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PREFACE

A goal of the Defense Nuclear Agency (DNA) electromagnetic pulse

phenomenology program is the invention and development of new, im-

proved methods to calculate source region electromagnetic pulse
(SREMP) environments. As part of the ongoing contribution of Pacific-

Sierra Research Corporation (PSR) to that program, this report sup-

plies the mathematical development of new and improved techniques to

calculate SREMP.

This report represents one area of the PSR research effort in

SREMP. This document was prepared as one volume of the multivolume

final technical report for DNA under contract DNA 001-85-C-0235. The

technical monitor was MAJ William J. Farmer.
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CONVERSION TABLE

Conversion factors for U.S. Customary t0 metric (SI) units of measurement

MULTIPLY —§ BY & TOGET

TOGET <& BY @— DIVIDE
angstrom 1.000000 XK -10 metere (m)
atmaosphere (norma!} 1.01328 XB o2 kilo pascal (kPal
bar 1.000000 XX -2 kilo pascsl (kPa)
bam 1.000 000 X £ -28 moser? (md)
British thermal unit (thermochemical) 1.084350 X E 3 Joule (B
calorie {thermochemical) 4. 184 000 Joule (D

cai uhonnoehomul)/cmz

curie

degree iangle)

degree Fahrenheit

electron volt

erg

erg/second

foot

{oot-pound -force

gallon (U.S. liquid)

nch

jerk

joule/kilogram (J /ig) (radiation dose
absorbed)

kilotons

kip (1000 Ibf)
kip/inch® (ksi)
keap

micron
mil

mile (intarnational)

ounce

pound -force (lbs avoi rdupois)

pound -force wch

pound <{oroe /inch

w-ﬂ-(om/!ootz

pound force/inch pai)

pound -mass (lbw avoirdupois)
poud-mn-(ouz (moment of inertia)

poud-vnnﬂoota

rad (radiation dose absorbed)
roentgen

shake
slug
torr (mm Hg, 0°C)

4.104000X £ -2
3.70000n X E «1
1. 745329 X2 -2
" (t°1+ 450.87/1.8
1.60219 XE -19
1.000 000 X E -7
1.000 000 X E -7
3.043000 XE -1
1.385 818
3.785412 XE -3
2.540 000 X E -2
1.000000 XE .9

1. 000 000

4.183

4. 448222 X E +3
6 894 7STXE 3

1.000000 XE «2
1 000000 X E -6
2.540000 X X -5
1.609344 XE »3
2.834 982X E -2
4. 48 222

1.120 848 XE -1
1.7T1200XE .2
4. 788026 X E -2
6. 804 787

4.535 924 X E -}

4214011 XE -2

1.601 846 X E 1
1.000000 X E -2

2579700 XE 4
1.000000 X £ -8
1459390 X R «1
1.33322 X£ -1

mega )“l./-z (Iu/rnz)

*gigs becquere! (GBq)
redian (rad)
degree keivia (K)
youle ()
roule (J)
watt (W)
metar (m)
joule (B
tu-r: (-3,
meter (m)

Joule (3)

Gray (Gy)
tarajoules
newton (N)
kiio pascal (kPa)

newton /nz
(N-s/m%)

metar (m)

metsr (m)

meter (m)

kilogram (g)

newton (N)

newton-meter (N-m)

newtoa/meter (N/m)

kilo pascal (kPa)

kilo pascsi (kPa)

kilogram (ig)

kilogram -mrz
(g - m2)

kilogram /luurs
g /m3)

*Gray (Gy)

coulomb /kilegram
/g

second (e)
kilogram (ig)
ktlo pescal (kPa)

*The becquere! (Bq) is the ST unit of radicactivity; 1 Bq = 1 eveat/s.
**The Gray (Gy) is the 31 unit of absorbed radistion.
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SECTION 1
INTRODUCTION

Recently, using Green's function techniques, we reduced a time-
dependent SREMP problem to the solution of a set of integral equations
for tangential values of electric and magnetic fields, E, B, on the
ground surface [Van Alstine and Schlessinger, 1986]." Whea substituted
into formal solutions for E and B, these surface values give a
complete soluti&n to the problem. The integral equations and formal
solutions are an extension to three dimensions and arbitrary Compton
currents, of earlier results using Laplace transform techniques for E
and B fields depending on only one spatial variable (height) generated
by Compton currents depending only on time. In this paper, we use the
new three-dimensional equations to generate exact solutions for spe-
cial cases that include SREMP fields that are produced in three dimen-
sions above a perfectly conducting ground, SREMP fields that are
produced in three dimensions in air and ground when air and ground
conductivities are equal but time varying, and SREMP fields in one
dimension when the time-dependent ground conductivity is a constant
multiple of the time-dependent air conductivity. 1In addition, we show
how the new three-dimensional equations contain our early one-
dimensional results in two independent forms.

First we simplify our formal solutions for B and E by recasting
them in a new form that makes clear their connection to underlying
vector potentials. We then solve our integral equations for the case
of an infinitely conductive ground and use the solutions to obtain B
and E everywhere for that case.

Next, we solve our integral equations for the.case of equal but
time-dependent air and ground conductivities by using integral
properties of the Green's function. We show that the exact solution

*van Alstine, P., and L. Schlessinger, Source Region Electro-
magnetic Effects Phenomena, Vol. 4, New Methods for Determination
of Three-Dimensional SREMP Environments, Pacific-Sierra Research
Corporation, Report 1588, December 1086.




provided by our method is that given by the full-space vector-
potential (which exists only in this case). Finally, we examine the
(one~dimensional) case in which B, E, and the current J depend only on
height (or depth) and time. We obtain the corresponding formal solu-
tions for B and E as well as the integral equations that determine
their values at the ground surface. We show that when J is further
restricted to depend on time only, our integral equations and solu-
tions reduce to those discovered through Laplace transform techniques
in our early work [Schlessinger, 19847.% We also find that not only
do the one-dimensional equations and solutions emerge as the remnants
of our three-dimensional equations and solutions for currents and
fields that only depend on height and time, but because of the struc-
ture of Maxwell's equations, the same one-dimensional equations and
solutions govern the behavior of three-dimensional fields and currents
averaged over transverse spatial variables (x and y).

