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ABSTRACT

The extension of time-marching procedures to low Mach number and low

Reynolds number conditions is considered. It is shown that the disparate
speeds of the acoustic and particle waves prevents convergence at high

Reynolds numbers while the requirement that both the Courant and the von

Neumann numbers be of order one prevents convergence in very viscous

flows. A perturbation expansion is used to introduce pseudo-acoustic

waves that propagate at speeds similar to the particle speed at high

Reynolds numbers and that allows both the inviscid and viscous time step

parameters to be of order one at low Reynolds numbers. The resulting

algorithm is shown to give convergence rates that are independent of

either Mach number or Reynolds number over a range of five orders of

magnitude in both parameters. Results are shown for strong heat addition

in low speed flow encompassing this broad range of variables.

INTRODUCTION

Time-dependent algorithms are nearly the exclusive choice for the

computation of compressible flows. They have been highly developed to

apply to high speed flows in general, and to deal with the shock waves

that frequently appear under such conditions, in particular. Both

explicit and implicit procedures have been used extensively in transonic,

supersonic, and hypersonic regimes. An important advantage of these S

algorithms is that they provide accurate predictions in both inviscid

flows and in the practically important regime of high Reynolds number

viscous flows. One reason for this flexibility is that they allow the

convective terms to be central differenced at all Reynolds numbers. In

cases where central differences are not desired, they provide a physical



2

basis for defining various upwind differencing schemes also. In general,

upwind differencing becomes more desirable as the Mach number increases.

An important attribute of any computational algorithm is that it be

robust over a wide range of flow conditions. In this regard, a major

drawback of time-dependent procedures is their well-known inefficiency at

low subsonic speeds. This characteristic can lead to difficulties in

computations of transonic flowfields that contain embedded low speed

regions such as near a stagnation point or in the boundary layer. In

addition, this limitation makes the family of algorithms ineffective for

computing combustion problems in which the velocities are generally low,

but where the flowfields remain strongly compressible because of heat

release. An additional low speed, compressible flow problem that is of

interest to the present authors is the interaction between high intensity

radiation fields, including both high power laser beams and focussed

solar radiation, and flowing gasesl, 2. Our purpose in the present paper

is to identify the reasons why these time-dependent algorithms fail at

low speeds and to devise methods for enhancing convergence in these

regimes so that they can be used effectively for these additional

applications.

In addition to extending time-marching methods to low speed

applications, a second motive for studying this problem is to enable us

to understand their convergence characteristics more thoroughly. Besides

increasing the range of convergence, this improved understanding may also

point the way toward improving the convergence rate in those regions

where the methods are already applicable. In the present paper, we study

the characteristics of time-marching algorithms in this light. We

address the primary question of how these popular algorithms can he I.
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extended to low Mach number, low Reynolds number flows. Throughout our

attention is limited to steady flows.

Methods for enhancing low Mach number convergence in inviscid flows

have been considered by several previous authors 3-9 , but no one has as

yet addressed the viscous problem. In the present paper, we first review

this previous work in inviscid flows and then extend these procedures to

the viscous case. Our analysis is based upon implicit algorithms that

use central differencing in space. The Mach-number/Reynolds-number

regime we consider ranges from high subsonic speeds (Mach numbers of

about 0.1) down to incompressible speeds (Mach numbers around lO- 6 ) and

from inviscid flow (infinite Reynolds numbers) down to highly viscous

conditions (Reynolds numbers less than unity). Appropriate modifications

to the implicit algorithm are made that allow a single unified procedure

to give efficient convergence over this entire range. Although testing

with explicit algorithms has not been attempted, it is presumed that

these procedures will also provide similar improvements in convergence

for explicit schemes over this wide regime. The philosophies used here

should also prove useful for developing efficient convergence of

flux-split schemes that use upwind differencing.

