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19 ABSTRACT (CON'T)

1 JD-Dtraveling charge gun code. The procedure used was to match simulated data to
experimental pressure-time data and adjust the burning rate data until the two curves
matched.\ Two of the propellants which had burning rates less than 35 m/s over the 50-150
MPa press're range were simulated successfully with only minor adjustments in the burning
rate data. " ulation failed for a propellant with a high burning rate of 55 m/s at 50
MPa because of kapid transition to super-sonic burning. The fourth propellant,
characterized by a steep burning rate slope and a burning rate of 146 m/s at 150 MPa, was
simulated with difficulty, obtaining only fair agreement between simulated and
experimental pressure-time curves. t is concluded that consistency of burning rate data
in excess of 35 m/s over the pressure range of 50-150 MPa is poor. High amplitude
pressure waves in the chamber create severe errors in the derived propellant burning
rates Transitions to supersonic burning in the simulations indicate that the assumption
of a an combustion zone used by the 1-D traveling charge gun model may be suspect and
should b' replaced with a more realistic combustion model.

SZ IE D



TABLE OF CONTENTS

Page

LIST OF TABLES v

LIST OF FIGURES vii

I INTRODUCTION 1

II PROCEDURE 2

III TRAVELING CHARGE GUN CODE CHANGES 4

IV SIMULATION OF VHBR PROPELLANT CLOSED
CHAMBER FIRINGS 5

V DISCUSSION AND CONCLUSIONS 15

REFERENCES 17

DISTRIBUTION LIST 19

0C".

Accession For

NTIS GRA&I
DTIC TAB 51
Unannounced []
Justification

By-
Distribution/

Availability Codes

A--ail-ad/or

iitst Special



LIST OF TABLESI

Table Page

1 Computed and Adjusted Chemical Energy Values
for VHBR Propellants 4I

2 Burning Rates for Four VHBR Propellants at

50, 100, and 150 MPa 5

3 VHBR Propellant Thermodynamic and Density Data 5

vI

I,,I

I optdadAdutdCeialEeg ausI-

I I

I ~VI



LIST OF FIGURES

Figure L~

1 Experimental Pressure-Time Curve 29-51A
Mod 7 Propellant 2

2 Closed Chamber for VHBR Propellant 3

3 Apparent Burning Rates for 1086-7B Propellant 6

4 Closed Chamber Pressure-Time Curves Simulation
and Experiment for 1086-7B Propellant 7

5 Apparent Burning Rates for 29-51A Mod 7 Propellant 8

6 Closed Chamber Pressure-Time Curves Simulation
and Experiment for 29-51A Mod 7 Propellant 9

7 Apparent Burning Rates for 30-4A Propellant 10

8 Closed Chamber Pressure-Time Curves Simulation
and Experiment for 30-4A Propellant 11

9 Apparent Burning Rates for 1086-8A Propellant 12

10 Closed Chamber Pressure-Time Curves Simulation
and Experiment for 1086-8A Propellant 13

lla Simulated Pressure Space-Time Curves for Burning
of 1086-8A Propellant 14

llb Simulated Pressure Space-Time Curves for Burning
of 1086-8A Propellant 15

vii

U|



I. INTRODUCTION

Closed chamber firings of the very-high burning rate (VHBR) propellant
used in the traveling-charge gun firings conducted at the Interior Ballistics
Division of the Ballistic Research Laboratory produce pressure-time records
characterized by very rapid pressure rise (20 ps or less) and severe pressure
oscillations. A typizal record is displayed in Figure I- To transform these
records to propellant burning rates, Juhasz and others, used digital
filtering techniques to remove the pressure oscillations from the data
producing "smooth" pressure-time records typical of normal slow burning
propellant prior to using standard techniques to reduce their smoothed data to
burning rates. One of the basic requirements for standard closed bomb burning
rate analysis is the absence of pressure waves.

