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ABSTRACT ~
A\'
The extension of time-marching procedures to Tow Mach number and Tow ;fi
Reynolds number conditions is considered. It is shown that the disparate :}
e

s
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speeds of the acoustic and particle waves prevents convergence at high

-

Reynolds numbers while the requirement that both the Courant and the von

il
)

Neumann numbers be of order one prevents convergence in very viscous
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¥ g

flows. A perturbation expansion is used to introduce pseudo-acoustic

waves that propagate at speeds similar to the particle speed at high

Reynolds numbers and that allows both the inviscid and viscous time step !3
parameters to be of order one at low Reynolds numbers. The resulting 5;
algorithm is shown to give convergence rates that are independent of E?E
either Mach number or Reynolds number over a range of five orders of 5’
magnitude in both parameters. Results are shown for strong heat addition Eﬁ
in low speed flow encompassing this broad range of variables. i:
INTRODUCTION 2
Time-dependent algorithms are nearly the exclusive choice for the E;
computation of compressible flows. They have been highly developed to ‘Ef
apply to high speed flows in general, and to deal with the shock waves EA
that frequently appear under such conditions, in particular. Both gﬁ
explicit and implicit procedures have been used extensively in transonic, 3i
supersonic, and hypersonic regimes. An important advantage of these :W‘
algorithms is that they provide accurate predictions in both inviscid ?
flows and in the practically important regime of high Reynolds number fhé
viscous flows, One reason for this flexibility is that they allow the 3%
convective terms to be central differenced at all Reynolds numbers. In :
cases where central differences are not desired, they provide a physical : 3
s ;‘;
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basis for defining various upwind differencing schemes also. In general,
upwind differencing becomes more desirable as the Mach number increases.

An important attribute of any computational algorithm is that it be
robust over a wide range of flow conditions. In this regard, a major
drawback of time-dependent procedures is their weil-known inefficiency at
Tow subsonic speeds. This characteristic can lead to difficulties in
computations of transonic flowfields that contain embedded low speed
regions such as near a stagnation point or in the boundary layer. In
addition, this limitation makes the family of algorithms ineffective for
computing combustion problems in which the velocities are generally low,
but where the flowfields remain strongly compressible because of heat
release. An additional low speed, compressible flow problem that is of
interest to the present authors is the interaction between high intensity
radiation fields, including both high power laser beams and focussed
solar radiation, and flowing gases1,2. Our purpose in the present paper
is to identify the reasons why these time-dependent algorithms fail at
low speeds and to devise methods for enhancing convergence in these
regimes so that they can be used effectively for these additional
applications.

In addition to extending time-marching methods to low speed
applications, a second motive for studying this problem is to enable us
to understand their convergence characteristics more thoroughly. Besides
increasing the range of convergence, this improved understanding may also
point the way toward improving the convergence rate in those regions
where the methods are already applicable. In the present paper, we study
the characteristics of time-marching algorithms in this light. We

address the primary guestion of how these popular algorithms can bhe
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extended to Tow Mach number, low Reynolds number flows. Throughout our
attention is limited to steady flows. 3

Methods for enhancing low Mach number convergence in inviscid flows

have been considered by several previous authors3‘9, but no one has as

. yet addressed the viscous problem. In the present paper, we first review
this previous work in inviscid flows and then extend these procedures to
the viscous case. Our analysis is based upon implicit algorithms that
use central differencing in space. The Mach-number/Reynolds-number
regime we consider ranges from high subsonic speeds (Mach numbers of
about 0.1) down to incompressible speeds (Mach numbers around 10'5) and
from inviscid flow (infinite Reynolds numbers) down to highly viscous
conditions (Reynolds numbers less than unity). Appropriate modifications
to the implicit algorithm are made that allow a single unified procedure
tb give efficient convergence over this entire range. Although testing
with explicit algorithms has not been attempted, it is presumed that
these procedures will also provide similar improvements in convergence
for explicit schemes over this wide regime, The philosophies used here
should also prove useful for developing efficient convergence of
flux-split schemes that use upwind differencing.