REVIEW OF CONVERGENCE ENHANCEMENT IN

INVISCID LOW MACH NUMBER FLOWS

The convergence rate of traditional time-dependent algorithms for

inviscid flows slows down as the Mach number is reduced because of the

increasing diversity of the speeds of the eigenvalues. As these

eigenvalues become stiff, both explicit and implicit algorithms show

slower convergence for distinct, but related, reasons. Explicit schemes

slow down because the maximum allowable time-step is strictly limited by
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stability considerations and the CFL corresponding to the slower

eigenvalues approaches zero. Implicit approximately-factored algorithms

slow down because the factorization introduces an optimum CFL. Slower

convergence is observed for CFL's above or below this optimum. When the

Mach number is low, only one of the eigenvalues (say, for example, the u

or u+c eigenvalue) can be kept at a CFL near this optimum while the

others are far from the optimum and convergence slows dramatically. As

is shown later, fully implicit algorithms that use direct inversion of

the complete multidimensional matrix (no approximate factorization) do

not show a convergence slowdown because of eigenvalue stiffness. They

continue to show rapid convergence rates that are independent of Mach

number. The reason for this is because direct inversion methods do not

exhibit an optimum CFL, but continue to converge more rapidly as CFL is

increased.

There have been two distinct methods proposed for circumventing the

convergence slowdown induced by eigenvalue stiffness. One method is to

use time-derivative preconditioning. Early studies 3-5 of preconditioning

showed that rapid convergence could be achieved down to Mach numbers of

about 0.01. More recently, we have shown10 that preconditioning allows

Mach-number-independent convergence down to Mach numbers of 10-5, but

that round-off errors begin to affect the maximum convergence level at

Mach numbers below 10-3 . In this regard it is notable that it is

round-off errors in the pressure (not density as might be expected) that

eventually prohibits the use of the preconditioned approach.

The second method for circumventing low Mach number convergence

difficulties has been through using special perturbed forms of the

equations of motion that are valid at low Mach numbers. Gustafsson 6 has

% ' '.N ' ' 7 " ," ' v .- - % . - - -. ... , . . . .
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used an expansion in Mach number while the present authors8 have used an

expansion in Mach number squared. Gustafsson's philosophy was to

symmetrize the matrices corresponding to the Jacobians of the flux

vectors. Our Mach number squared expansion was used to control the

disparity in the eigenvalues and left the matrices non-symmetric. Our

numerical results showed effective convergence control to Mach numbers of

10-6. Calculations at lower Mach numbers were not attempted, but we

estimate flows to 10-8 or 10-10 in Mach number could be computed before

unacceptable round-off error would begin to decimate the results.

Although we are not aware of similar tests of Gustafsson's expansion

procedure, our interpretation of his approach suggests that it would also

be effective in providing Mach-number-independent convergence rates,

Extension of these low Mach number methods to viscous flows has

heretofore not been attempted. The purpose of the present paper is to

develop a method that allows rapid convergence over all Reynolds number

regimes without sacrificing convergence rate in the inviscid case. The

procedure described here is based upon the perturbation expansion

procedure.

THE CHOICE OF A REPRESENTATIVE PROBLEM

We are interested in assessing the convergence rate of numerical

algorithms over a broad Reynolds-number/Mach-number spectrum ranging from

inviscid to highly viscous conditions and from high subsonic speeds to

very low velocities. To make this assessment we need a representative

problem that will possess a non-trivial solution over the entire

Reynolds-Mach number regime. As such a problem we choose the flow

through a duct with volumetric heat addition (Fig. 1). The heat addition

causes large density changes such that even in the presence of low
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velocities, the compressible form of the equations must be used. This

problem is representative of typical combustion problems, and is also

analogous to the radiation/gasdynamic interactionsl, 2 mentioned above.

In the absence of viscous effects, the presence of a spatially

varying volumetric heat source prevents the solution from being a

trivial, uniform flow and instead generates an inviscid flowfield that is

strongly two-dimensional. When the effects of viscosity are included,

the no-slip condition on the wall ensures that the velocity profiles will

be non-uniform. At very low Reynolds number, however, fully developed

conditions are rapidly established and the introduction of a heat source

again provides a more general flowfield at either low or high Reynolds

numbers. For viscous flows we use both volumetric heat sources and heat

addition through the walls.

