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FOREWORD

~

~ This report develops a comprehensive theory of parallel Kalman filtering

based on a unique decoupling principle permitting the predictor and corrector

equations in the filter to be computed in parallel, Highly parallel algorithms
and systolic architectures for efficiently implementing these advanced filter-

ing techniques are presented. The application of these methods to Strategic

Defense Initiative (SDI) target tracking problems is also described. > 5 0 G,AZ
>
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SECTION 1

INTRODUCTION

1.1 BACKGROUND

In navigation equipment, such as the GPS, a Kalman filter acts to smooth
data when the unit is unaided, or as an estimating filter when inertial data
are accepted, The need to integrate multiple sensors results in a hybrid
system with extremely large computational requirements for real-time applica-
tions. Often the hybrid system takes the form of a '"cascaded" filter to ease
the computational burden., Sensor data integration is often difficult due to
correlating the time of the measurements and the different measurement rates
of the sensors. 1In this project, parallel Kalman filter architectures are
optimized for hybrid systems consisting of multiple sensors to achieve
improved performance. The computational advantage of parallel processing
minimizes measurement time sensitivity and data transfer over the bus. Thus,
multi-rate filtering is attainable via a unique decoupling of the predictor
and corrector equations in the filter while maintaining optimal estimation,
The parallel processing techniques can be applied to real-time navigation,

target tracking and scene analysis.

With recent developments in advanced sensors, a severe load has been
placed upon real-time signal processing systems to process large amounts of
data. Although the techmology for implementing advanced sensors already
exists, the actual implementation depends strongly on the ability to develop
real-time signal processing hardware to process the data. Thus, to meet the
exceptionally high throughput requirements in DoD signal processing applica-
tions, considerable attention must be given to the development of highly
parallel (or systolic) signal processing architectures, Because signal
processing architectures tend to be problem dependent to achieve the necessary
computational requirements, this project develops systolic signal processor
architectures which are well suited for recursive filtering, target tracking,
image processing and signal processing. The parallel architectures are based

on mapping the widely-used Kalman filter equations onto a generalized systolic
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array for linear and nonlinear parallel computation., Although this was
originally developed by Travassos (1982) for linear estimation on two (2)
processors, the extension of the method to n processors is the thrust of this

project,

To illustrate the need to extend the method for SDI sensor track proces-
sing via a Kalman filter consider the simplest case for linear filtering
(nonlinear filtering is even more computationally demanding). The total
number of arithmetic operations that must be computed in the Kalman filter
algorithm can be counted and multiplied by different multiplier and adder
speeds. For the Kalman filter algorithm given in Table 1, the total number
of multiplications, additions and divisions is given by:

(n*n+2n~1) additions, (2n*n+4n+1) multiplications, and 1 division.

Table 1: Standard Kalman Filter Algorithm*

Filter % (9 = X () +K [v, ~BX ()]
= [1- KA 3O + Ky,
CUiate e = [ oeEI RO
Heasuremen %t ™ B O

#Note that when scalar measurements are processed, the inverse
operation reduces to a division operation.

Therefore, the overall execution time needed to update the Kalman filter
algorithm in

t = (n*n + 2n - 1) t 4+ (2n*n + 4n + 1) tm +ty

where
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t is the addition time, t is the multiplication time, and ty is
the division time.

For example, if t, = 125 nsec, t, = 200 nsec and ty = 1000 nsec, one
pass through the Kalman filter with n = 9 states requires 53 usec. This
corresponds to 1/0.53 usec = 18,868 updates per second to process one track
using state-of-the-art 32-bit floating-point VLSI chips assuming 100% effici-
ency. Typically, however, only 10 to 307 of peak performance is achieved in
practice, Therefore, one target track may be updated at a 4,000 updates per
second rate, 1000 targets could be updated at a 4 Hz rate and 10,000 targets
at .4 Hz rate (every 2.5 seconds). For nonlinear filtering, typical of SDI
target tracking problems (see Section 2), 64-bit precision and the need to
compute trigonometric functions for coordinate transformations can slow
computations down by 1 or perhaps 2 orders of magnitude (10x to 100x). Since
it is well known that the Kalman filtering must be performed using floating-
point arithmetic to avoid stability problems, the only viable method to gain
back the throughput for SDI filtering problems using an extended Kalman filter
is with parallel processing. Optical processing is fast but optical fixed-
point can cause stability problems with the Kalman filter. This report,
therefore, extends a systolic architecture approach for rapidly implementing
parallel Kalman filters with 32/64-bit floating~point electronic technology

for several SDI applications,

In this report, systolic array concepts are used to develop efficient
architectures for implementing the bank of Kalman filters shown in Figure 1-1

needed by the recursive maximum-likelihood estimator.

A system of 32x32 = 1024 processors based on the methods in this report
will provide 32/64-bit, I1EEE standard computations at speeds approaching 1000x
faster than today's technology. Note that decoupling the problem to run on

several processing elements is required not just high-speed arithmetic units.

1.2 SUMMARY OF THE APPROACH

The Phase I plan was to examine the feasibility of extending the 2 proces-
sor parallel Kalman filter algorithms and architectures from two (2) to n (even)
processors. To show feasibility, the method was extended from two (2) to four

(4) processors and then to n (even) processors. The optimality of the 2
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FIGURE 1-1 Maximum-Likelihood Estimation of Multiple Targets

processor case was also researched.
developed to implement the parallel Kalman filter algorithms.
the Phase I technical approach is given in Figure 1-2,

Parallel architectures have also been

A summary of

Our Phase I technical approach covered the following areas:

® Defining a realistic SDI sensor estimation problem

o Examining the class of computations required for solving SDI
target tracking problems

¢ Restructuring the Kalman filter equations for parallel processing

.® Expanding previously-developed systolic Kalman filter algorithms
and architectures from 2 processor to n (even) processors

e Investigating the feasibility of implementing the parallel Kalman
filter architectures in hardware taking into account wordlength,

sampling rate, memory and reliability issues

ESTIMATOR ESTIMATES
{
xv
Kalman "[““1 ‘L_'_'; (
Filtar ) !
Given 1
updare ;
8= w3, p(u,,’zk % (
k‘ml ) Z
|
Kal XK;MZ !
man
| Filter i Maximum |
Given - Cetectcr |
update
8= w3 plualz,) !
n]wz PR
|
R !
X,
Kjw | -
b K3 1Mman m e x Tk}
Filter { '
Given I
upczTe
8= u, ] 1 ptw_lz i !
kfwy |

DETON OO

N

(5
(N
'
OS

)

P
LX)



N Aty g o TR TP S TR SR R WU WAL WA T WU WG W W CR R TR UL W WU MU LR WU WO W "i

Parallel SDI Tracking Military
Algorithms Applications Requirements

L |

Kalman Filter Algorithms Based on
Predictor/Corrector Decoupling

Parallel Architecture Specification

Wordlength Study

Memory Sizing

VLSI Arithmetic Processor Selection

1

Benefits Assessment

Figure 1-2 Phase I Technical Approach

The major payoffs of the research included:

o

Solving SDI problems which could not be solved otherwise by
providing three (3) orders of magnitude improvement (1000x) in
computational speed over existing array processor-based Kalman
filter implementations

Constructing a generic Battle Management Testbed Facility that
can be used to validate new parallel Kalman filter algorithms
as they become available. The testbed permitted parallel algo-
rithms and architectures to be rapidly evaluated, speeding up
the deployment of new designs in SDI systems

Computational throughput was measured explicitly , rather than
estimated, taking into account processor-to-processor and
processor-to-memory communications in the testbed.
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1.3 RESULTS

The major results of the Phase I feasibility study can be summarized as

follows:

o The "optimality" of the parallel Kalman filter has been proven
analytically by showing that the dual (2) processor parallel
Kalman filter is "mathematically equivalent"” to the standard
(sequential) Kalman filter. The dual (2) processor parallel
Kalman filter, however, executes twice as fast as the standard
filter since the predictor and corrector in the parallel Kalman
filter can be computed in parallel.

o The parallel Kalman filter for linear estimation problems has
been extended from 2 to n (even) processors.

o Parallel architectures have also been developed to rapidly
implement the linear parallel Kalman filter methods.

o The wordlength, memory and VLSI arithmetic processor selections
have been examined and documented,

o In addition to the above, the linear parallel Kalman filter has
been extended for nonlinear track processing. The extended,
nonlinear parallel Kalman filter equations have been developed
for the 2 (and 4) processor case under Phase I. Under Phase II,
the nonlinear extended parallel Kalman filter can be further
decoupled and generalized for n (even) processors,

