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Technical Progress 

The major progress to be reported for this period is: 

1 Parallel Processor Architecture 

Work in multiprocessor architecture involves three different aspects. First, we are 
studying the behavior of parallel applications to understand their behavior and to design 
architectures to support them. Second, we are exploring a particular set of shared- 
memory architectures that appear to have substantial scalability. Third, we continue to 
explore high performance cache design, which piays a vital role in the use of a high- 
performance processor in a multiprocessor. 

1.1 Characteristics of Parallel Programs 

This effort attempts to understand how parallel programs share data and how they 
synchronize. We are measuring not only frequency but also the characteristics of 
interacting references and synchronization events. We have built two complete 
measurement systems and are working on a third. 

The first system is based on Agarwal's ATUM system [Agarwal 88a], using microcode to 
trace a multiprocessor VAX. The main limitation is that only applications whose process 
count is not much greater (say within a factor of 2) of the processor count can be used. 

1.2 Multiprocessor Applications 

We now have parallel memory reference traces for 3 applications from a 4-processor 
VAX-8350 computer. Preliminary results of the analysis are reported in the paper 
"Memory Reference Characteristics of Multiprocessor Applications under MACH" by 
Anant Agarwal and Anoop Gupta to appear in SIGMETRICS 1988 [Agarwal 88b]. 

We have also completed a program based on the VAX T-bit that running on a 
uniprocessor that enables us to get traces corresponding to a multiprocessor with a 
large number of processors. Traces from this program have also been obtained and 
are currently being analyzed in greater detail. One of the challenges we now face is to 
obtain and develop interesting applications that can usefully exploit large numbers of 
processors. 

The two earlier systems suffer because they cannot be extended to large numbers of 
processes or because doing so would yield a system that runs much too slow. Our new 
system uses compiled simulation, creating timestamp points at synchronization 
intervals. The initial version of this system can only collect data on synchronization 
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operations, but it has already produced significant insights [Davis 88]. The new system 
will trace both data and synchronization for large applications with hundreds of 
processes. Accuracy of the trace information is a key goal! 

1.3 Scaleable Shared Memory Multiprocessors 

One of the major challenges in building a shared-memory multiprocessor with a large 
number of processors is designing a suitable cache consistency mechanism. This is 
necessary so that each processor can keep local copies of shared data in its cache and 
yet still see memory data that is consistent with that seen by the other processors. 
Cache consistency schemes used in existing multiprocessors rely on a bus-based 
interconnect between the processors to "broadcast" memory addresses corresponding 
to recently-changed data. Since physical limitations rule out a single bus for 
interconnecting a large number of processors, we are studying directory-based cache 
consistency schemes as a feasible alternative for a machine with a more general 
interprocessor network. These techniques maintain a directory associated with main 
memory that indicates which processors currently contain a cached copy of a given data 
item. 

We are focusing our efforts on several important issues concerning directory-based 
protocols. First, we are using address traces collected from multiprocessors running 
parallel applications to simulate the operation of different cache consistency schemes 
under realistic conditions [Agarwal 88c]. This information allows us to compare and 
evaluate the network traffic generated by these schemes. Second, we are studying the 
hardware implementation details of the directory mechanism to determine the design 
complexity and the area cost incurred with this technique. Finally, we are studying the 
effect of the directory-based protocols on correct multiprocessor execution in the 
presence of write buffering, a queueing scheme used in many uniprocessors to improve 
memory performance. 

1.4 High Performance Cache Design 

In a high performance multiprocessor, design of the cache is critical to reducing the 
amount of bus traffic. However, using bus traffic as the only metric leads to designs that 
may not be the most efficient (since they may raise access time of the cache or the 
misspenalty). A methodology for examining all factors collectively has been created. 
Using extensive trace data, some of the conventional wisdom about cache design has 
been shown to be flawed [Przybylski 88]. 

Staff: R. Simoni, J. Hennessy, M. Horowitz, A. Gupta, H. Davis, S. Przybylski, 
A. Tucker, A. Agarwal 
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2 Parallel Software 

Our efforts in this arena concentrate in developing innovative parallel applications for 
use in studying both the properties of parallel applications and for studying "compilation" 
strategies. The other thrust of our work rs on techniques for compiling parallel programs. 

2.1 Multiprocessor Applications 

On the applications front, the PROTEAN application that we were working on is now 
running on the 16 processor Encore Multimax. We have been experimenting with 
granularity and speed-up tradeoffs, and the effects of varying the granularity at run-time. 
Preliminary results are reported in the paper "Exploiting Variable Grain Parallelism at 
Pun-time" [Gupta 88]. As an extension, we have been trying to port the PROTEAN 
application to the 64-processor NCUBE at Stanford, but because of both software and 
hardware problems with the NCUBE, we have not succeeded so far. 

2.2 Parallel Programming and Parallel Compilation 

This research concentrates on techniques to exploit parallelism. We assume that 
parallelism will be available at multiple levels, typically at different grain sizes. 
Furthermore, we have shown that efficient programming demands a subtle tradeoff 
between exploiting parallelism (particularly at a fine grainsize) and the reduction on 
running time potentially achieved by exploiting parallelism. Thus, we believe that fine 
and medium grained parallelism must be controlled in an automated fashion. We are 
developing techniques for doing this using both conventional languages and using a 
single-assignment language with large amounts of implicit parallelism. (The latter work 
is largely supported by the National Science Foundation.) 

Our work on single-assignment languages concentrates on Sisal. In earlier work we 
developed an automatic partitioning system based on machine and application 
characteristics and capable of dealing with a wide range of shared and nonshared 
memory machines. Recent work has concentrated on efficient compilation of these 
languages to make them competitive with conventional languages [Gharachorloo 88], 
[Gopinath 88] and also on actually implementing the partitioning system for real 
hardware. This latter effort has produced some impressive early results on speed-up. 

Staff: A. Agarwal, A. Gupta, A. Tucker, J. Hennessy, H. Davis 
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3 Computer-Aided Design (CAD) Tools 

3.1 Synthesis 

For the past several months we have been working on a system for high level synthesis 
of digital hardware called HERCULES [De Michel! 88]. We envision synthesis as 
consisting of two phases: behavioral synthesis which involves structurally independent 
optimizations, and structural synthesis which transforms a behavior into a structure 
which may be implemented. HERCULES transforms the behavioral specification of 
hardware in the form of C-like programming description through a series of abstractions, 
with the final result being a logic implementation of the hardware. At each level of 
abstraction, optimizing transformations are performed which will allow an exploration of 
the design space available to the designer. 

We address the hardware description problem, along with the abstractions and 
transformations for synthesis. In particular, we developed a method called the 
Reference Stack that may be used during behavioral synthesis to resolve conditional 
assignment, multiple assignment, variable and constant unfolding, and elimination of 
cycles for assignments to local variables. We also describe control in terms of a 
sequencing graph that supports multiple threads of control to be active simultaneously. 
Several benchmark examples from the High Level Synthesis Workshop held in January 
1988 on Orcas Island, Washington is passed through the system: MC6502, Intel8251, 
and FRISC, a 16-bit RISC type microprocessor. HERCULES is implemented in C on 
UNIX. There are approximately 23,000 lines of code in the implementation. 

3.1.1 Hardware Synthesis 

We devised a behavioral modeling language called ILSP. The ILSP compiler has been 
written and is operational. The synthesis system displays the data/control flow graph 
extracted from a functional model on the window screen. We are currently working on 
resource optimization. 