CONVERGENCE OF THE TRADITIONAL TIME-DEPENDENT PROCEDURE

As a first assessment of the problem, we report the convergence rate

of a traditional approximately-factored scheme with no provision for low

Reynolds number or low Mach number. In their standard form the equations

are:

aO Q ,E +F L a . V )+ -L( + VITt a+ + (Vx xy + (Vyx Vyy)

where the vectors Q, E, F, Vxx, Vxy , Vyx and Vyy are:p.'
-pu E pJ2+p F- puv (2)

pv puv pv2+p

e / (e+p)u (e+p)v

a = partial ditferential;, rho

071
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0 000

V  dV du V p (3)

Vxx. " 1 xy -'dy Vyx yy

k f 0 0 k T

Here, p, p, u and v are the pressure, density and x and y components of

the velocity; e is the total internal energy that is related to the other

parameters by e - + z(u2 + v2)] where e is the internal energy. The

diffusion terms contain the viscosity, i, and the thermal conductivity, k.

For simplicity, Stokes hypothesis has been used, and in anticipation of

low Mach number applications, the viscous dissipation has been dropped.

The speed of sound, c, is given as c2 = yp/p where y is the ratio of

specific heat-,

Traditional approximately-factored Euler implicit algorithms applied

to Eqn. 1 lead to the followingll,12:

(I/iAt + dx dx xR Lx (I + L y - yyRoyA

dE + F d n
Xdy - (Vxx xy y (Vyx y (4)

where superscripts refer to the time step level, and AQ is the change in

Q in one time step (AQ 0n+l - Qn). The matrices Rxx and Ryy are

appropriate Jacobians of Vxx and Vyy.

The rates of convergence of the classical approximate factorization

scheme for the test problem given in Fig. 1 are shown in Fig. 2 for a

= mu; e epsilon; y gamma; A delta

-- ~w_ , .% - wi~wl. ,, -.- ,, ,'. ' .' _,. W.- .',_', -,--..,, , .. . .. . . ..-
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wide range of inlet Mach numbers. At high subsonic speeds (0.7 Mach

number) the scheme converges rapidly. Convergence to machine accuracy is

achieved in some 380 steps. As the Mach number is reduced, the

convergence gets much slower as intimated above. At a Mach number of

0.4, the convergence has already slowed down by more than a factor of

two, and about 1000 iterations are needed to reach machine accuracy. At

Mach 0.1, some 4500 iterations are required, while at a Mach number of

0.01, extrapolation suggests it will take some 45,000 steps to reach

machine accuracy. Because of the difficulties in finding optimum

convergence rates at such slowly converging conditions, the results shown

here were all computed at a CFL (based on u+c) of 6.0. At the lower

Mach numbers, somewhat faster convergence could probably have been

obtained for slightly different values of CFL, but the rates shown here

are within a factor of two of their optimum value. Clearly, the standard

procedure is unacceptably inefficient at low speeds.

The physical reason for these convergence difficulties is easily

understood. The time-iterative procedure relies upon both acoustic waves

and particle trajectories to propagate errors out of the flowfield. At

low Mach numbers the acoustic waves make many trips through the flowfield

while the particles are traversing it a single time. Approximate

factorization provides most rapid convergence when the individual waves

move a modest fraction of the distance across the computational domain in

a single time step. A CFL of about 5 based on u+c provides this optimum

propagation rate for the acoustic waves, but at low Mach numbers the

corresponding CFL based on u is so small that the particles move very

small distances in one time step and it takes many steps for them to

traverse the flowfield. For this reason the above results show that the

V * *~'~a' a.. p'. ., ~ ~~ P .,)..VV ~

~- - - Pa
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number of iterations varies approximately inversely with the Mach number.