The VHBR propellants are porous so the term "apparent" burning rate has
been defined to characterize the combustion of these propellants in contrast
to the term linear burning rate used to characterize the normal solid
propellant. The apparent burning rate r is defined by the relation:

m

P S T -- p s(1 )
Po

where:

m - propellant mass burning rate

p - porous propellant bulk density
Po

S - surface area of end burning propellant grain (assumed to be constant)

There is some question that burning rates produced using the above

0 techniques truly represent the apparent burning rates of the propellant.
The objective of this paper is to (1) check the consistency of the VHBR data;
(2) obtain better estimates of the VHBR data; (3) obtain a better under-
standing of the gas dynamic phenomena occurring in the closed chamber; and (4)
assess the validity of the simulations produced by the 1-D traveling charge
gun code.
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Figure 1. Experimental Pressure-Time Curve 29-51A Mod 7 Propellant

II. PROCEDURE

Data from the closed bomb firings of the VHBR propellant consists of the
unfiltered and filtered pressure-time data; the results of reduction to
burning rates; and graphical log-log plots of burning rates vs pressure.
Together with this data are information on the geometry of the interior of the
closed bomb including the location of the end-burning VHBR propellant and the
location of the pressure gauges. A diagram of the bomb used to test 36 mm
VHBR samples is displayed in Figure 2. The sample chamber is 40 mm in
diameter by 142 mm long. The propellant samples are 36 mm in diameter by
25.4 mm long. The samples are inhibited on the side and enclosed in a thin
steel sleeve. The pressure gauge next to the propellant sample is 10 mm from
the end of chamber. Data from this gauge were recorded but not used since the
steel sleeve masked the pressure gauge port creating errors in the magnitude
of the recorded pressure. The other gauge is 2.5 mm from igniter end of the
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chamber; so the distance between this gauge and the burning propellant surface
varied from an initial value of 114.1 mm to 139.5 mm at propellant burnout.
Other data consists of the propellant density, mechanical properties (when
available) and thermodynamic properties as computed by the BLAKE code.

VHBR PROPELLANT PRESSURE GAGES

SLEEV E 
IG I E

I I

10cm

Figure 2. Closed Chamber for VHBR Propellant

Given the above data, the procedure was to:

1. Use the 1-D traveling charge code,3 which had been developed to model
the firings of a traveling-charge gun, to simulate the firing of the VHBR

0 propellant in a closed bomb. In the closed bomb simulation, motion of the
projectile and charge was suppressed by using a shot-start pressure greater

than the expected maximum projectile load pressure (gas pressure plus thrust
pressure from the burning propellant). A table of propellant burning rates vs
pressure from the closed bomb data reduction was used as initial estimates.

2. Adjust the propellant chemical energy values as computed by the BLAKE

code until the maximum pressure produced in the simulation matches the
experimental maximum pressure from the closed bomb firing. Using the BLAKE
data in the simulations gave higher maximum pressures than was measured, so

3



the computed chemical energy had to be reduced. The computed and adjusted
chemical energy values for the four VHBR propellants used in this study are
given in Table 1. The formulations are described in more detail by Juhasz.I

TABLE 1. Computed and Adjusted Chemical Energy Values for VHBR Propellants

Propellant Computed Chemical Energy Adjusted Chemical Energy % Change
Name J/g J/g

1086-7B 4458 4002 10.2
29-51A M7 4918 4918 0.0
30-4A 5044 4233 16.1
1086-8A 4259 3524 17.3

The reason for the adjustment is discussed in reference 1 and is believed
to be due largely to a chemical kinetic effect as well as to a lesser extent
heat loss which delays the complete chemical reaction until after maximum
pressure is reached in the bomb.

3. The pressure-time curve at a pressure gauge location is produced by
the simulation and this curve is then compared to the corresponding exper-
imental pressure-time record. If the two curves compare within the exper-
imental error, then the burning rate data obtained from the closed bomb data
reduction represents the apparent burning rate of the sample. If the two
curves do not agree, then the burning rate vs pressure data is adjusted, the
simulations being repeated until agreement is obtained. The adjusted burning
rate data then represents the apparent burning rate of the sample.

