
THE STATE UNIV NEW BRUNSWICK NJ LAB FOR COMPUTER
SCIENCE RESEARCH S Y LEVV ET AL 31 AUG 87

UNCLASSIFIED AFOSR-TR-88-853i AFOSR-86-0294 F/G 2016 U

MNSEOON~ i

7II-- -4

111111*1 U 11112
!11 11111-~4

BBr1C FILE COPYp
JECURITY CLASSIFICATION OF THIS PAGE

Form Approved

REP(OMB No. 070-0188

la EOTSECURITY CLASSIFICATION D A 1 5 4 7 RIG
"" . REOTAD-A 195 477 ~RIG

I UNCLASSIFIED

2a. SECURITY CLASSIFICATION AU ITILECTE 3 DI U I 1UN/ AVAILABLTY qftVnl

d MI uCu nU ApproveA f Bor P b -I

2b. DECLASSIFICATION/DOWNG GUl 0 1988 I disribut 10n u~nlimeoede -

4. PERFORMING ORGANIZATION 7 NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)

-. Rutgers State Univ AFOSR/NE

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Lab for Computer Sci Rsch Bldg 410

New Brunswick, NJ 08903 Bolling AFB, DC 20332-6448

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

. ORGANIZATION (If applicable)

AFOSR NE AFOSR-86-0294

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

* Bldg 410 PROGRAM PROJECT TASK WORK UNIT

Bolling AFB, DC 203332-6448 ELEMENT NO. NO. NO ACCESSION NO.

61102F 2305 B1

11. TITLE (include Security Classification)
ARCHITECTURES FOR OPTICAL COMPUTING

12. PERSONAL AUTHOR(S)

Professor Levy

13a. TYPE OF REPORT ,13b. TIME COVERED i14. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT

Annual I FRONO01Sep6 TO U1Aug87

16. SUPPLEMENTARY NOTATION

17. COSATI CODES | 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

- FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

We are investigating a Content Addressable Memory architecture for a digital optical

computer. This investigation is being funded by AFOSR, and is being carried out in

conjunction with work on digital optical computing devices at Bell Laboratories in

Holmdel, NJ. Because of the massive parallelism inhernet in the CAM organization it

is ideal candidate to constructed of the types of optical components being invest-
* aged at the Labs.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. AB|r ,_E JtY-BSR.TION

0 UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. D DTIC USERS
22a. NAME &F REPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
-. AM-.R GILES 202-767-4933 NE

DD Form 1473, JUN 6 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

U---- ~ *J**,/..,*%

Architecture for Optical Digital Computers

AFOSA.ib 88 be~

Rcm- I I... Fercat Report

Laboratory for Computer Science Research
Rutgers University

Saul Y. Levy
J. Storrs Hall

Miles J. Murdocca

NTaIS CRAI&I
DTIC TAB LI
Unan)noiJ , F]

*uBy......

B y

01s I i

Abstract

a, ', We are investigating a Content Addressable Memory architecture for a digital
optical computer. This investigation is being funded by AFOSR, and is being
carried out in conjunction with work on digital optical computing devices at Bell

Laboratories in Holmdel, NJ. Because of the massive parallelism inherent in the
* CAM organization it is an ideal candidate to be constructed of the types of optical

components being investigated at the Labs.

88 5 16 14 7

.r.!,1: -P ,S IS 11 .:-1

Overview

Optical computing devices, while holding great promise for major advances in
computing power and speed, are currently still laboratory prototypes at best. The
Labs are investigating at least three qualitatively different kinds of devices whose
properties have considerably varying implications at the low levels of architecture.

Devices and Logic

Huang's group at the Labs is investigating SEEDs, etalons, and QWEST-effect
devices. Of these, the SEEDs are being built into small circuits but run at electronic
speeds; the etalons run fast but singly, as cascadability is still around the comer;
and QWEST-effect devices are as yet unbuilt.

We have been focusing most of our efforts on architectures based on the etalons.
However, even the etalons have varying implications for the architecture. For ex-
ample, the currently projected cascadab]ity technique for etalons is a double fre-
quency scheme where complementary pairs of etalons are used. Under this scheme
each closed circuit in the logic diagram must consist of an even number of gates.

Under changing constraints such as these, our strategy has been to adopt a
top-down and generalized design process. We have designed a virtual machine (see
Virtual Machine Model attachment) as a starting point. We do architecture/circuit
designs to the dictates of this model, and independently do software and algorithms
research based on the model. The former is to prove the model is possible and
feasible; the latter is to prove it useful and generally applicable.

CAM Architecture

The CAM model is similar to a conventional machine. In its essence it is simply
a processor and a memory. However, where in a conventional machine the processor
specifies loading and storing in memory by a single address at a time, the CAM
processor can specify conditions, ranges, and collective functions.

The CAM memory consists of a set of words which are addressed either conven-
tionally or associatively. The conventional addressing is extended to allow specifying
ranges. Where in a conventional machine one can specify, "word 4256", in the CAM
we can specify "words 4201 through 5557 inclusive", or, addressing the words by
their contents: "all words containing a number greater than 17".