Other alternative choices of CFL do not provide materially faster

convergence.

Proof that it is the approximate factorization errors that cause

this slowdown in convergence is easily obtained from either a stability

analysis of Eqn. 4, or from its direct solution without approximate

factorization. If we define the amplification matrix, G, as

(G-I)Qn - 60 (5)

the Fourier transform of Eqn. 4 gives G as the product of two matrices,

G - KflIK2 where,

K1  x i[SLA + S LB] + 2 T(AC R + (1-C R + T AF

K2 I -SxSy xAy (Rxy +Ryx)+lTAF (6)

Here, Sx, Cx, Sy and Cy represent the trigonometric functions of the

Fourier modus in the x and y directions, and i is the square root of

minus one. The term, TAF, represents the errors introduced by

approximate factorizat on. If the algorithm is solved without

factorization, TAF vanishes; if approximate factorization is included, it

becomes,

At + At ~ ti At -
TAF " [iS + 2x 1 x - R ] yLy + 2(l-Cy)y Ry] (7)

Although these expressions for the amplification matrix are quite

involved, numerical eigenvalues are easily found as parametric functions

of the Fourier wavenumbers in the x and y directions for specific flow

conditions. Contour plots of the maximum eigenvalue of G obtained from

Eqn. 6 are given in Fig. 3 for flow conditions that include a Mach number

_,.'-t..,.':i.- .- :.-_v " ',. '.;,';.. . .. . . . . .
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of 10-4 and a Reynolds number of 50. Figure 3a shows the maximum

amplification factors at CFL - 6 (based on u+c) for the case with

approximate factorization. As can be seen, approximate factorization is

stable, but the eigenvalues are near unity everywhere.

The corresponding stability characteristics without approximate

factorization (TAF - 0) are given in Fig. 3b. Here, we have used a CFL
A'

of 21,000 to offset the low Mach number and the amplification rates are

much less than unity everywhere suggesting rapid convergence. Numerical

experiments with the fully implicit system using direct inversion rather

than approximate factorization verify this. In general, they reach

machine accuracy in 8 or 9 time steps. Direct-inversion, implicit

procedures eliminate convergence difficulties at low Mach numbers and

provide a very robust computational algorithm. Unfortunately, the CPU

requirements for direct solution are prohibitive for even moderately

refined two-dimensional grids and more so for three-dimensional problems,

and the procedure is not practical for routine calculations.

LOW MACH NUMBER EXPANSION

To obtain a system of equations that is valid for low speed viscous

flows, we use a perturbation expansion similar to that used in Ref. 8

except that here we perturb the non-conservative form of the equations

rather than the conservative form. The method developed in Ref. 8 for

inviscid flows is unstable at moderate and low Reynolds numbers and

cannot be used for viscous flows. When expressed in non-conservative

form, the equations are:

ao + A + L( v ) + 1 L V (8)
dt dx dy p dx xx xy P dy yx yy

equivalent, similar
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where Q - (p, u, v, p)T and the Jacobians A and B are:

u p 0 v\ 0 p 0

S u o /p ) v 0 0 (9)

0 0 u 0 ( 0 v /P)

yp 0 u 0 yp

The vectors Vxx, Vxy, V and V are as given in Eqn. 3.

We now non-dimensionalize these equations by reference values of the

velocity, density, pressure, and temperature which will be denoted by a

subscript R, and by a reference length L. Of particular interest is the

momentum equation, and here we consider only the x-component. In

non-dimensional form it becomes:

du + u - + Po 1 do + v u _(V.T.) (10)
Ou X PRu R P OX OY -Re(V)(0

*where the viscous terms (V.T.) are identical in form to those in Eqn. 8.

The ratio of reference quantities that multiplies the pressure gradient

can be expressed in terms of a reference Mach number,Ag]

=U yMR2 (11)

where y is the ratio of specific heats.