We then solve our new one-~dimensional equations for height-
dependent J for the case in which the (time-dependent) ground conduc-
tivity is a constant multiple of the (time~dependent) air
conductivity. We find an exact integral solution that is general
enough to include previously found exact solutions for the cases of
equal air and ground (time-dependent) conductivities, time-dependent
air but infinite ground conductivities, and unequal but constant air
and ground conductivities,

Using particular realistic forms for the Compton current, we
evaluate our solutions for the fields in three dimensions above a
perfect conductor and the fields in one dimension when time-dependent
air and ground conductivities differ by a constant multiple. These
explicit solutions provide insight into the general behaviaor of SREMP
fields as well as analytic test solutions for comparison with numeri-
cal solutions for more general cases. In a subsequent report, we will
present the numerical results for SREMP fields obtained from these
solutions and compare them with those obtained by other methods.

*Schlessinger, L., Electromagnetic Effects Phenomena, Vol. 1,
Analytical Solutions for SREMP Environments, Pacific-Sierra Research
Corporation, Report 1437, November 1984 (subsequently published by the
Defense Nuclear Agency, Washington, DC, as DNA TR-84-397-v1).




SECTION 2
SIMPLIFICATION OF FORMAL SOLUTION

In this section, we use vector identities to rewrite the integral
expressions for B and E + J/¢ of Van Alstine and Schlessinger [19861"
in two simpler forms. The first [Eqs. (7) and (9) below] makes clear
the role played by image currents and is valid everywhere. The second
(Eqs. (11) and (12)] dispiays B and E + J/¢ as curls of vector quan-
tities (everywhere but on the ground surface) and thus, explicitly
demonstrates their divergencelessness (except at the ground). Both
possess simple limits for infinitely conductive ground.

In Van Alstine and Schlessinger [1986],1 we used Green's function
techniques to derive a formal solution for B above and below a plane
ground surface provided only that the (time-dependent) air and ground
conductivities do not vary in space and that the displacement current
is negligible in comparison with the conduction current in Maxwell's
equations with Ohmic conduction current. That solution was given by:

t

dix! ~ dix’'
BeB--VX/—o,—GOJ-('I-Zkk) -(VX/TGIJ)*2/-dt'n-(an) ,

(M)

in which 6g is 8(+z) and n = -k for z 2 0 (air), 6g is 6(-z) and n =
+k for z S 0 (ground), Q@ is the integro-differential operator

*Van Alstine, P., and L. Schlessinger, Source Region Electro-
magnetic Effects Phenomena, Vol. 4, New Methods for Determination
of Three-Dimensional SREMP Enviromments, Pacific-Sierra Research
Corporation, Report 1588, December 1986.

Tibid.




g2 (nxE) Ede'[(ﬂ x E)G,] -w -de'[(n x E)H] ) (2)
z'«0 z'=0

and Gg and Gy are the infinite space scalar Green's function

3 2
Gy = (- ) exp [- (—X—Tix—'-l—] a(t - t') (3)
2v/7L
t
dt"
where L = — and its image version parallel
ug
tl
G (x, y, 23 x', ¥y', 2') = Gylx, ¥, 25 x', y', -2") , ()

respectively. In @, H is the time-integrated Green's function:

L(t, t")
H = /dL'GO(L') - - # er-f'c( :/2) a(t - t*) . (5)
0

2L

where erfc is the complementary error function. A tilde over a vector

indicates that the vector's z component i{s to be reversed in sign:

V= Vx, Vy, - Vz)

The identity

(1-2kk)-('KxB)-ATkaZ—AzkaT-kk-(A,prT)--Axa,
(6)

where the subscript T denotes tangential components, allows us to

rewrite the second current term in Eq. (1) as




~(1-2kk)-( f‘lﬂx—c.l)-+Vx/9:‘,i'cIIi’.

Then, Eq. (1) takes the simpler form:

t
BeB--Vx/d“x (GJ-GI3')+2/dt'Q-(an). (7

which makes clear the role of the second current term as the
contribution to B of the "image current." A similar rearrangement of

the formal solution for E + J/g,
(B+‘E’)ea-— - v fd—u-x—-c V' xJ - (1 - 2kk) Vfg-u—x-cv'xJ

-Zfdt'n-(nxé), (8)

results in:

t

TN -
(B,Q)Q.L-vxfdux Gy V' x J -G V'xJ)-Z/dt'n-(nx B) .
* 6/ B o I

(9)

Since the operator @ is a perfect curl everywhere except on the ground

surface

n-(an)--VxfodS'anHl - (n x E)§(z)e(t - t") ,
. z'=0
(10)

except at z = 0 we can rewrite Eqs. (7) and (9) in terms of effective
vector potentials:




t

Be = - ¥ x 4 cg-6 +29xf atfas' nx
B o' 0 I 2'=0

1)

J 1 dlx’ —~—
(s+o)eB--Vx;; f—;,—-(cov'x.x 6 V' X )

t

-29 xd/r dt:/de' n x §H| . (12)
z'=0

One may not use these forms to match solutions on the ground
surface where second derivatives of H are singular. Egs. (11) and
(12) are inaccurate there; they should actually contain the §-function
subtraction included in Eq. (10) that makes their formally singular
terms equal to (the nonsingular) Q. Therefore, since a major goal of
the present work is to solve the integral equations for B and E at the
ground surface and to examine behavior of the fields B and E near the
surface, we shall use the formal solutions Eqs. (7) and (9) that are

accurate there in preference to Eqs. (11) and (12).




SECTION 3
INFINITE GROUND CONDUCTIVITY CASE

In the case of an infinitely conductive ground, the formal solu-
tion for B leads to an immediate solution of the Maxwell equations.
If the ground conductivity i{s infinite, the electric field vanishes
everywhere below the surface. Then continuity of the tangential
electric field forces the tangential electric field to vanish at the

surface as well:

k x E -0 . (13)
z=0

Then, the electric field-dependent term disappears from Eq. (7) giving
B in the air directly in terms of the Compton current:

dix* déx’
B>- VX/—G,—(GOJ-GIﬂ-°Vx TrE'J' (14)
>

where TIgp = 11Gp + kkGy 1s the "electric" Green's dyad, while Gp and
Gy are the scalar Dirichlet and Neumann Green's functions,
respectively. Ampere's law (E = -J/¢ + V x B/uo) then leads directly
to a solution for E in the air:

J 1 2 [ dux’ dlx!
E, N .u°> vf —— (Gyd 013‘) w / —— (Gyd GI:D .
> >

(15)

As in Van Alstine, P., and Schlessinger, Source Region Electromagnetic
Effects Phenomena, Vol. 4, New Methods for Determination of Three-

Dimensional GSREMP Environments, Pacific-Sierra Research Corporation,
port , December 1 , the subscripts > and < demote versioms of

physical quantities evaluated above and below ground, respectively.