REVIEW OF CONVERGENCE ENHANCEMENT IN

INVISCID LOW MACH NUMBER FLOWS

The convergence rate of traditional time-dependent algorithms for
inviscid flows slows down as the Mach number is reduced because of the
increasing diversity of the speeds of the eigenvalues. As these
eigenvalues become stiff, both explicit and implicit algorithms show
slower convergence for distinct, but related, reasons. Explicit schemes

slow down because the maximum allowable time-step is strictly Timited by
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stability considerations and the CFL corresponding to the slower
eigenvalues approaches zero. Implicit approximately-factored algorithms
slow down because the factorization introduces an optimum CFL. Slower
convergence is observed for CFL's above or below this optimum. When the
Mach number is low, only one of the eigenvalues (say, for example, the u
or u+c eigenvalue) can be kept at a CFL near this optimum while the
others are far from the optimum and convergence sTows dramatically. As
is shown later, fully implicit algorithms that use direct inversion of
the complete muitidimensional matrix (no approximate factorization) do
not show a convergence slowdown because of eigenvalue stiffness. They
continue to show rapid convergence rates that are independent of Mach
number. The reason for this is because direct inversion methods do not
exhibit an optimum CFL, but continue to converge more rapidly as CFL is
increased.

There have been two distinct methods proposed for circumventing the
convergence slowdown induced by eigenvalue stiffness. One method is to
use time-derivative preconditioning. Early studies3=S of preconditioning
showed that rapid convergence could be achieved down to Mach numbers of
about 0.01. More recently, we have shown 10 that preconditioning allows
Mach-number-independent convergence down to Mach numbers of 10-3, but
that round-off errors begin to affect the maximum convergence level at
Mach numbers below 1073. In this regard it is notable that it is
round-off errors in the pressure (not density as might be expected) that
eventually prohibits the use aof the preconditioned approach.

The second method for circumventing low Mach number convergence
difficulties has been through using special perturbed forms of the

equations of mation that are valid at low Mach numbers. Gustafssonb has
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used an expansion in Mach number while the present authors8 have used an
expansion in Mach number squared. Gustafsson's philosophy was to
symmetrize the matrices corresponding to the Jacobians of the flux
vectors. Qur Mach number squared expansion was used to control the
disparity in the eigenvalues and left the matrices non-symmetric. OQur
numerical results showed effective convergence control to Mach numbers of
1076, Calculations at lower Mach numbers were not attempted, but we
estimate flows to 1078 or 10-10 in Mach number could be computed before
unacceptable round-off error would begin to decimate the results.
Although we are not aware of similar tests of Gustafsson's expansion
procedure, our interpretation of his approach suggests that it would also
be effective in providing Mach-number-incdependent convergence rates,
Extension of these low Mach number methods to viscous flows has
heretofore not been attempted. The purpose of the present paper is to
develop a method that allows rapid convergence over all Reynolds number
regimes without sacrificing convergence rate in the inviscid case. The

procedure described here is based upon the perturbation expansion

procedure,.
THE CHOICE OF A REPRESENTATIVE PROBLEM

We are interested in assessing the convergence rate of numerical
algorithms over a broad Reynolds-number/Mach-number spectrum ranging from
inviscid to highly viscous conditions and from high subsonic speeds to
very low velocities. To make this assessment we need a representative
problem that will possess a non-trivial solution over the entire
Reynolds-Mach number regime. As such a problem we choose the flow
through a duct with volumetric heat addition (Fig. 1). The heat addition

causes large density changes such that even in the presence of low
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23 velocities, the compressible form of the equations must be used. This
‘s

5 problem is representative of typical combustion problems, and is also

analogous to the radiation/gasdynamic interactions1>2 mentioned above.
o . In the absence of viscous effects, the presence of a spatially

varying volumetric heat source prevents the solution from being a

o
3

triiial, uniform flow and instead generates an inviscid flowfield that is

X
;Q strongly two-dimensional. When the effects of viscosity are included,

. '
R~ the no-slip condition on the wall ensures that the velocity profiles will ]
;: be non-uniform. At very low Reynolds number, however, fully developed ‘
) f
ol conditions are rapidly established and the introduction of a heat source s
L again provides a more general flowfield at either Tow or high Reynolds ]
N numbers. For viscous flows we use both volumetric heat sources and heat

o

N addition threugh the walls. ‘
2

W : CONVERGENCE OF THE TRADITIONAL TIME-DEPENDENT PROCEDURE

o~ As a first assessment of the problem, we report the convergence rate

5 of a traditional approximately-factored scheme with no provision for low

:4 Reynolds number or low Mach number. In their standard form the equations

are:

1 aQ L E L F 4 a
; T Ty T W& Ve * ny) t 3y (Vyx * vyy) (M .
s,

’ h F v v :

Eﬂ where the vectors Q, E, F, Vyx, Vxy, Vyx and Vyy are :
- ]
- P pu pv '
I Q= pu E~f pulsp F = puv (2) :
i pv puv pvZ+p '
kL

- e (e+p)u (e+tp)v
o 3 = partial differential; o= rho .
9."
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Vex = g% Vyy §§ Yox = —é ugi vyy B g ug% (3)
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Here, p, p, u and v are the pressure, density and x and y components of
the velocity; e is the total internal energy that is related to the other

parameters by e = p[e + %(uZ + v2)] where ¢ is the internal energy. The

diffusion terms contain the viscosity, p, and the thermal conductivity, k.

For simplicity, Stokes hypothesis has been used, and in anticipation of
low Mach number applications, the viscous dissipation has been dropped.
The speed of sound, ¢, is given as cZ = yp/p where y is the ratio of
specific heatc.

Traditional approximately-factored Euler implicit algorithms applied

to Eqn. 1 Tead to the following!'s12:

d,.9 d 9g.9 g
0E , OF _ 3 9 n
= Emrty wm Vet Yy Ty (Vyx * Vyy)] (4)

where superscripts refer to the time step level, and AQ is the change in
Q in one time step (AQ = Q7*! - Q7). The matrices Ryy and Ryy are

appropriate Jacobians cf V44 and Vyy.

The rates of convergence of the classical approximate factorization

scheme for the test problem given in Fig. 1 are shown in Fig. 2 for a

L= mu; £ = epsilon; v = gamma; A = delta

-~ '-'.'; " ".{;" "l-\"r-_".
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wide range of inlet Mach numbers. At high subsonic speeds (0.7 Mach
number) the scheme converges rapidly. Convergence to machine accuracy fis
achieved in some 380 steps. As the Mach number is reduced, the
convergence gets much slower as intimated above. At a Mach number of
0.4, the convergence has already slowed down by more than a factor of
two;'and about 1000 iterations are needed to reach machine accuracy. At
Mach 0.1, some 4500 iteratijons are required, while at a Mach number of
0.01, extrapolation suggests it will take some 45,000 steps to reach
machine accuracy. Because of the difficulties in finding optimum
convergence rates at such slowly converging conditions, the results shown
here were all computed at a CFL (based on u+c) of 6.0. At the Tower
Mach numbers, somewhat faster convergence could probably have been
obtained for slightly different values of CFL, but the rates shown here
are within a factor of two of their optimum value. Clearly, the standard
procedure is unacceptably inefficient at Tow speeds.

The physical reason for these convergence difficulties is easily

The time-iterative procedure relies upon both acoustic waves
At

understood.
and particle trajectories to propagate errors out of the flowfield.

Tow Mach numbers the acoustic waves make many trips through the flowfield

while the particles are traversing it a single time. Approximate

factorization provides most rapid convergence when the individual waves
move A modest fraction of the distance across the computational domain in

a single time step. A CFL of about 5 based on u+c provides this optimum

propagation rate for the acoustic waves, but at Tow Mach numbers the
carresponding CFL based on u is so small that the particles move very
small distances in one time step and it takes many steps for them to

traverse the flowfield. For this reason the above results show that the
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number of iterations varies approximately inversely with the Mach number.

Other alternative choices of CFL do not provide materially faster

convergence.