3.2 Simulation 

Simulation now requires vast amounts of cpu time. This seveiiy limits the size of a 
design that can be tested thoroughly. Incremental and parallel simulation are possible 
solutions to these current limits. We are investigating the performance of parallel and 
incremental diyital simulation. Specific synthesis and analysis tools are also proposed. 

3.2.1 Incremental Simulation 

We proposed two incremental simulation algorithms, the incremental-in-space and 
incremental-in-time algorithms, and implemented them in our THOR simulation system. 
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The incremental-in-space algorithm simulates the circuit components affected by design 
changes since the previous simulation [Hwang 88]. The incremental-in-time [Choi 
88] algorithm simulates a circuit component only for the simulation time frames when its 
inputs make different state transitions from the previous simulation run, maximally 
utilizing the past history of simulation thus reducing the number of component 
evaluations to a minimum. Both algorithms are found efficient, showing up to 30x 
speedups over conventional event-driven simulation. These two algorithms are 
comparable to each other: one shows better performance for some circuits over the 
other, depending on the circuit structure and topology of the circuit under simulation. 

3.2.2 Parallel Simulation Study 

Two parallel algorithms for logic simulation have been developed and implemented on a 
general purpose shared-memory parallel machine. The first algorithm is a synchronous 
version of a traditional event-driven algorithm which achieves speed-ups of 4 to 6 with 8 
processors. The second algorithm that has been developed is new and totally 
asynchronous [Soule 88]. There are no synchronization locks or barriers between 
processors and the problems of massive state storage and deadlock have been 
eliminated. This allows the processors to work independently at their own speed on 
different elements and at different times. 

Staff: G. De Michel!, D. Ku, S.Y. Hwang, T. Blank 

3.3 Power and Gnd Noise 

We have developed a system called Ariel for analyzing voltage drops and current 
density in the power networks of CMOS VLSI circuits. Three main parts, a Magic-based 
resistance extractor, a Rsim-based current simulator, and a network analyzer, work in 
tandem to examine the current/voltage characteristics of the power networks with a 
minimum of manual effort from the designer [Stark 88]. 

Ariel gets its resistor networks from Magic's resistance extractor, which uses a simple 
version of polygonal reduction. The extractor calculates resistance by counting the 
number of squares between two connection points in a region and multiplying by the 
sheet resistance. To find the currents that flow in the power supplies, Ariel uses RSIM to 
find which nodes change, the time-constant for each change, and which transistor is 
driving the node. The information on the current is then feed into a third program that 
calculates the voltages on power supplies. This program first breaks the loops in the 
power nets to make them into trees. Although this only approximates the actual voltage 
drop, it is guaranteed to be conservative and drastically reduces the time needed to 
determine the voltage on the power buses. 

Staff: M. Horowitz, D. Stark 
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3.4 Placement and Routing with Parallel Processing 

The Locus Project is concerned with achieving better quality automatic layout of 
integrated circuits by making use of the increased computational power of 
multiprocessors. This work is primarily supported by a Center for Integrated Systems 
seed grant, and partially by DARPA. The basic idea is to get better placement quality 
by using the actual routing as the measure of goodness for each potential placement. 
Routing itself is a computationally intensive task; hence the neec for multiprocessors. 

The first step of the Locus Project is nearing completion: the program LocusRoute, a 
parallel global router for standard cells has been developed [Rose 88a], [Rose 88b], 
[Rose 88c]. It achieves parallelism along three orthogonal "axes" of parallelism: routing 

several wires at once, routing segments of a wire in parallel, and dividing up the 
potential routes of a segment among different prouessors to be evaluated. The 
implementation of two of these approaches achieve significant speedup: wire-by-wire 
parallelism attains speedups from 6.9 to 13.6 using sixteen processors, and route-by- 
route achieves up to 4.6 using eight processors. When combined, these approaches 
can potentially provide speedups of as much as 55 times. 

Some work related to placement optimization has also been done. We have 
investigated the equilibrium dynamics of Simulated Annealing-based placement 
optimization, and developed a reliable method for "measuring" the "temperature" [Rose 
88d] of a placement. This method can be used to determine the starting temperature in 
placement systems that switch from a non-annealing based strategy to an annealing- 
based one. 

Staff: J. Rose, J. Hennessy 
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4 VLSI 

Our work on VLSI has been focused on new circuit structures that might be useful for 
future high-speed processors / floating-point units. In this effort we are exploring 
BiCMOS as well as MOS designs. 

4.1 RAM Design 

We have been experimenting with both very high speed and high density RAM design. 
In high speed RAMs we have designed, fabricated, and tested a 3.5ns 4K bit ECL I/O 
BiCMOS sRAM. [Yang 88] The design uses a novel memory cell that contains a bipolar 
transistor along with a CMOS latch. The bipolar transistor's collector is connected to 
the nwell so it occupies very little space; the cell is only 30% larger than a standard 6T 
cell. Using only small swing bipolar logic in the access path provides the fast access 
time. The cell also has independent read and write ports allowing simultaneous read 
and write operations. The device was fabricated at IDT on a 1.5u BiCMOS technology. 

In high density RAMs we have designed, fabricated and tested a 16K dRAM using a IT 
RAM cell. The memory uses a relatively large cell {.1pf, and 19x14 lambda) but is still 
about 3-4 times denser than a 6T design. The cell should be scalable down to a 1.2u 
technology without major change. Scaling from 2u to 1.6u leaves the cell capacitance 
roughly unchanged because of the large change in gate oxide thickness (40nm -> 
25nm) The memory has an access time of 22ns (RT) and a cycle time a little over 30ns 
in a 2u technology. A conservative design approach was used, there are no 
bootstrapped nodes, and the timing chain is self-timed whenever possible. The net 
result is an access time that is slower than it could be, but is quite robust. We have 
tested the noise margins by adjusting the voltage on the dummy cell and have found 
that the memory has large noise margins. We are now planning to write a module 
generator for dRAMs so they can be used on other chips. 

Staff: M. Horowitz, R. Kao, T.S. Yang 

4.2 BiCMOS 

We are ramping up our effort to design circuits in high-performance BiCMOS and 
bipolar technologies. We have already designed a 3.5ns BiCMOS sRAM and have a 
few adder circuits in fabrication. To drive the design process we have started looking at 
the design of a high-performance floating point unit. Our goal is to build a co-processor 
capable of running at 100MHz and starting a new add or multiply every cycle. With this 
goal in mind we are beginning to look at building the major blocks that this chip requires: 
multiplier, adder, shifter, control logic, registerfile, bus drivers, latches and control logic. 

To support this design effort we have begun working on a set of CAD tools to support 
bipolar and BiCMOS design. We were able to modify the Magic layout system to 
support bipolar devices, and now have a number of different BiCMOS technology files. 

September 1987 - March 1988 8 



^\ w-_ .r. «-^ w-^ T* "• * " ^ ^ ^ *- )<.i ic ■.^,- >■-- ^.   «v,  ^r \r v .rv'.rw 'JV irk^jTf L"w L/* ^u^ -^ J^U* M^ .« ^ *"*»*■» k^ *' w ^ jrf - «■• M ^ .* "..x •" > ~.J« -J«   .* ^J* r** ^** r 

Unfortunately almost all of the simulation tools can't deal with the resulting simulation 
file, so the BiCMOS RAM was the first chip in a number of years that was not "switch" 
simulated before fabrication. We had simulated the pieces of the design using SPICE, 
but were not able to simulate the entire chip. To fill this hole we are working on a 
BiCMOS simulator, and have a prototype running. The simulator can now handle 
bipolar circuits and we plan to extend it to handle BiCMOS circuits later this year. 