III. TRAVELING CHARGE GUN CODE CHANGES

In the traveling charge code the burning rate r is expressed in a
functional form of:

r - a + b pn (2)

where a is the burning rate intercept, b is the burning rate coefficient, n is
the burning rate exponent, and P is the pressure. Examination of the VHBR
data indicated that it would be impossible to fit the above form over the
pressure range of interest. It was decided to read the data in as a table of
burning rates and pressures, convert to the log of burning rate and log of
pressure, and then interpolate using the pressure in the log-log table to
produce a burning rate. Burning rate coefficients and exponents for equation
2 are also computed from this data. To obtain burning rates below or above
the experimental pressure range, the initial burning rate coefficient and
exponent are used in equation 2 to compute burning rates below the exper-
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imental pressure range and the last burning rate coefficient and exponent are
used to compute burning rates above the experimental pressure range.

IV. SIMULATION OF VHBR PROPELLANT CLOSED CHAMBER FIRINGS

The closed chamber firings of four VHBR propellants were simulated with
the 1-D traveling charge gun code. The burning rates at pressures of 50, 100
and 150 MPa are given in Table 2 with the propellants arranged
in order of increasing burning rate.

TABLE 2. Burning Rates for Four VHBR Propellants at 50, 100, and 150 MPa

Propellant Burning Rate (m/s)*

50 MPa 100 MPa 150 MPa

1086-7B 1.4 3.3 10.7

29-51A M7 25.2 34.1 26.6
30-4A 54.7 40.5 53.5
1086-8A 1.1 57.3 146.1

* Data from reference 1, Table 11

The log-log plots of the burning rate vs pressure data for the four VHBR
propellants are displayed in Figure 3 (1086-7B), Figure 5 ( 29-51A Mod 7),
Figure 7 ( 30-4A), and Figure 9 (1086-8A). Two curves are plotted on each
graph, the solid line representing the data as obtained from the closed
chamber data reduction process. Most of these data were used in the simu-
lations. The dotted line represents the modified burning rate data needed to
give a match between the simulated and experimental pressure - time curves.

The thermodynamic data and propellant density used in the simulations are
given in Table 3.

TABLE 3. VHBR Propellant Thermodynamic and Density Data

Propellant 1086-7B 29-51A Mod 7 30-4A 1086-8A

Chemical Energy J/g 4002 4918 4233 3524
Specific Heai Ratio 1.2344 1.1790 1.1813 1.2456
Covolume cm /g 1.255 1.001 1.018 1.213
Molecular Weiht mol/g 18.294 23.841 23.400 18.727
Density g/cm 1.399 1.278 1.313 1.443

5
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Figure 3. ApDarent Burning Rates for 1086-7B Propellant

For the 1086-7B propellant burning rates are given over the 30 to 200 MPa
pressure range. The simulation was started at an initial pressure of 2 MPa;
so the experimental burning rate data were extrapolated to that pressure
level. The simulated and experimental pressure-time curves for the firing of
this propellant is displayed in Figure 4. The agreement between the two
curves is excellent up to a pressure of about 200 MPa at which time the two
curves diverge. No attempt was made to obtain a better match at the high
pressure end of the curve. These results indicate that the burning rate data
obtained by the closed bomb data reduction process is a reasonable approx-
imation to the apparent burning rate of the propellant. For the 29-51A Mod 7