C ~ If we can specify a selected subset of the words in memory at once, we can
do something to them at once. For example, we can set them all to a new value
(it must be the same value), or add something to each one (it must be the same
something). We can also discover the address (instantly) of the first word which we
have specified in some way, ie, "give the address of the first word whose contents
are greater than 17 and less than S9."

Furthermore we can divide the memory into sections and use a different value
in each section: "Add 20 to all words in section 1, 52 to all words in section 2,

2

etc." The sizes of the sections are restricted; they must correspond with the tree
structure (see below). Furthermore, the value to be used with each section must
come from a word in that section.

Optical Implementation

We have been doing simulations at the bit level of various concepts of optical
machine organization. These are not part of an overall design process but merely to
test particular ideas. They are not realizeable with current devices, since the power
dissipation problem prevents us using a whole plane of the devices simultaneously.

The Connection Machine attachment gives a sample of the lower-level design
strategies we have been pursuing. We have done several such designs, though this
is by far the most ambitious. This design is actually the CAM design. The paper is
aimed at the Connection Machine architecture in order to display the generality of
the design techniques; however, the processing elements and memory are the major
parts of the CAM and the "as yet unimplemented" routers are not part of the CAM.

CAM Software and Simulation

CAML is a lower-level programming language whose primitives match those
of the CAM virtual machine (see the CAML attachment). CAML is our major
vehicle for proving the usefulness of our architecture. actually a subset of this
design. Again, we must stress that these designs are subject to constant change.
We are developing a CAML compiler/CAM simulator for testing and demonstrating
algorithms on the architecture. This is a high-level simulator in that it models the
abstract operations of the virtual machine. We have written the preliminary version
of the compiler front end and are currently engaged on the simulator.

The CAML compiler is a non-trivial exercise in state-of-the-art compiler design.
The processor allocation and similar tasks it performs, form a substantial factor in
the ease of parallel programming CAML provides. The compiler is constructed in
Common Lisp.

Algorithms and Applications

To prove the general usefulness of the CAM, we are investigating the set of
algorithms that underlie most common computing tasks. Our results to date are
very encouraging: the CAM shows applicability to a wide range of fields.

In this area we have been doing higher level algorithm design and some CAML
coding. Early this summer the simulator will be in a state where we can test CAML
codings. After this we will begin to put these algorithms into code.

* Although the CAM is not intended as a numeric engine, it is necessary that its
numeric performance be good if it is to be used as a general-purpose machine.
Thus we have looked at several typical numeric tasks and find promising results
in areas like graphics, where operations like multiplying many small vectors by
the same small matrix, occur frequently.

a 3

* The search and inferencing operations of AI/expert systems are well matched to
the strengths of the CAM. Indeed, most operations on a knowlege base can be
facilitated considerably, because we can use simple associative data structures
which support fast accesses and operations of all kinds, rather than having to
use complex and restrictive indexing schemes to speed one particular operation.

o The case- or example-based expert systems (Hillis & Steele) or statistics-
based ones (Wexelblat) can give useful results where a body of knowlege is
available but no structured theory of the problem is known. They require
enormous computational power, but are highly parallelizeable. This makes
them better suited to the CAM than a conventional architecture.

o The distributed hash encoding methods found in Knuth Vol 3 Sec 6.5,
based on single-bit manipulations, are particularly suited for CAM imple-
mentation. (These encodings are the mathematical link between conven-
tional "frame-based" AI and some of the neural net work such as that of
Touretzky.)

* We have produced good results in non-numeric programming fields such as
graph theory, network optimization and computational geometry. The set op-
erations basic to these algorithms are near-primitives on the CAM. We will
produce algorithms for:

o Min, max, member, insert, Vlelete, intersection, union, find.
o Spanning trees, shortest path, connectivity, biconnectivity, strong connec-

tivity, planarity, partitioning, depth and breadth-first search, and transi-
tive closure.

o Convex hull, 3-D convex hull, Delaunay triangulation, line and curve fit-
ting.

o Sorting and searching (although sorting is usually rendered unnecessary
and searching is usually a simple primitive operation).

o Means, medians, modes, histogramming, generation of permutations, bi-
nomial coefficients, random numbers, and so forth.

References

Hillis, D. and G. L. Steele, Data Parallel Algorithms, Communications of the
ACM, December 1986

Wexelblat, R. (private communications) Wexelblat implemented a proprietary
* (ITT-ATC) object recognition system which had teachability and partial pat-

tern recognition capability similar to a neural network model but was based on
the collection and recombination of well-defined statistical parameters of the
domain.

Touretzky, D. and G Hinton, Symbols Among the Neurons, International Joint
* Conference on Artificial Intelligence 1985

4

0

_4

The Virtual
Content Addressable

Machine Model

J. Storrs Hall
Laboratory for Computer Science Research

Rutgers University

Introduction

The CAM model is an architecture intended to bridge the gap between optical
and conventional electronic computers.

It derives in large part from the work of Caxton Foster.

It is a SIMD architecture with a very regular interconnection scheme.

Overall Structure

The CAM consists of three main parts: cpu, ram, and cam. The cpu and ram
form a conventional Von Neumann computer. In operation as a CAM, however, the
ram is largely used to hold scalar data and programs.