— v o ——
But, {n the air,
!3- - - x! t -t (16)
woy Go acGO + §(x - x*)&( )
and
v2
- G, = 3.G for z, z' 20, GNA!

uo I tl

S0 that after integration by parts in the time [and use of 3:C =
=-(0'/4¢)3¢1G1,

L L - 1 .L. dux' A . - \J .
E, S /dux (Gpdy + MG J,) + = v/ —— (V'Gy - J - Vo, - D
> >

>
(18)

By using Iz and integrating the inner gradients in the final term of
(EqQ. 18) by parts, we obtain the compact form:

-1— A . .-—v' d——ux' .
E, 7 fdux rg - J w)/o, GV - J . (19)

Equations (14) and (19) give the complete solution for the fields B
and E everywhere above an infinitely conductive gruund in terms of an

arbitrary Compton current distributed in the air.
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SECTION 4
EQUAL AIR AND GROUND CONDUCTIVITY CASE

When the (time-dependent) air and ground conductivities are
equal, Green's theorem applied to all of space immediately gives the

B--Vx/‘&’,‘-'-ca, (20)
g 0

>+<

solution for B:

and hence (through Ampere's law) E:

o
S+<

1 . : v dix* .
- - - ——— . 1
E u‘/‘aux Gyd /o, Gy V' + J (21)
>+<
{(when J is continuous at the ground surface). Note that in this case,
the Helmholtz theorem implies that the divergenceless vector field B
is given both in air and ground as the curl of a single vector poten-

tial which may be taken to be:

G.d . (22)

Thus, since we already know its solution, this case serves as a check
on the validity of our integral solutions and integral equations. It
provides us with an opportunity to use integral identities (that may
be important in the solution of the general problem) to effectively
solve the integral equation that is the heart of our method. Once we
have solved the integral equation, in the rest of this section we
shall demonstrate that our method produces the result contained in
Eqs. (20) and (21).

When we set the transverse components of B in air and ground as
given by Eq. (7) equal to each other at the ground surface i{n order to




hden

satisfy the appropriate boundary condition (assuming the absence of
surface currents), we obtain the integral equation:

t
dux*

/ at'g - (kx E)y, . g~ |VX =~ GyJ ' (23)

- =< Z-O.T

in the general case. But when oy = g¢ = o(t), the air and ground @
terms become equal sc that:

t
dix*
' . - - — .
2/ de'@  (k x E), o o v x / —~ GyJ (24)
e >=< z=0,T

That is, when we explicitly write out the meanings of the surface
values of terms on the right-hand side as inherited from matching

transverse B in air and ground:

2 f dt'g - (k x E),

dix’' dux’
- lm, o, ¥ x/ g Gpd = lm, ¥ x/-;,—- GOJ) . (25)
> < T

0,T

Now, we are supposed to use the boundary information contajined in
Eq. (25) to determine the electric field term in Eq. (7), the formal

solution for B. Tnere are, in fact, at least two and perhaps three ways

to do this. The one that we shall use here (because it is tailor-made
for the present case) uses integral identities implied by Green's
theorem to turn Eq. (25) directly into an expression for the electric
field term in Eq. (7). A second method uses a special order of in-
tegral identities, differentiations, and limits to invert the scalar
Green's functions contained in @. 1In one dimension this operation
determines the surface value of the tangential electric field, which

10




when substituted into Eq. (7) directly gives the solution for B.
However, in three dimensions, it leads to a more complicated vector
object which is itself sufficient to determine the electric field term
of Eq. (7). Or, we may try even in three dimensions to solve for the
surface value of tangential E eventually using it in Eq. (7) to give
B.

Here, when we apply the integral identities as detailed in Appen-
dix B to Eq. (25), we find that they move the Q@ term off the z = 0

surface to variable z, giving

t

2fdt'n-(kxe)T-+(Vx/‘3%’,‘—oT+v /dux. ) ,
T

e w >
(26)

which is just what we need to determine B. Substitution of this into

the transverse part of the solution for B as given by Eq. (7) implies
that

dux’ ~ dux: F dux'
>

> T
(27T
so that
dux!
B)T = VvV x -~ GOJ . (28)

WV

+<

Having found By over all space, we could now evaluate it on the ground
surface and use the result in the z component of the integral solution
Eq. (7) to find B, over all space. However, the fact that B is diver-
genceless everywhere provides us with a method to use Eq. (28) for By
to determine B; directly without intermediate surface limits. That
is,

"




vV.B =0 (29)

implies that

azB>z = - V,r . B>T , (30)

so that
)
s>z- /dE vT * Byr . (31

Z

But Eq. (28) states that By is the transverse part of the curl of a

vector field:

B.. = (Vx A)T ' (32)

where

dlx!'
A= - f pr GOJ . (33

When we substitute Eq. (32) into Eq. (31)

B>z - /d&; V,r « (V x A)T = /dg [VT- (VT X Azk) + VT . (kaZ X AT)] .
z z

(34)
we find that the integrand is a perfect differential in z, so that

B)z--fkaz-[VTXAT]-R'(VTXAT). (35)

Z

12




Thus, using Eq. (33) for A, this becomes

d4x’
B)z--k.vx_[TGOJ' (36)

>+<

Therefore, everywhere in the air B is given by
dix’
B>--Vx/—a,—G0J. (37)

Repetition of this procedure for B in the ground leads to the right-
hand side of Eq. (37) as well so that:

B=-Vx /q-'-'x—'c.r. (38)

>+<

everywhere above and below the ground surface, in agreement with the
solution Eq. (20) obtained from Green's theorem for all space as the
curl of the vector potential given by Eq. (22) or Eq. (33).

Since Eq. (38) gives B everywhere, Ampere's law (E =
-J/¢ + ¥V x B/uc) determines E everywhere:

g,_-!_‘_(-vzf‘l_-“’f /d——"x'ca. (39)
g ug g

>+< >+<

1 v - L dixt
E ofdllx God uo/ == Gy V' - J (40)

(when J is continuous at the ground surface), after use of the Green's
function equation and integrations by parts in space and time.

