7 h
3 are allowed to depend on m but where h(+), A, and p are not. We do not

treat in detail the opposite case where U, T, and ¥y vary with m and

behave in such a way that P(T) defined in (1.5) has a finite limit as »
T—w. This case is adequately covered by the following Theorem, which is

proved elther by the same methods as Iglehart’s (1969) main result, or alter-

natively by the discussion in Section 4 of Csorgo et al (1987a) in case m ’

remains bounded.
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Theorem 1.1. Suppose that X = (Xk,i : Y K, J

J 2 1} are independent arrays of 1.i.d. random variables with

- _ 2 _ - g2
l'-:)(l’1 = u, Var (xl,l) = o, EYl,l = A, Var (Yl.l) B

and P{Y1 12 t}) = exp(-I h(x)dx} for 0 £t < w. In additlion, let
’ 0

{(yk(O),Yk 0)):=1 be an i.1.d. sequence of random pairs independent of X,Y,
with joint density of (yl(O) Y ) at (s,t) glven by

A 1h(t) exp{ I h(x)dx} for O <s <t, and by 0O for other (s,t). For

each k, let Nk(t) be defined by

If Y, 5y (0) >t

0
N, (t) k,0
1+max{J : Y, .+Y, _+...+Y > yk(0)+t} if v, .-

k, 0"k, 1 K, j k0 Vg(0) st
(l.e., as above with e = 0).
[+ (-] [+ [+ ]
Now suppose that (T} .. {m} _., {y(n)} _,» and {U} _. are

sequences of positive constants such that as n—w, m. and Tn are bounded

below, with m ‘T 9o and T 5T £ » and
n 'n n

(mnTn)l/zw(n)—aa < w and (mnTn)_l/ZUn—eu < w.
Let
m Nk(t)
(1.7) R (t) = U+ (1+3(n))m_ %t-zz: Ky OStsST.
k=1 j=1

Then, as n—w,

(1.8)

P{Rn(T) £ 0 for some t € [0.Tn])—9P(sup(W(6§)-a%s-—u : 0sSs 1) >0}

where W(-) 1is a standard Wiener process and

k21, 121} and Y = (Y : k21,
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5 A 3s(A2a2+uZBZ) if T = o, .

% T |,,-12 2.1 =

(A "a"s+u’T Va.r(Nl(sT))) if T < o i

*

&

~

’

In the remainder of this paper, we retain the setting of Theorem 1.1 '
(i.e., of (1.8) - (1.7))) except that the parameter sequence (mn}, (Tn}, 2
{y(n)}, and {Un} will be assumed to behave in such a way that P(Rn(t) <0 ;
for some t € [0,Tn]}—+0 as n—w. This restriction corresponds to the -
.!

actuarial requirement which motivatea Cramer’s development of Large Deviations A
.

‘4

theory, namely that the probability of ruin should become small in a definite $

way as a function of parameters when the scale of an insurer becomes large.

2. Moderation-Deviation Ruin Probabilitles. A
i.

Throughout the rest of the paper, we assume :

r

(A.1) The random variables ka and YkJ have finlte moment generating y
functions E exp(stJ) and E exp(sYkJ) for 0 < s < g also YkJ ]
has a finite density h(0) at O. ¥

-1/2 :

(A.2) As n—oo, U/m T )+y(n) =0(1) and (mT ) = '
h Y

o[Un/(mnTn)+7(n)]. X

N

Since our primary goal is to find asymptotic expressions for Pn(Tn) = P(Rn(t) N
€0 for some ¢t € [O,Tn]}, we will repeatedly apply the following technical )
, result on tail-probabilities for parameterized sums of 1.1.d. random X
[)

1 8
' variables. :
~Y

Lemma 2.0 [essentially proved as Theorem 10 of Chapter VIII in Petrov 1972].