Because we are interested in flows where MR is small, we define a

small parameter, e, as,

yMR2  (12)

and expand all parameters in a power series in e, as,

"
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P = Po + EPl + "-. (13)

Inspection of the non-dimensionalized equations shows that this

substitution affects only the momentum and energy equations. The /e

multiplying the pressure gradient in the momentum equation implies the

zeroeth order pressure must satisfy the relation:

grad po - 0 (14)

This indicates po is a function of time only. For steady state problems

we can, with complete generality, choose po as a constant.

Using Eqn. 14 in the energy equation gives, after minor

manipulation, the following low Mach number viscous system:

do +
Tt ax 'P + L pv -O0

du + L p + VLU. - V.Ot x P x Oy pe

a v v 1 2P1 V. T- + u- + v + - T. pj
t x+ +py "y p"

T uT + v 1 , 2T + 2T (15)
t +  x dy -R + r'(y) Tx5 2i

where V.T. represents the appropriate viscous terms as given in Eqn. 3,

and Re and Pr are the Reynolds and Prandtl numbers based on reference

quantities. For simplicity, we have dropped the zero subscript on all

variables in Eqn. 15 because the perturbation expansion causes only P1 to

appear.

Inspection of the coupled system, Eqn. 15, shows that there are five

unknowns, p, u, v, T, and Pl, appearing. The density and temperature are

related by the perfect gas law which, upon expansion, reduces to po - pT.

The problem with Eqn. 15 is that the time derivatives contain relations

for both p and T along with u and v but there is no provision for
u n
updating PI.
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To circumvent this problem, we replace the time derivative in the

continuity equation by an artificial time derivative as originally

suggested by Chorin 13 for incompressible flow. Specifically, we replace

the continuity equation in Eqn. 15 by,

p_ OP1/B + 2.pu + aL. o (16)
Po Ot Ox Oy

where B is a constant used for scaling. With this form of the continuity

equation, the low Mach number system now contains Pl, u, v, and T in the

time derivative. The simplified perfect gas relation immediately gives

the density. Also, we note that the final three equations appear

well-suited for viscous effects since they are all of the form:

a6 + C.T. - V2 (17)

where 0 repre.:ents u, v and T, respectively, and C.T. stands for

convective terms.

To place Eqn. 15 into a form suitable for computation, we express it

in conservation form using Eqn. 16 as the continuity equation. Upon

combining these we obtain:

"t+ L + a " V.T. (18)

at ax ay

where,

/ u 0 0 0

Po

r - u p 0 0 (19)
Po
pv o p 0o

Po

l 0 0 p

: beta; : phi; V nabla; r = gamma

. . . . I .5 .' l'. - - ' '- -@ , i - ' '- - " ' ' w" " "w" ' .I. '
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and

Q ' - (pi/6, u, v, T

P - (pu, pu2+pl, puv, puT)T (20)

F' - (pv, puv, pv2+pl, pvT)T

CONVERGENCE OF LOW MACH NUMBER

SYSTEM IN INVISCID FLOW

To test the perturbed low Mach number formulation we first apply it

in inviscid flow. Convergence of an implicit scheme is closely related

to the eigenvalues of the flux Jacobians. For this low Mach number

system, the eigenvalues are:

ACr-IA ') - (u, u, (u+c')/2, (u-c')/Z) (21)

where A' - dE'/OQ', and

c .2 - u2 + 40T (22)

In order to get well-conditioned eigenvalues, we choose 8 as unity.

Consequently, the flow described by Eqn. 18 is always "subsonic", an

outcome in keeping with our physical expectations.

Convergence results for the inviscid model problem of Fig. 1 based

on the low Mach number equations are given in Fig. 4 for a Mach number of

10-3.  Identical rates of convergence are obtained at Mach numbers of

10-1 and 10-5 . The expansion has completely removed the dependence on

Mach number. The convergence observed with the complete equations at the

high subsonic speed is observed with the low Mach number equations at all

speeds.

l Iambda

-I. ~ N
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CONVERGENCE IN LOW MACH NUMBER

VISCOUS FLOWS

To test the capability of the present low Mach number expansion in

viscous flows, we again use the physical problem in Fig. 1, but with

no-slip conditions enforced at the wall. Representative convergence

rates obtained at several different Reynolds numbers are shown in Fig. 5.