13




SECTION 5
REDUCTION TO ONE-DIMENSIONAL SOLUTION

In earlier work [Schlessinger, 198&].* Laplace transform tech-~
niques were used to develop a version of our solution method applica-
ble to "one-dimensional™ problems in which the (three-dimensional) B
and E fields depend only on the single spatial variable z. Such
solutions are physically important for two reasons. First, for (time-
dependent) conductivities and Compton currents of interest there may
be periods of time for which the the fields vary in the horizontal
spatial coordinates only over distances much larger than the effective

diffusion length (or skin depth):
DL, tr) = 2(L) /2, (41)

For such periods, the one-dimensional solutions will provide good
approximations to the true fields. Second, as we shall show, in our
case the Maxwell equations for these one~dimensional B and E fields
are ldentical in form to the partial differential equations obeyed by
B, E, and J averaged over the transverse spatial variables. Thus,
even when Compton currents and the fields they produce are strongly
varying in the transverse variables, those fields have an average
(over the transverse variables) behavior that is predicted by the one-
dimensional problem.

When the Compton current J and the B and E fields produced by it
depend only on z and t, each of the spatial integrals in the formal
solution for B, Eq. (7), becomes an integral of the transverse spatial
dependence of the Green's function over all x and y, i.e.,

'SChlessinger, L., Electromaggetic Effects Phenomena, Vol, 1,
Analytical Solutions for SREMP Enviromments, Paciflc-Sierra Research
Corporation, Report 1437, November 1984 (subsequently published by the
Defense Nuclear Agency, Washington, DC, as DNA TR-84-397-v1).
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at’ ' [ ' 1) - ' K 7&X] '
BOB--VX/BT‘GZ (./-dSGO)J(Zpt) ('/‘dSGI)J(Z.t)

t

. 2/ dt’ (de'Go)n x E(z', t')

- Z'=0

-9 . (de'H)n x E(z', t') . (42)
2'=0

Since the Green's function factorizes,

_o(x - x)?

3
Gy - (— ! ) e L gp-gn
2/7L
'y 2
_ (z - z1)° s - xp = xp")
- (— ! ) e AL (- ! ) e L e(t - t") ,
2Vl 2vTL
(43)
and since
o 2
+@ _(§—§')

/dE' +( ! )e 4L -1, (44)
2Vl

the transverse spatial integral of G is just

'/;s'co - Gyy : (45)

where Gy is the cne-dimensional diffusion Green's function that

depends only on z and z'. The consequences of Eq. (45) are that
/dS'GOf‘(z', t') = Gy, flz', t') , (46)
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az/dS'Gof(z'. tr) = aszf(z', t) , (u7)

and

w, - fas'[(n x EM) , o= 0. (48)

Thus, in Eq. (7)

n-(an)'/dS'[anG] = [n x EG

0 01] (49)

2'=(0 z'=0

so that Eq. (7) becomes

C

de! “
BBB = sz x[/o—,- dz'(GmJ - I13’) + 2/ dt'(n x EGm]

2'=0

(50)

Since the right-hand side of Eq. (50) is transverse, an immediate
consequence is that B, vanishes everywhere. Since J, does not con-

tribute to the current term of £q. (50), B can be rewritten as

t

Bo, ~ - kd, S dzraydy ¢ 2 f dvin x oy, ) .M
B 0o

Similarly, performing the transverse spatial integrals in the integral
equation [Eq. (23)] that results from matching transverse magnetic
fields in air and ground at z = 0 yields the integral equation:

dv' k x E‘ 01(z-o z'=0), = - k3, X / a4z G 1 (2=0)d, .
' z ¢’ T
z'=0
-o >=¢
(52)
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Likewise, if we perform the transverse spatial integrals in the formal
solution for E + J/¢ in Eq. (9), we find

t

J L dt' 4o - ' A
(g . 0) 0p = = |- ®o, x”o, dz'Gy k3, x J 2[ dt'[n x ch]z‘_o

(53)

which immediately implies that E; = -J; /¢ everywhere. When we carry
out the same integrations in the integral equation that results from
matching transverse components of E as given by Eq. (9) at the ground

surface, we find

t
/dt'kxé
/ » >4¢

d '
B I S Kd x Q%_ dz'G..kd_, x J . (54)
26 ua ‘z o 017"z! >=<,2=0

The formal solutions for B and E and the integral equations contained

l

G.,(z=0, z'=0)
2" =0 01

Q

u

in Eqs. (51) through (54) are just those that we would have obtained
had we applied one-dimensional Green's function techniques directly to
the one-dimensional problem. They emerge here whenever the transverse
spatial variations of J and hence B and E are small enough over dis-
tances on the order of the diffusion scale that the transverse depen-
dence of the Green's function can be integrated away.

However, there is a more general significance to these
equations. If we return to the formal solutions for B and E in the
general case as given by Eqs. (7) and (9), and average them over the
transverse spatial variables using Eq. (45) and its consequences, we
find:
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————— - -

t

- de’ '
<B>oy ka, x/:/.a' dz'Gp <> + 2/ dt'[n x <E>Go1]z‘.0 ,  (55)

and

t
N 1 at! .
(<E> s = ) Rl x/:/--é,— dz'Gp k3, x <> 2[ dt'[n x <B>Gy, ]

(56)

where < > indicates an average over transverse spatial variables.
These equations are identical in form to Eqs. (51) and (53), with
transverse spatial averages of B, E, and J replacing their one-
dimensional versions. Thus, the one-dimensional solutions have a more
general physical significance as transverse spatial averages of three-
dimensional solutions. 1In fact, this is a direct consequence of the
structure of Maxwell's equations for our SREMP problem. When the

displacement current can be neglected, Maxwell's equations read:

v-e=E (57)
VXE+B=~0 (58)
V+e<B=20 (59)
VxBa=u(J+ oE) . (60)

Their transverse spatial averages then become:

<p>
3,<E,> = =L (61)
k3, X <Ep> + B> = 0 (62)
18
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az<az> =0 (63)
kd, x £BT> = u(kd> + o<B>) , (64)

when o = og(t) is not a function of spatial variables. Note that
Eqs. (61) through (64) are identical in form to the Maxwell equations
[(Eqs. (57) through (60)] themselves with averaged B, E, J replacing
one dimensional versions of B, E, J that depend only on z and t.
Equations (51) through (54) are more general than those
originally obtained through the use of Laplace transform techniques
[Schlessinger, 1984].* That work assumed that the Compton current J
depends only on the time. In that situation one can perform an in-
tegration by parts in the current term of Eq. (51) so that one can use
the fact that 3/3zJ(t) = 0. Then Eq. (51) becomes:

Bo, = Zfdt' [Gmn X (r-: . j—,)]z . (65)

which can be rewritten using Ampere's law as:

BO-:Z/d—tL(B BG) (66)
B ue' \"z' T O1 21 =0+ ‘

Similarly, Eq. (53) becomes:

J 2 , .
(E . )eB --=f a (n X BG°1)z'-o . (67)

Equation (66) for B is equivalent to Eq. (16) of Schlessinger [19841"
(after some rearrangement of the earlier work). When evaluated on the

*Schlessinger. L., Electromagnetic Effects Phenomena, Vol. 1,
Analytical Solutions for SREMP Environments, Pacific-Sierra Research
Corporation, Report 1437, November 1984 (subsequently published by the
Defense Nuclear Agency, Washington, DC, as DNA TR-84-397-V1).
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ground surface z = 0, Eqs. (66) and (67) reduce directly to the in-
tegral relations Eqs. (17) through (20) of Schlessinger [1984].* 1If
one carries out the same integration by parts and uses 3/3zJ(t) = O in
the integral equations [Eqs. (52) and (54)], one finds:

01$2=0, z'-oi] -0, (68)
>+<

uo' z'.Tl

z'-O

and
d J.
35‘/’&'[!: x al Ggy (2=0, z'-o)] - u(;R- OT_<) ,
z'=0 Seg > < [z=0
(69)
respectively. Equation (69) i{s identical to the integral equation

(Eq. (25)] of Schlessinger [1984],% while continuity of transverse E
in Ampere's law:

. k3, x B _ fzz cx, kd_ x B, ) fZi
'z-o+ ua, 'z-o 9 Iz-o 'z-o- Mo, |z-0 ¢ 'z-o

(70)

converts Eq. (68) into the integral equation [Eq. (24)] of Schles-
singer [198"].‘ Consequently, all of the analytic and semianalytic
results of that previous work may be obtained from the more general
one-dimensional solutions and integral equations of the present work
[Eqs. (51) through (S54)].

*Schlessinger, L., Electromagnetic Effects Phenomena, Vol. 1,
Analytical Solutions for SREMP Enviromments, Pacific-Sierra Research
Corporation, Report 1537. November 1934 Zsubsequently published by the
Defense Nuclear Agency, Washington, DC, as DNA TR-84-397-V1).

tIbid.

*1bid.
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SECTION 6
GENERALIZED ONE-DIMENSIONAL EXACT SOLUTION

In order to obtain a solution to the Maxwell equations [Eqs. (57
through (60)] in air and ground in the general one-dimensional case,
one must first solve one of the integral equations [e.g., Eq. (52)]
for a surface field and substitute the result into an integral solu-
tion [e.g., Eq. (51)] to obtain a field throughout space. In general,
this requires the numerical solution of the integral equation.
However, for a special class of cases that include the one-dimensjional
infinite ground conductivity case, equal air and ground conductivity
case, and the constant but unequal air and ground conductivity case,
one can use the integral equation [Eq. (52)] to obtain an analytic
solution for B (and hence for E). In the general case, the integral
equation for the surface value of E is:

t

dc!
/ dt'k x Elz'-o 001(2-0. z'-0)>’< - kaz X [/ ' dz'Gm (Z-O)JT .

- >-<
(52)

In order to use this information to determine B, we must transform it
into the term

t

2/ dt'(n x I-:Gm] . AP
z2'=0

in the formal one-dimensional solution for B, Eq. (51). We can do
this either by solving Eq. (52) for k x E|z.p by inverting
J'dt'Go1(z-0. z'=0)y.¢, Or by using the integral identity Eq. (126) of
Appendix B (as we did in Sec. 4) to turn the left side of Eq. (52)
into Eq. (71). We choose the second method here. Note that the
integral identity Eq. (126) of Appendix B tells us how to perform
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integrations involving products of two Green's functions that solve
the same differential equation. But, if we multiply Eq. (52) by
either 3,Gg1y or 3;Gg1¢, We will be forced to deal with integrals
involving both Gy and G¢. Our integral identities will apply to these

only if

Go1<(z-0. 2'=0) = aGo1>(z-0, z'=0) , (72)

where a is a constant in space and time. This occurs when

2 (
l..< L>/a ’ (73)

which implies that
2
a = o<(t)/o>(t) = const. , (74)

for all t. In this case, Eq. (52) becomes:

>(z-0, Z"O)

(1 + a)f dt'k x El Go1

2'=0

de*
*lm, o k3, xff E- dz'Gy, Jre s (75)

whose left side is entirely given in terms of Gsy.
Before we can use our integral identities, however, since they
refer to Green's functions whose common z argument has been made to

vanish from the same side of the plane z = 0, we must rewrite the term
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on the right of Eq. (75) that depends on J¢ in terms of a z—0 limit
{ from above (just as we did in Appendix B):

a - a’ (
r lim, o k3, x -/:/02 d2'Gy, Jpo = - Lim, o k3, x ’/:/-u2 dz'Gp, Jpfz)
< <
dt*
= - lim o, k3, x/].;z— d2' Gy, Jp(=2")
>

1 (76)

Because of the form of Eq. (76), we are faced with a further problem.
Even though we have assumed in Eq. (72) that G¢ is proportional to G,
when both 2z and z' have been set to zero, this is no longer true when

as in Eq. (76) z' is variable. In fact,

(z-29°
— 4L
Gore = (- l_\e S et - tY)
/7L,
C(z-2n%°
[ 1 bL
=al- e g(t - t') . 17
/7L
, >
However, if we use Eq. (77) in Eq. (76), we find that because the z
variable is eventually set to 0, G¢ may still be turned into Gy by
P scaling z' so that z'pney = @ 2'g14- That is,

dt’ , ,
11:::2_.0+ 3, ./].J dz GOKJT<( z')
>
_(z - z1) %4’

4L
dt' dz' 1 >
= -a lim /:/-—3 - e 8(t - t") | Jn (-2")
z =0+ . a3 02 z'( 2/——"L>) T<
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(z - 2)°

>

>
1 at’ -z
a 1% e0s 2 ‘/:/o.;-— d"'%n"ﬂ(?’) ' (e
>

The integral equation [Eq. (75)] has now become:

t
(1« a)f dt'k x E‘ Gm)(z-o. 2'=0)
z2'=0

4y,
1 dat! 1 > -z
- 1lim ﬁ— dz'?3 - e a(t - t")|d. (-—-
a z =0+ o; z' ( 2/7L ) T<\ a

)