Staff: M. Horowitz, R. Kao, R. Alverson, D. Stark, D. Wingard 

4.3 Multiplication 

The demand for high performance floating point coprocessors has created a need for 
high-speed, small-area multipliers. Array multipliers achieve the highest performance 
but have a large silicon cost, while shift and add multipliers require very little hardware 
but have lower performance. We have used an iterative partial tree structure to provide 
a high-performance, small-area multiplier [Santoro 88]. The clock is generated 
internally and is set to match the delay through two carry-save adders and a latch. To 
complete a 64x64 multiply requires only seven clocks, and a new multiply can be 
started after 4 clocks. The 1 .6ü parts clock at over 80MHz. 

Staff: M. Horowitz, M. Santoro 

4.4 Single-Chip Testers 

We have completed the testing of our high performance CMOS pin electronics. This 
circuit has been fabricated in a 2u technology and is able to generate outputs to drive 
the DUT with about .5ns resolution. The chip can generate all the needed formats (NRZ 
RZ RO RT RC) and can drive the output to either of two high and two low levels. For 
measurement of the DUT outputs, the chip contains an analog comparator that is 
sampled at the user specified time [Gasbarro 88]. 

We will use this pin electronics design in the design of a single chip tester that will be 
sent out for fabrication this year. Each chip can drive 16 DUT pins at over 30MVecs/s 
with edge resolution on each pin of about .5ns. The chip contains a dRAM for vector 
storage (40Kbits) and a decompressor that allows the chip to effectively store about 10K 
vectors/pin. The chip has a simple asynchronous interface that allows it to be attached 
to a number of different buses, and only requires 70 pins. Using these chips, it should 
be possible to build an IMS class tester (or better) using only 8 chips. Also since the 
test electronics are so small they can be located very close to the DUT thus eliminating 
the problem with cables and reflections. 

Staff: M. Horowitz, J. Gasbarro 

September 1987 ■ March 1988 



[Agarwal 88a] 

[Agarwal 88b] 

[Agarwal 88c] 

[Choi 88] 

References 

Agarwal, A., Sites, R. 
MultiprocesFor Address Tracing and Characterization Using ATUM. 
In 15th International Symposium on Computer Architecture. 

IEEE/ACM, Honolulu, HI, June, 1988. 
To appear. 

Agarwal, A., Gupta, A. 
Memory-Reference Characteristics of Multiprocessor Applications 

under MACH. 
In SIGMETRICS. IEEE, 1988. 
To appear. 

Agarwal, A., Simoni, R., Hennessy, J., Horowitz, M. 
Scaleable Directory Schemes for Cache Consistency. 
In 15th International Symposium on Computer Architecture. IEEE, 

Honolulu, HI, June, 1988. 
To appear. 

Choi, K., Hwang, S.Y., Blank, T. 
Incremental-in-Time Algorithm for Digital Simulation. 
In 25th Design Automation Conference. IEEE/ACM, Anaheim, CA, 

June, 1988. 
To appear. 

Davis, H., Hennessy, J. 
Characterizing the Synchronization Behavior of Parallel Programs. 
In Sym. on Parallel Programming: Experience with Applications, 

Languages and Systems. ACM , New Haven, CT, July, 1988. 
To appear. 

De Micheli, G., Ku, D. 
HERCULES - A System for High-Level Synthesis. 
In Design Automation Conference. IEEE/ACM, Anaheim, CA, June, 

1988. 
To appear. 

Gasbarro, J., Horowitz, M. 
Integrated Pin Electronics for VLSI Functional Testers. 
In Custom Integrated Circuits Conference. IEEE, Rochester, NY, 

May, 1988. 
To appear. 

[Gharachorloo 88] Gharachorloo, K., Sarkar, V., Hennessy, J. 
A Simple and Efficient Implementation Approach for Single 

Assignment Languages. 
In Lisp and Functinal Programming Conference. ACM, Salt Lake 

City, UT, July, 1988. 
To appear. 

[Davis 88] 

[De Micheli 88] 

[Gasbarro 88] 

September 1987 - March 1988 10 



[Gopinath 88]        Gopinath, K. 
Copy Elimination with Abstract Interpretation. 
Computer Science Department Classic 87-17, Stanford University, 

February, 1988. 

[Gupta 88] Gupta, A., Tucker, A. 
Exploiting Variable Grain Parallelism at Runtime. 
In Sym. on Parallel Programming: Experience with Applications, 

Languages, and Systems. ACM, New Haven, CT, July, 1988. 
To appear. 

[Hwang 88] Hwang, S.Y., Blank, T., Choi, K. 
Fast Functional Simulation: An Incremental Approach. 
IEEE Trans, on Computer-Aided Design of Integrated Circuits and 

Systems, July, 1988. -    - 
To be published. 

[Prz^ bylski 88]       Przybylski, S., Horowitz, M., Hennessy, J. 
Performance Effects in Memory Hierarchy Design. 
In 15th International Symposium on Computer Architecture. IEEE, 

Honolulu, HI, June, 1988. 
To appear. 

[Rose 88a] Rose, J.S. 
The Parallel Decomposition and Implementation of an Integrated 

Circuit Global Router. 
In Slgplan Symposium on Parallel Programming. ACM, New Haven, 

CT, July, 1938. 
To appear. 

[Rose 88b] Rose, J.S. 
LocusRoute: A Parallel Global Router for Standard Cells. 
In 25th Design Automation Conference. IEEE/ACM, Anaheim, CA, 

June, 1988. 
To appear. 

[Rose 88c] Rose, J.S. 
LocusRoute: A Parallel Global Router for Standard Cells. 
In Workshop on Placement and Routing. MCNC, Atlanta, GA, May, 

1988. 
To appear. 

[Rose 88d] Rose, J.S., Klebsch, W., Wolf, J. 
Equilibrium Detection and Temperature Measurement of Simulated 

Annealing Placements 
In Workshop on Placement and Routing. MCNC, Atlanta, GA, May, 

1988. 
To appear. 

September 1987 - March 1988 11 



[Santoro 88] Santoro, M., Horowitz, M. 
A Pipelined 64x64b Iterative Array Multiplier. 
In International Solid-State Circuits Conference. IEEE, San 

Francisco, CA, February, 1988. 

[Soule 88] Soule, L, Blank, T. 
Parallel Logic Simulation on General Purpose Machines. 
In 25th Design Automation Conference. IEEE/ACM, Anahelm, CA, 

June, 1988. 
To appear. 

[Stark 88] Stark, D., Horowitz, M. 
Analyzing CMOS Power Supply Networks using Ariel. 
In 25th Design Automation Conference. IEEE/ACM, Anaheim, CA, 

June, 1988. 
To appear. 

[Yang 88] Yang, T„ Horowitz, M., Wooley, B. 
A 4ns 4kxl Two-Port BiCMOS SRAM. 
In Custom Integrated Circuits Conference. IEEE, Rochester, NY, 

May, 1988. 
To appear. 

September 1987 - March 1988 12 



A 4 nsec 4Kxlbit Two-Port BiCMOS SRAM 

T.S. Yang, M.A. Horowitz, and B.A. Wooley 
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ABSTRACT 

This paper introduces a two-port BiCMOS static mem- 
ory cell that combines ECL level word-line voltage swings and 
emitter-follower bit line coupling with a static CMOS latch 
to achieve access times comparable to those of high-speed 
bipolar SRAM's, while preserving the high density and low 
power of CMOS memory arrays. The memory can be ac- 
cessed for read and write independently and simultaneously, 
making it especially attractive for the design of video, cache 
and other application-specific memories. An experimental 
4Kxlbit two-port memory integrated in a 1.5/jm-5GHz BiC- 
MOS technology exhibits a read access time of 4 nsec and a 
power dissipation of 550 mW. 