1.4 REPORT SUMMARY

The remainder of this report is organized as follows. The decoupling of
the parallel Kalman filter (PKF) for linear estimation is presented in Section
2. The optimality of the 2 processor linear PKF is proven analytically in
Section 2. The generalization of the two (2) processor linear PKF equations
to execute on n (even) processors is also developed in Section 2. Nonlinear
Kalman filtering via an extended parallel Kalman filter is presented in
Section 3. Parallel architectures for efficiently implementing the PFK
equations can be found in Sections 2 and 3. The wordlength, memory sizing
and VLSI arithmetic processor selection is given in Section 4, The SDI target
tracking problem is formulated in Section 5 for demonstrating the utility of
the PKF methods, Conclusions and recommendations for future work are pre-
sented in Section 6.
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SECTION 2

LINEAR PARALLEL KALMAN FILTER ALGORITHMS AND h
ARCHITECTURES BASED ON THE DECOUPLING PRINCIPLE &

The Kalman filter has been successfully applied to many signazl processing &
applications including target prediction, target tracking, radar signal
processing, on-board calibration of intertial systems and in-flight estimation )
of aircraft stability and control derivatives. The applicability of the 4y,
Kalman filter to real-time processing problems is generally limited, however,
by the filter's relative computational complexity. In particular, the number ?‘

of arithmetic operations required for implementing the Kalman filter with a -l

v ]
-

state variable grows as 0(n2) for the time update and as 0(n3) for the

A
-

covariance update. In general, real-time filtering cannot be performed on

- oy -
S

large scale problems using a uniprocessor architecture because serious

processing lags can result (9).

3 e
u‘.‘gc

The Kalman filter can be extended to a much greater class of problems by

LS,

using parallel processing concepts. Full utilization of parallelism can be

obtained through insight in the structure of the problem and decoupling of

X &
ae_ e N
-

arithmetic processes to permit concurrent processing. ';
ity
To speed up Kalman filter computations, parallel processing is performed si
'y
at two levels: (1) the predictor and corrector equations of the Kalman filter :ﬁ
e
are decoupled so that the predictor and corrector can be computed on separate .“
processors, and (2) the measurement data are pipelined into each processor. $.
Therefore, both multiprocessing and pipelining are considered to achieve large :
o
improvements in computational speed. t{
0y
2.1 DECOUPLING THE TIME AND MEASUREMENT UPDATE W
o
The Kalman filter equations in Table 1-1 can be written in predictor- ¥
. corrector form as follows: .::‘
' ~ ~ '
- X (=) = 6, X, . () (2.1)
Predictor k k-1"k-1 ::;
T
' Pk(-) = ¢k-1Pk(+)¢k—1 (2.2)
~™ 2-1
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X, (4 = % () + K (2 - Bx () (2.3)
Corrector
P (+) = (I - KH) P () (2.4)
where the Kalman gain is
K, = P (-) B (BB, (-) H +R)™ (2.5)
and ¢k = state transition matrix. (2.6)

Note that Eqs. (2.1) to (2.5) are inherently sequential since the temporal
updates (predictor equations) must be evaluated before the observation updates
(corrector equations). From a computational point of view, this is not
desirable since to evaluate the corrector a uniprocessor must wait until the
predictor has been evaluated. To avoid this difficulty, the predictor-corrector

equations can be decoupled to obtain a parallel Kalman filter (PKF).

2.2 DECOUPLING THE STATE UPDATE (Travassos, 1982)

The decoupling of the predictor and corrector is achieved by forcing the

corrector to lag the predictor by one time step as follows:
Predictor: xk+1(—) = ¢k¢k_1xk_1(+) . 2.7)

Corrector: Qk(+) - ﬁk(-) + K (2, - Hkik(->) i (2.8)

2.3 DECOUPLING THE COVARIANCE UPDATE (Travassos, 1982)

Let the covariance of the estimation error before and after a measurement

update be denoted by:

~ -T
Per1 () = By ) x50 (2.9)
B (9 = EX () X () , (2.10)
where
X1 ) L OISR (2.11)
X 8 x @ -x . (2.12)

By direct computation, it can be shown that the covariance of the estimation

error before the update is given by:
T T
Pe1 ) = dpb 1 () By ydp 19y (2.13)

Because the form of Eq. (2.8) is the same as Eq. (2.9), the covariance of the

2-2
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. estimation error after a measurement update in the PKF is given by: é@
!.‘

i1
. P (M) = (I-KH) PG, (2.14) )
0

where X
f, T T -1 et
Kk = Pk(—) H‘k(HkPk(_) Hk + Rk) (2.15) : :
! 2,4 SUMMARY OF THE DECOUPLED PKF EQUATIONS FOR TWO PROCESSORS (Travassos, 1982) 8y
ol

Because the predictor and corrector equations in the Kalman filter can be fa

)
ag decoupled, computations can be performed simultaneously on two separate «3
processors, one processor for the predictor equations and one processor for ;.

the corrector equations. In summary, the parallel Kalman filter (PKF) .G‘i"
- equations are: X
~ ok
-) = X W

g EESORENNITAIC (2.16) 0
4 Predictor T T >
=Y = ‘a4
| P © = eictPat @ ity (2.17) =3
' 4

B ~ ~ ~ ::"
xk(+) = xk(—) + Kk(zk - Hkxk(—)) (2.18) )

Corrector ™

I Pk(+) = (I - Kka) Pk(-) (2.19) ‘
N

Kalman { T T -1 bk

Gain K, Pk(-) Hk(HkPk(-) Hk + Rk) (2.20) :Q

Although these results can be applied to a "linearized" model of the

sensor track processing problem, we propose to extend these results to work NS
with the target's nonlinear equations of motion directly. Using the nonlinear iﬁ
equations of motion will provide more accurate tracking (see Section 3.1) for =

the nonlinear parallel Kalman filter equations). Both linear and nonlinear

]
parallel Kalman filter techniques can be applied, E‘

2.5 OPTIMALITY OF THE PARALLEL KAILMAN FILTER

To show that the PKF is optimal (in the same sense as the standard Kalman

filter), the optimality proof will be separated into two parts, First we

gi shall show that the PKF generates the same state update as the S5KF. Secondly, 5'
the covariance update in the PKF is shown to be equivalent to the covariance *:
E? update in the PKF, Combining these results shows that the PKF is optimal ;
since both the state and covariance updates are "mathematically equivalent" to eg
¥ the SKF. ;
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The State Update: :::
&
' For the SKF, substituting Eq. (2.9) into Eq. (2.7) evaluated at time
k+l, we have: ‘:Eg}
(R
" A -~ ’."
i %1 () = 0 () + 0K (2 - B & () (2.21) i
K
where h
. T T -1 W
K =P (-) B (BP () H +R) (2.22) :?3
“
I Note that the innovations sequence is given by: ‘:\',:f
e
~ ~ !i:z
2 e+l " (zk - Hkxk(-)) k=20,1, 2, ... (2,23) »
Substituting Eq. (2.7) back into Eq. (2.21), we have ff;'
. vy
- ] - Cn ol i,
X1 ) = by X 1 (D) + 0K (2, - Hx (2)) (2.24) by
I m——— A’ ~ -~ - .:':i
transition innovations '.
update update ‘ ::aé
o)
Thus, the state update in the SKF consists of two parts - the tramsition .:::
update and innovations update., Our objective was to show that the PKF state ,':
update is equivalent to Eq. (2.24). To do this, we needed to prove the a
g following lemma: } ‘:‘
)
Lemma #1 ‘:ﬁ‘
Lemma #1 0
! For the PKF defined by Egs. (2.16) to (2.20), ®
F X & X 5::
I NORE TN N (2.25) i
p ~ - = ~ .‘?
E THEN xk-l( ) X (+) (2.26) plolt
a AND xk(-) - ¢k_1xk_1(—) (2.27) o
4
PROOF: Evaluating Eq. (2.16) at time k, we have .::
A ‘N
But ¢k-2xk-2(+) = X1 (+) by Eq. (2.25) evaluated at time k-l. P~
Evaluating Eq. (2.28) at time k-1 results in o
!
Xe-107) = 0p_o¥) o (#) = x| (+) (2.29) E
by virtue of Eq. (2.25). Thus,
o't
~ ~ |I'
X140 = X . (2.30) 4
W
2-4 ™
?‘:
i
N

S ~ -\ > LA LAY LY N W S R W NN ¢
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The next part of the proof is to show that f(k(—) = cbk_l;{k_l(—) in
the PKF, Evaluating Eq. (2.16) at time k+l, we have: »

Ml ) 7 i X ) = 04, () (2.31) ,
or at time k W

X () = 0y X () (2.32)

- ;.