For a fixed subset ©® of R, let (c(e)}e be a family of mean-0 random S,

=
A T T T T s S S S S S S
L’J‘L{AKJJJJ‘L{LH-:(A Y SR N S':"('}
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variables which satisfles for some r > O

sup E er{(e) < w, inf E{C(e))z > 0.
60 6e€8

For each 6, let (ck(e)):=1 be an independent identically distributed
sequence of random variables with the same law as {(8). Then there exist
constants d,n > O not depending upon 6, and a family of analytic functions

y(+,08), such that for all x € {0,n], 6 € ® and n 2 1,

m
IIOg[P ch(e) > mx(Ecz(B))1/2}/(1—¢(xm1/2))] - mCw(x,0) | S de(m 7 2ex),
=1
Here y(0,8) = Eca(e)/[S(Ecz(e))g/Z] is 1/6 times the "skewness" of {&(@9).
The problem we have set ourselves Is to understand the asymptotics of
ruin probabilities on the time-interval [O,Tn). In realistic settings, there
will be a minimum time t0 > 0 (not depending upon n) before the first
clalms can be filed, and this will make certain results easier to state on
[tO.Tn]. It turns out that when y(n) = O(Un/mn) the same results are true
with tO replaced by 0, whille if Un/mn = a(y(n)) the ruln-probabilities

on [0,t0] for sufficiently small t can be shown to have the same behavior

0]

as 1If clalm-arrivals were Polsson — a slituatlion covered by Theorem 2.3 below.

Lemma 2.1. Suppose that {XkJ} and {YkJ} satisfying (A.1) are as in

Theorem 1.1, and suppose that Rn(t) is as defined in that theorem except
that the nonrandom sequence-s (mn}, (Un}. {y(n)} satisfy (A.2). Then if

d = 6n is any sequence of positive numbers such that Gn—eo as n— o,

there exists c0 > 0 such that for all tO 20

sup P(Rn(t) S0} <P{ Inf Rn(t) < 0}

<t < <
to_t_Tn tO_tSTn
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Z P(R_(J8) < ' }.
J:tOSJGSTn

Proof. The first inequality is obvious. To prove the second, observe that

P( inf R (t) S0} s Z P( inf R (t) s 0}
toStsT_ e 2N JBSES(J*1)8AT_

where xAy denotes min{x,y}, while If 0 Ssa<b=a+ds Tn
m Nk(t)

P{ sup [ Z Xy - “‘Aa)“] > 812m(n)}
astsb \ 51 U= N (a)+1

B3 o)

=1 J-N (a)+1

+ 172_8|ul
z XIJ 2 (& T)mn}.

2/3
m
n

Jss

Here x+ denotes max{x,0}. By two applicatlions of Lemma 2.0, using
Var N. (8 ) = & /A4-0(62) as n—w, we find
1" "'n n n

m
n

kle (8)-8m /A mn(62/3_6/;\)
:E:N () 2 m a =P 75 2 Ve

[mn Var Nl(a)] [mn Var NI(S)]

2/3 &

1-6((6%%-2)(m_rvar N (5)11 }‘W(1+0(m;1/2

))
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estimates.

sup P(Rn(t) < 0}
t <t<T
0 n

»

.
P

¥
|

¥

satisfying (A.1) - (A.2) can be bounded

The assumption which makes Pn(Tn)

(A.3)

Un/(mnTn)'*V(n)

For the present, assume also that

T
n

section is

Pl i W 4

Theorem 2.2.

The message of Lemma 2.1 is that asymptotically as n—w,

general circumstances the ruln-probablility P{

by a factor which is at least

1
< 5 exp{ comnén }
and
[62/3mn]
+ 172 _ 8lul
P{ XiJ 238 T)mn
J=1
s172_ Slul _52/3py* m_ 1172
_ A 11 n -1/72.1/2
=41-9 +(1+0(m é ))
1/3 + n n
3 Var X
11
1 1/3
< 5 exp(-comnan )
for some g >0 and all n. The Lemma follows immediately from these

in very

inf R (t) < 0}

n differs from
stSTn

to

1 and in most examples

by a constant not depending on n.