INTRODUCTION 

The highest speed static memories have generally been 
realized using advanced bipolar technologies. However, the 
large cell area and standby power dissipation have precluded 
the scaling of these circuits to increasingly higher levels of 
integration. Recently, BiCMOS technology has been used 
to significantly enhance the speed of CMOS static memoiy 
arrays. Most BiCMOS SRAM's described to date combine 
conventional CMOS cells with the use of'sipolar transistors in 
the sense amplifiers and for driving large capacitive loads1,2. 
In these designs, the access time remains limited by factors 
such as the large voltage swing on the word lines, ihe limited 
cell output current and the number of circuit stages used3. 

In addition to access time itself, simultaneous multiport 
access capability is becoming an increasingly important fea- 
ture of high-speed static memories. However, conventional 
multiport designs typically have both a large cell area and 
relatively slow access. 

This paper introduces a BiCMOS two-port static memory 
cell, and associated access circuitry, with which it is possible 
to achieve access times comparable to those of high-speed 
bipolar SRAM's while retaining the high density and low 
power of CMOS memory arrays. The cell, referred to as a 
CMOS Storage Emitter Access (CSEA) cell, combines ECL 
level word-line voltage swings and emitter-follower bit line 
coupling with a static CMOS latch. Compared with conven- 
tional multiport memory designs, the CSEA memory offers 

' Thi« roearch was supported in part by a fellowship from IBM and 
by DARPA under Contract No. MDA903-JI3-C0335 

extremely high speed and small size together with the inde- 
pendent read and write access capability, making it especially 
attractive for multiport memory designs such as video, cache 
and other application-specific memories. To demonstrate the 
operation of the cell, a complete 4Kxlbit two-port SRAM 
has been designed and integrated in a l.S^im BiCMOS tech- 
nology. The memory operates from a single 5.2V supply with 
ECL-compatible I/O. A typical read access time of 4 nsec at 
a power dissipation of 550 mW was achieved in the initial 
prototypes. 

BiCMOS CSEA MEMORY CELL 

The schematic of the CSEA memory cell and its associ- 
ated bit line sensing circuit is shown in Figure 1. In the CSEA 
memory, a small word-line swing of only 550 m V and emitter- 
follower coupling to the bit line are adopted to minimize the 
wird-line delay and increase the bit-line charging current. A 
stitic CMOS latch is retained to reduce the standby power 
«.onsumption of the array. In Figure 1, the REAP ord line 
(RWL) serves as the positive supply for the cell's internal 
CMOS latch, and the cell is read by raising this word line. 
When a high output is stored in the cell, the increase in 
RWL is coupled directly through M2 to the base of the out- 
put emitte'-follower, Q6, which forms a differential pair with 
the sense amplifier input transistor, Q7. For a low output 
stored in the cell, Q6 is turned off by M4 and the bit line 
current, IBL. i« switched to flow through Q7. The cell is 
written through the pass transistor M5, which is controlled 
by the WRITE word line. Full CMOS logic levels are used 
on both the WRITE bit line (WBL) and the WRITE word 
line (WWL). As a consequence of the single-ended write, care 
must be taken to avoid disturbing the unselected cells in the 
row where the WRITE word line is selected. Such write dis- 
turbances are avoided by biasing the unselected WRITE bit 
lines at a level close to the logic threshold of the M2-M4 latch 
inverter when the READ word line is at its low level. 

The area of the CSEA cell is approximately 35% larger 
than that of a 6-transistor CMOS cell implemented using 
the same layout rules and design style. The increased area 
is due primarily to the independent read and write ports, 
which preclude the sharing of signal lines among adjacent 
rows and columns. However, the CSEA cell is comparable to 
other single-ended memory cells4 and is much smaller than 
conventional multiport cells using differential bit lines. 



MEMORY ARCHITECTURE 

The block diagram of a 4K'bit two-port CSEA memory 
is shown in Figure 2. The memory is organized as a 64-row 
by 64-columns array. The array is controlled by 64 WRITE 
row decoders, 64 WRITE column switches, 64 READ row de- 
coders and 32 READ column switches. Each READ column 
switch selects two READ bit lines and the data are multi- 
plexed at the output buffer by the least significant bit of the 
READ address. Two sets of address inputs, one for read and 
the other for write, are available externally thereby allowing 
direct access to the rt^d and write ports of the CSEA cell ar- 
ray. The separate data input and output paths offer improved 
system performance by eliminating the need for multiplexing 
the data bus, thus reducing the I/O delay in the critical path. 

Since the loading a cell imposes on its READ word line 
depends both on the data stored in the cell and on whether 
or not the cell is being written, the READ word and bit lines 
are laid out orthogonal to the WRITE bit and word lines, re- 
spectively. Therefore, RWL parallels WBL, and the sekxted 
word line is loaded by only a single cell with an active WRITE 
word line. This arrangement serves to minimize write con- 
dition interference with the read operation. Finally, in order 
to isolate power supply coupling and reduce switching noise, 
the read path, comprised mainly of small-swing ECL circuits, 
and the write path, consisting of CMOS logic, are powered 
through separate pads. 

CIRCUIT DESIGN 

A schematic of the READ path is given in Figure 3. Selec- 
tion of the READ word line (RWL) is accomplished entirely 
with current-switching ECL circuits operating at low volt- 
age swings. The logic levels in these circuits are established 
by means of an on-chip, supply-compensated bandgap ref- 
erence. Push-pull address input buffers are used to provide 
fast transitions at the input to the row decoders, and the de- 
coding is accomplished using diode decoders. The word lines 
are driven by Darlington emitter-followers tied through resis- 
tors to a common pull-down current. The active pull-down 
current available to discharge a deselected word line is 7mA, 
while a static pull-down current of 125/iA is maintained in 
each of the unselected word lines. To ensure that the bit line 
reference tracks the high RWL level in the selected cell, the 
level of the selected word line is monitored with a wired-OR 
of emitter-followers driven by each of the word lines. 

The schematic of the WHITE path is shown in Figure 
4 and is similar to that of conventional BiCMOS SRAM's2. 
WRITE address decoding is accomplished by means of dy- 
namic series decoders that are clocked by the write enable 
signal. The unselected WRITE bit lines are biased at the 
voltage level of the internal latch threshold, Vwbif; this refer- 
ence is generated from the common pull-down current source 
in the read path. 

EXPERIMENTAL PERFORMANCE 

A die photo of the complete 4Kxlbit two-port memory is 
shown in Figure 5; the die size is 2.5mmx3.5mm. The per- 

formance of the prototype memory ii summarized in Table I. 
Shown in Figure 6 ii an otcillograph of a typical read acce«« 
at room temperature with a power dissipation of 550 mW. 
The access time is 4 nsec. At 100oC case temperature the 
measured worst case read access time is 6 nsec and the power 
dissipation is 750 mW. 