6
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Figure 4. Closed Chamber Pressure-Time Curves Simulation and
Experiment for 1086-7B Propellant

propellant, burning rate data are given in Figure 5 over the 20 to 90 MPa
pressure range. Like the previous propellant, the starting pressure of 2 MPa
required that the burning rate be extrapolated to that pressure. Several
extrapolations were tried until one was found which gave the best match
between the simulated and experimental pressure-time data. The simulated and
experimental pressure-time curves are displayed in Figure 6. Up to a pressure
of 140 MPa the agreement is good; above that pressure the agreement is poor.
Since the burning rate data derived from the experimental pressure-time data
is given only up to 90 MPa, it can be concluded that these burning rate data
are reliable up to that pressure. At pressures above 90 MPa, the simulation
code assumed that the burning rate data followed a linear extrapolation based
on the last two pairs of log burning rate vs log pressure data. This may not
represent the actual propellant burning rate curve. No attempt was made top 7



refine the burning rate data in this pressure regime. It will be noted that
the frequency of simulated pressure oscillations matches the actual measured
pressure oscillations except that the two curves are out of phase. In
conventional propellant closed bomb burning rate analysis, similar trends are
seen at both the low and high pressure end. In fact, typically only the
burning rates obtained between 20% and 80% of the peak pressure are usable
because the propellant grains may be only partially ignited at the low
pressure end of the curve and propellant slivering effects predominate at the
high pressure end.
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Figure 5. AR~arent Burning Rates for 29-lA Mod Z PrOlellant
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Figure 6. Closed Chamber Pressure-Time Curves Simulation and
0 Exveriment for 29-51A Mod 7 Propellant

For the 30-4A propellant, burning rate data are given over the 20 to
150 MPa pressure range as shown in Figure 7. In contrast to propellants 1086-
7B and 29-51A Mod 7, the derived burning rate is nearly constant over this
pressure range, varying from 40 to 55 m/s. A linear extrapolation of burning
rate on the log-log plot to the starting pressure of 2 MPa gives a burning
rate of 38 m/s. This when used in the simulation gave an inftial supersonic
flow of gas from the burning propellant and a constant burning rate
thereafter.

I
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The transition 3from subsonic to supersonic burning of VHBR propellant is
discussed by Gough.3 If the burning is assumed to be steady and occur in a

"Sl.l

thin zone, then a strong deflagration wave, i.e. superson~c burning, can be
shown to lead to an unstable flame and thus be inadmissible. If the thin
combustion zone in the model be replaced with a thick two-phase combustion
zone then the possibility of supersonic burning exists. Under such conditions
the pressure at the burning propellant surface is uncoupled from the pressure
in the gas column and the normal empirical relation between gas pressure and
burning rate, equation (2), will no longer apply.
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Several attempts were made to extrapolate the derived burning rates down
to lower pressures without getting into supersonic burning. The dotted line
shows the burning rate data which gave the best agreement between simulated
and experimental pressure-time data. The simulated and experimental pressure-
time curves are displayed in Figure 8. Both are in agreement up to about
4 MPa after which the experimental curve makes a sharp rise which is not
matched by the simulated pressure-time data. The simulation indicated that at4.2 MPa there was a sharp pressure increase (within 10 ps). At the same
pressure there was an rapid increase in propellant gas velocity which
increased from an Mach 0.8 to a Mach 1.19. At the same time the burning rate
increased from 2.89 m/s to 6.07 m/s after which the burning rate stayed
constant since it was in the supersonic burning regime. It was concluded from
these results that the simulation code is incapable of modeling the combustion
of this propellant.

S15.0°
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II EXPERIMENTAL

# , SIMULATION

50- 1100/ 1 ----
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4 0.1 02 0.3 0.4 15
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Figure 8. Closed Chamber Pressure-Time Curves Simulation and
Ex-eriment for 30-4A Propellant
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For the 1086-8A propellant, experimental burning rate data is given over
the 35 to 250 MPa pressure range in Figure 9. The burning rate curve has a
very steep slope over the 35 to 100 MPa pressure range followed by a gradual
decrease in slope in the 100 to 250 MPa pressure range. A linear extrapol-
ation of burning rate on the log-log plot to the ignition pressure of 2 MPa
gave a burning rate value approaching zero and thus the simulation code could
not get started. It was decided to use the burning rate curve for the 1086-7B
propellant for the pressure range starting at 2 MPa and then blend the curve
into the 1086-8A experimental curve at a pressure of 50 MPa. These data are
shown as a dotted line in Figure 9. A minor lowering of the burning rate data