a moderate-deviation probability is
a(l)

as nh— o,

T < . The maln result of this

Assume (1.86) together with (A.1) - (A.3), where Tn =T < o,
j and define es as In Theorem 1.1. Fix to > 0, and put
v
o Un+mn y(n)ut/a
z (t) = , €=€ = min =z (t).
; n m/2g Nt stsT
I n t 0
)
K
W
)
10
)
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Then for some positive constants ¢ (as in Lemma 2.1), c

0 1

-1/2.3
1'n n
< P{Rn(t) £ 0 for some t € [tO,T])

172 -1/2.3
:E: 1-(z. (45 - (anmn) ) cym. €n . I—e-c 3
n n 2] ]

Jit <38 ST Jo, n

(1-¢(En))e

where {an} is arbitrary subject to an—+0 and mnan—aw as n—w. In

particular, taking dn = mgziﬁ we find

-1/2.3
Iln[P{Rn(t) £ 0 for some t € [tO,T])/(l-O(En))]I < c3mn1 €n

where C4 is another positive constant not depending on n.
Proof. By Lemma 2.0 with t =08 € 8 = [to,T] and ck(e) = Nk(t)-ut/A for
1,...,mn, there is a finite constant ¢, > 0 not depending on n or ¢t

1
such that

-1/2_3
zn(t).

Iln[P{Rn(t) < 0)/{1—¢(zn(t)))]l s oy

The rest follows immediately from Lemma 2.1. n = m;zﬁﬁ. then it 1is

easy to check that uniformly for jsn € [tO,T]

1/2 _
(énmn) /BJS = o(zn(Jan))

n

Iln 8 | « (1n}1-8(z (45 )- B“m“) ) « m 8./3
n zn J n GJ6 mn n

n

as n—w, where An « Bn means the same thing as An = a(Bn).

While Lemmas 2.0 and 2.1 can be made to yleld more delicate estimates of

1

T R T R R T
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ln[Pn(T)/{l-Q(En))] than the one in Theorem 2.2, the main point of the theo-

rem is that under (A.1) - (A.3), with Tn £ T < w, the asymptotically domi-

1.2 1 Un+mn7(n)ut/A 2
nant term in 1n P{ inf R (t) <0} is - £ = - - inf
n 2°n 2 172
[t.,T ] t.<t<T m (2]
0''n 0 n n

t

Another setting in which this same statement holds is the standard one where

Tn becomes large but m does not.

Theorem 2.3. Assume that (A.1) - (A.3) hold but that Tn—am while m =m

remains bounded. Then with the same notations w Zn(t), and En as in

tl
Theorem 2.2, and 92 replaced by t 02, where 62 = A_1a2-+l_3p232,

t

P{Rn(t) S0 for some t e [tO,Tn]} =

U +m y(n)ut/a+d, (log T +x_ ) -dx
= P(max{W(t) - 2D L DDt StsST)20) +de OF
evm_
n
for an arbitrary sequence {xn}, where Idil for 1 = 1,2 are bounded by
finite constants not depending on n, and where d3 > 0. When X, =
1/2 2, . _ _
o((mnTn) ), Ui/(mnTn)-+7 (n) = o(xn), and to =0, as n—oo
(U _+m 7(n)ut/l)2
n n

(2.1) In P{Rn(t) <0 for some t ST} ~- % min 5
n 0stsT_ C

Proof. Apply Theorem 1.1 of Csorgo et al (1987b) to each of the independent
N, (t)
k