But by Eq. (2-20) we can conclude the proof as follows:

]
' X () = 6y %1 () B (2.33) .:E':
Now we can use the results of Lemma #1 to show that the PKF state update is -
l "mathematically equivalent" to the SKF state update. "'::
Theorem 1: ig
g Because the transition state update "."‘i
a O e Fel P = 60y %y () (2.36) E
"
and innovations state update %i
Il 1K1 Froy ~ B ¥eo1 () = Kz = BX () (2.35) .4
are mathematically equivaleﬁt, the PKF and SKF state updates are E&
’ mathematically equivalent. ,E'{
Proof: The transition update is easy using Lemma #1, Eq. (2.26) since: :ﬁ
O 0 1% () = 90, %, (9 (2.36) ég
]
Pre-multiplying the innovations in the PKF state update, we have: kﬁ

P11 Pt~ BB ) = 0 Gy @) = & D) (2.37)

by Eq. (2.18) evaluated at time k-1. Expanding Eq. (2.37) results in

= 1K1 B = T ) (2.38)

=% - X () (2.39)

§
§
i
A
A
g

by Eqs. (2.25) and (2.27) in Lemma #l. But X, (4) - X () =

I(k(zk - Hk;zk(—)) using Eq. (2.18) in the PKF., Thus, it can be
concluded that

O0m1¥i-1 Cro1 = By X1 () = K (7 - Hix, (2)) ® (2.40)

as desired,
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Now that we have shown that the PKF and SKF state updates are "mathematically

equivalent," we turn our attention to the covariance update.

The Covariance Update:

From Eqs. (2.7) to (2.11), the covariance update in the SKF can be

summarized as follows:
T
P(=) = ¢, 1P 1 (D (2.41)

P(+) = (I-KH) P () =P(-)-KHP(-) (2.42)

Replacing P, ,(+) in Eq. (2.41 evaluated at time k+l with Eq. (2.42) we

k-1
have:

T T
Now substituting Eq. (2.4]1) evaluated at time k 1into Eq. (2. ) results in
T T T
Prrl () = i 1P O 010y = BRI P () 0 (2.44)
. ~ -’ W

transition update gain update

which summarizes the complete SKF covariance update. As before, our objective

is to show that the PKF covariance update is "mathematically equivalent" to

Eq. (2.44). Another lemma is useful in proving this result.
Lemma #2
For the PKF defined by Eqs. (2.16) to (2.20),
A T
P =0 1P o
Pe1) = B
T
Pe(=) = 0 1P oy
Evaluating Eq. (2.17) at time k, we have
T T
P (=) = Op-19k—2Px—2(H) ¢y 201y (2.48)

But by Eq. (2.45) evaluated at time k-1, Eq. (2.48) can be written

as follows:
Pe(=) = 43 1Pe1® ¢7 | which proves Eq. (2.47) (2.49)
Evaluating Eq. (2.49) at time k-1, results in

T
Pea1 () = 0 gPip ™) g = B (9

SRR ,u’u,‘l,.)&.a SRS _"‘ y




) =

using Eq. (2.45) evaluated at time k-1, Hence, P, _,(-) = Pk—l(+)

as desired.

Now we can use the results of Lemma #2 to show that the PKF covariance update

is "mathematically equivalent" to the SKF covariance update.

Theorem #2:

PROOF :

Because the transition covariance update
T T T T
O102-1P-1 () Srnbic = 01 Pr1 P O 1%y
and the gain covariance update
T
Opm1 X1 Bem1Pra1 ) ¢ = KB ()

are mathematically equivalent, the PKF and SKF covarinace updates are

mathematically equivalent.

To begin, substitute the PKF covariance update Eq. (2,19) evaluated
at time k-1 into Eq. (2.17) to obtain:
T T
Pra1 () = b 1 T - K g ) B () 0 g9y
T T T T
= N1 P ) Crn®i 7 PO 1K B 1P () ) ¢y (225D
~ ~ V\~
transition covariance gain covariance
Note that if we can prove that
T T T ,T
USSR R PRI R PN (2.52)
and
T

O-15k-1P-1Pa-1 ) 0y = BB (2.53)

then the PKF update in Eq. (2.51) will be the same (i.e., equivalent)
to the SKF update in Eq. (2.44). Therefore, the PKF would be optimal

since both the state and covariance updates of PKF are "mathematically

equivalent" to the SKF, Eq. (2.52) 1is easy to prove due to Eq. (2.46)

in Lemma #2. Now to prove Eq. (2.53). To do this, note from the PKF
Eq. (2.19) evaluated at time k-1 we can write:

KB 1Py ) = B () = B (1) (2.54)

Now pre-multiply both sides of Eq. (2,54) ¢k-1 and post-multiply the
same by ¢E-l to obtain:

2-7
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PPt P17 $hecy = Ot B O = B 60 oy (2.55)

T T
= 01Pac1 ) bpcy = b P P 0 (2.56)

=P (<) - P (#) = KHP (-) (2.57)
from Lemma #2 and Eq. (2.19) of the PKF, Therefore, we have shown
that

T
11511 P10 Oy = PO (2.58)

Summarz

This section demonstrates the parallel Kalman filter, originally
developed by Travassos (1985), based upon decoupling the filter's predictor
and corrector equations, 1s optimal in the same sense as the standard Kalman
filter, This was proven via two lemmas and two theorems. Since the PKF
method can be extended to more than two processors, it is anticipated that
the optimality proof can be extended as well. Furthermore, extending the

results to nonlinear filtering is also anticipated to be successful,

2.6 GENERALIZATION TO n (EVEN) PROCESSORS

Now that the stability and convergence of the two-processor parallel
Kalman filter (PKF) has been analytically investigated and shown to be
"mathematically equivalent" to the standard Kalman filter (SKF), we now focus
our efforts on extending the PKF algorithm to run on n (even) processors. Our
approach is based on the principle of induction; i.e., we develop the two-
processor then the four-processor case and then by induction generalize the

method for n (even) processors.

To provide a more accurate solution, the generalized method is based on
the trapezoidal rule of numerical integration rather than Euler integration
which has been used to date. The Kalman filter update is then accurate to
0(h2) rather than 0O(h). The additional accuracy is important because it is
anticipated that the integration step size, h, will be large due to the
computational complexity of the Kalman filter equations., For example, with a
sample rate of 100 Hz, the Euler-integration-based PKF would be accurate to
O(h) = 0.01, while the trapezoidal-rule-based PKF would be accurate to
O(hz) = 0,0001 (1.e., as accurate as the 12-bit sensor data).

2-8
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2,6.1 PKF Based on the Trapezoidal Rule (Two Processors)

The trapezoidal rule for integrating a set of ordinary differential

equations is given by:

Xepp = % FHREG L) + 0 ,8,)) (2.59)

where x is the solution of the ode, f(x,t) is the right-hand-side (RHS) of
the initial value problem and h = teel ~ is the integration step size,
The trapezoidal rule is an implicit method since X, ., @appears implicitly on
the RHS of Eq. (2.59). Note that £(x,t) can be, in general, a nonlinear
function or linear such as f(x,t) = Fx(t), To solve Eq. (2.59), a predictor

is needed of the form below to estimate X4ye

X =x + hf(xk,tk) (2.60)

k+1

Hence, combining Eqs. (2.59) and (2.60), we obtain a predictor-corrector

method based on the trapezoidal rule:

Predictor: k 1= %t hf(xk, k) (2.61)

. c -
Corrector: X141 xk + % h(f(x ot ) + f(xk+1, k+1)) (2.62)
Note that the predictor must be evaluated before the corrector equation can be
computed. A parallel predictor-corrector (PPC) method has been derived by

Miranker (1967) that allows the predictor and corrector to be evaluated

simultaneously on two (2) processors as follows:

Parallel Trapezoidal Rule (Two Processors):

P _.C
el = i1

c c
Corrector: X=X + %h(f + £

P . ¢
where £ f(x k) and £, = k-1°

In the special case when fz = ¢kxk(-) is the RHS of the Kalman filter
P - ) (I-
state update before a measurement and Gk ¢k(I Kka)Pk( (1 KkH

Predictor: + 2hfp

k-1

£(xS . ,k-1),

T T
k) Oy is the
RHS of the covariance update before a measurement, then the two (2) processor

parallel Kalman filter can be derived as follows:

Parallel Kalman Filter Based on Trapezoidal Rule (Two Processors)

Predictor: xk+1(—) = xk_1(+) + 2h¢kxk(—)