These results are all for a Mach number of lO- 3. At high Reynolds

numbers where the viscous terms are small, they have little or no effect

on convergence. As shown on the Figure, the rate of convergence at a

Reynolds number of 1000 is nearly the same as for the inviscid case. (In

fact, the effect of viscosity at these high Reynolds numbers is to make

the rate of convergence modestly faster than in the inviscid case. This

is because the physical diffusion serves to dissipate the errors in the

solution slightly more rapidly.) By contrast, the rate of convergence at

low Reynolds numbers is much slower than in the inviscid case. The case

at a Reynolds number of 10 in Fig. 5 is seen to converge at about

one-fourth the rate of the inviscid case. Flowfields at Reynolds numbers

less than 10 failed to converge entirely. The reasons for this slowdown

in convergence at low Reynolds numbers are again best demonstrated by

investigating the stability characteristics of the low Mach number

equations.

Figure 6 shows the stability characteristics of the low Mach number

for the three Reynolds number cases discussed in Fig. 5. At a Reynolds

number of 1000, the stability results are slightly more favorable than

for the inviscid case thereby justifying the relative convergence rates

for the two conditions. Values over much of the wavenumber domain range

between 0.90 and 0.95. At a Reynolds number of 10, the amplification

I. . . - € ' ',
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factors remain stable, but are very near unity in all wavenumber regimes.

Typical values here are above 0.98. These larger amplification ratios

explain the slow convergence that was observed at Re-lO.

The reason for this increase in amplification factor can be

understood by recalling that the CFL condition of inviscid flow is joined

by a second dimensionless quantity in viscous flows that is here referred

to as a von Neumann number, a - At/(Re Ax2). The slowdown in convergence

at low Reynolds numbers is because the von Neumann number becomes large

and the approximate factorization error in the diffusive terms drives the

amplification factor toward unity and slows convergence. For inviscid

flow, the von Neumann numbers are zero. At a Reynolds number of 1000,

they are a 0.25, while at Re - 10, a has increased to 24. Rapid

convergence requires that both the CFL and the von Neumann numbers be of

order unity.

The most obvious way to control both the Courant and the von Neumann

numbers simultaneously is by changing the grid size. Figure 7 shows

stability results for Re=O.l (which is a worse case than those on Fig. 6c)

with the grid spacing being increased to give a = 3.8 while CFL has

been fixed at 8. These values of parameters provide amplification

factors that are considerably farther from one, and promise much faster

convergence than do the stability characteristics on Fig. 6c. P

Unfortunately, the grid size required to attain this value of a is larger

than the computational domain and so has no practical utility. The

perturbation expansion does, however, give us an alternative method for

fixing both non-dimensional parameters that is just as effective, but

that does not require a change in the number of grid points. The method

for achieving this is described in the next section.

o = sigma; = equals approximately
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CONVERGENCE CONTROL AT LOW REYNOLDS NUMBER

For the viscous flow computations shown above, the scaling parameter

6 in the time derivative of the continuity equation was set to unity to

provide properly scaled eigenvalues for the inviscid terms. As the

Reynolds number is lowered, the inviscid terms become less important and

the viscous terms begin to dominate. At these low Reynolds number

conditions, it is no longer preferable to select $ to provide properly

scaled eigenvalues for the inviscid terms. Instead, we can use the

parameter 8 to enable us to specify both the von Neumann number and CFL.