compound renewal processes Y X
i=1

a possibly larger probabllity space there exist independent Wiener processes

K1’ for k=1,...,m to conclude that on

wl(-),....wm(-) such that

N, (t)
k -an
P{ sup IZ in—ut/A-ewk(t)l > A log Tn+xn) < Be

<
OSt_Tn i=1

12
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"
N for some positive constants A,B,C and arbltrary (xn). Therefore, defining
N - -
N the new Wiener process W(t) =m 1/Z(wl(t)t . .+wm(t)), we have
)
A N, (t)
::: 3 < 172
" P{ sup |Z Xy = Mut/A - em W(t)| 2 m(A log T_+x_)}
h i n 'n '
' 0<t<T s
" n k=1 1=1
17 -Cx
N < Bme
N
N
3 The first part of the Theorem now follows immediately from the definition of
\ Rn(t). Now by (A.3) it is possible to choose x, SO that as n—ow, Erzx =
2
::: c(xn) while X, = o((mnTn)l/z), and we do so. Then (2.1) with this choice )
” ¢
’, )
::l of X, yields P{Rn\t) < 0 for some t € [O,Tn]}
™ _ U +m _y(n)ut/a+d, (log T +x_ ) ¢
o ~ P{max (W(t)- 2D 1/21 LU EPG) ,
‘\ t<T m (2] ]
.(| n n d
I‘
X §) +mn7(n)psTn/A+d1(log T +xn)
» = P{ max (W(s) - 75 ) 2 0},
o 0<s<1 (mT) "6
188 nn
4] u
L - 172
- for the Wiener process W(s) = W(sTn)/Tn . Now the exact expression for the ’
- last probability, as given by Bartlett (1946), is
i
0 -2anbn a
; 1-®(a +b ) +e {(1-9{(a_-b ))
o n n n n )
J ,
where a =a_ = (U +d, log T +d.x )8 '(mT ) "% and b=b =

n n 1 n 1'n nn n q
A 172
1.‘ M‘I(n)(mn'l‘n) /(A8). Thus, since (A.2) implies that an+bn—>m as n—o,
A 1 2
> - =
2 we find that 1n P{Rn(t) <0 for some t < Tn} is asymptotic to 2(an+bn)
= if a 2b and to -2a b if a <b_.
f n n nn n n
. In the present setting, where m remalns bounded and Tn—)oo as n—oon 3
o and (A.2) holds, we have (7nTn+Un)/Tr1\/2—)°°' Since X has been chosen to
- be o(Tl/z), we have log T _+x = o(U +y T ), so that as n—ow
[ n n ‘n n ‘nn
)
h
i
"
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M
X

a ~a' = e—lU (m T )-1/2.
n n n nn

Thus we have proved

1., 2 '
i(an +bn) if a, 2 bn

(2.2) 1n P(Rn(t) < 0 for some t € [0,Tn]) ~
-2a’b if a’ <b.
n n n n

It remains only to check that the right hand side of (2.2) colincides with

- min = min

© % 0stsT 62m t sss1 Vs

2 , 2
(Un+mn7(n)ut/h) i l[ an+bns]
e 0
n

which follows easily by elementary calculus.

Remarks. (1) The theorems of this section cover the cases where T, 1s fixed
and m gets large or where m is fixed and Tn becomes large as n— oo,
Of course, with small changes the proofs of these theorems remain valid under
some other assumptions concerning the limiting behavior of sequences (mn}

and {Tn). For example, Theorem 2.2 remains valid as stated if T is
replaced by a sequence {Tn) which becomes large in such a way that

ln(Tn/Gn) = a(Ei) as n—w. Similarly, minor changes in the proof of
Theorem 2.3 yleld the same result if the constant m 1is replaced by a

sequence (mn) converging to o 1in such a way that

2 =
m log Tn4-Ui/Tn4-mn7 (n) = o(Un+7(n)mnTn).