The cam (content addressable memory) consists of a large number (in proto-
types, thousands; eventually, millions) of small processing elements. Each element
is called a cam cell.

Each cam cell consists of some bits and the mechanism to perform simple
operations on them (a one-bit ALU). The number of bits per cell depends on the
technology and on the number of cells it is feasible to implement. If there are
relatively few cells (as in the prototype) we try to provide as many bits as possible,
since the cam cells may have to be time shared to represent a larger virtual cam.
In this case the data for all the virtual cells implemented on a single physical cell,
would be stored on that cell.

The cells operate in strict lockstep under broadcast instructions from the CPU.
Thus they are capable as acting as an array processor or doing associative matching.
There is the provision for doing communication between the processors; it is simple
and regular due to several constraints, and amounts to doing shifts up and down
the cells arranged in a single one-dimensional vector.

There is provision for preforming collective functions on the cam data, ie, count-
ing or summing items from all the cam cells. This is implemented as a tree in most

*designs.

O1

Functionality of the Cam

Single Cell Operations

Each cell can perform a variety of bit operations between bits in its memory.
These are sufficient to allow bit-serial arithmetic (even floating-point) between num-
bers. This arithmetic requires time proportional to the number of bits involved, but
since usually numbers are short (32 bits or less) and of fixed width, arithmetic is
considered a constant time operation.

Broadcast

The CPU can broadcast values which each cell may store or use as an operand.

Selection

As a result of comparisons, bit manipulations, or any other operation giving
0 rise to a boolean value, each cell may respond, setting a flag bit.

Check / Count

The CPU may discover if, in a given operation, any cell has responded and if
so how many did so.

N Activity

There is a flag bit in each cell which can be used to "turn on or off" the cell
causing it to obey or not to obey the broadcast instructions.

The active bit may or may not be physically the same as the response bit.
given the ability to move values between the bit(s) and the cell's memory, the
functionalities are equivalent. There may be no special bit at all, but a dynamic
choice of active or response use from among a cells bits.

Address Ranges

As part of any instruction, the CPU may specify a range of addresses (upper
and lower bound) in which the operation is to take place. Only active cells inside
the range take part.

Address / Max / Min / Sum

The CPU may obtain in a single step the address of the first responder, the
maximum or minimum value of all active cells, or the sum of all active cells. The
partial sum, min, or max (ie that of all cells with a lower address) may be formed

2

*

in all active cells in one step.
The address of each cell may be formed therein for all cells in one step.
In the electronic cam there is a treeshaped connection between the cells which

forms them into a systolic array for performing these functions. In the optical
architecture the tree connections are present as a subset of the standard connectivity
for the machine.

Shifting

In one step, data from all cells may be shifted in parallel some distance up
or down the array. In the optical architecture this is a simple consequence of the
connectivity; in the electronic version it is more problematical and is implemented
as a series of shift registers, kludges, and barrel shifters. The time to shift is inde-
pendent of the distance moved and the number of cells participating, but depends

Son the amount of data moved from each cell. Again, since this is small and fixed,
it is usually considered constant.

Local Broadcast

Local broadcasting means dividing the cam into a set of contiguous substrings
of cells, and then taking a value from the first cell of each substring and sending it
to the other cells in the substring, all at the same time. Local broadcasting can be
done on the cam if the length of each substring is the same, and is a power of two,
and all the substrings are aligned to addresses that are multiples of the length.

Formation of running sums, maxes, and mins can also be done in substrings
of the same constraints. For broadcasting, the value broadcast does not have to be

pi from the first cell, but can be from any cell, say the ith cell, where i is the same for
each substring; or it can be from any active cell, assuming each substring has only
one active cell.

3

S, ,

DESIGN TECHNIQUES FOR AN
OPTICAL CONNECTION MACHINE

J. S. Hall
S. Levy

M. J. Murdocca

Rutgers University, New Brunswick, New Jersey

A BSTRA CT

The Connection Machine (CM) is an advanced
parallel processing computer designed and built by INPUT OUTPUT
Thinking Machines Corporation. The architecture is
noted for high connectivity between a large number ! t
of small processors. Free-space optics can provide a

large number of regular connections such as perfect
shuffles and banyans, which we explore in an optical i ,'
design of the CM. Recent work on optical connections

* provides design techniques for using regular free-space

interconnects for small logic units and for random
access memory. We show designs for the memories,
arithmetic logic units, flag registers, routers, and hy- |
percube using free-space interconnects. The final de-
sign consists of optically nonlinear arrays of logic de- orAL LOGIC
vices interconnected in free space with simple passive

components such as beam-splitters, lenses, and rnir-
rors. The design presented in this paper demonstrates ig 1. lit o two dimesina
that re'ulr fre- r-e interconnects are sitaHe foinput image is split into two identical images that are
use in the design of an optical computer composed of each masked, combined, and regenerated. The array
densely connected simple circuits, without incurring of logic devices performs a simple Boolean function
significant costs in circuit depth or component count. such as logical NOR, and regenerates the signals.