—z'

k3
at' z dt"
Hm, L os k3, x _/:/o; 42'Goyydpy ~ 3 X /:/«;; dz'Go1>"'r<(
> >

(79)
We multiply both sides by -282'0>|zv,0, integrate over fdt'/uo'>. and

use the integral identities Eqs. (129) and (128) of Appendix B. The
net result is that

t
(1 -+ a)/ dt' [k x EGy,,1 . g

-0
a’ .. ! ac’ 2zl
k3, x /:/o, 42'Gpy doy *+ - K3, X /]0, dz‘GIDJT(( > ) .
N > N >

(80)

Setting z'-+-2' in the second term on the right side and dividing both
sides by (1 + a) then converts this into:

24

Qa

)i



t

]
/ dt'Ck x EGy, 1., 5

1 o
.1’akazx‘/’-/°, dz'G
>

J
N n>"71>

1

dt! . z'
Yall + ) k3z X ”a; dz GO!)"T((u ) !
<
(81)
an expression for the surface E-field term in the formal one-
dimensional solution for B, Eq. (51). If we substitute Eq. (81) into
Eq. (51), we find:
dt!’ at'
B, = - k3, x /]a'_ dz2'Gyyydy, * k3, x /_70' 42'Gryydy,
> >
> >
2 ' .,
Yy k3, x-/:/‘a,> dz GI1>JT>
>
a7 T o Ko X /]o; 42'Gg59r ¢ (& ) (82)
<
in which the two image terms may be combined to give:
. der |, (1 =-a) .
B, k3, x[/o; dz [Gow 0o S
>
2 de’ 2!
Y ERrar kaz X ,/:/.i— dz'Gm)JT( (Q—) , (83)

for B in the air.
yields:

<

The analogous procedure applied to B in the ground
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2 ac' ., .
- I(—1-+_1—). kaz x[/ ;2— dz GOKJ.D(az ) . (84)
a

By using Ampere's law (E = -J/¢ + V x B/po), we compute the cor-
responding E fields in air and ground:

J
z> 1 o (1 - a) s
Fs"";;’*;;{/:/. dt'dz [Go1>’(1 rars) GI1>]JT>
>
2 1] 1] 3 z—'—
e /fdt dz' Gy i, (% )} (85)
<

+

and

)

J (1 -
E R AN dt'dz' |G, + ———=t
< o< a( 01« (1 .
<

) GI1<] JT<
2 . .
* s 3 ”dt'dz' Gorcdpy (02')) s (86)
-(1 +* -)
a Q >

respectively. The one-dimensional cases in which the ground conduc-

RIZIR I1—

tivity is infinite, the (time~dependent) air and ground conductivities
are equal, and the air and ground conductivities are unequal but
constant all satisfy o¢/gy = const. and hence produce B and E fields
given by Eqs. (83) through (86). These solutions generalize to time
dependent ¢'s (whose ratio is constant) and J(z,t) the solutions found
in Schlessinger [1984]* for slowly-varying conductivities and z-
independent J's.

'Schlessinger, L., Electromagnetic Effects Phenomena, Vol. 1,
Analytical Solutions for SREMP Enviromments, Pacific-Sierra Research
Corporation, Report 1437, November 1984 (subsequently published by the
Defense Nuclear Agency, Washington, DC, as DNA TR-84-397-v1),
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SECTION 7
EXPLICIT SOLUTIONS FOR SPECIALIZED COMPTON CURRENT DISTRIBUTIONS

In order to investigate important features of the SREMP fields
yielded by our equations, we evaluate them for two Compton current
distributions of physical interest, one in the one-dimensional situa-
tion of Sec. 6 and one in the space above an infinitely conductive
ground as treated in Sec. 3. First, for the one-dimensional case in
which air and ground conductivities differ by a constant multiple, we
choose a current pulse that exists only at one time, that is constant
in z in the air, and that is exponentially attenuated below the ground

surface:

3>6(t) z>0
J(Z,t) - (87)

.
J<c(c)ez“ z< 0.

When we use this J in the appropriate solution for B in air, Eq. (83),

we can immediately perform the time integrals to obtain:

1 . 1 - a A
B, = % kd, x/dz [Go1>(t) + (1—+—“)Gn>(t)] g,

>
z'
. 2 , A @k
MERWITN N k3, x/dz Go1>(t)J<e (88)

<

in which L(t,t') has been evaluated by the §-function at t' = 0 so
that

(z = z')2

Ga(t) = G (L(E, t"))],, o =~ —— e  HLIL) (89)
0 0 t'=0 LA
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Since the air current was assumed to be constant in z, the two terms
in Eq. (88) that depend on the air current have integrands that are
perfect differentials and can be integrated immediately to give:

A
J
k A (1 - a) > N
B> - o X J>Go1>(z'-0, t) + ) k x s, GI1>(Z =0, t)
z'
2 A ak
MEREETN kxJa, fdz'Go”(t)e . (90)
<

But Gy(z'=0) = Gu(z'=0) so that the integrated terms can be combined
to yield:

2a Jv)
B> <3 +akxa_>-GO1>(z'-o' t)
z'
2 aX
ERENTN kxJd, 3 /dz'Gm>(t)e . (91)

Now, the integral inside the z derivative in the ground current term

in Eq. (91) can be rewritten as:

(z-21)° 2t

= dz'(— —:)e ' e . (92)

When we complete the square in the argument of the z'-dependent ex-
ponential {t becomes:
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(93)
=
z' - \z + v
30 that a change of variable £ = 1/2a produces:
2L
>
L
Z >
1 [Xu ' (Aa)z] z L>1/2
I =-:-e erfc + . (9w)
2 1/2 Aa
2L>

When we put Eq. (94) back into Eq. (91), carry out the z derivative in

the final term of Eq. (91), and combine terms, we find:

2
-2 _
yL A
8(t) « e A KX
B, ~ T+ p kxd, - —
v'1rl..> > a
L
A AR 2 172
k xJ Aa 2 L
1 < (Aa) Z >
+ — e erfe 75 * T . (95)
Aa % 2L,

Note that as a result of the scaled structure of the solution given by
Eq. (83), throughout the ground current term in Eq. (95) the current

attenuation length A appears in the combination A = aiA. Thus,

2
-2
yL A A
> J J
5) = 8(t) G ? D - k x [3> - —%] Pk x = f§Z) , (96)
0>/vL> o 0<
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where

Similar steps for this special current lead to

.z
TS A
< J
B, = 8(t) f - e kX 3) - _é]
o</wL< a

for B in the ground;

A A
J J 4
> estz a 1 A < >
- - = 6(t) - —— (J - ._) 3 e
E " wey, (1 +a) AT\ 2] 1%

>
2
A L
St dale 2t
% /wL> A

for E in the air; and
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2,
5oz ‘ 3 -
E =~ ;S e’ s(t) Sét) (1 ? a) - [§> - _5] Taze ‘
< < lo<¢nL< a
2
-
3 il
N | _l.[(1 ¢-)f(az)+ (1-1)f(-az)] . (99)
g — 2
< ./1'rL.<

for E in the ground.