(11) When the random variables ij are exponentially distributed with
mean A-l, i.e., when the claim-arrival processes Nk(t) are Poisson with
rate A, the "memoryless" property of claim arrivals immediately implies that

the probabilities P(Rn(t) £ 0 for some t s Tn) depend on (mn). (Tn} only

A\Was ¥,
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through the products mn-Tn. Writing these probabllities with m and

T =t replaced by T’ =t >0 and m’ = m T, we find from Theorem 2.3 =
n 0 n 0 n nn
.
that as n—w >
2
1 (Un+mn1(n)ut/k) ;
in P(Tn(t) < 0 for some t € [O.tol} ~ -3 min 5 . \
Oststo 2] mnt

Just as in (2.2), the expression on the right can be written explicitly as a

continuous function of tO' A, Un’ m and 7(n).
Now, 1if (ij} are i.1.d. with a nonexponential distribution with mean 3
»
A, then it is easy to show that for each to > 0 there are numbers A,(to) < "
»
»
A <A (to) such that (Nk(t) : 0t < to) is (stochastically) larger than a 7}
B -
Poisson process Nk*(t) with rate (A,(to)) 1 and is (stochastically) <
L)
» » -
A smaller than a Poisson process Nk(t) with rate (A (to)) 1, and such that
P. . !
g A (ty) =A,(t;) >0 as t 0. Then for each t, >0, Iln P(R(t) <O for ;
some t € [0,t0]} lies asymptotically for large n between the values
¢
) 1 a2+u2 :
' =5 min (U +nm 7(n) ) /(m t—s3) )
* Ostst A
0
%
X 3
and v
.r.
2,2 |
- % min (Un+mn7(n) ) /(m t2 2k +“ ) N
O<tst A n
0 ™
¢ 3
.\.
By taking to arbitrarily small but still positive, we conclude that under Q
hY
2 the hypotheses of Theorem 2.2, the conclusion of that theorem holds if tO is N
*
y allowed to take the value O. "
¢ Rt
y (111) A result like Theorem 2.3, but somewhat weaker, can be proved by .
[} :
appealing to Lemma 2.1. As can be seen from Remark (i) above, even Theorem >
\J
2.3 cannot be made to cover all interesting cases where 'I‘n is of larger v
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order of magnitude than m . What is lackling 1s a strong approximation result
with optimal rate for superpositions of large numbers of renewal processes

over large times.

3. Largg-Deviation Ruin Probabilities.

We continue our study of the asymptotics of Pn(Tn) = P{Rn(t) s 0 for
some t € [O,Tn]) under hypothesis (A.1), but now (A.2) - (A.3) is replaced
by the following condition characterizing the "large-deviation" setting.

U

n
mT
nn

(A.2’) As n—oow, -—w and w(n)% —p, where w,p 2 0 are such that

w+p > 0,

Note that (A.2°) implies (A.2), so that Lemma 2.1 still applles. As in

Section 2, we treat first the case where Tn = T remains bounded.

Theorem 3.1. Assume that {Xk } and (Yk } are as in Theorem 1.1 and satis-

J J
fy (A.1), and that {mn), {Un}. {¥(n)} satisfy (A.2’) where Tn =T e (0,0).

Then, as n—w,

m;I log P(Rn(t) <0 for some t € [0,T]} — sup 1nf(-(wT+(p+;)t)€

0stsT €

(3.1) + log pN(t)(wx(E)))

where pN(t)(S) for each t denotes the probability generating function
]

r p(Nl(t) = .j}s‘j of Nk(t), and where ¢ is the moment generating func-
J=0

tion of the ka random variables.

Proof. For each fixed t > 0, Chernoff’'s (1952) Theorem, as given for

example by Bahadur (1971, Section 3) says that as n—ow,

4 - [ g AT Sy - - LA "} L] LA"NL] . LS 4 - LAYS 2" 4 L
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Nl(t)

;1 log P{Rn(t) <0} — 1nf(-(wT+(p+%)t)€ + log E expl€ :E: xlll)