The independent read/write capability is illustrated in 
Figure 7, where the memory is read and written simultane- 
ously. Additional measurements have shown little data de- 
pendency in the read access time and no interference between 
read and write operations. The setup and hold times of the 
write address signals with respect to the write enable pulses 
are less than 1 nsec, and the minimum write enable pulse 
width is 4 nsec; thus a write cycle time of less than 6 nsec can 
be achieved. This suggests that the memory can be cycled 
at a rate close to 200 MHz. Since most of the power in the 
memory is dissipated in the peripheral circuits, a 16Kbit two- 
port SRAM implemented using the same circuit techniques 
and technology is projected to have a typical read access time 
of 4.5 nsec with a power dissipation of 750 mW. 
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Technology- 1.5/im, 5GHz BiCMOS 
Cell Size 26/im x 25/im 
Chip Size 2.5mm x 3.5mm 
Configuration 4KxlBit 2-port 
I/O Interface ECL 10K compatible 
Power Supply -5.2 Volte 
Power Consumption 550 mW 
Read Access Time 4.0 ns 
Minimum Write Pulse 4.0 ns 

Table I: Performance nummary of the 4Kbit CSEA Memory 
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Abstract 

A fast and easily parallelizable global routing algonlhm for standard 
cells and its parallel implementation is presented. LocusRoute is meant 
to be used as the cost function for a placement algorithm and so this 
context constrains the structure of the global routing algonlhm and its 
parallel implementation. The roulrr is based on enumerating a subset of 
all two-bend routes between two pointi, and results in 169c to 379c fewer 
tout number of tracks than the Timber>Volf global router for standard 
cells (Sech85]. It is comparable in quajity to a maze router and an 
industrial router, but is factor of 10 times or more faster. Three 
approaches to parallelizing the router are implemented: wire-by-wire 
parallelism, segment-by-segment and route-bv-route. Two of these 
approaches achieve significant speedup - route-by-route achieves up to 
4.6 using eight processor, and wire-by-wire achieves from 5.8 to 7.6 on 
eight processors. 

1 Introduction 

The best way to evaluate a given placement of circuit modules is to 
route it and determine the final area. Since routing is a time-consuming 
task typical placement algorithms [Hana72,Breu77] me other metnes 
such as total wire length or crossing counts thai are easier to calculate. 
The advent of usable commercial multiprocessors is leading us to 
consider using more compute-intensive cost functions i/efficient parallel 
algorithms can be developed. The aim of the Locus Project is to 
integrate placement and routing into one opümization process, and to do 
this by using multiprocessing to increase the speed of the routing. 

This paper presenu the first step in the Locus Project: LocusRoute, 
a new global routing algorithm for standard cells, and its parallel 
implrmentation. Our goal is to make the average routing time for one net 
close to the time that it takes to recalculate more conventional cost 
functions such as that used in the TimbcrWolf (Sech85] Simulated 
Annealing algorithm. The intention is for the global router to be 
invoked to rip-up and re-route w>res whose end points have changed 
when one or more cells are moved in an iterative improvement 
placement scheme. This means that routing time must be about one to 
five milliseconds per net on a VAX 11/780-class machine. 

The routing performance of LocusRoute, as measured by total 
number of routing tracks, is beoer than that of TimbcrWolf [SechSS] and 
comparable to a maze router and an industrial router. It is fast because it 
investigates only a subset of two-bend routes between paire of pins to be 
routed. The routing speed is increased further by parallelizing the 
algorithm in three ways: routing several wires at once, routing «everal 
two-point segments simultaneously, and evaluating possible two-bend 
routes in parallel. The wire-by-wire parallel approach achieves speedups 
ranging from 5.8 to 7.6 using 8 processors. The route-by-route approach 
achieves speedups of up to 4.6 using 8 processors. Since these two 
"axes" of parallelism are orthogonal to e^h other, their respective 
speedups will multiply. 

This paper is organized as follows: Section 2 reviews related work. 
Section 3 defines the problem of global routing and gives our routing 
model. Section 4 desenbes the LocusRoute algorithm and compare- it to 
other routers. Section 5 presents three approaches for speeding up the 
new router using parallel processing, and performance results. 

2 Related Work 

Previous work on parallel routing [Breu81, Blsn81, Rute84, and 
many others] has generally focused on a fixed hardware mapping for the 
Lee routing algorithm fLee61]. As such they lack the flexibility that is 
required ir. practical CAD software such as the global router described in 
[Kamb85]. Another drawback of special hardware for the Lee algorithm 
is that a uniprocessor implementation can be made very efficient using 
special software data structures that cannot be put easily into fixed 
hardware. A more flexible approach is to use general purpose parallel 
processore, which can be adapted to many applications. Using the 
flexibility of a general purpose multiprocessor, several "axes" of 
parallelism can be exploited. If these axes are orthogonal to each other 
then when used together they can provide significant speedup. Two 
approaches to parallelizing an algorithm are said to be orthogonal if, 
when used together, the resulting speedup is the product of the speedup 
of the individual methods. 

3 Problem Definition and Routing Model 

Global routing for standard cells first decides for each group of 
electrically equivalent pins (pin clusters) which of those pins are actually 
to be connected. Second, if there is no path between channels when one 
is required, it must decide either which built-in feedthiough to use or 
where to insert a feedthrough cell. Lastly, it must determine the channel 
to use in routing from a pad into the core cells. 

In this discussion of global routing there will be no differentiation 
between feedthrough cells and built-in feedthroughs ■ they are referred to 
jointly as vertical hops. The decision to insert a feedthrough cell or use 
a built-in feedthrough is deferred to a post-processing step. This does 
result in some inaccuracy in the track count However, using this 
approximation (and the routing algorithm to be described) the 904-wire 
Primary 1 circuit from the standard cell benchmark suite (Prea87] global 
routed to 249 tracks, using 995 vertical hops. The actual, post-process 
track count using 10 feedthrough cells and 985 built-ins was 253, only 
1.6% more tracks. For the 3029-wire Primary2 circuit with 3424 vertical 
hops (287 feedthroughs, 3137 built-ins) the approximate track count was 
546 and the post-process count was 590, an increase of 8%. 

The usual objective of a global router is to minimize the sum of the 
channel densities of all the channels (hereafter called the total density). 
It is important to note that the total density can be traded off with the 
number of vertical hops, so to compare the total density of two global 
routings fairly they should both use the same number of vertical hops. 
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Figure 1 - Routing Model 

3.1 Routing Model 

All of the rouiing algorithms discussed here are based on the same 

routing model: Each possible routing position in a channel (also called 
routing grid of that channel) is repre>,enlcd as one element of an array as 

shown in Figure I. The array, called the Cost Array; has a vertical 

dimension of the number of rows plus one, and a horizontal dimension 

of the width of the placement in routing grids. Each element of the Cost 
Array conuins two values: H,j and Vy. H,j contains the number of of 

wire routes that pass horizontally through the grid at channel i in 

position ;. Vly is the cost, assigned by parameter, of traversing a row in 

travelling from channel i to channel i + 1 at grid position ;, A wire is 

represented as a list of (i ,; ) pairs of locations in the Cost Array, 
corresponding to the locations of pins to be joined. 

The objective is to find a minimum-cost path for each wire. The 

wire's cost is given by the sum of all of the Hy «nd V.y that it traverses. 

After a path is found for a wire that goes through location {i ,j ) its 
presence is recorded in the Cost Array (the appropriate //,, and V,^ «re 

incremented) so that subsequent wires can lake it into account. The 

more wires going through a particular location m a channel, the less 
likely it is that area will be used. Note that in this model the total 

density is not directly minimized, but rather a combination of average 
density and wire length. 

4 The LocusRoute Algorithm 

In this section the uniprocessor LocusRoute algorithm is described, 
and a performance comparison with other routers is given. There are 
five steps in the LocusRoute global routing algorithm: 

1. A multi-point wire is decomposed into two-point segments, using 

Kruskal's algorithm [Krus56]. This algorilhm has running time 

0(n2) in the number of pin clusters. The effect of the sub- 
optuntlity of this decomposition is discussed in section 4.4 below. 