1. BACKGROUND are shifted with respect to each other and are com-
bined onto an array of opticai iogic devices. An out-

A number of optical logic devices have been proposed put can be produced or the system can be wrapped
in recent years for applications in optical computing back onto itself. The array of optical logic devices

* [1-4]. From the view of a computer designer, there is a regenerates the signals so that infinite cascadability
fundamental difference between these types of devices can be achieved. The goal of this setup is to con-
and conventional electronic devices. That difference is nect the output of every logic gate with the ouput of
that the logic gates are oriented normal to the surface each gate's neighbor a fixed distance away, except for

'S-y of the substrate, with no interaction between logic connections that are masked out. The logic opera-
.O gates on the chip. Components are interconnected tion performed by the array of optical logic devices
* in free space. using optical means such as mirrors, is assumed to be the same over the entire array, such
% lenses, gratings, beam-splitters, and masks to achieve as 2-input 2-output NOR gates in order to place the
v. a desired interconnection topology. Fig. 1 shows how fewest requirements on the logic devices, which are

I,. an array of optical logic devices can be used in an currently the most critical components in the realiza-
optical computing system. tion of an optical computer.

A two-dimensional image is passed through a There is a 3-level hierarchy of optical setups that
_ beam-splitter where it is split into two identical im- we consider here. There are alpha modules as shown

ages. Each image is passed through a two-dimensional in Fig. 1, beta modules, and gamma modules. The
mask, where selected bits are forced off. The images alpha module implements a simple split-shift-combine

0

operation among the elements of an array, producing INPUT

interconection patterns as shown in Fig. 2, where two
alpha modules are arranged in tandem. I

7X7ib Optical Logic Devic

LOGIC

Light OUt Fig. 3. Beta module. A two-dimensional input
image is passed through a number of alpha modules

Fig. 2. Interconnection patterns produced by before an output is produced. In this example. the
alpha modules arranged in tandem. output is looped back to the input. The amount of

shift produced in each alpha stage can be different,
which allows for greater flexibility in the interconnec-

Alpha modules can be arranged in tandem with a tion topology.
different shift applied in each stage as shown in Fig. 2,
so that greater flexibility in interconnection topology 11111T ounw

is achieved as circuits grow deeper.
It is reasonable to expect the size of optical logic

arrays to reach 256 x 256 = 65536 elements, but not
much larger due to a limitation on the amount of
information that can be passed through a practical
lens, commonly referred to as space-bandwidth prod-
uct . The Connection Machine [5] is a computer that
is made up of over a billion switching elements, so we
can expect that a single 65536 element array in an BETA MODUL

alpha module will not be sufficient to implement such
--' a computer effectively. For this reason we propose

.- a second level of hierarchy containing beta modules,
which are composed of a number of alpha modules
arranged in tandem as shown in Fig. 3.

The use of beta modules improves the amount
of information that can be processed in a system by
providing alternative interconnection schemes, but a Fig. 4. Gamma module. A two-dimensional

* large computer cannot be made into a single narrow input image is split into four identical copies that are
pipeline without incurring an intolerable latency. For regenerated and passed to beta modules where they
this reason, we propose a higher level in the hierarchy, are processed. Outputs are produced in parallel and
a gamma module which is composed of a number of are collected.
beta modules in parallel. A gamma module is shown
in Fig. 4.

* The input is split and regenerated as appropriate collected and regenerated as needed. We use these
before being passed to beta modules, where the data is three levels of hierarchy in designing the architecture
processed and output is produced. The outputs are discussed in the remainder of this paper.

2

VI0 I

The next section describes the Connection Ma- The CM makes use of a regular interconnect (an
chine (CM) and identifies the significant parts that n-space hypercube) between the processing elements
must be redesigned for free-space interconnects. Sec- (PE's). A 4-space hypercube is shown in Fig. 6.

-. tion 3 details the designs for each of these compo-
nents. Section 4 describes the design of the hypercube
interconnect. Section 5 discusses pipelining at the

- gate level. Finally, we conclude with the remark that "
" the techniques used here in the design of an optical

CM provide sufficient connection power and flexibility
despite the strict regularity of the interconnects.

2. THE CONNECTIONMACHINE

,%" The Connection Machine (5] is a massively parallel
computer architecture consisting of a large number of
1-bit processors arranged at the vertices of an n-space
hypercube. Each processor communicates with other
processors via routers that send and receive messages
along each dimension of the hypercube. A block di-
agram of the CM as described in [5] is shown in Fig. Fig. 6. 4-space hypercube. Each vertex of the
5. hypercube is a PE that has a unique binary address.

-. PE's that are directly connected to other PE's can
...-| o [s - rbe found by inverting any one of the 4 bits in the

Mmrory Bus ir U L address.