We can also obtain useful solutions for the field in the space
above a perfect conductor when we choose a simple current form. For
this case, we choose a Compton current density which is only in the
radial direction and is a shell expanding at the speed of light--that
is

J(x, t) = J(r, £)F = J.R 3 8(r _ ct) exp (- r/A) 1 . (100)

00 2
r.

We also assume that the air conductivity is given by the simple form:

o(t) = d, exp (- t/to) . (101)

With this form we find that

t
' =2 - —(t - g
L(t, t') = NPICS) 0 exp -(t - t )/tO] . (102}

To evaluate the magnetic field in this case we use Eq. (14).

Integrating by parts and using the fact that curl (J) = 0 we find

B=-2 fﬁfds'co(k x J) . (103)
0 z'=0

Using the radial nature of the current in Eq. (103) we can perform the
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angular integrals to obtain

t ®
2 2 .
B-.—?—‘\ LA pdp 3xp-(u)1 rpsing J(p, t")
3/2 4L 1 2L
o/ J_ o'l 0

(104)

where I; is the modified Bessel function of the first order. Using
the form for J given in Eq. (100) we obtain

2 2. 2.2
p_totix
ud R 3 ! dx exp (t/t. (x - 1) - ctx/A) exp - ( udzl
00 A 0 retxsing
B = ———o 3/2 11 2
2/Fctod A 2" %x 2d°%
(105)
where
d2 - tO
uo(t) °*
L =1 - exp ( t(1t- X)) = EE .
0 d

We can easily obtain the solution for constant air conductivity from

Eq. (105) by setting tg = = so that g(t) = og = const., We find:

3 ! - otx
L Hof E.O_Q)”Z . /dx exp (- =) oo [_ 49 12 4 o222 .
© 2t T L xa - 0?2 SR B

(106}

where the argument of I1 is

(uaorcxsine)
2(1 - x)

32




Ampere's Law (E - - g + &; VX B) then immediately gives us the E field

corresponding to the B field of Eq. (104) generated by a radial cur-
rent above a perfect conductor:

dt’ Pz + 2
E--af / S/Z/pdpJ(p. t') exp - —‘IL—P-
Yuo/w

. [f‘-pcoselo - /e\(psinelo - r'I1)] , (107)

where the modified Bessel functions IO and I1 have argument (E%Q—Q).
For the current given in Eq. (100) and conductivity given in
Eq. (101), we obtain the electric field correaponding to B in

Eq. (105):

3 I
J.R A t
E= - og §(r - ct)e ?e-o
o
uJ R ! 2,2.2
+ 3)/-__2)/(2 —(x-1)-ct§)exp-(r +c2tx)
to 20/n o * 4dcg,
A A r
. [r coselo -0 (sineIO - tx 11)] . (108)
where I0 and I1 have argument (rﬁggt_%i_ng) We can obtain the E-field
2d %

solution for constant conductivity corresponding to Bc by setting to-w'
so that ¢(t) = 9y in Eq. (108). We find
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3 r
J R - =
Ec - - 9 g §(r ~ ct)e A ?
001"
1/2 1
u"o“o uoy otx way (2 4 o2¢2,2)
* T’ 572 SXP (- '—) EXP 1T/ T (1T - x)
Wr t A (1 - x)
A A r
. [rcoselo o(sineIo TR )] , (109)

uo,.rexsing )

200 - x)
In a subsequent paper, we will present numerical results obtained

from all of these solutions along with a comparison of those numerical
results with solutions obtained by other methods.

where IO and I1 have arguments (
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APPENDIX A
CHECK OF INFINITE CONDUCTIVITY SOLUTION

We now check explicitly that our procedure has actually manufac-
tured a solution to the Maxwell's equations and boundary conditions
appropriate to the infinite ground conductivity case. First, the fact
that Eq. (14) gives B as a perfect curl implies that B is divergence-

less everywhere above the ground surface:

dix®
V°B>--V°VX/T,—(GOJ-GIS')-O. (110)
>

Then, the properties of the Green's functions in Eq. (14) show im-
mediately that B solves the diffusion equation (with time~dependent

conductivity and appropriate source) everywhere above the ground:

[+

2 L
(V— - at) B, = - Vx f‘“",‘ [G(x - x')8(t - £1)J - 8(x - F)s(t - t-)ﬂ

= - ¥x [e(z) %— - 8(-2) %—] = - Vx J for z >0 .

> < g,

Since E given by Egqs. (18) or (19) was obtained from B through
Ampere's law, E and B given by Eqs. (19) and (14) satisfy

E> . g_ . VxB

> o,

) (12)

by construction. As a consequence, E and B are also related by

1 4 S AT dix' ~ 3
Vx E>-Vx°>/dx'[GoJ GI:i']-foT [3tGoJ-3tGIJ]--B>.
> >

(113)
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Finally, we may calculate the divergence of Eq. (19) to identify the
electric charge density that accompanies our fields. We find:

V-E =~= fau v.(6Jd-c7- 955- Gy V' - J
> o> 0 I

>
1 . v faux
- — duX'G v e J- — _.'_.G v -J
LN LN o D
> >
V2 dux? J
=|3 - -— — G, V' ¢ J = -V ¢ ==, (114)
t uo, 0 D o,

everywhere above the ground. [This agrees with the divergencelessness
of the total current (Ohmic plus Compton) implied by Ampere's law in
our approximation.]