2. The segments are further decomposed, if necessary, into 

permutations, which are the set of possible routes between e«:h pin 
in a pin cluster. 

3. A low-cost path in the Cost Array is found for each permutation by 

evaluating a subset of the two-bend routes between each pin pair. 

The permutation with the best cost is selected as the route for that 
segment. 

4. Traceback.   This step joins «11 the segments back together, «nd 

assigns unique numbers to di-.tincl segments of the same wire in 
each channel. This is so that a channel router can distinguish 

between two segments «nd will not inadvertently join them together. 

5. Wire lay down. The presence of the newly routed wire is put into 

the Cost Array by incrementing the array elements where the new 

wire resides. Once there, other wires can lake it into account. 

The details of the second and third steps are described in the following 

sections. The first and last two are simple enough that the above 
description suffices. 

4,1 Decomposition Into Permutations 

Each two-point segment consists of pairs of pin clusters that contain 

electrically equivalent pins. The LocusRoute algorithm considers routes 
between every pin in one cluster and every pm in the other cluster. Each 

such route is called t permuialton. Figure 2 illustrates three of the four 

possible permutations between clusters A and B, which have two pins 

each. The four possible permuutions arc: (A ,,/>]), (A i.fii), (4 2.Ü i) 

. (^Z'^i)- If clusters A and B «re separated by only a short horizontal 

distance, then the (A^.B^) permutation is most likely the least-cost path 

of the four. If the horizontal distance is large then it is possible that any 

one of the four permutations could have the low-cost path, and hence all 
should be investigated. This has been confirmed experimentally, and a 

constant honzontal separation (300 routing grids) has been determined 

beyond which total density will unprove if all four permutations are 
evaluated. 

Slandard Call Rows 

Pm Cluster 

1 

j Cluster B 

T -J2 

ClLer/ 

Rout« Pemutation A2 ■> B2 

Figure 2 - Permutation Decomposition of Segment 

4.2 Route Enumeration 

The LocusRoute algorithm searches for « low-cost p«th for « 

permutation by enumerating a number of different routes. The ide« is to 

ev«luate the cost of « subset of «II two-bend routes between the two pins, 
«nd then choose the one with the lowest cost Generation of two-bend 

routes .is discussed in [Ng86). Figure 3 illustrates three possible two- 

bend (or lest) routes inside « representation of the Cost Array as a small 
example. 

If the honzontal distance between the two pins is H routing grids, 
«nd the vertical difference it C channels then the total number of two- 

bend routes a C + H. A parameter, called the two bend percent (TBP) 

dicutes the percenuge of the total number possible two-bend routes to 
be evaluated.  Thus the total number of routes evaluated is given by 
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The pnority order of the routes evaluated (when TBP Is less than 
100) is as follows: first all pnncipally horizontal routes (those with 
bends only at the left and right extremes) are evaluated Then the 
principally vertical routes (those with bends at the upper and lower 
extremes) are evaluated. Honzonta] routes are evaluated first because it 
is importani that all of the potential channels for the route be examined 
at least once. Within the horuonui and vertical groups, routes are 
searched in bisection order, i.e. if the limits of the group span are 

normalize to [0,1] then the routes are priori ü zed isO.l.i-.X.-T.-r, 

and so on. 

The two-bend evaluation approach was calibrated against a least- 
cost path maze router between the two points. Note that both routers arc 
not allowed to go beyond the bounding box of the two end points of the 
segment This is different than comparing against a maze router for 
multipoint wires since that is a less constrained problem and the maze 
router will have more success, as discussed in Section 4.4. 
Experimentally, it was determined that a TBP of 20% would result in a 
path as good as that found by the maze router, as compared on the basis 
of total density for the entire circuit. On all of the test circuits used in 
the experiments discussed in the section 4.4, the LocusRoute router's 
total density was within 2% of that obtained by the two-point maze 
router, with one exception of 3.3%. Most of the differences were below 
1%. This is surprising m that the maze router looks for not only two- 
bend routes but for three or more bend routes. It implies that two-bend 
routes provide a sufficiently nch route set for the standard cell routing 
problem. 

4.3 Iteration 

The LocusRoute algorithm makes use of a general iterative 
technique in the manner described in [Nair87]. Briefly, this means that 
after the first time all wires are routed, each is sequentially ripped up 
from the Cost Array and then re-routed. By routing each wire several 
times (typically four is sufficient), the wire order-dependency is reduced 
and the final answer is improved by five to ten percent. Also - of benefit 
to the end-purpose of integrated placement and routing - the nature of 
iteration is similar to the placement environment in which wires «re 
ripped up and re-routed many times. 

4.4 Uniprocessor Performance Results 

7>iis section compares the quality and execution lime of LocusRoute 
with other routers. 

Table 1 shows a comparison between the LocusRoute global router 
and the Tur.berWolf [Sech85] global router for several industrial 
circuits. These circuits are from several sources: The standard cell 
Benchmark suite (Primaryl, Pnmary2, Test06 (Prea87]), Bell-Northern 
Research Ltd. (BNRA->BNRE), and the University of Toronto 
Microelectronic Development Centre (MDQ. The placement for all of 
the circuits was done by the ALTOR standard cell placement program 
[Rose«5, Rose88]. The TunberWolf version used was TimhirWolf 4.1, 
obtained in July 1987. LocusRoute shows significantly better total 
density than does the T imberWolf global router, ranging from 16% to 
37% fewer tracks. The principal reason is that thu TunberWolf global 
router is constrained to use only the minimum number of vertical hops, 
whereas LocusRoute uses considerably more. This is a reasonable 
practice in current technology because many standard cells contain 
"free" built-in feedthroughs. The execution limes of LocusRoute and 
TunberWolf »re comparable for most of the examples, though 
TimberWolf is faster by a factor of 8 and 3 respectively for cireuits 
Test06 and Primary2. This is due to the fact that the LocusRoute 
algorithm increases in running tune proportional to the area covered by 
the wire, which is much larger in these two circuiu. 

Circuit 

Name 

# 
Wires 

Total Dens 

Locus  l TWolf |  %Few 

BNRE I     420 138 179 22% 

MDC 575 150 179 16% 

BNRD 774 1S8 j    225 16% 

Primaryl 904 262 316 17% 

BNRC 937 202 247 18% 

BNRB 1364 320 442 27% 

BNRA 1634 315 432 27% 

Tesl06 1673 335 537 37% 

Primary2 3029 563 702 20% 

Table 1 - Comparison of LocusRoute and TunberWolf 

For comparison purposes a maze router [Lee61] was developed that 
exhaustively determines the optimal solution to the two-point routing 
problem as defined in Section 3. Note that it uses the same cost 
function as the LocusRoute router. It also determines a good 
approximation to the minimum-cost Steiner tree for multi-point wire» 
using the approach described in [Aker72]. The maze router was 
carefully optimized for speed. Table 2 shows the comparison of total 
density and execution time for the maze router and the LocusRoute 
router, for all of the test circuits. The comparison is made on the basis of 
roughly equal numbers of vertical hops. Execution times «re for four 
iterations over «11 wires on « DEC Micro V«x Q. 
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Circuit 

Name 
Toul Density Time (Micro Vax Us) 

Locus      Maze   '  Diff     Locus      Maze      Factor 

BNRE 138 129 7* 88 i    2378 27x 

MDC 150 |     141 6% 178 3173 18x 

BNRD 188 |    182 3% 167 3306  ; 20x 

Prunaryl 262 255 3* 325 6534 20x 

BNRC 202 189 7% 363 7250 20x 

BNRB 320 308 4% 599 15116  1 25x 

BNRA 315 294 1%   I 769 19652 26x 

Tesi06 335 316 6% 5137 92272 18x 

Pnmary2 563 549    l 3%  i 3758 48295   1 13x 

Table 2 ■ Comparison of LocusRoute andMazt Router 

For all circuits the LocusRoute total density (total number of routing 
traclcs) is no greater than 79c more than that achieved by the maze 
router, and in some cases is as little as 39c. Most of this difference is 
due to the sub-optimality of dividing the wires up into two point nets. 
LocusRoute is markedly faster than the maze router - ranging from 13 to 
27 tunes faster. This gain in speed is more than worth the increase in 
total density for the end-purpose of integrated placement and routing. 