32Mbt.s Free-space optics is good at providing regular
So _ -L M M] -] connections via perfect shuffles [6] and banyans (7]

which can both be used to implement the hyper-

" - cube (see Section 4), so that we may consider optical
] M means for implementing the interprocessor intercon-

r-i-i r n-i r nect. Within each PE regular interconnects can be
L L0 used as well, using techniques described in [7-9] which

6conntion Machine . are repeated here for reference. The use of regular

Lii -l UM .M interconnects for the PE's is particularly interesting
because it allows pipelining at the gate level, which
increases throughput and decreases the size of the---0

,- s00 t/sac machine by sharing logic and memory among PE's.
5-'S On the down side. gate-level pipelining increases la-

F B g hrtency and introduces the problem of synchronizing
-. Fig. 5. Block diagram of the CM-1 prototype PE's that are in different phases of operation. and we

Connection Machine. address these issues in Section 5. Gate-level pipelin-
ing is made possible by pulsed optical power which

T t e c i o embeds a clock into the power supply, and by reduc-
The host computer is a conventional von Neu- ing signal skew with optical connections that are all

0 mann iiichine such as a VAX or a SUN computer of virtually equal length (10].
that runs a program written in a high level language As described in the previous section, an alpha
such as LISP or C. Parallelizeable parts of a high level module is the most primitive optical setup we con-

-% program are farmed out to 2" processors (216 proces- sider. When the shifted arrays of an alpha module
sors is the size of the CM-1) via a memory bus (for are superimposed, a large number of connections are
data) and a microcontroller (for instructions) and the made, with one connection made per element per ar-

* results are collected up via the memory bus. A sep- ray. The use of a magnification step allows the super-
arate high bandwidth datapath is provided for input imposed images to form a perfect shuffle pattern as
and output (I/0) directly to and from the hypercube. described in [6], or a simple banyan network can be

- 3

implemented by varying the amount of shifts in each
alpha stage. A beta module making use of banyan
connected logic gates is shown in Fig. 7.

4K MEMORY
5~ ALU

12 12
A Addros B Addr1

Res

Fig. 8. Block diagram of a single Connection
Machine processing element, as described in [5].

.r. 3. THE PROCESSING ELEMENTS AND ROU-
, Fig. 7. Banyan connected optical logic gates. TE PE.,. , TERS

The key to effectively using this regular intercon- In the model of a PE shown in Fig. 8, an exter-

nect to implement arbitrary functions lies in masking nal controller (the microcontroller shown in Fig. 5)
out unwanted connections and positioning inputs and selects 2 bits of memory via the A address and B ad-
outputs appropriately. Algorithms for doing this are dress lines. Only one value can be read from memory
presented in (7-9], and are repeated here in small de- at a time, so the A value is buffered (delayed, here)
tail to show how the design techniques extend to the while the B value is fetched. The controller selects a
the various parts of the CM architecture. We make no flag to read, and feeds the flag and the A and B values

* attempt to design the host computer or the microcon- into an algorithmic logic unit (ALU) whose function it
- troller since they contain a fair number of embedded also selects. The result of the computation produces a

state machines, which the design techniques used here new value for the A addressed location and one of the
are not easily equipped to handle. flags. The ALU can be implemented with a simple

%,, Significant components in the CM that must be combinational logic unit as described in the next sec-

redesigned for free-space optical computing include tion. Memory is an interesting case, and is described
• the hypercube. the PE's. and the routers. The PE in detail in the section that follows. The Flag register

is ftirther broken down into one 16-bit flag register, a is a special case of memory since it needs address de-
3-input 2-output ALU, and a 4096 bit random access coding as well, so it is described as a small example
memory, as shown in Fig. 8. of a random access memory. The router is discussed

.* This model differs from the original design of a in Section 3.3.
CM PE by dedicating one router to one PE, as op-

* posed to one router serving 16 PE's as in the original 3.1. The A LU
design. This tradeoff was made in order to simplify

A, the design of the router so that the techniques we The ALU takes three 1-bit data inputs, two from
use here apply directly. More sophisticated design the memory and one from the flag register, and 16
techniques that handle embedded state machines are control inputs from the microcontroller and produces
needed in order to implement the original design of two 1-bit data outputs for the memory and flag reg-

* the routers effectively. isters. The ALU generates all 2' = 8 combinations
Designs of these components using free-space de- (minters) of the input variables for each of the 2 out -

sign techniques are described in the following sections. puts. 8 of the 16 control lines turn off the nunterms

4

0%

that are not needed in the sum-of-products form of where the external control lines enable and disable
each output. The technique described in [7] generates selected combinations. The regularity of the inter-
a near-optimal depth circuit for a programmable logic connect reduces signal skew, and the pulsed optical
array (PLA) that implements the ALU, as shown in power supply used for logic gates such as SEED's [1]
Fig. 9. and OLEs [2] guarantee that any signal skews will

not accumulate for more than one level, so that each
level of logic can work on a different problem with-

- out interference from the other levels. Thus, even
though the ALU shown here is made up of 176 two-
input, two-output AND and OR gates in 10 levels, it
is responsible for implementing 10 ALU's each in a

I ,different phase of operation. Synchronization among
9phases is readily handled and is discussed in Section 5.

IThe actual cost per ALU then is 176/10 = 17.6 logic
Cgates. This number decreases as fanin and fanout be-

come greater than 2. It is reasonable to average the
." . Z....................... hardware over the total number of operations being

performed, at least for the CM, because the CM is
. . made up of a large number of identical elements that

would have to be realized in one form or another re-
gardless of pipelining. In a 64K node design of a CM,
only 64K/10 nodes need actually be constructed.