-) = P
Pk+1( ) Pk—1(+) + 2th




.ﬁ
| i
l"‘

U
. ;1:;
NE
P _ _ _ _ _ T T tie!
where Gk ¢k(1 Kka)Pk( ) + Pk( ) (1 K.ka) o1 (2.67) :':

| y
: X - % % (- X -H % (- Ot
Corrector: x,(+) = %, () +h/2(¢,x, (=) + ¢, ;% _;(H) + K (2, -H x (-)) (2.68) ‘:‘.:!
F )G
- p ¢ - - i
l P () =P _ () +h/2(6 + 6 ) - KHP () (2.69) i
1 _ _ T T e

where Gk ¢k(I - K.ka)Pk( ) + Pk( Y@a - Kka) 1 (2.70) X
c T R
. Oe1 ™ 1Pt )+ B () 0y (2.71) ;g
In the above PKF, the (-) notation represents a value before a measurement 53{
\
' update and the (+) notation is a value after a measurement update. Similarly, !i:i
the p for predictor corresponds to the (-) notation and the ¢ for corrector -
l value corresponds to the (+) notation, ,’:°
e

O
g
! 2,6.2 PKF Based on the Trapezoidal Rule (Four Processors) f?ﬁ,?
With four (4) processors, the parallel trapezoidal rule is given by: ;:;'f
l.':
l Parallel Trapezoidal Rule (Four Processors: :f::
."r
. P - +C P i
' Predictor: Xops2 = ¥op_o t 4hf2k (2.72) O
P _.c P P -
Xak+l T For-p T /2 By + £y ) (2.73) o

g
c xS = xS - P _ gfP &
l Corrector: xg, = x5, 5 - h/2 (3th - 95 ) (2.74) 2
c c c Ve
Xok-1 = ¥2x-3 + 2hiy (2.75) o
P _ (P P _ ¢ P _ s
l where ka f(x2k,2k), f2k-1 f(x2k_1,2k 1) ::::
c - c _ 440
‘ and f2k—2 f(x2k_2,2k 2) .:E:
&
In the case where by
p = A - \]
' Fox = ook B ) s (2.76) b
P - 2 - ||“:
£2k-1 = ®2k-1 Xgp (7)) and (2.77) 8
c oty
' f2x-2 = ®2x-2 Rap-2 ™ (2.78) !
are the RHS of the state update in the Kalman filter and .:::
l P . _ _ _ _ T,T “:
Cak = $2i(T = Ryplpp) Pop (=) + Py () (T = Kyplly )™ 0 (2.79) ,EE;
p - - _ (T TT "
a 6ok-1 = #20-1 T Kope 1Po 1) Po1 () + P 1 () TRy gHyp 1) "dp) (2.80) .
c - T .-y
and  Gop 9 = P3p2 P2 + Py g (2.81) o
e
')
2-10 'I.|
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Paralliel Kalman Filter Based on Trapezoidal Rule (Four Processors):

Predictor: x2k+2(-) = x2k_2(+) + 4h ¢2kx2k(-) (2.82)
Xoue1 () = Fopep () + 30/2 (0 x0, () + 4 1 ¥op 1 (D) (2.83)

- P
Pora2 (™) = Py o (+) + 4hGo, (2.84)

(+) + 3h/2 (ng +G (2.85)

Pore1 ) = Poyg Pt

where GD = ¢, (1=K Hy ) Py (=) 4By (=) (1K, B0 63 (2.86)
GBke1 = S2ke1 (T Koy yHop IBy 1 () +

Pyt () TRy )7 03 (2.87)

Corrector: X, () = Xy (¥ = /2 (3by Ky (=) = 9 04 Ky () +
Ko (2o = By %y (2)) (2.88)
Rore1 () = Ky 3 () + 2h 6y oo () +
Koo a1 = Foue1 ) Ky 1 (D) (2.89)
Py (9) = Py o(#) = h/2 (365, -9GD, ) + (T-KyHy )Py (5)  (2.90)
Poe1 @) = Bope_ g (¥ + 2HCoy p + (T=Kpy jHy )Py 1 () (2.91)
where ng and ng-l are defined above and

P T
o1 = ®2k-1Pop-1 (P * Py 1 (B 65y (2.92)

(o

Gox-2 = Pok-2Fok-2(H + P

T
otg ™) bop_y (2.93)

2.6.3 PKF Based on Trapezoidal Rule (n (even) Processors

In the previous sections, the PKF equations were derived for the two
processor and four processor cases., In general, n = 2% (even) processors
are needed to implement the PKF equations. If we let m = 25_1 and q = m-1,
the PKF equations can be generalized to run on n processors. The RHS defini-

tions for the generalized PKF equations are defined as follows.

£Pe ™ O X () (2.94)

p -~

fok-1 ™ ®mi-1 Fgp-p ) (2.95)
2-11
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(m

| a‘
| %
' f:k-m * Puk-m ;‘mk-m(-) (2.96) :‘:‘
l f:lk-m " ®ok-m ;{mk-m(-") (2.97) m
With these definitions, the PKF for n (even) processors are summarized in EE%
. Eqs. (2.98) to (2.115) on the following pages. §;§
2.7 SUMMARY X
! Although it was shown that the PKF equations can be generalized for n ::i
(even) processors, the following recommendation is made based on our experi- ::j
' ence with parallel computing. It is recommended that the four processor PKF EEE
equations be used to propagate each state (or covariance) equation separately
l in a nine-state target tracking application. With four processors per state, ::‘5
a 4x speed-up is possible per state equation update. With four processors on .:':i
a card, the nine-state filter could be implemented with nine cards or ::E
! 9x4 = 36 processing elements, This approach may be computationally easier to 8
manage and provide a 9x4 = 36x speed-up compared with partitioning the E::
l original PKF equations to run on 36 processors. The main concern is that :::
when the large number of algebraic terms that arise from the decoupling are :?:f
. computed, human error in the algebraic partitioning could lead to inaccurate
tracking. The partitioning can be automated by a computer to minimize this ‘?‘,
potential problem., In addition, it is well known that beyond say 32 proces- ::;
' sors, the benefit of parallel processing is less than linear and adding more .:‘,EZ
processors may not speed up overall computations that much. Hence, using
' four processors per state (or covariance) equation provides maximum benefit, ::.
_ ease of partitioning and reduces the potential for human error in the ;
decoupling. ﬁ:‘
N 4

.'x'
-

:
.
i
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Parallel Kalman Filter Based on Trapezoidal Rule

Generalization to n (even) Processors

State Predictor Equations:

~

~) = X P
xmk+m( ) xmk-m(+) + nhfmk

~ .A p
*akin-1 (") = Xy () + (=120l + £ )
% otmo2 () = Xy o () + (a-2)/20 (P 4 £P

X -) = % P P
xmk+m—3( ) xmk-m(+) + (n—3)/2h(fmk + fm

. . .

~

- _ P P P P
xmk-i-m-q(-) xmk-m(-")“-(n q)/zh(fmk'Ffmk—l.+fmk—2'+""+fmk—m)
State Corrector Equations:
s - - P P |14
xmk(+) xmk—n+1(+)+(n q)/Zh(fmk—m+q+"'""fm‘tc—uH-Z+fmk—m+1'*’fm
2 - 2 - P P P
xmk—1(+) xmk---n-f-l(.")"'(n 2)/2h(fmk--m+2+fmk—m+1+fmk-m)
£ - % _ P P
xmk-2(+) xmk-n+1(+).+(n 1)/21’1(fmk—m+1"'fmk—m)
- - v qcp 3q.p c
xmk_q(+) X oken+l (+) +n/2h(3 fmk + q3 fmk—m + fmk—m)
Definitions

k-1 ¥

£P

p
RNy

mk~2

NGO NL AU R ORI TR

4+ ... + P

PRREIN AR 2

(2.98)

(2.99)

(2.100)

mk-m) (2.101)

For the parallel predictor-corrector generalization, define the

following variables:

(2.102)

P
o) (2.103)

(2.104)

(2.105)

(2.106)

n = the number of parallel processing elements = 2° (i.e., a power of 2)

n= 23-1

q = m-1 = a convenient definition

= the number of processors used by the predictor (or corrector)

[ % 7 a2k
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Parallel Kalman Filter Based on Trapezoidal Rule
Generalization to n (even) Processors
Covariance Predictor Equations:
) = P
Pokim (™) = Pppn(+) + nhG (2.107)
) - - P P
Poktn-1 () = Pgp P + (@-1)/2h (G + G, ) (2.108)
~) = - P P P
Poken—2() = Bppp(H) + (2-2)/2h (Gmk +G 1+ G o) (2.109)
~) = - P P P P
Potm=3() = Py o (9 + (0-3)/2h (G, + G, | + Gprep + <+ *+ G ) (2.110)