In the inviscid limit we pick the step size, At, by an appropriate

CFL number,

CFL - (U+c)At (23)2Ax

whereas in the viscous limit the appropriate grouping of the time step is

the von Neumann number,

At (24)
ReAx(

By solving Eqns. 23 and 24 for At and equating, we find,

At - 2CFL.x - aReAx2  (25)(u+c')

Inserting the definition of c' from Eqn. 22, and solving for 8 gives,

u2  2CFL -1)2 -l (26)-4[( aReAx U

where ReAx is the cell Reynolds number, PRURAX/R" Note that both u

and T are non-dimensional and so are of order one.
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With this expression, we can now specify both the von Neumann number

and the Courant number and then use Eqn. 26 to compute 8. Knowing 8 we

can then compute At from Eqn. 25 and proceed to the numerical solution.

Choosing a-3.8, CFL-8 and computing 8 in this fashion brings the

stability results of Fig. 6c to values shown in Fig. 8. This stability

map is almost identical to the one shown on Fig. 7 that was obtained by

changing Ax, and again promises fast convergence. The value of 8

required to obtain the results on Fig. 8 is 0 - 100.

For a wide range of Reynolds numbers, we therefore recommend that

the parameter a be chosen according to the relation:

2

LMax P, Ie2CFL 1) -l]J (27)

where we have dropped the order one terms from Eqn. 26. This function is

plotted as a function of the cell Reynolds number in Fig. 9.

Rates of convergence for several values of Reynolds number using the

value of $ given in Fig. 9 are shown in Fig. 10. With 8 defined as in

Eqn. 27, the rate of convergence of the low Mach number system remains

almost unchanged for Reynolds numbers ranging from infinity to 0.01.

Clearly, this modification makes the time-iterative procedure much more

robust.

LOW SPEED HEAT ADDITION AT VARIOUS REYNOLDS NUMBERS

To demonstrate the capability of the low Mach number/low Reynolds

number formulation, we present flowfield results for the heat addition

problem described in Fig. 1. A series of plots showing tempe--l*ri and

velocity contours for a fixed volumetric heat addition and an inlet Mach

number of 1 x 10-5 are given in Fig. 11 for Reynolds numbers of infinity
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(inviscid), 5000, 500, 50, and 0.05. The qualitative effects of

viscosity are easily recognized in these plots. For inviscid flow the

temperature contours are convected out of the flowfield with no

diffusion, and the slip boundary condition shows no boundary layer on the

wall in the velocity contour plot. At a Reynolds number of 5000, a

modest diffusion of the temperature from the hot to the cold fluid is

noted, and a thin boundary layer exists near the wall. Reducing the

Reynolds number to 500 and then to 50 shows the increasing effects of

heat diffusion and a thicker bounoary layer as the effects of diffusivity

sPread over nearly the entire flowfield. Jumping to a Reynolds number of

0.05, the effects of convection are now completely absent in the

temperature contours. The temperature contours give an undistorted image

of the volumetric heat source. The velocity field at this low Reynolds

number condition becomes nearly fully developed after the peak in the

heat source is passed and shows no reminiscence of boundary layer flow.

The value of $ used for each case is given in the Figure.

Additional flowfield solutions showing the effect of heat addition

through the walls are given in Fig. 12. Here, the temperature of the

wall is linearly increased from T-1 at the inlet to T-6.67 at the exit,

and the flow is heated through the boundary layer. In the inviscid case

the flow is not affected by wall temperature and only viscous results are

shown. At a Reynolds number of 5000, both temperature and velocity

contours show thin boundary layers near the wall. The temperature in the

middle of the duct is unaffected by heating. At a Reynolds number of 50,

the boundary layers are much thicker and the heat has diffused to the

middle of the duct. At a Reynolds number of 0.05, the diffusion rates

are high enough relative to the convective speed that the temperature is



20

uniform in y. The monotonic increase in temperature, however, causes the

flow on the centerline to continue to accelerate.

This spectrum of flow conditions ranging from inviscid to

viscous-dominated flow shows that the modified equations provide

qualitatively correct variations in the velocity and temperature fields

as the magnitude of the Reynolds number is varied. The fact that all

calculations were obtained with the same algorithm and that all showed

nearly identical rates of convergence is an indication of the broad

capabilities of the approximately factored, implicit time-dependent

algorithm when proper mathematics and physics are incorporated.