£ k=1

= igf(-(wT+(p+§)t)£-+log pN(t)(wx(ﬁ))}

where the right hand side is strictly negative and continuous in t, and is

172
n mn) if Gn is any sequence of con

stants tending to 0. Apply Lemma 2.1 with Gn = m;l/z to deduce (3.1). (s]

also the limit of m;1 log P{Rn(t) <38

The preceding result takes a simple form because it gives information
only about the logarithmic order of magnitude of Pn(T). Nevertheless, the
large-deviation "rate"” given as the limit in (3.1) has played some historical
role in the collective-risk literature under the name "adjustment coefficient"
in cases where claim arrivals are Poisson. (See Moriconi 1985 for literature
references and extensions to other clalm-arrival processes.) Moreover, as
with the adjustment-coefficlent ("the Lundberg-de Finett!i inequality"), the
large-deviation rate in (3.1) can be used to provide exact upper bounds for
the left hand side of (3.1) for finite n. Indeed, since the limit in
Chernoff’s (1952) theorem is actually an upper bound, the method of proof of

Theorem 3.1 yields:

Corollary 3.2. Under assumption (A.1), for each finite n

2/3
—comn
log P(Rn(t) £ 0 for some t € [0,T]}) s mnT e

1/
+mnT expl sup 1nf‘(-(Un m

0stsT €

2+mn(1+7(n))§t)e + 108 Pyy) (0, (€))}]

where < is as in Lemma 2.1 and can be written explicitly in terms of large-

deviation rates in Chernoff’'s Theorem for random variables X; and Y

J 1y
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It remains to find analogues for Theorem 3.1 in the case where m =Em
is bounded and Tn—am. Again the result will follow from Lemma 2.1 together
with known results in Large Deviations Theory. It should be noted that the

method of Strong Approximation by a Wiener process with drift cannot possibly

-d x
yield a Large-Deviation rate under (A.2’) because the error-term e 3'n in

Theorem 2.3 would become the dominant term

Theorem 3.3. Assume (A.1) and (A.2’) in the setting of Theorem 1.1, where

mn £ 1 <o and Tn—am as n—oo. Then the limit as n—w of

-1
‘ Tn log P{Rn(t) £ 0 for some t € [O,Tn]}

exists and is given by the formula

sup inf{ r log ¢x(t )+t -wt + r log ¢Y( (p+ )t -t ) : 2 0}.

t.,t
r>0 1 0 1’70

Proof. Since it makes no difference in the result, we assume for convenience

p in this proof that the "age" Yo at time 0O 1s 0, so that the new policy-
1 lifetime Y1 0 begins at time 0. If Rn(t) <0 for some t € [0,Tn], then
M-1 M-1 M
f for some integer M, Y Y < T and also U + (1+7(n))— E Y E X
1J n 13" 13
: J=0 J=0 J=1
<€ 0. For each a,b,T > 0 and each Integer M, let
M-1 M-1 M
) = -
s pl(a,b,M, T) =P{Z YUST, aT+bZ Ylj Z X1J50
: J=0 J=0 J=1
‘ Then for each n,
! (3.2) max p(U /T , (1+7(n))'x‘l.M,T ) S P{R (t) SO for some t € [0,T ]} s
M1 n n n
2 T2
M
' < P(Z Y, . ST )+Z p(Un/Tn.(1+7(n)) .M.Tn).
/ M=1
)
) 18
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2
Tn 1 -cTi
Since P{ ¥ Y1J ST} = ale ) for some € > 0, the idea of our proof is
J=0
to find 1im T © 1n p(a,b, [rT],T] for each a,b,r and to observe that this
T4

limit varies continuously with respect to a and b.
As in Chernoff’s (1952) Theorem, a simple upper bound for p(a,b,M,T)
suggests the form for its logarithmic order of magnitude when M = [rT] =

greatest integer less than or equal to rT:

p(a,b,M,T) < E{I .