= - P p
Pmk-!-m-q(-) Pok-p(H) + (@-0)/2h (G, + Cuk-1

Covariance Corrector Equations:

- - P p P 2
Pmk <) P ok-n+1 +) + (n-q)/2h (Gmk-m+q Foeed Gmk-m+2 + Gmk-m+1 + Gmk-m) (2.112)
- - P P P
Pok-1 +) Pok-n+1 (+) + (0-2)/2h (Gmk-m+2 * Cokemtr ¥ Gmk—m) (2.113)
- - P p
Fak-2 ) = Py (9 + (=D/20 (G + Gy ) (2.114)
- qqP 3q P c
Pﬂk-q o Pmk-n+1 (+) +0/2h (3 Gmk +q3 Gmk-m + Gmk_m) (2.115)

2-14
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SECTION 3

NONLINEAR EXTENDED PARALLEL KALMAN FILTER ALGORITHMS
AND ARCHITECTURES BASED ON THE DECOUPLING PRINCIPLE

3.1 BACKGROUND

The SDI sensor processing problem is nonlinear due to coordinate trans-
formations and angle-only measurements, The SDI target math model can be

summarized as follows for the extended Kalman filter:
x(t) = £(x(t),t) + w(t) 0StsT

z = h(x(tk)) + v k=1, 2,3, ..., N

k k
The well-known extended Kalman filter for a sequential computer is given by

(Gelb, 1974):
Predictor:

x(t) = £(x(6)) Rty = x,

B(t) = F(x(t)) B(t) + B(t) FL(R(1)) + Q(t) , B(ty) = By

Corrector:
X, (#) = x(=) + K (2, - h (%, (-)))
P (#) = (I - KH (%, (-))) P ()

K, = R (2) HLGy (=) * (B, Gy () () + R)™

of (x(t))
ax(t)
sh(x(t.))

Hk(x(—)) = ax(tk')'

1

where F(%(t)) = R
(t) = x(t)

x(t,) = %(=)

3.2 DECOUPLING THE EXTENDED KALMAN FILTER STATE UPDATE

With two processors, the state predictor and corrector can be decoupled
by forcing the corrector to lag the predictor by one time step, If a parallel
version of the Trapezoidal Rule (Miranker, 1967) 1is used to integrate the

3-1
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nonlinear state model equations, the extended Kalman filter state predictor "

and corrector can be computed as follows with accuracy of O(hz). b
Predictor: Y
a - - 3 P N
xk+l( ) xk_1(+) + 2hfk
where h 1is the integration step size and .

£2 = £(%,(-),t}) b,

Corrector: »

£ (4) = R () + B/2(E) + £ ) + K (2, - h(x, () X
C -~
where f, . = f(x, _,(#),t ;)

With two (2) processors the state predictor and corrector can be computed
using a 4th order Parallel Adams-Moulton Method as follows with O(ha)

accuracy,

Predictor: “5

~ ) =B P _ C (] _ .
Xa1 () = X () + B/3@E - 5fy ) + 4 ) - £ 9) n
[

P o s(k (- = f(x
where £ = £(R,(-),t) , Ef_, = £(X _.(9,t,_,) and
c = > . 2
fk_3 f(xk_3(+) ,tk_3) A
Corrector: )

c
k-1

The key here is that all the values on the right hand side (RHS) of the above

[od

£ () = X (9 + B/26(9F]) + 19F | - SE. o+ £ ) + K (z,-h (R (=)

predictor/corrector equations are available for simultaneous computation in .

parallel (see Figure 3-1 below). &b

et

v S
-~ -
- -
-

Predictor o

’— Corrector -~

k-3 k- k-1 kK k+l o
‘ ]

’ XN

(IR W O

FIGURE 3-1 Computational Wavefront of Extended PKF State Update .l

3-2

a] e
-

\ h,
I R A A N




(1B 08 BEE &

a3 W

R T ST SPGIOR PR W TSP I WU SO PO WPLT SRS | WU WU WP W PR AR RO WU AR ORTOT U O KON at*

3.3 DECOUPLING THE EXTENDED KALMAN FILTER COVARIANCE UPDATE

Let the covariance of the estimation error before and after an update be
denoted as in Section 2. Now if we define the RHS of the continuous covari-
ance update as follows, we can compute the extended Parallel Kalman Filter

(PKF) covariance in parallel:

P(t) = F(:(E)P(t) + P(DF (x(t)) + Q) B(ry) = B,

= G(F(x(t)),P(t),Q(t),t)
where F(x(t)) = 3f (x(t))

ax(t
x(t) = x(t)

Note that G 1is a matrix differential equation that is nonlinearly related
to P.

With two (2) processors using the parallel trapezoidal rule, the extended

Kalman filter covariance update can be computed with O(hz) accuracy as follows:

Predictor: = Pk-l(+) + 2hGP

Py () k

where GF = G(F(X (-)),P, (-),Q (-),t,)

Corrector: Py (+) = P, ;(#) + h/2(6f + G _|) + (I - KH (R, (-))P, ()
where G ; = G(F(R,_; (), P, _;($),q_;(H,t, )

and H (% (o)) = RG(E))
k"k ———
Bx(tk)
x(tk) = xk(-)

With two (2) processors the covariance predictor and corrector equations
can be computed using the 4th order Parallel Adams Moulton Method with O(ha)
accuracy as follows:

c c c

k-1 + 4G = G 3)
C ~

where Gk"l - G(F (Xk-l (+) ) ’Pk—l (+) ’Qk_l (+) ’ tk_l)

. 2) = P _
Predictor: Pk+1( ) Pk-1(+) + h/3(8Gk 5G

Gpp = C(F(R,_,($)),B, ,(#),Q_,(),t, )
Gz = B(F(R_3(9)) B 3(+),0 (4,5 3)
Corrector: P (+) = P\ (+) + h/24(96) + 196, | - 5G, , + G, _,)

In both the two and four processor extended Parallel Kalman Filter

3-3

e — ‘ n AS » »
R O O O O OO G O SO A DE O S I I e R MO MO X A X O X X o e

!'

Y ¥} {
0N N )



equations, the Kalman gain is computed as follows: “ﬁ
0,8,
T ~ ~ A '-1 .
: - )% - - -
' Kalman Gain: Pk( )H (Xk( ) (Hk(xk( )P ( )Hk(xk( )) + R'k) \

The extended parallel Kalman filter algorithms presented in this section ]

can be generalized to run on a large number of processors. The four processor ‘!

extended PKF based on the parallel Adams Moulton method is of major interest o

because the 4th order parallel Adams Moulton method is fast (because the equa- A
tions can be computed on four processors four times faster than on a sequential oy
computer) and accurate to O(ha) to give eight digit or more precision. 1In %ﬁt
addition, this method is well matched for execution on a parallel computer with o
four processors per node (like the Systolic-481 board discussed in Section 4. o0y
A candidate architecture for evaluating the 4th order parallel Adams Moulton ﬁl

method is given in Figure 3-2 below, k¥

B
g
8
B
i

T

Predictor |';:0
Processor 3

Corrector bl
Processor

FIGURE 3-2 Parallel Architecture for the 4th Order Adams Moulton Method 'qa
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l SECTION 4 '
3

"

¢

I WORDLENGTH, MEMORY AND PARALLEL PROCESSOR SELECTION 'p::
;

"

! Before implementing the parallel Kalman filter algorithms and architec- ‘
tures derived previously in this report, it is of interest to examine the g:

a wordlength, memory and timing requirements for these methods. The timing 'g
requirements, in particular, have a direct impact on the selection of the ¥

o )
: VLSI arithmetic processors used for computation. Memory speed and bus con- ::'
3 ?
siderations also impact overall system throughput. To start, wordlength ‘::

D

i considerations are analyzed first. :if
4.1 ERRORS IN THE KALMAN GAIN ‘.ixr

O 5!
Suppose that due to numerical inaccuracies, the actual Kalman gain n:i
W

consists of two parts: ;:

o ()
K + K + A “
\)

(N

actual error in Kalman gain lzt

a Kalman ":
gain exact Kalman gain .:.-.