1^ IA I3 .2. The Memory and Flag Register

A computer memory is called random access if any

Fig. 9. Externally controlled ALU using the word of the memory can be accessed in an equal

PLA design technique. Implementation is shown for amount of time, independent of the position of the
. word in the memory. Usually the time is logarith-, , ~dual-rail logic using AND gates (boxes with inscribed wor .ntemmr.Uuly h iei o ih

,- squares) and OR gates (boxes with inscribed crosses mic in the size of the memory. That is, if a random
Dashed lines indicate masked connections access memory (RAM) contains N words, then any
Delement of the memory can be accessed in C[logf NJ

time, where f is the fanout (here, we assume a fanout

The PLA design technique works by generating of 2) and C is some constant. For a RAM of size

. all 21 minterms of n variables in n + I levels of shuf- N, M = log2 NJ address bits are needed to uniquely

fle connected (or banyan connected) AND logic gates, identify each word. The address bits are fed to the
followed by generating functions in n+ 1 levels of shuf- address decoder of the RAM which selects a word forSfie connected (or banyan connected) OR logic gates. reading or writing via an M level deep decoder tree.

In Fig. 9, all combinations of the inputs m, Mob, and Read and Write control lines determine whether the
f are formed after the fourth level of connections (on operation is to read or write at the addressed loca-
the fifth row of logic gates from the top). In order to tion, and data lines provide a means for transferring

generate a function, the next step is to logically OR a word to and from the memory.
the minterms into functions via another n + I level Optical implementations of the decoding func-

- deep banyan structure. Here, we violate that method tion and the storage function must both be imple-

* by adding a fifth level of twice the width which con- mented in order to realize an all optical RAM. The

tains a non-standard interconnect. We do this in or- decoding function of a RAM can be satisfied with the

der to share the minterm generation logic over both top half of a PLA structure [7] as shown in Fig. 10.

output functions f and m.. The bottom of the decoder tree is 32 bits wide in

The AND and OR gates can be replaced with all this example and there are 16 unique addresses, so 16

NOR gates or all NAND gates as the implementation two-bit words of memory can be accessed in five lev-

* may require as long as the connections are changed to els of logic. If we allow both sides of the decoder tree

correspond to the new logic. Only 3 angles of connec- to be traversed simultaneously, by forcing an address

tions are needed per level including the control level line to be active as well as its complement, then the

5

1111 1110 11 iioioioio101011 0000111 1ii001010100l 00100001o00o o 111 10 101 100 011 010 001 000 0" d ' d o, d ata do, doo

Fig. 10. Decoder tree for 16 word, 2-bit random Fig. 11. 8-word decoder (left half) and 8-word
access memory using the AND matrix ofa PLA struc- memory (right half). All boxes are 2-input / 2-output

" ture. All boxes are 2-input / 2-output AND gates. AND gates. aj are address bits and d.i are data bits.
Address inputs a, are at the top and addressed words
are at the bottom.

111 110 101 100 011 010 001 000 d d d d,,: d

size of the accessed word doubles and the number of
stored words halves. This can be continued until the
word size equals the size of the memory and the en-

tire memory is read out in parallel. We can make use
of this property here to share one memory structure

among a number of PE's, but a better approach is to
make use of gate-level pipelining as described in Sec-
tion 3.1. A large parallel readout is advantageous for ', d,, de, di0 d, do0 d., do"

applications where all PE's access the same locations
in the same sequence. An 8-word, 2-bit memory will
be used for the remainder of this section for space con-
siderations, but extensions to larger memories should Fig. 12. Memory collection tree. The selected
be obvious. word appears at m1 regardless of its original position

The stored words of the memory travel alongside in memory. The stored data di travel alongside the
the decoder tree as shown in Fig. 11. collection tree. All logic gates are OR gates.
A level has been added to the bottom of the memory
so that the uniquely defined address pair from the

6 decoder tree is ANDed with the stored words of the a single word or group of words. For parallel readout,
memory, resulting in the selection of a single word. there is no need for the collection tree.
We are allowed to deviate from the traditional log2N Writing into memory can be accomplished in a
interconnects such as the perfect shuffle and banyan similar fashion, by using the decoder tree to enable
and use a specialized regular interconnect in the last the position to be written and then writing the ele-
stage of Fig. 11, as long as the interconnect can be ment at that location. Since the location to be written
implemented with simple split and shift operations, is not known a priori, a log2N expansion tree can be
which is the case here. The result of the AND opera- used to fan the word to all memory locations before

tion is funneled through a 1og2N fanin structure to a the location to be written is enabled.
fixed output location as shown in Fig. 12. The cost of implementing the memory in terms

Note again that the stored words of the memory travel of gate count is slightly more than one switching com-
alongside the memory collection tree, because every ponent per stored bit of information, and the latency
signal moves on every time step, and we must account through the memory is 21og2 N + 2 gate delays for

for the state of the memory at every stage. The mem- an N bit memory. This cost is arrived at by using

ory collection tree is necessary only if we are selecting gate-level pipelining and free-space optical delays for