M-1 M-1 M
[T Y, ST, al+b T ¥, ;- X, 0]

J: J:O 1 J J:O i‘j

M M-1 M-1
t [ I X,,~-bf Y - aT]4-t [r Y ]
olys; " Ty U W v }

M-1 M
~tgaT+t, T ('bto'ti)JEB YiJ t0J§1 X4
< Ele e e Y7 .
Therefore
(3.3)
T log p(a,b,M,T) S inf {-at +t. + % log ¢ (bt .-t )+ log ¢.(t.)
» D2 T X 0 "1™ M Y P01 T X o[
o t120

Moreover, Theorem 5.1 of Groeneboom, Oosterhoff, and Ruymgaart (1979) implies

for each a,b,r > 0 that

(3.4) 1im T°! log p(a,b, [rT],T) = p,(a,b,r) =

T+

= Inf {r log ¢X(t0)-+r log ¢Y(—bt0-tl) +t1-at0)
to,tIZO

18
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and it is easy to see that the expression (3.4) varies monotonically and con- !
tinuously with respect to a and b, and that its maximum over r 2 0 is

achieved. It now follows immediately from (3.2) - (3.4) and (A.2’) that for

arbitrarily small & > O and all large n,

sup log p,(w+8,E+p+5,r)-6 < T-1 log P{R (t) s O for some t s T}
20 n n n
< T7 log (12) + T 'sup log Py (w-8,84p-5,r) + 5.
n n n
r20
Taking limits as first n— o and then 3—0 completes the proof. o

Remarks. (i) If claim arrivals are Poisson, 1.e., if ¢Y(s) = (I-As)-l, then
it is an instructive exercise to verify that the formula Jjust proved agrees
with (3.1) with T =1, m_ =T .
n n
(11) In the setting of Theorem 3.3 if moEm2 2, then a slightly more
complicated application of Groeneboom, Oosterhoff and Ruymgaart’s (1979)
Theorem 5.1 ylelds the large-deviation rate. Thus a result analogous to

Theorem 3.3 holds for general m.

(111) There is another way of proving that the limit in Theorem 3.3

exists. If the variables Y11 are assumed to be essentially bounded, then
Nl(t)
[t *¥o- Z iy Xl.Nl(tm]
J=0

defines a Markov process in t which satisfies the hypotheses of Theorems 6.9
and Corollary 7.21 of Stroock (1984). The large-deviation rate calculated in
(3.4) of Theorem 3.3 above therefore coincides with a more complicated general
expression given by Stroock.

(iv) If the claim-counting processes Nk(t) are allowed to be non-
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Poisson with independent increments, then Lynch and Sethuraman (1887) provide
abstract large-deviation expressions analogous to Theorem 3.3.

The large-deviation rates calculated in Theorems 3.1 and 3.3 glve two
different possible meanings to the logarithmic order of magnitude of the ruin
probability under (A.1) and (A.2’). This rate is interesting as the proper
generalization of the classical "adjustment coefficlient” mentioned Just after
Theorem 3.1 above. It should therefore also be interesting to observe that
the rate-numbers arising in these Theorems do differ in general! That is, for
non-Polsson claim arrivals the asymptotics of the logarithm of the ruin-
probability as a multiple of mn~’1‘n depends on whether m is large or Tn
is. For example, if the variables X are independent and exponentially

1)

distributed with mean u, and if the YIJ are Gamma(z.%k), then for

various combinations of parameter-values u,A,w, and 7 we display in the

following table the large-deviation rates obtained in Theorems 3.1 and 3.3.

21
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Table 1. Large-deviation rate numbers from Theorems 3.1 and 3.3 for various
combinations of parameters A, y, and w, where the claim-interoccurrence
times Y are F(Z.%A) and the claim amounts X are exponential with mean pu

standardized to 1 unit.

Parameters Rate for case m=n, T=1 Rate for case m=1, T=n

A 4
0.1 0.05

€

. 1821 . 1835
.0688 . 0683
.0313 .0316
.0156 .0157
.00653 . 00859
.00322 .00326
. 00256 .00261
.00152 .00157
.00074 .00078
. 1014 . 1033
. 0255 . 0260
.00851 . 00868
.00258 .00263
. 1511 . 1562
.0409 .0424
.0125 .0130
.00302 .00315
.00127 .00131
. 000226 .000261
. 2257 . 2380
.732 .0781
.241 . 0258
.00644 . 00693
.06617 .0707
.0197 .0212
.00418 . 00450

.02

\ ‘- lﬁl‘

s’

[&)]

2.
1.
0.
0.
0.
0.
0.
0.
0.
1.
0.
0.
0.
1.
0.
Q.
o.
0.
0.
1.
0.
0.
0.
0.
0.
0.