A )

! Then the finite wordlength effects of the mantisa in floating point arithmetic ',~
3

on the Kalman filter can be summarized by the following theorem: é:

o

Theorem 4.1: For the linear Kalman filter in Section 2, given that ;::
) ————— Al
inaccuracies exist in the Kalman gain (i.e., K = K + AK), the "'

g number of bits needed in the mantisa to ensure stability is N,
Iy

given by: .::

W

( 2¢ H \
{2 'bz—logz(--;l-I T b
{HP (-)H" | :

9

o where !
€ > 0 1is the error tolerance, n 1is the system order and :

a -b X
— > n )

|AKI - 2 . r.\.‘

o

e:. :.:
‘ ::‘
0‘:
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Corollarz:

Proof:

For H=1 and P(-) = I, the number of bits needed in the

mantissa to ensure stability can be estimated as follows:

b2- log, (%;)

Substituting K = K + AK into the P(+) update we have:

P(+) = (I - (K + AK)H) P(-) 2 ¢ (4.2)
= (I - KH) P(-) - AKHP(-) 2 ¢ (4.3)
N
P(+)
> - AKHP(-) 2 ¢ (4.4)

Now multiplying both sides of Eq. (4.3) by -HT gives:
AK HP(-)H' < - en’ (4.5)
e
scalar > 0 if P(-) > 0

Since HP(-)HT > 0 and a scalar, we can divide both sides of
Eq. (4.4) by HP(-)HT. Hence, we have:

eHT

oK € - —
HP (-)HT

(4.6)

since the |HT| = |H|. Now suppose |AK| 2 % Z-b, then

Byb s g —elil 4.8)

|up (-)u" |
Taking the log, of both sides gives:

b < log, (-2-5- ——LHJ—) (4.9)

™ |Hp(-)HT|

or equivalently

b2 - log2 (.?r.:i l—-'l(-li)l—.i.-l-) (4.10)
HP(-)H

Note that if H =1 and P(-) = I, the desired result is

obtained as follows:

n

b2~ log, (25) (4.11)
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FIGURE 4-1 Mantigsa Wordlength Requirement for Stable Kalman Filtering

The result of Theorem 4.1 ig particularly 1nteresting when plotted for various

values of ¢ apd n  (see Figure 4-1), Note that as the System order (n)

increases so does the mantissa wordlength requirements, Also note that scalar

8ystems require g minimum precision of bits for one decimal digit of accuracy,
Six digit accuracy requires gt least 24-bits in the mantissa. More than six
digit accuracy requires 32-bit float{gg_gpint.

4.2 ERRORS IN THE COVARIANCE UPDATE

Another approach in analyzing the wordlength requirements in the Kalman
filter is to study errors in the covarjance update. 4s it turns out, a

Companion result cap be dertved similar to Theorem 4.1, The companion

result {s summarized in the following theorem:




Theorem 4.2:

Corollary:

Proof:

- " " : . . 1 I3 1 3 ). . VatL W
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For the Kalman filter in Section 2 given that inaccuracies
exist in the covariance update (i.e,, P(-) = P(-) + AP(-)),
the number of bits needed in the mantissa to ensure stability

is given by:
2¢ -1
b2 - log, (7; | (1 - xH) l)

where

¢ > 0 1is the error tolerance, n 1is the system order and

|ap| < %-z'b .

For KH -+ 0 (i.e., in the steady state) the number of bits
needed in the mantissa to ensure stability can be estimated as

follows:

bz - log, (-zni)

Suppose P(-) = P(-) + AP(-) .

actual 1 error in
covariance covariance
exact
covariance
Then P(+) = (I - KH)P(-) + (I - KH) AP(-) 2 € (4.12)
Qe
P(+)
+ (I - KH) oP(-) 2 ¢ (4.13)

Now multiplying both sides of Eq. (4.13) by (I - KH)_1 we have:

8P(-) 2 e(r - kH)~} (4.14)
Taking the norm of both sides of Eq. (4.14) and using the fact
that |ap(-)]| £ %-Z-b results in:

B0 c el -mn7 (4.15)
Taking the log2 of both sides of Eq. (4.15) gives:

-b < log, (%} |1 - xn)“ll) (4.16)

Multiply both sides of Eq. (4.16) by -1 giving the desired
result:
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that if XH + 0 1in Eq. (4.,17) we have:

2e
4 1°g2 (—1-1—) (4.18)

Note that the results of Theorems 4.1 and 4.2 are very similar and provide

the same results under the conditions that H= I, P(-) = I and KH + Q.

4.3 MEMORY CONSIDERATIONS

The pa-illel Kalman filter algorithms and architectures derived in
Sections 2 and 3 use decoupling to permit the predictor and corrector equations
to be computed on separate processors., At any given time step k, the state,
covariance, and measurements must be stored, as well as intermediate values
associated with the linear PKF's matrix/vector calculations., For a typical
nine state filter, the operation count given in Section 1 indicates that the

number of operations in the standard Kalman filter is

additions: nxn+2n-1=98
multiplications: 2n x n + 4n + 1 = 199
divisions: 1

when n = 9, The data storage requirement is on the order of 8 bytes x

(98 + 199 - 1) = 2384 bytes or 2K bytes for 64-bit precision. If the linear
two processor PKF developed in Section 2 is used, it must be initialized by
running the standard SKF for the first two (2) time steps. Then the dual (2)
processor PKF can be run at step 3 (i.e., at k = 3). Hence, the following

values of x, ¢, P, 2z, K, H and R must be stored in memory,

State Vector Values: xo(H), ® (9, X (=), & (), %y (=)

State Transition Matrix Values: ¢, $1s ¢2
Covariance Matrix Values: Po(+), P, (+) Pl(—), PZ(-)
Kalman Gain Values: Kl’ K2

Others: Hl, HZ’ R;, R

1° 72
Once the linear two processor PKF is initialized, memory is needed to store
the updated values of x, ¢, P, z, H and R, Hence, in general, the over-

all memory requirement is:
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Memory = (np + 1) x (storage requirement of the standard Kalman filter)

where np = the number of parallel processing elements.

Thus, (np + 1) x (2 Kbytes) areneeded to store the data in the parallel
filter, With np = 2, this corresponds to 6 Kbytes, With np = 32, this
corresponds to approximately 64K bytes of RAM,

Note that the above memory sizing is for data only. The PKF program
memory has not been sized., Because the two processor PKF algorithm can be
coded with less than 1000 lines of code and the compiled version of a 1000
line program requires about 128 Kbytes of RAM to store, a reasonable estimate

of the storage requirement for the linear PKF program would be:

PKF Program memory = np x 128 Kbytes

where np = the number of parallel processing elements,

With 32 processors, the program memory is, therefore, estimated to be
32 x 128 Kbytes = 4 Mbytes.

Hence, a parallel processor with 4 Mbytes of bulk memory (i.e., relatively
slow DRAM) and 64 Kbytes of fast RAM (i.e., cache memory) should be capable of
implementing a 32 processor linear PKF.

Because nonlinear function evaluation generally results in more inter-
mediate values than linear matrix/vector operations, the amount of local data
storage might be increased by a factor of four. Hence, 4 x 64K = 256K of
fast RAM is recommended for nonlinear extended parallel Kalman filter data
storage. Four Mbytes of program memory should be sufficient, however, for the

nonlinear PKF,

4,4 PARALLEL PROCESSOR SELECTION

One method of estimating the computational requirements for the parallel
Kalman filter is to total the number of additions, multiplications and divi-
sions needed to complete one cycle of the Kalman filter algorithm. For example,
the simple Kalman filter algorithm defined in Section 1l requires only 98
additions, 199 multiplications and 1 division per cycle for a nine-state filter,
Hence, at 100 cycles per second (i.e., 100 Hz sample rate) the number of
arithmetic operations is given by 100x 298 = 29,800 operations per second.
Ideally, a microprocessor capable of 33.1 usec per operation is all that is
needed to implement a nine-state filter. Hence, a single Motorola 68020/68881

4-6
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pair can easily handle the computational requirements of the Kalman filter
assuming 100% efficiency. Note that 33.6 usec per pass through the filter

corresponds to an update rate of 2,800 samples per second,

Typically, however, only 10 to 30% of peak performance is achieved in
practice due to data bus and memory access time restrictions. Therefore, one
target may be updated at a 4000 updates per second rate. 100 targets may be
updated at a 4 Hz rate., 10,000 targets at a 0.4 Hz rate (every 2.5 seconds).
For nonlinear filtering, typical of SDI target tracking problems, 64-bit
precision and the need to compute trigonometric functions for coordinate
transformations can slow computations down by one or perhaps two orders of

magnitude (10x to 100x).