For two of our circuits, we can also compare the total routing 
density with the United Technologies global router used in the recent 
benchmark effort at the 1987 Physical Design Workshop 
[Prea87,Robe87). The placements used above for circuits Primaryl and 
Primary2 were also routed by the UT router. Table 3 shows the 
comparison of total density for both circuits, with each router using 
roughly the same number of vertical hops. The toul density of the UT 
router for circuit Primaryl is notably less than for the LocusRoute 
router. This is probably due to the fact that the UT router also performs 
neighbour exchanges and cell orientation changes on the placement in 
order to reduce the total number of tracks. The LocusRoute total density 
for circuit Primary2 is slightly less than that achieved by the UT router. 
We have no information on the execution tune of the UT router, except 
that for circuits near the size of Primary2, it would take roughly 10000 
Vax 11/780 second» [Robe«7]. 

Circuit Name «Wires Total Density 

LocusRoute   |  Benchmark 

Primaryl             904               253 i94 

Priroary2 3029 560 562 

Table 3 - Comparison of LocusRoute and Benchmark Router 

5 Parallellzafion 

In this section several ways of parallelizing the LocusRoute router 
are proposed and implemented: 

1. Wire-based Parallelism. Each processor is given an entire multi- 
point wire to route. 

2. Segment-based Parallelism. F-ach rwo-point segment produced by 
the Kruskal decomposition can be routed in parallel. 

3. Permuution-based Parallelism. Each of the four possible 
permutations, as discussed in Section 4.1, can be evaluated in 
parallel. 

4. Route-based Parallelism, Each of the possible rwo-bend routes for 
every permutation can be evaluated in parallel. 

Note that these are only potential axes of parallelism. It is possible 
to eliminate some of them as uneconomical by using statistical run-time 
measurements of the sequential router. For example, the number of 
two-point segments that actually need to have all four permuutions 
evaluated is quite small with respect to the toul. Thus, permuution- 
based parallelism is not gome to provide significant speedup and isn't 
worth the lime it requires to develop. Other measurements, however, 
show that the time spent evaluating the cost of two-bend routes ranges 
from 50 to 90 percent of the toul routing tune, so that some amount of 
speedup from route-based parallelism can be expected. 

The following sections gives the details of three axes of parallelism, 
their performance and a quantitative measure of the of degradation in 
quality if there is some. 

5.1 Wire-Based Parallelism 

In Wire-Based parallelism, each multi-point wire is given to a 
separate processor, which runs the LocusRoute routing algorithm as 
described in Section 4. Thus, each processor executes the following 
"flow" for a different wire: Prior to decomposition, if the iteration 
technique is used, the wire must be 'ripped up" out of the Cost Array. 
Next, each wire is decomposed into two-point nets, and possibly further 
into permuutions. A subset of the potential two-bend routes is 
generated, and then evaluated by traversing the Cost Array. When a 
final route it chosen, the Cost Array is updated to reflect the new 
presence of that route. 

The Cost Array it a shared data structure to which all processors 
have read and write access. This it an excellent axis of parallelism: if 
the sharing of the Cost Array does not cause performance degradation 
due to memory contention, the speedup should simply be the number of 
wires thai are routed in parallel. The resulting parallel answer, however, 
will not necessarily be the tame as the sequential answer. The problem is 
that the sequential router has complete knowledge of all wires that have 
already been routed, by virtue of their presence in the cott array. The 
parallel router hat less information because it doesn't see the wires thai 
are being routed simultaneously. The more wires routed in parallel, the 
lest information each processor hat to choose good routes that avoid 
congestion and hence the total density increases. The total density will 
increase as the number of processors increases. The measured effect on 
total density it discussed below, in Section 5.1.1. 
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An inicresling issue is whether or nol each processor should lock the 
Cost Array as n both rips up and re-routes wires in the Cost ATav. The 
act of ripping up a route is essentiallv a decrement, and re-routing is an 
increment on a cell in the Cost Array. Locking the Cost Array dunng 
these operations (lo ensure that two simultaneous operations on the same 
element does nol prevent one of the operations from being lost) can 
cause a senous performance degradation. However, the final routing 
quality did not decrease when locking was omitted. The reason for this 
is that the probability of two processors accessing the same Cost Array 
element (of which there are many) at the same instant is very low. Even 
if very few incremenl or decrement operations are lost, the effect on final 
quality is negligible since only a few elements would be wrong by a 
small amo'int- 

5.1.1 Wire-Based Parallel Results 

Figure 4 is a plot of the speedup versus number of processors for the 
904-wire  (Pnmaryl) example  running  on an eight-processor  Encore 

MULTIMAX. The speedup for/> processors, 5, is calculated  as Ij-, 
* P 

where 7, is the execution time on one processor and 7, is the execution 
time using p  processors.   The Encore uses National 32032 chip sets 
which, in our benchmarks, timed out slightly faster than a DEC Micro 
VaxO. 

Speedup 

2       3       4       5       6       7       8 

Number of Prccessors 

Figure 4 - Wire-Basal Speedup for Circuit Pnmaryl 

Note that the execution time is only the actual routing compuution time, 
excluding input time. The "knee" in the curve at five processors occurs 
because on an eight-processor Encore two processors share one cache. 
When five or more processors are used, pairs of processors interfere with 
each other more. For this circuit the increase in total density (between 1 
«nd 8 processors) is negligible, and the number of vertical hops increases 
about 3%. 

Table 4 gives the speedup using eight processors for the other test 
circuits. The speedup ranges from 5.8 for a smaller circuit to 7.6 for the 
largest. The speedup is less for smaller circuits because they are done in 
»uch a short time, and the startup overhead becomes a factor. The 
execution time is for four iterations over all the wires. It was discovered 
that very Urge global wires, such as TRUE or FALSE that have up to 
150 pins, caused a severe degradation in speedup. This is because our 
system handles those nets just like any other, and the 0(12) nature of the 
Kruskal algorithm causes load balancing problems. Since most 
production systems treat TRUE and FALSE signal nets differently 
(usually tapping directly into the power lines with special cells) these 
were eliminated under the assumption that they could be handled quickly 
thai way. 

Table 5 gives the density and vertical hop counts for both 1 and 8 
processors using wire-based parallelism. The degradation in total 
density ranges between .7% to 7.6%. The increase in vertical hops is 
generally i% or less, with one exception. In the placement context this 
level of degradation is tolerable, though we have considered two ways of 
reducing the problem. The first is lo try lo ensure that the different 
processors only deal with wires that are in distinct physical areas, so that 
the wires routed simultaneously do not interact. This approach was not 
implemented because in the placement context (with incremental 
placement "moves") the wires are most likely to be in the same area and 
can't be separated. 