Proof that it is the approximate factorization errors that cause
this slowdown in convergence is easily obtained from either a stability
analysis of Egn. 4, or from its direct solution without approximate
factorization. If we define the amplification matrix, 6, as

(G-I)Q" = AQ (5)
the Fourier transform of Eqn. 4 gives G as the product of two matrices,

G = K1‘7K2 where,

At At At At
Ky = T+ d0s, g8 + S, 58] + 200-Cpa R+ (1-C )32 R T+ T
At
Ko = 1= 5,5, 51y (Rey * i) + Ty (6)

Here, Sy, Cy, Sy and Cy represent the trigonometric functions of the
Fourier modus in the x and y directions, and i is the square root of
minus one. The term, T4g, represents the errors introduced by
approximate factorizat.on. If the algorithm is solved without

factorization, Tapp vanishes; if approximate factorization is included, it

becomes,

At At At
= [1S, 3xh *+ 20-C 52 RIS, A—yB 2(1-C 0552 Ryl (7)

Although these expressiaons for the amplification matrix are quite
involved, numerical eigenvalues are easily found as parametric functions
of the Fourier wavenumbers in the x and y directions for specific flow
conditions. Contour plots of the maximum eigenvalue of G obtained from

Eqn. 6 are given in Fig. 3 for flow conditions that include a Mach number

[ L T

> o ]
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: of 104 and a Reynolds number of 50. Figure 3a shows the maximum
amplification factors at CFL = 6 (based on u+c) for the case with
approximate factorization. As can be seen, approximate factorization is

stable, but the eigenvalues are near unity everywhere.

e

The corresponding stability characteristics without approximate
factorization (Tap = 0) are given in Fig. 3b. Here, we have used a CFL
of 21,000 to offset the low Mach number and the amplification rates are
much less than unity everywhere suggesting rapid convergence. Numerical
experiments with the fully implicit system using direct inversion rather
: than approximate factorization verify this. In general, they reach

machine accuracy in 8 or 9 time steps. Direct-inversion, implicit
§ procedures eliminate convergence difficulties at Tow Mach numbers and
provide a very robust computational algorithm. Unfortunately, the CPU
requirements for direct solution are prohibitive for even moderately
refined two-dimensional grids and more so for three-dimensional problems,
k and the procedure is not practical for routine calculations.

LOW MACH NUMBER EXPANSION

To obtain a system of equations that is valid for low speed viscous
y flows, we use a perturbation expansion similar to that used in Ref. 8
except that here we perturb the non-conservative form of the equations
rather than the conservative form. The method developed in Ref. 8 for
inviscid flows is unstable at moderate and low Reynolds numbers and

cannot be used for viscous flows. When expressed in non-conservative

form, the equations are:

9
ax

g . (8)
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where Q = (p, u, v, p)T and the Jacobians A and B are:

u p 0 0 v 0 »p 0

A-f 0 u 0 1p B-f 0 v 0 o0 (9)
0 0 wu 0 0 0 v 1/p
0 yp O u 0 0 yp v

The vectors Vxx’ ny, Vyx and Vyy are as given in Eqn. 3.
We now non-dimensionalize these equations by reference values of the
velocity, density, pressure, and temperature which will be denoted by a
subscript R, and by a reference length L. Of particular interest is the
momentum equation, and here we consider only the x-component. In

non-dimensional form it becomes:

du du 1dp du 1
~a—_r+U6-x-+pRuREX+V*a-Y*-ﬁ—é(v.T.) (10)

where the viscous terms (V.T.) are identical in form to those in Egn. 8.
The ratio of reference quantities that multiplies the pressure gradient

can be expressed in terms of a reference Mach number,

RUR . _ 2 (1)
Pp R

where v is the ratio of specific heats.
Because we are interested in flows where Mp is small, we define a

small parameter, €, as,
€ = YMg2 (12)

and expand all parameters in a power series in g, as,

%y
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P=Pg*eEP]+ ... (13)

Inspection of the non-dimensionalized equations shows that this y
substitution affects only the momentum and energy equations. The 1/e
multiplying the pressure gradient in the momentum equation implies the
zeroeth order pressure must satisfy the relation:

| grad pg = 0 (14)
This indicates py is a function of time only, For steady state problems
we can, with complete generality, choose py as a constant.