Since it is well known that Kalman filtering must be performed using
floating-point arithmetic to avoid stability problems, the only viable method
to gain back the throughput for nonlinear SDI filtering problems using an
extended Kalman filter is with parallel processing. Optical processing is
fast but optical fixed point can cause stability problems with the Kalman
filter. Therefore, to rapidly implement the parallel Kalman filter with
32/64-bit floating-point precision, an aggregate computation rate of 10,000 x
29,800 = 298 million operations per second is needed to track 10,000 targets
simultaneously. A parallel processing system of 16 x 16 = 256 processors
needs a computation rate of 1.17 MFLOPs per processor to perform the necessary
computations. Using four (4) 25 MHz Motorola 68881 math coprocessors per
board, 1.26 MFLOP performance is readily achievable, Hence, with 256 boards
it it feasible to track 10,000 targets in real time,

The general-purpose nature of the Motorola 68020/68881 processors is well
suited for nonlinear, as well as linear, Kalman filtering. In particular
because trigonometric functions (sin, cos, tag, etc.) and square roots
commonly occur in coordinate transformations associated with SDI sensor
processing, high-speed general-purpose hardware (such as the Systolic-481
para.lel numeric processor) is needed to handle the throughput requirements

(see Figure 4-2),

The Systolic-481 is a Vme bus compatible parallel numeric processor board
capable of full IEEE-P754 standard 32-bit, 64-bit and 80-bit floating-point
computations. The Systolic-481 contains one (1) Motorola 68020, four (4)

68881 numeric coprocessors and 256 Kbytes of 70 nsec static RAM on a single

4-7
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233,35 mm x 160 mm board. Multiple 481 boards can be installed into a Vme bus

system for additional performance gains approaching a CRAY supercomputer. The

advantage of the Systolic-481, however, is that it is very compact. A

scientific software library of more than 400 commonly-used subroutines (over

200 separate functions) is available for the Systolic-481 simplifying software

development. Because the Systolic-481 rapidly performs linear, as well as

nonlinear, transcendental and trigonometric functioms, it is well matched for

SDI battle management computations.

INITIALTZATION
EPROM EEPROM
64K x 8
Vme Bus
Vme n
ADDRESS MOTURULA INTERFACE
GENERATOR 68020
L 32-Bit DATA BUS Vox Bus
‘> Vmnx A\
v INTERFACE |
256K
SRAM MOTOROLA MOTORULA MOTOROLA MOTOROLA
68881 68881 68881 68881

L— STATE MACHINE M1CROCONTROLLER

FIGURE 4-2 Systolic-481 Vme Bus Architecture
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Table 4-1: Systolic-48]1 Hardware Specifications (One Board)*

Double Precision Floating-Point Hardware:
One Motorola 68020 and four Motorola 68881 math coprocessors on board
Processor Speeds: 16.67 MHz, 20.0 MHz and 25.0 MHz

Floating-Point Data Format:

IEEE-P754 standard

32-bit single precision, B8-bit signed exponent, 23-bit mantissa
64-bit single precision, 1l1-bit signed exponent, 52-bit mantissa
80-bit single precision, 15-bit signed exponent, 64-bit mantissa

Integer Arithmetic Formats:
8-bit byte integer
16-bit word integer
32-bit long integer

Data Transfer:

Data transfers conform to Vme bus protocol and performance. External DMA
transfer at 120 nsec per cycle results in a 66.7 Mbyte per second transfer
rate,

On Board Memory:
256 Kbytes, 64K x 32-bit, 70 ns static RAM

Data Repisters:
Four stacks of 8 80-bit data registers (32 total)

Stack Pointers:
Two 32-bit pointers

Constants:
22 on-chip ROM constants

Support Functions:
Full set of trigonometric and transcendental functions

Bus Interface:
VME, 24-bit address (16 Mbytes), 16/32-bit data transfer

High-Speed Auxiliary Port:
32-bit bus on Vmx port

Board Size:
233.35mm x 160.00mm (optional extension bracket to 233.35mm to 220mm)

Power Requirements:
+5V, Samps

# Multiple 481 boards can be operated in parallel if additional computational

power is needed.

4-9
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Table 4-2: Systolic-481 Double Precision Benchmarks (One Board)

64-bit Floating Point

Addition-.......ooouo'o.l.'.'.o...o..l.os usec

SubtractioN.cececcececcccrsccsscscsessl.08 usec
Multiplication..ceceesecsccccssessesels36 usec
Division.ccescececssnceccccssnacacsssl, 8l usec
Square ROOt..cccecveccscessccasnsessslo84 usec
Sine..ceccccecessccsccnasccsnsensesesd.62 usec
COSiNe..veecrrccscecnssssscasseseares .62 usec
Tangent.ceeececccesecesccncccnesneess6.93 usec
Exponential..c.cesceacccconcsnsscsess?26 usec
LogorithmM..ccceecccasesssasscassessss?.65 usec

Note:

1.) Assumes 16.667 MHz clock and 4 Motorola 68881 math coprocessors are
operating in parallel at peak performance. With a 25 MHz clock, computation
time is reduced by 33%2. For example, the 64-bit sine time would be only 4.4
usec running at 25 MHz.

2.) The proposed testbed includes 8 Systolic-481 boards which can operate
simultaneously in parallel. With 8 boards the effective computation time of
the system is 1/8 of the above. For example, with a 25 MHz clock, a 64-bit
sine value could be computed in 4.4 usec/8 = 0.55 usec or 550 nsec. This
assumes, of course, that at least 4 sine values need to be computed as is the
case in coordinate transformations during SDI measurement processing. Thus,
the 32-processor testbed compares favorably with a CRAY supercomputer.
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SECTION 5

APPLICATION OF THE PKF TO SDI SENSOR TRACK PROCESSING

The SDI sensor processing problem can be partitioned into a set of simpler
tasks which when "chained" together provide information to the battle manager.
Figure 5-1 illustrates the major parts of the sensor data processing required
by the SDI program. Although each major block in Figure 5-1 can benefit from
high-speed computation, this report is concerned with scan~to-scan correlation
and track processing since Kalman filtering is generally required for precision
tracking. Thus, the remainder of this section formulates the SDI track
processing problem as it applies to the parallel Kalman filtering algorithms

and architectures developed under our Phase I SBIR effort.

5.1 BACKGROUND

To show the effectiveness/payoff of the proposed research it is important
to consider a meaningful SDI problem. The SDI problem should be representative
of typical ballistic missile applications and serve as a baseline to measure
the benefits/accuracy of the Phase I SBIR parallel Kalman filter technology.
With this in mind, the following candidate test problem is recommended.

Although this test problem is relatively simple, it illustrates the computations

which arise in SDI sensor track processing.

A Simple Test Problem

Consider the problem of estimating the position of an object (missile)
from angle-only (or range) measurements. The geometry of this two-dimensional
tracking problem is illustrated in Figure 5-2. Typical parameter values for

this exercise are given in Table 5-1,.

In Figure 5.1, Xt’ Yt represents the target position in X-Y coordinates

and Ys represents the sensor position.
The target range is given by

2 2.k
Z, = (Xt + (Yt - Ys) ) (5.1)
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Fi5URE 5-1 Geometry of a Two-Dimensional SDI Tracking Problem
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TABLE 5-1 PARAMETER VALUES FOR THE ONE-DIMENSIONAL TRACKING PROBLEM
3

p, = 3.6 X 107°1b sec?/ft”

[~

g = 32.2 ft/sec2

500 ftz

k= 22000 ft P11
P o

0 2 x 10% ft/sec?
22

5

2 5,,2,. 4 2,..4
8 ~ N(2000 1b/ft”, 2.5 X 1071b"/ft ) P33 2.5 X 107 1b“/ft

5

g 2 t ]
2%. - 0.05 1b/£t3 x(0) = %(0) = 3 X 10° ft
) %(0) = k(0) = 2 X 10% ft/sec
- —2 2
x,(0) = 2 X 107 £c°/1b
%,(0) = 6 X 107 ft2/1b

With angle-only measurements the line-of-sight angle, ¢, can be estimated as

follows:

Y, - Y
o = tan_l (-—Ei——ii) (5.2)
t

(I 5 B

The target's motion is modeled as a falling body in state variable form as:

a3 e
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X, =¥, X=Y, X-==z (5.3)
where B 1s the so-called ballistic coefficient of the missile and Y, is
the target's height above the earth.
The equations of motion for the body are:
2
. pxz
x) X, d = 2x3 (5.4)
X = d-g
_2 -xllkp
X3 0 p = poe (5.5)
N S —
x £
where d 1is drag deceleration, g is acceleration of gravity, ¢ is atmos-

pheric density (with o the atmospheric density at sea level) and k is a
0 P o

decay constant., The differential equation for velocity, is nonlinear

X
29
through the dependence of drag on velocity, air density a ballistic coefficient.