DISCUSSION AND CONCLUSIONS

Time-marching algorithms are widely used for the solution of

transonic and supersonic flows and for problems containing embedded shock

waves. These methods are equally applicable to inviscid and

high-Reynolds-number viscous calculations. The algorithms provide

accurate, efficient solutions in inviscid flows because they treat the

convective terms appropriately. The addition of weak (high Reynolds

number) viscous effects to this properly formulated inviscid procedure

has little or no effect on convergence because the convective terms still

dominate the flow. The convergence rate of the algorithm, however,

becomes notoriously slow in regions where the Mach number is low.

Experience at very low Reynolds number conditions is very limited

(largely because of problems with the convective terms), but all evidence

suggests a similar slowdow in convergence at low Reynolds numbers.

These limitations can seriously impair convergence rates in high

speed flows because of local low speed regions adjacent to stagnation

points or because of near wall, low Reynolds number effects in boundary
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layers. Further, the limitation to high speed flows precludes

computations of important new low speed problems such as combustion

applications in which the strong heat addition requires the use of a

compressible formulation even though the Mach numbers would suggest

incompressibility. The purpose of the present paper has been to identify

and remove these limitations on convergence so the time-marching

procedure can be applied over a much broader regime.

Although previous papers have studied the inviscid low Mach number

problem, none have considered the viscous problem. Simple computational

experiments show that neither previous preconditioning procedures nor

previous perturbation expansion procedures provide approaches that are

effective in viscous flows. Accordingly, a new low Mach number expansion

procedure was developed from the non-conservative equations that is

applicable to both viscous and inviscid conditions. This expansion

procedure provides a mechanism for properly scaling the eigenvalues of

the convective terms thus ensuring fast convergence in inviscid flows at

all Mach numbers. It also provides a mechanism for keeping both the Von

Neumann number and the Courant number of order one at very viscous

conditions, thereby ensuring rapid convergence at low Reynolds numbers.

The resulting domain of convergence of the low Mach number, low

Reynolds number procedure is summarized on Fig. 13. Rapid, effective

convergence of the procedure is observed for Reynolds numbers ranging

from infinity down to 0.05 and from Mach numbers between 0.3 and 10-6.

Rapid convergence is here defined as convergence rates within 20-30% of

that obtained in inviscid flows at Mach 0.7. As indicated on the figure,

the modified procedure gives slower convergence over a.small corner of

the Reynolds number/Mach number domain. For comparison, the much smaller
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region of convergence of the original time-marching procedure for

compressible flow is shown in the upper right-hand corner of the Re-Mach

number domain. Clearly, the modified procedure based on the perturbation

expansion makes the classical compressible algorithms much more robust

over a much wider range of variables. In particular, this low Mach

number procedure represents an effective numerical algorithm for the

computation of low speed flows with strong heat addition.
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Fig. 6 Contour plot of maximum eigenvalues from vector stability

analysis of the low Mach number/Reynolds number formulation with

approximate factorization, M - 10- 3 , CFL - 8, 1 = 1, (a) Re - ,

a- 0, (b) Re - 1000, a - 0.25, (c) Re - 10, a- 24. I

Fig. 7 Control of stability characteristics by grid sizes scaling.

Re - 0.1, M - 10-3 , a - 3.8, CFL - 8, 8 - 1. Grid size .'
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Fig. 8 Control of maximum eigenvalues from vector stability analysis by
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Fig. 11 Effects of volumetric heat addition on the flow through a duct "

for various Reynolds numbers. Inlet Mach number, 10 5 p!
Fig. 12 Effects of wall heating on the flow through a duct for various

Reynolds numbers. Inlet Mach number, 1 x 1 -5. -

Fig. 13 Applicable flow regime of low Mach number viscous formulation
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