6

'p%

6N

storage. For example, consider one row of logic gates Data St, Fl"-'r

in Fig. 11. For an N bit memory, the width of the ad- Emp, E_ ty/Not Pty Data 2-,, __
dress decoding portion is N gates and the width of the sufo trol Dtoil ..

stored words of the memory is N gates. If the memory Serial aa, in Flo,.h,,i 0 (FLO)

is pipelined at the gate level, then each stage of logic
services a different memory and address request, so - D D , 0 0 o _
that the cost of implementing a single memory is 2N LUF

gates for the Read logic. When the stored words of Flo-tI (Fu)

the memory move from one stage to the next, no logic
function or regeneration is needed except at the bot- C E D D

tom of the address decoder where the selected word is ,- (extracted. Thus, a simple optical delay will keep the

stored words of the memory intact while the address
is being decoded, giving a final cost for the memory L
of between one and two switching components per
stored bit of information. The number varies depend-
ing on how large the memory is. The cost of the stage E D 0 0 0

where the selected word is extracted becomes smaller 6
for large memories. Serial data out

A similar analysis can be used for the Write logic,
*which would bring the total cost of the memory to Fi.1.Srawitnitondedngutf4

less than 2 switching components per stored bit of Fig. 13. Serial writing into and reading out of 4
information, and no more than 2N gate delays for an buffers. Control boxes (marked with C's) keep track
N bit memory. of whether a buffer (marked with D's) is empty or

The Flag register is a small example of a RAM. full. Data enters and leaves the buffer bank in serial
fashion.

Address decoding is needed in the CM flag register to
isolate a single bit, and the method of address decod-
ing just described will suffice for this purpose. Read- records the current state of the buffer (EMPTY /
ing and writing the register is the same as for the NOT EMPTY) and is used to generate the Flow-thru
RAM. The major difference between the Flag regis- control signals which cause serial data to be written
ter and the RAM is size: the Flag register will be only into an empty buffer or read out of a full buffer. The
64 gates wide (for 32 dual-rail logic bits) and 10 levels diagram shown in Fig. 14 shows how the appropriate
deep. Flow-thru signals for writing into the buffers can be

generated with a PLA.
3.3. The Router The mechanism for generating the control lines

can be implemented with a 5-input 4-output PLA us-
PE's communicate with other PE's through routers. ing regular interconnects between stages of identical

Each router services communication between a PE logic gates as described in [7]. The actual design of
and the network (for simplicity, we assume there is the PLA is not detailed here because any of a number
one router for one PE, unlike the CM-1 design where of priority schemes can be used, simply by changing
one router services 16 PE's) by receiving packets from the mask patterns of the PLA. The Read control cir-
the network intended for the attached PE, injecting cuitry is similar to the Write circuitry just described
packets into the network, buffering when necessary, except with a different PLA and with a line to the PE
and forwarding messages that use the router as an indicating there is a packet waiting to be delivered.
intermediary to get to their destinations.

When a packet comes into the router from either 4. THE HYPERCUBE
the network or from the PE, an available buffer is
identified and is used to store the packet as shown in The 16-space hypercube provides 16 connections, one

Fig. 13. for each dimension, for each PE. In any technology

Data to be written is fanned out from the Se- fanin and fanout are limited to a number typically less
rial data in line to all 4 buffers, and data that is to than 16, so that 16-dimensional connectivity requires
be read is fanned in from all 4 buffers to the Serial more than just one level of logic or regeneration. Here,

. data out line. A separate control box for each buffer we assume fanin and fanout are both limited to two

7

0ld 1

Data strobe

C E

C E

5-i p ut
.- output Add incoming packet to

PLA buffer, if available.

FLO
FL1
FL2
FL3

Fig. 14. Control circuitry for finding and en-
abling an available buffer.

so that 16-space connectivity is achieved in no less
than FIog216] levels regardless of the means used for
interconnection. A banyan or perfect shuffle can be
used as the [1og216] interconnection pattern for the
input and output trees of a 16-space hypercube vertex
as shown in Fig. 15, where one leaf node of each tree Fig. 15. Perfect shuffle connection pattern at a
connects the PE to one of the 16 dimensions of the vertex of a 16-space hypercube. Upper half is the in-
hypercube. coming network, bottom half is the outgoing network.

The upper half of the diagram shows the incom- Shaded boxes indicate nodes that make up the shuffle
ing flog2 16] = 4 level perfect shuffle equivalent of equivalent hypercube. There is one input/output box
the 16-space hypercube vertex while the bottom half for each dimension of the hypercube.
shows the outgoing shuffle equivalent hypercube ver-
tex. A hypercube interconnect can be realized with
perfect shuffles in a comparable component count as in the CM-i and about 216 switching components can
would be needed for a direct implementation given the be expected in an optical array, which means that ap-
same fanin and fanout constraints, for machines with proximately 230/216 - 214 arrays will be needed. In