We must now check that the boundary behavior of E and B given by
Eqs. (19) and (14) is consistent with our problem. First, Eq. (19)
implies that tangential E is given by:

/ '
E. - famxr oy - [ vy, (115)
T a> DT uo> o' D

Then the fact that both the Dirichlet Green's function and its tangen-
tial gradient vanish as z-0 implies that

E -0, (116)
T z=0

E;, on the other hand, is given by a superposition of the Neumann

Green's function and the normal derivative of the Dirichlet Green's
function:
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va—

3
1 . z dix'
E, = O—/MX' GnY2 u0>/-57- Gp V' = J, (1)

\%

neither of which vanishes on the surface. In fact,

1 . 1 dix*
E -2 auxch——-/—-ac voe : (118)
zIz-o (°>f 0z wo, J o "z0 )

> > z=0

so that at the ground surface E is entirely vertical with double its
free-space value, Since E vanishes everywhere in the ground, this

implies a surface charge density

. 1]
2| [axr g - [ S v ooy (119)
gy 0z woy o z 0
> >

z=0

at the ground surface.
Equation (14) implies that B, depends only on the tangential
derivatives of the Dirichlet Green's function:

dix® dix!'
Bz-k-foa, (Gyd GI.'J‘)-k-vTxf = Gpdp - (120)
> >

Consequently,

B =0, (121)
Since B is just =¥ x E so that B vanishes everywhere in the ground,
Eq. (120) implies that our B; is continuous at the ground surface so

that B is divergenceless everywhere. Finally, the transverse part of

B [according to Eq. (14)] is just:
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dux dix
By = - ¥y x f—;—,— GyJ, k = K3, x /T Gpdp (122)

dux* dix!’
B,rl w z(v.r x/—a—,— Gol k + k3, x —ET—GOJT) . (123)
z > > z=0

or

B -2fex [ ¥y 3 (124)
Tlz-0 ot 0
2=0,T

Thus, B is entirely transverse with double its free-space value at the
ground surface. Since B vanishes everywhere below the ground surface,

this implies a surface current at the ground surface given by:

x---kx(fod—“!—cJ) . (125)
2=0
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APPENDIX B
SOLUTION OF INTEGRAL EQUATION USING INTEGRAL IDENTITIES

In Appendix A of Van Alstine and Schlessinger [1986],% we applied
Green's theorem to two Green's functions to obtain the integral iden-

tity:

" - dt—' L} A 1 "
GI(x, x") = quo' /ds [az,Go(x. x )Go(x » X )] e (126)
z'=0

The subscript z'=0* indicates that the surface integral is to be
viewed as the boundary of a volume integral in the upper half space
z' 2 0. By differentiating this identity and using the facts that
Go = Go(x -~ x') while Gy = Gy(x - X'), we find:

VGI(x, x") = - WG (x, x")

dt' L] A " 1 "
- 2 [u—a-,-/ds [az,Go(x, x')V Go(x y X )] . (127

+
z'=0
which becomes
V. (x, x") = -2 . fas [5 cox x')9'G.(x", x")
IO o' z'0 " o’ .
z'=0
(128)

Because on the surface z"=0 Gy = Gy and 3,G1 = 3,Gg, Eqs. (126) and
(128) become

*van Alstine, P., and L. Schlessinger, Source Region Electro-
magnetic Effects Phenomena, Vol. 4, New Methods for Determination
of Three-Dimensional SREMP Environments, Pacific-Sierra Research
Corporation, Report 1588, December 1986.
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" - d_t,L . ' ' "
Go(x. ) "o - =2 /uo'fds [Bz,co(x. x )Go(x y X )] .
z z2'=0 ,2"=0
(129)
and
V. (x, x) - =2 e’ ds* |3_,G.(x, x")V¥'G. (x', x")
o\ X a0 uo' 2100 X o' X .
z'= z'=0",z"=0
(130)
respectively.

Now, Eqs. (129) and (130) show that integration over time and
surface of 3;:G0|z1=0", with either Gy or its gradient evaluated with
both of its spatial arguments on the surface, essentially reproduces
the Green's function or its gradient with its first spatial argument
moved off the surface. Such an operation would take the @ term in the
integral equation Eq. (25) (whose Green's functions are fully
evaluated on the surface) and turn it directly into the Q@ term in
Eq. (7) (whose first spatial argument roams over the upper half-
space). If we write Eq. (25) out in full, we see that

t

2 lim +/dt'/d$'kx3(x')00(x, x')|
z-0 2'=)

AN -de'k x E(x')H(x, t')lz'-o

' : '
-- | 1um *fodf:’,(-GoJ-lim _Vx/ﬁ%‘—coa
z-0 z -0 o

> <

so that we need to deal with two further complications if we are to
use our integral identities. The first is that our integral iden-
tities involve two Green's functions both of which are boundary values
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from above while the second term on the right-hand side of Eq. (131)
contains a Green's function evaluated on the surface from below.

Therefore, we rewrite it:

L
/c&x_ca.um ,vxf L ¢ 5 (x)
o I<
z-+0 A

-~ dux' ~
- lim V xf —— Gd (X . (132)
z -0 N

Then, Eq. (131) becomes:
t

2 lim / dt'/dS'k x E(x')G,(x, x')l
z-+0 z'=0

- -de'k x E(x')H(x, :u:')lz'-0

4x' ~ Yx?'
= =] lim +fod),( Gydy - lim 4_fo dox GJ(x') .
z-0 o z-0

> >
(133)

Secondly, we have to check that H in the second term on the left-hand
side of Eq. (133) obeys its own version of Eq. (129):

L}
—Zf%de' [az,Go(x, x")H(x', x", t', t")] .
“ Zz'=0 ,2"=0
- -2 ds’ 3 G (x, x') s G (', x", t*, t"*)
uoy » uonq ’ 1] 14 .
z'=0 ,z"=0

dt"' "ne " "
= T Gy (x, x", t, t"") = H(x, x", t, t") . (138)
t"

z"=0 z"=0
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In short, if one inspects the identities [Eqs. (126), (128), (129),
(130), (134)1, one sees that the net result of multiplying each term
in Eq. (133) by -2 3;Go(z"', 2)|z.0" and integrating over Sdt/u¢JSdS
will be to shift the first z argument of all terms from z=0* to vari-
able z and to change VGgy into VG and ¥Gy into ¥Gp on the right-hand
side. That is, performing this operation on Eq. (133) yields:

t

dix’ dix'
2 fdt'n- (k x E)g = fo pr GIJ>-Vx/ =G X,
> > T

(135)

in which z is variable. Setting z'-+-z' in the second term on the

right-hand side of Eq. (135), we see that:

t

~ dix* dix*
Z/dt'n-(kxs).r-- Vx/ = GIJ>-Vx/ = Gl (x")
-= > < T
(136)
! Then, the transverse part of the identity Eq. (6) tells us that
. (Ax By =~ (Ax B, (137)

so that the first term on the right-hand side becomes:

} -

~ dux?' . dux' ~
(v x/ pr GIJ>) - (Vx/ -o—,—GIJ>) . (138)
T T

> >
Thus, Eq. (135) may be rewritten as

t

' dix' |~ dix'
! 2/dtae(kxE)T-+(fo—;;—GIJ>*fo — Sod¢ .
< T

| e >
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