Using Egn. 14 in the energy equation gives, after miﬁor

manipulation, the following low Mach number viscous system:

%% + “g; + % %gl + v%% - %QE(V-T-)
%+ug§+v%+%%§l-%@(v.r.)

where V.7, represents the appropriate viscous terms as given in Eqn. 3,
and Re and Pr are the Reynolds and Prandtl numbers based on reference
quantities. For simplicity, we have dropped the zero subscript on all
variables in Egn. 15 because the perturbation expansion causes only py to
appear.

Inspection of the coupled system, Eqn. 15, shows that there are five
unknowns, p, u, v, T, and p7, appearing. The density and temperature are
related by the perfect gas law which, upon expansion, reduces to pg = pT.
The problem with Eqn. 15 is that the time derivatives contain relations
for both p and T along with u and v but there is no provision for

updating pjy.

.
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To circumvent this problem, we replace the time derivative in the
continuity equation by an artificial time derivative as originally
suggested by Chorinl3 for incompressible flow. Specifically, we replace

the continuity equation in Egn. 15 by,

dp1/8 3
R RN (9

where 8 is a constant used for scaling. With this form of the continuity
equation, the low Mach number system now contains pj, u, v, and T in the
time derivative. The simplified perfect ga§ relation immediately gives
the density. Also, we note that the final three equations appear

well-suited for viscous effects since they are all of the form:

9% 4 c.T. - ¥ (17)

where ¢ represents u, v and T, respectively, and C.T. stands for

convective terms.

To place Egn. 15 into a form suitable for computation, we express it
in conservation form using Egn. 16 as the continuity equation. Upon

combining these we obtain:

4Q' | GE' QEL
where,
0
— 0
Po 0 0
r-f & p 0 0 (19)
Po
pv
- 0 p 0
Po
1 0 0 p

= beta; ¢ = phi; v = nabla; I = gamma

......
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Q' = (p1/8, u, v, TT

—

E' = (pu, pul+py, puv, puT)T (20)

F' = (pv, puv, pv2+py, pvT)T

CONVERGENCE OF LOW MACH NUMBER

SYSTEM IN INVISCID FLOW

To test the perturbed low Mach number formulation we first apply it
in inviscid flow. Convergence of an implicit scheme is closely related
to the eigenvalues of the flux Jacobians. For this Tow Mach number
system, the eigenvalues are:

MI-TA') = (u, u, (u+c')/2, (u-c')/2) (21)

where A' = gE'/dQ', and

2 .yl 4 g7 (22)

In order to get well-conditioned eigenvalues, we choose B as unity.
Consequently, the flow described by Egn. 18 is always "subsonic", an
outcome in keeping with our physical expectations.

Convergence results for the inviscid model problem of Fig. 1 based

v

E on the low Mach number equations are given in Fig. 4 for a Mach number of
§ ' 10-3. Identical rates of convergence are obtained at Mach numbers of

g 10-1 and 10-5. The expansion has completely removed the dependence on

5 Mach number. The convergence observed with the complete equations at the
3 high subsonic speed is observed with the low Mach number equations at all
E speeds.

E A = lambda

......
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CONVERGENCE IN LOW MACH NUMBER

VISCOUS FLOWS

To test the capability of the present low Mach number expansion in
viscous flows, we again use the physical problem in Fig. 1, but with
no-slip conditions enforced at the wall. Representative convergence
rates cbtained at several different Reynolds numbers are shown in Fig. 5.
These results are all for a Mach number of 10-3, At high Reynolds
numbers where the viscous terms are small, they have little or no effect
on convergence. As shown on the Figure, the rate of convergence at a
Reynolds number of 1000 is nearly the same as for the inviscid case. (In
fact, the effect of viscosity at these high Reynolds numbers is to make
the rate of convergence modestly faster than in the inviscid case. This
is because the physical diffusion serves to dissipate the errors in the
solution slightly more rapidly.) By contrast, the rate of convergence at
low Reynolds numbers is much sTower than in the inviscid case. The case
at a Reynolds number of 10 in Fig. 5 is seen to converge at about
one-fourth the rate of the inviscid case. Flowfields at Reynolds numbers
less than 10 failed to converge entirely. The reasons for this slowdown
in convergence at low Reynolds numbers are again best demonstrated by
investigating the stability characteristics of the low Mach number
equations,