- N U] -

AL A W}

The Table shows that the superposed stationary renewal model (m = n,
T 1, as In Theorem 3.1) generally yields a larger large-deviation rate than
the more usual single renewal process model (m =1, T =n, as in Theorem
3.3). The difference does not ever seem very large for the Gamma(2,%k)

interoccurrence distribution used in calculating Table 1: the differences

LR b Wi oy A W Y

range from less than 14 to as much as about 7% for the parameters shown.

As would be expected, the most pronounced differences arise when the expected
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b interoccurrence time A is relatively large compared to the time-horizon

é' (which was taken in 1 1in the case of fixed T), when the reserve U = wn |
v and loading % are relatively small.

?, We next argue that the parameter values chosen in Table 1 are reasonable, ]
.5 and that the differences shown for the large-deviation rates could make some '
: practical difference. Imagine a large life-insurer with, say 1,000 policy

% lines of average face amount $50,000, and that we are interested in its sol-

:: vency over a time-horizon of 50 years. This means our p =1 1is measured

& in units of $50,000, and that the unit T of time iIs 50 years. For these

v n = 1000 policy lines, we assume the loading % to be elther 2% or 5%, !
2 and the initial risk-reserve for such a company might be of the order of § to

) i 20 million dollars, which in our units would mean that w = U/n would lie 4
kj somewhere in the range from 0.1 to 2.0. Finally, the expected time until a y
?; claim for a randomly selected policy might be from 10 to 30 years, which in

;i our units makes A 1lie in the range of 0.2 to 0.6. Now conslider a partic- ¢

)

3 ular combination of parameters, say A = 0.25, ¥y = 0.02, and w = 0.25. The :
f‘ upper bound on the probability of ruin provided by the usual “coefficient of

,; adjustment” (which is how we refer to the large-deviation rat 1in Theorem 3.3) :
fj would be e—1000‘0.00868 = 0.00017, whlle the corresponding upper bound using

4

the correct model of superposed renewal processes in Theorem 3.1 would be

,% e-1000‘0.00851 = 0.00020. While the difference between these upper bounds is

%E not large, we conclude that with Gamma(z,%A) interoccurrence times (which

ve

)

have not been chosen to be as different from exponential as might be reason-

2T A

. e

able), ruin probabilities should be inflated as much as 15% above what one

*
- '.

would calculate using ordinary collective-risk models. Note that because of i

- -
0

.

{

s

the results of section Z above, the relative difference between the two ways

of calculating probability of ruin can be noticeable only when the probabili- '
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ties themselves are extremely small. For thls reason, we might expect the
difference to have practical importance only if the claim interoccurence-time

distribution is dramatically different from exponential.

4. Conclusion.

We have in this paper surveyed the asymptotics of actuarial ruin-
probabilities under a family of superposed-compound-renewal-process models.
When the ruin-probabilities are moderate-deviation probabilities (i.e., satis-
fy (A.2) - (A.3)), we found that the top-order asymptotic term in the ruin-

probability is the same under any of our models as long as the product mnTn

of portfolio-size by time-horizon is the same. However, when the ruin-

probabllities are large-deviation probabilities, the logarithmic order of

Ty

magnitude of the ruin-probabllity can depend noticeably on which of the

superposed-compound-renewal process models is used. Actuarles should be

i T o0 TR 4

concerned whether the usual model of Collective Risk Theory (the model with

5SS

m = 1, Tn—am) is as appropriate in modelling a large Iinsurance portfollo as
the model with many independent lines of insurance (mn—aw. with Tn either

fixed or o(mn)). We think it is not.
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