* small dimensionality (= 16). We cannot implement the worst case, every array will need to be connected
the entire CM hypercube with one array, however, so to every other, so that 1og2(2 4) = 14 additional lev-
we are forced to break up the hypercube over a num- els will be needed across the entire hypercube to com-
ber of arrays. In order to break up the hypercube pensate for the fact that 230 components cannot be
without adding significant cost to the design, we can placed on a single array. This cost of 14 gate delays
use the property that a large perfect shuffle (or nearly is quite small when compared with the size of the

* any other log2N interconnect) can be realized with a entire machine and when consideration is made that
perfect shuffle of smaller shuffles. Fig. 16 shows a this cost may be the most significant packaging con-
16 wide shuffle implemented with four 4-wide shuffles straint, unlike other technologies where capacitance
that are shuffled together. and inductance from densely packed conductors limit

The full connectivity of the original shuffle is still the speed through a computer.
realized, but the cost of an additional stage of logic

* has been added. In general, this cost adds up to one 5. DISCUSSION
stage of logic for each decomposition of the shuffle.
There are on the order of 2o switching components All PE's must be equally accessible from any other

8

SII

eral the cost is ni - I additional nodes for an n level
deep decoder tree. The increased latency is n levels,
so that the overall cost of pipelining at the gate level
is a factor of two in gate count and and a factor of
2 in delay, while the saving in system gate count is

"V n - 2 logic units. This tradeoff is made possible here
because of the large number of identical logic units in
the CM. In this way, the additional gate count caused
by the strict use of regular interconnects at the gate
level is offset by the savings gained in making use of
gate-level pipelining.

6. CONCL USION

. - An all-optical design was presented for the Con-
•, / nection Machine, using regular free-space intercon-nects between arrays of optical logic devices. The de-

sign demonstrates that existing digital optical design

techniques based on free-space optics are capable of
implementing efficient parallel optical architectures.

Z Pipelining at the gate level is made possible by reg-
int Fig. 16. A 16-wide perfect shuffle decomposes ular interconnection patterns. Component count is
i au oo - e f s lincreased due to the forced regularity of the inter-

connects, which is offset by increased utilization from
PE, so that the pipelined PE's that are in different gate-level pipelining. In general, regular intercon-
pnects such as perfect shuffles, banyans, and crossovers
phases of operation must be synchronized. Fig. 17 are easier to implement optically using mirrors, lenses,
shows how this can be done using a fanout tree with and gratings than more complex interconnects that
optical delays. may require holograms or waveguides. We conclude

WRJT that the strict use of regular free-space interconnects
DELAY in the design of an optical CM incurs little or no ad-

ditional cost when compared with a design using ar-
LoGic STGE bitrary interconnects.

LOGIC STAGE 1 7. REFERENCES
,,LOGIC STAGE 2

, *LOGIC STAGE 3 [1] D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H.

LOGIC STAGE 4 Wood, C. A. Burrus, A. C. Gossard, W. Wieg-

STAGES 4mann, "The Quantum Well Self-Electrooptic Ef-
[LOIC SAGE] fect Device: Optoelectronic Bistabilitv and Os-

LOGICSTAGE I cillation and Self-Linearized Modulation", IEEE

LOGIC NTAGEI \ J. Quant. Electron.,QE-21, 1462, (1985).

7 [21 J. L. Jewell, A. Scherer. S. L. McCall, A. C. Gos-
0L sard, and J. H. English, "GaAs-AlAs monolithic

microresonator arrays," Appi. Phys. Lett.. 51,
Fig. 17. An 8 level pipelined logic unit. 2, pp. 94-96, July 13, 1987.

[3] H. M. Gibbs, Optical Bistability: Controlling Light

The output of the 8-level logic unit is fed to a de- with Light, Academic Press Inc., New York.
lay tree, where each output is marked in the diagram 1985.
by the amount of delay along that path. The cost of
the fanout tree is 8-1 7 = fanout nodes, and in gen- [4] S. D. Smith, A. C. Walker, F. A. P. Tooley. and

9

4

B. S. Wherret, "The demonstration of restoring
optical logic," Nature, 325,pp. 27-31, Jan. 1,
1987.

[5] W. D. Hillis, The Connection Machine, The MIT
Press, 1985.

[6] A. W. Lohmann, "Optical Perfect Shuffle," Appl.
Opt., 25. No. 10, 1530, (May 15 1986).

[7] M. J. Murdocca, A. Huang, J. Jahns, N. Streibl,
"Optical Design of Programmable Logic Ar-
rays," to appear in Appl. Opt.

[8] M. J. Murdocca and B. Sugla, Design for an Opti-
cal Random Access Memory, submitted to Appl.
Opt.

[9] M. J. Murdocca and N. Streibl, "A Digital De-
sign Technique for Optical Computing," Topical
Meeting on Optical Computing, Technical Di-
gest Series 1987, 11, (Optical Society of America,
Washington, D. C., 1987), pp. 9-11.

[10] Prise, M. E., Streibl, N., and Downs, M. M.,
"Computational Properties of Nonlinear Optical
Devices," Topical Meeting on Optical Compu-
ting, Technical Digest Series 1987, 11, (Optical
Society of America, Washington, D.C., 1987),
pp. 110-112.

This project was funded in part by Air Force
Office of Scientific Research grant AFOSR-86-
0294.

4

10

U

*11 1" Ijj