Figure 6 shows the stability characteristics of the low Mach number
for the three Reynolds number cases discussed in Fig. 5. At a Reynolds
number of 1000, the stability results are slightly more favorable than
for the inviscid case thereby justifying the relative convergence rates
for the two conditions. Values over much of the wavenumber domain range

between 0.90 and 0.95. At a Reynolds number of 10, the amplification
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factors remain stable, but are very near unity in all wavenumber regimes.
Typical values here are above 0.98. These larger amplification ratios
explain the slow convergence that was observed at Re=10. ]

The reason for this increase in amplification factor can be
understood by recalling that the CFL condition of inviscid flow is joined
by a‘second dimensionless quantity in viscous flows that is here referred
to as a von Neumann number, ¢ = At/(Re Ax2). The slowdown in convergence
at Tow Reynolds numbers is because the von Neumann number becomes large
and the approximate factorization error in the diffusive terms drives the
amplification factor toward unity and slows convergence. For inviscid
flow, the von Neumann numbers are zero. At a Reynolds number of 1000,
they are o = 0,25, while at Re = 10, o has increased to 24. Rapid
convergence requires that both the CFL and the von Neumann numbers be of
order unity.

The most obvious way to control both the Courant and the von Neumann
numbers simultaneously is by changing the grid size. Figure 7 shows
stability results for Re=0.1 (which is a worse case than those on Fig. 6c)
with the grid spacing being increased to qive ¢ = 3.8 while CFL has
been fixed at 8. These values of parameters provide amplification
factors that are considerably farther from one, and promise much faster
convergence than do the stability characteristics on Fig. 6c.
Unfortunately, the grid size required to attain this value of ¢ is larger
than the computational domain and so has no practical utility. The
perturbation expansion does, however, give us an alternative method for
fixing both non-dimensional parameters that is just as effective, but
that does not require a change in the number of grid points. The method

for achieving this is described in the next section.

o = sigma; = = equals approximately
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CONVERGENCE CONTROL AT LOW REYNOLDS NUMBER

LY
¢

H
' For the viscous flow computations shown above, the scaling parameter
B in the time derivative of the continuity equation was set to unity to

provide properly scaled eigenvalues for the inviscid terms. As the

- e

Reynolds number is lowered, the inviscid terms become less important and

the viscous terms begin to dominate. At these low Reynolds number
conditions, it is no longer preferable to select B to provide properly

‘ scaled eigenvalues for the inviscid terms. Instead, we can use the

parameter B to enable us to specify both the von Neumann number and CFL.

) In the inviscid Timit we pick the step size, At, by an appropriate

CFL number,

CFL - Lurci)at (23)

= TT2Ax

whereas in the viscous 1imit the appropriate grouping of the time step is

the von Neumann number,

i
At

; 7 = Reax? (24)
)
1
. By solving Egqns. 23 and 24 for At and equating, we find,
’ 2CFLAX 2

At = -—(-G:-c—r)— = gRelx (25)

Inserting the definition of ¢' from Eqn. 22, and solving for B gives,

ul ¢, 2CFL 2
r B =7 “‘6%;& - N° -1} (26)

where Rey, s the cell Reynolds number, PRURAX/uR. Note that both u

and T are non~dimensional and so are of order one.
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With this expression, we can now specify both the von Neumann number
and the Courant number and then use Egn. 26 to compute 8. Knowing 8 we
can then compute At from Egn. 25 and proceed to the numerical salution.

Choosing 0=3.8, CFL=8 and computing B in this fashion brings the
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stability results of Fig. 6c to values shown in Fig. 8. This stability
map.is almost identical to the one shown on Fig. 7 that was obtained by
changing Ax, and again promises fast convergence. The value of 8
required to obtain the results on Fig. 8 is 8 = 100.