Initial values of the state variables are assumed to mean, n, and

covariance matrix of the form

P11 0 0

0 (5.6)

The problem of estimating all the state variables may be solved using an

extended Kalman filter,

This SDI test problem illustrates the class of computations required for
SDI target tracking. Squares, divides, square roots and trigonometric func-
tions (sine, cosine, tangent, etc.) are needed, In addition, the extended
Kalman filter requires the solution of nonlinear ordinary differential equa-
tions. Thus, high-speed nonlinear function evaluation is important to SDI
track processing, This problem, although simple, can be solved relatively
easily to provide a known solution to verify the parallel Kalman filter
algorithms and architectures developed under this Phase I SBIR effort. This

test problem can be expanded to three dimensions and angle-only measurements

5-4
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of target and sensor position., In this case, the SDI track processing

problem becomes more nonlinear and involves additional trig functions to be

daE == B
B
- oy @ -
K
e SOS)

®
computed during coordinate transformations. The geometry for this case is =

a5 discussed in the next section, $
'||:
i

5.2 SDI PROBLEM FORMULATION AND ASPHERICAL EARTH MATH MODEL -

3 0‘.
o2 The Kalman filter can be used to update the state estimate of a ballistic )
g
trajectory with angle only measurements. The nonlinear relationship between gﬂ

the state and the measurements, and the nonlinear dynamics of a ballistic gy
trajectory, usually require the state estimate to be improved iteratively with »

a given measurement set, The problems due to the nonlinearities become more A
difficult when the observer is free-falling and more difficult still if the ¢%

observer is located in the plane of the observed trajectory. W

)

The first step in the Kalman filter equations is to project the state g.
estimate to the time of the current measurement, This can be accomplished ]
using the so-called f and g series, which can be found in Escobal (1975).
The f and g series are derived by Taylor series expansion about the

current target position. The target position at time t 1is given by o

. %
Xp =8 X e Xy (5.7) 2

Xn_1 is the current ECI target position (x,y,z) at the time of the

last measurement, to-1

.
in—l is the current target velocity (§,§,é) ¢

= X1y X ys ty = ) »

g=8 (xn-l’ Xi-10 8 - tn—l) y

n
The target velocity at time tn is given by

Xn = f Xn_1 +g Xn-l . (5.8)

The f and g series given in Escobal is based on a spherical earth,

Over periods of time of several hundred seconds this may introduce significant

(3 23X B =3I % Ul o R 2 ER e 2%
=]

bias errors, Series approximation of the equations of motion over an aspherical

earth have been derived but not implemented.

n
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An alternative to f and g series projection of the state is
numerical integration of the equations of motion., A mathematical model,
given in Escobal (1975), which accounts for an aspherical earth is given in

the next section.

5.,2.1 SDI Target Model

2
3’(=-1‘—’5(1+9-i(1-5(-2-)) (5.9)
3 72 R

2
§=_y}_(l+éi(1_5(£) )) (5.10)
R3 2 R2 R
2
7 = - EZ.(l + 2.41.(1 -5 (Z) )) (5.11)
R3 2 RZ R
where
14

u 1is the gravitational constant x mass of the earth = 3,988 x 10
R = (X2 + Y2+ 2% in meters

J 1s the first harmonic of the earth's gravitational potential =

4,4028 x 10]'0 .

5.2.2 SDI Sensor Measurement Model

Y. - Y 1

° ) tan” Ty
Y = = y(X) = = T S (5.12)

¢ y

2 -1 %1~ %5
tan 3 7.5
where

XT’ YT’ ZT is the ECI target position
XS, YS' Zs is the ECI sensor position .

In view of the problem formulation presented in this section, it is clear
that SDI sensor track processing is inherently nonlinear. Squares, square
roots, sines, cosines, inverse tangents and other nonlinear scalar computations
characterize the target state and measurement nodels. These nonlinear models
can be linearized about a "nominal trajectory and a linear parallel Kalman

filter used to approximate the solution.
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l SECTION 6 o
Iig
i:i
' CONCLUSIONS AND RECOMMENDATIONS .‘cf
(X}
.‘l‘=
o
-
l 6.1 CONCLUSIONS .‘:;:
- o
Based on the results of our Phase I study, the following conclusions can ﬁk
04
Il be drawn: Y
a. It is technically feasible to decouple the predictor and ba
' corrector equations in a standard Kalman filter for parallel si.
processing on multiple processors. ﬁﬁ
)
l b. The decoupling principle allows the parallel Kalman filter's !:?:?
predictor and corrector equations to be computed on separate
processors improving computational speed directly propor- 7?:
g tional to the number of available processing elements. to}
ol
sy
¢. The parallel Kalman filter (PKF) is "optimal" in the same sense 'zs
as the standard Kalman filter (SKF) since it was shown that the &J
' PKF is "mathematically equivalent" to the SKF (i.e., the recur- )
sive updates generated by the PKF are identical to the recur- "
_ sive updates of the SKF when combined in the proper fashion). (!
.A‘) .'i
AN
d. Parallel architectures, based on systolic array principles, ;"t

have been developed that are 1007 efficient when coefficient
reordering is employed,

e, It is feasible to extend the linear PKF theory to nonlinear
target tracking and estimation problems allowing an extended
Kalman filter to run on multiple parallel processors.

In summary, it can be concluded that parallel Kalman filtering based on
decoupling the filter's predictor and corrector equations is feasible, Both
linear and nonlinear filtering can benefit from this unique approach. Hence,
this research activity appears well suited for transition to the Phase II1
stage of the SBIR program,

6.2 RECOMMENDATIONS

Based on the conclusions derived from our Phase I results, the following

recommendations are presented:
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Further expand the PKF theory for nonlinear filtering and
estimation., Because the SDI target tracking problem tends to
be nonlinear, it is anticipated that target trajectory estima-
tion accuracy can be substantially improved using the nonlinear
equations directly,

Code, simulate and evaluate the PKF algorithms on a parallel
computer whose architecture can be reconfigured to validate
newly developed SDI algorithms and architectures. Although the
PKF algorithms have been analytically shown to be optimal and
stable, many issues regarding the implementation of the parallel
filter can be learned by coding and simulating the PKF algorithms
and architectures. For example, timing, synchronization, drift,
potential divergence of the error covariance update, model sensi-
tivities could have a major impact on the ultimate application of
the PKF. Hence, it is recommended that an expert system be
developed to manage PKF computations. The knowledge base of the
expert system could be based on mathematically sound "rules" such
as monitoring the positive definitieness of the error covariance
matrix,

Create a Battle Management Testbed Facility (based on industry-
standard hardware and software). A flexible/reconfigurable
parallel processing testbed is recommended to rapidly test and
evaluate the performance of newly developed SDI parallel pro-
cessing algorithms and architectures. Because SDI track proces-
sing tends to be a very large nonlinear filtering problem, a
scalable architecture (i.e., expandable based on problem size)
for nonlinear function evaluation is recommended, General-
purpose microprocessor/coprocessor technology augmented by a
programmable finite state machine is recommended to accommodate
a wide class of parallel algorithms. Four processors per card
are recommended to simultaneously compute the equations in the
decoupled PKF (i.e., two processors for the predictor and two
processors for the corrector per card)., Multiple cards (say
eight (8)) can be installed in the testbed to validate essential-
ly any parallel algorithm and architecture. An industry-standard
Vme bus is also recommended for several reasons: 1) Vme is a
very high-performance bus, 2) Vme is supported by several major
companies allowing the govermment to add "special function" cards
to the system,and 3) Vme is also standard in high-431, milspec
and ruggedized systems for actual field test of our PKF technology.

Select a realistic SDI problem to show the benefits of the PKF

technology. Because of the size and complexity of realistic SDI

target tracking applications, it is anticipated that even today's
supercomputer architectures will not be capable of solving these
problems in near real time. Due to the unique matching of the
PKF algorithms and architectures, it is anticipated that problems
that could not be solved otherwise in a reasonable time (at a
reasonable cost) can be solved on the proposed testbed. Thus, it
is recommended that a target tracking problem of major signifi-
ance to the SDI program be solved and benchmark performance docu-
mented so that future designs can be compared. Due to the
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"special" architecture of the Battle Management testbed it is
anticipated that it can be the standard to improve upon for the
next five (5; years.

6.3 SUMMARY

R

Based on the results in this report it is clear that_ihe PKF theory is
well developed, mature and ready to proceed to full-scale ;élidation on a
parallel processing testbed. Because the PKF technology has been needed to
solve several applications in the DoD for more than a decade, it is antici-
pated that once fully developed this technology can benefit several sectors
of the DoD. This is possible because the necessary technology has only
recently been available to tramsition the PKF theory into practice. Hence,
Systolic Systems would be pleased to continue this program under Phaéé'II

of the SBIR program,
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