Circuit 

Name 
1-Proc 

Time (s) 
8-Proc 

Time (s) 

8-Proc 

Speedup 

BNRE 78 13 SA 

MDC 88 15 5.9 

BNR0 156 22 7.0 

Pnmaryl 321 47 6.8 

BNRC 221 33 6.7 

BNRB 697 92 7.6 

B.VRA 878 124 7.1 

Te5t06 6261 869 7.2 

Primary2  1 4334 574 7.6 

Table 4 - Wire-Based Parallelism Speedup 

The second way to reduce processor interference is not to rip up a 
route until the new route is determined. In this way there is a much 
shorter period of time in which the cost array docs not contain the 
presence of the wire. Unfortunately, this severely degrades the new 
route of the wire itself since it sees the old copy of itself when new 
routes are being evaluated. Experimentally, the degradation was found 
to be bad enough to nullify any gain from the approach. 

5.2 Segment-Based Parallelism 

In segment-based parallelism, each two-point segment of a wire is 
given to a different processor lo route. This is the stage following the 
Kruskal decomposition, but prior lo the evaluation of different two-bend 
routes. Measurements of the sequential router showed that about 60% of 
the routing time was spent on wires with more than OM segment. This 
means that a speedup of about two might be expected using three 
processors. Even though there are many wires that provide two or 
three-way parallel tasks, however, the size of those tasks ire not 
necessarily equal. Ine amount of time taken by the LocusRoute router 
to route two points is proportional to the Manhattan distance between the 
two points. If, in a three-point wire, two of the points are close together 
and the third is far away, it will then take much longer to route one 
segment than the other. The processor assigned to the short segment will 
be idle while the longer one is being routed. This unequal load prevents 
a reasonable speedup. On the test circuits a speedup of about 1.1 using 
two processors was measured. 
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j   Circuit 

Name 

Dens 

l-Proc   : 

lly 

8-Proc 

Veruca 

l-Proc   ! 

Hops 

8-Proc 

j    BNRE 129 135 454 470 

MDC 134 144 243 243 

BNRD 1 181 185 528    I 562 
i 

Primary 1 262 264 934    i 958 

BNRC 193 199 739   j 749 

BNRB 312 326 1897    ! 1953 

B.NRA 300 
1 

311 2103    ' 2154 

Test06 325 336 3196 3253 

Primary2 560 584 3022   ! 3097 

Table 5 - Wire-Based Parallelism Quality 

It is fairly clear, however, that an extra processor could be assigned 
to a number of processors that are routing different wires. It is likely 
that ai any given time, one of them will be able to use the extra processor 
to route an extra segment. This technique would become essential in 
wire-based parallelism if the number of processors were on the order of 
the number of wires. In that case, the load balance would become a 
problem because wires with many segments take much longer than wires 
with few segments. Hence segment-based parallelism could be used as a 
method to balance those loads. 

Speedup 

8- 
7 

6- _   m«i»ur»d 

5- 

4- ^^-  ■— 

3- y^^^ 
2- ^ y^ 

1 s^ 

1 2 
i      i      i      i      i 
3       4       5       6       7 

Number of Processor« 

8 

Figure 5 - Route-Based Speedup for Test06 

5.3 Route-Based Parallelism 

In route-based parallelism all of the two-bend routes to be evaluated 
»re divided among processors. Each finds the lowest-cost path among the 
«el of two-bend routes that it is assigned. When all processors finish, the 
route with the best overall cost is selected. In this case the processor 
loads are well balanced because the routes are all of the same length, and 
the number of routes is evenly divided among the processors. 

Figure 5 is a plot of the speedup versus number of processors for the 
circuit Test06, a large circuiL It achieves a speedup of 4.6 using 8 
processors. 

Table 6 gives the best speedup achieved for all of the test circuits, 
ranging from 1.2 using 2 processors to 4.6 using 8 processors. The 
principal reason for the limitation in speedup is the sequential portion of 
the routing: the wire decomposition and the post-route processing that 
places the presence of the route into the Cost Array. On the small circuits 
that have lesser speedup, the sequential portion is about 50% of the total 
routing time, while on the larger circuits which have better speedup the 
sequential portion ranges from 10-15%. Another reason is that some 
segments have only one potential route, limiting parallelism. 

Circuit 

Name 
Best Route-based Speedup 

(Speedup/W'rocessors) 

BNRE 1.2/2 

MDC 1.3/2 

BNRD 1.4/2 

Primaryl 1.8/3 

BNRC 1,6/3 

1NRB 2.1/4 

BNRA 2.0/4 

Tcst06 3.6/5, 4.6/8 

Primaiy2 3.3/5 

Table 6 - Performance of Route-Based Parallelism 

5.4 Combining Two Axes of Parallelism 

The wire-based paralle' and route-based parallel approaches art 
perfectly orthogonal; hence their speedups should 'multiply". Assume, 
for a given circuit that a speedup of Sw is achieved using wire-based 
parallelism on W processors, and a speedup of S, is achieved using 
route-based parallelism on R processors. Then, because the two 
approaches are orthogonal, the resulting speedup when they are used 
together should be SwxSr using W xR processors. This model 
neglect« the effect of memory contention that may occur when the 
number of processor« is increased dramatically. Table 7 shows the best 
predicted speedup for the test circuits. Combined speedup ranges from 7 
using 16 processors to 33 using 64 processors. The «mailer circuits are 
routed very quickly and «o it is difficult to get speedups greater than 10 
due to the startup overhead. The larger circuits benefit greatly from the 
combihation of the approaches. 

Table 7 also contain« the average routing time per net on one 
processor, A), and what the the average routing time per net would be 

under the maximum  speedup, Agw.   That is, Aitw = -f—^»-.   The 

average routing times for all circuits, under the various speedups range 
from 5.0ms io 28ms, and approaches our goal of one to five milliseconds 
per net 



Circuit 
S„    i   S,        S„ x 5, 
IT   x    vnnr i ^ >  ]*** \ 

(ms)      (ms) 

BNRE J.8 
I 

7,0 
It'" 46        £.6 

MDC 1    5.9 
8 ¥ 7.7 

IF 38 5.0 

BNRD 7.0 1.4   j       9.8 50 5.1 

Primary 1 6.8   1   1.8 T  1 T 12.2 
24 89        7J 

BN-RC         6-7        ](>    i       I0-7 BNRC  i "r   -r !   -jr 59        5J 

BNRB 7.6   !   2.1    1      16.0 
T \   i    I      32 127 8.0 

BVRA     1    7-l    !    20    1       iA-2 
134 9.5 

Tcst06 7.2   1   4.6           33 
8' 1 T         W 935        28 

Primary? 7.6   1 
6     1 

3.3 
-3" 

25 358 14 

Table 7 - Predurted Combined Speedup of Wire and Route Parallelism 

5.5 Conclusions 

A nsw global routing algorithm for standard cells and its parallel 
implementation has been presented. The LocusRoute algorithm users 
significantly fewer tracks than the TimberWolf standard cell global 
router, and is comparable to a maze router and an industrial router. It is 
more than a factor of 10 faster than either of the two latter routers. Three 
axes of orthogonal parallelism were developed to speed up the 
LocusRoute router further. Two of the three axes that were implemented 
achieved significant speedup • up to 7.6 using eight processors and 4.6 
using eight processors. They should produce combined speedups of up 
to 33 times. 

In the future, the combined approach will be run on a multiprocessor 
with more processors. Using a sophisticated scheduling algorithm we 
hope to do better than simple multiplication of speedups. The Locus 
placement environment is currently being developed, and will be 
combined with the LocusRoute global router. Our aim is to thieve 
•mailer final area by using the global routing as a better measure of each 
placement. 
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