For a wide range of Reynolds numbers, we therefore recommend that

the parameter B be chosen according to the relation:

2

g = wax {1, g (Soge= - 1) -11] (27)
X

where we have dropped the order one terms from Eqn. 26. This function is
plotted as a function of the cell Reynolds number in Fig. 9.

Rates of convergence for several values of Reynolds number using the
value of 8 given in Fig. 9 are shown in Fig. 10. With B defined as in
Eqn. 27, the rate of convergence of the low Mach number system remains
almost unchanged for Reynolds numbers ranging from infinity to 0.01.
Clearly, this modification makes the time-iterative procedure much more

robust.

LOW SPEED HEAT ADDITION AT VARIOUS REYNOLOS NUMBERS

To demonstrate the capability of the Tow Mach number/low Reynolds
number formulation, we present flowfield results for the heat addition
problem described in Fig. 1. A series of plots showing temperitwre and

velocity contours for a fixed volumetric heat addition and an inlet Mach

number of 1 x 1075 are given in Fig. 11 for Reynolds numbers of infinity
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(inviscid), 5000, 500, 50, and 0.05. The qualitative effects of
viscosity are easily recognized in these plots. For inviscid flow the
temperature contours are convected out of the flowfield with no
diffusion, and the slip boundary condition shows no boundary layer on the
wall in the velocity contour plot. At a Reynolds number of 5000, a
modéét diffusion of the temperature from the hot to the cold fluid is

é noted, and a thin boundary layer exists near the wall. Reducing the
Reynolds number to 500 and then to 50 shows the increasing effects of
heat diffusion and a thicker bounaary layer as the effects of diffusivity

' spread over nearly the entire flowfield. Jumping to a Reynolds number of

t 0.05, the effects of convection are now completely absent in the

temperature contours. The temperature contours give an undistorted image

of the volumetric heat source. The velocity field at this Tow Reynolds

X number condition becomes nearly fully developed after the peak in the
heat source is passed and shows no reminiscence of boundary layer flow.
The value of B used for each case is given in the Figure.

; Additional flowfield solutions showing the effect of heat addition
through the walls are given in Fig. 12. Here, the temperature of the
wall is linearly increased from T=1 at the inlet to T=6.67 at the exit,
and the flow is heated through the boundary Tayer. In the inviscid case

! the flow is not affected by wall temperature and only viscous results are

shown. At a Reynolds number of 5000, both temperature and velocity

contours show thin boundary layers near the wall. The temperature in the

middle of the duct is unaffected by heating. At a Reynolds number of 50,

the boundary layers are much thicker and the heat has diffused to the

middle of the duct. At a Reynolds number of 0.05, the diffusion rates

are high enough relative to the convective speed that the temperature is
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uniform in y. The monotonic increase in temperature, however, causes the

flow on the centerline to continue to accelerate.

B’ B _x sirom

This spectrum of flow conditions ranging from inviscid to

2

viscous-dominated flow shows that the modified equations provide

qualitatively correct variations in the velocity and temperature fields

i

as the magnitude of the Reynolds number is varied. The fact that all
calculations were obtained with the same algorithm and that all showed
nearly identical rates of convergence is an indication of the broad
capabilities of the approximately factored, implicit time-dependent
algorithm when proper mathematics and physics are incorporated.

DISCUSSION AND CONCLUSIONS

Time-marching é]gorithms are widely used for the solution of
transonic and supersonic flows and for problems containing embedded shock
waves, These methods are equally applicable to inviscid and
high~Reynolds~number viscous calculations. The algorithms provide
accurate, efficient solutions in inviscid flows because they treat the
convective terms appropriately. The addition of weak (high Reynolds
number) viscous effects to this properly formulated inviscid procedure
has little or no effect on convergence because the convective terms still
dominate the flow. The convergence rate of the algorithm, however,
becomes notoriously slow in regions where the Mach number is low.
Experience at very low Reynolds number conditions is very limited
(largely because of problems with the convective terms), but all evidence
suggests a similar slowdowr in convergence at low Reynolds numbers.

These limitations can seriously impair convergence rates in high
speed flows because of local low speed regions adjacent to stagnation

points or because of near wall, low Reynolds number effects in boundary

i
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layers. Further, the limitation to high speed flows precludes

P AT R

computations of important new low speed problems such as combustion
applications in which the strong heat addition requires the use of a

compressible formulation even though the Mach numbers would suggest

- - e

incompressibility. The purpose of the present paper has been to identify
and-remove these Timitations on convergence so the time-marching
procedure can be applied over a much broacer regime.
Although previous papers have studied the jinviscid iow Mach number
X problem, none have considered the viscous problem, Simple computational
experiments show that neither previous preconditioning procedures nor
! previous perturbation expansion procedures provide approaches that are
effective in viscous flows, Accordingly, a new low Mach number expansion
procedure was developed from the non-conservative equations that is
' applicable to both viscous and inviscid conditions. This expansion
procedure provides a mechanism for properly scaling the eigenvalues of
the convective terms thus ensuring fast convergence in inviscid flows at
all Mach numbers. It also provides a mechanism for keeping both the von
Neumann number and the Courant number of order one at very viscous
conditions, thereby ensuring rapid convergence at low Reynolds numbers.
The resulting domain of convergence of the low Mach number, Tow
Reynolds number procedure is summarized on Fig. 13. Rapid, effective
convergence of the procedure is observed for Reynolds numbers ranging
from infinity down to 0.05 and from Mach numbers between 0.3 and 1076.
N Rapid convergence is here defined as convergence rates within 20-30% of
that obtained in inviscid flows at Mach 0.7. As indicated on the figure,
the modified procedure gives slower convergence over & small corner of

/ the Reynolds number/Mach number domain. For comparison, the much smaller
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region of convergence of the original time-marching procedure for
comprassible flow is shown in the upper right-hand corner of the Re-Mach
number domain. Clearly, the modified procedure based on the perturbation
expansion makes the classical compressible algorithms much more robust
over a much wider range of variables, In particular, this Tow Mach
number procedure represents an effective numerical algorithm for the
computation of low speed flows with strong heat addition.
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Sketch of test problem showing magnitude and distribution of

—

Fig.

volumetric heat addition.

Convergence rate of the complete Euler equations for several Mach

N

Fig.
numbers.

Contour plot of maximum eigenvalues from vector stability

w

Fig.
analysis of the Navier-Stokes equations with and without
approximate factorization. Re = 50, M = 1074, (a) with AF,
CFL = 6, (b) without AF, CFL = 21,000,

Convergence rate of low Mach number equations for the inviscid

E-Y

Fig.
case (Re = ®). CFL =6, M = 1073,

Fig. 5 Convergence of low Mach number formulation at several Reynolds
number. B8 ~ 1, CFL = 8.

ng. 6 Contour plot of maximum eigenvalues from vector stability
analysis of the Tow Mach number/Reynolds number formulation with
approximate factorization, M = 1073, CFL ~ 8, 8 = 1, (a) Re = =,
o =0, (b) Re = 1000, ¢ = 0.25, (c) Re = 10, ¢ = 24.

Fig. 7 Control of stability characteristics by grid sizes scaling.
Re = 0.1, M= 103, ¢ =3.8, CFL = 8, B = 1. Grid size
(0.08 x 0.03).

Fig. 8 Contral of maximum eigenvalues from vector stability analysis by
use of the parameter 8. Re = 10, M = 1073, ¢ = 3.8, CFL = 8,
B = 100. Grid size (51 x 21}.

Fig. 9 Values of B required to give rapid convergence as a function of

the cell Reynolds number, Repy.

Fig. 10 Convergence rates of low Mach number viscous formulation using

optimum value of 8 for various Reynolds numbers.
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Fig. 11 Effects of volumetric heat addition on the flow through a duct

for various Reynolds numbers. Inlet Mach number, 105,
Fig. 12 Effects of wall heating on the flow through a duct for various

Reynolds numbers. Inlet Mach number, 1 x 1075,

Fig. 13 Applicable flow regime of Tow Mach number viscous formulation

in terms of Reynolds number and Mach number.
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yolumetric heat addition
profile
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