I_ I IlI IIll I If 1 1 l 111 1i

108 EXPERIMENTALI
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Figure 9. AD~arent Burning Rates for 1086-8A Pr0lellant
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in the pressure range of 120 to 250 MPa was made in order to keep the gas
velocity below the sonic level. The agreement between the experimental and
simulated pressure-time curves is displayed in Figure 10. The experimental
pressure-time data is characterized by a long slow pressure rise, followed by
a rapid pressure rise with many oscillations thereafter. The simulated
pressure-time curve follows the experimental pressure-time curve except that
the slope of the rapid rise pressure region is not as great as the slope in
that region for the experimental data. Frequency of large amplitude pressure
oscillations for both the experimental and simulated pressure-time curves is
about the same.

500.0- 1 1 I

EXPERIMENTAL
SIMULATION

4W. -

%1

. I I

-II
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100.0-

--- --- --- -- --------- -- -
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Figure 10. Closed Chamber Pressure-Time Curves Simulation and
Exteriment for 1086-8A ProDellant

The development of pressure oscillations in the closed chamber is
illustrated in Figure 11. This is a pair of 3-D plots of pressure as a

13



function of chamber position and time during the burning of the 1086-8A
propellant. Pressure in the burning propellant grain and pressure of
combustion gas in the chamber are shown. In the lower plot, details of
pressure build-up in the grain (at the 0.14 to 0.15 m position) are shown.
Prior to 0.8 ms there is no significant difference between grain pressure and
chamber pressure. After that time, increased propellant burning leads to
increased thrust on the propellant grain base and increased pressure in the
propellant. This internal propellant pressure continues to increase until
propellant burnout. The upper plot shows details of pressure build-up in the
entire chamber up to the peak of the first oscillation. Burning of the
traveling charge increases the pressure at the propellant grain end of the
chamber, which then propagates to the other end of the chamber, reflects and
then moves back to the grain end of the chamber. Since the pressure gauge
monitoring events in the chamber is located 2.5 mm from the igniter end; it
would record the arrival of the pressure wave and subsequent reflection off
the end wall of the chamber. This plot indicates that the pressure gage does
not monitor events at the propellant burning surface but events which are
displaced in space, time, and magnitude from the events occurring at the
propellant surface.

A 1 ,*1W,

AP

Figure lla. Simulated Pressure Soace-Time Curves for
Burning of 1086-8A Pro2ellant
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Figure llb. Simulated Pressure Space-Time Curves for
Burning of 1086-8A Propellant

V. DISCUSSION AND CONCLUSIONS

The l-D traveling-charge gun code has been used to model the burning of
four VHBR propellants in a closed bomb. Propellants 1086-7B and 29-51A Mod 7
burned exclusively in the subsonic regime and thus the code was able to
predict the pressure-time behavior with only minor changes being made to
burning rate data derived from standard closed bomb data reduction.
Propellant 30-4A burned nearly exclusively in the supersonic velocity regime,
if the burning rates derived by the standard techniques are indeed
appropriate. The code was unable to simulate the pressure-time behavior of
this propellant.

The simulation of the pressure-time behavior of 1086-8A propellant
presented a difficult problem. Using the burning rate data of propellant

15



w• -t s- . - - - v., -. W.V• ~ Wv . ,~..' •• - •

1086-7B allowed us to simulate the slow pressure rise behavior up to a
pressure of 50 MPa. Use of the modified burning rate data gave fair agreement
between predicted and experimental pressure-time data for the region above
50 MPa.

We were successful in modeling the closed chamber behavior of three out
of the four VHBR propellants chosen for this investigation. Failure of the
code to model the fourth propellant (30-4A) can probably be attributed to a
transition from normal convective propellant burning to stress fracture of
propellant into small particles and rapid burning of those particles. This
phenomena would appear as an apparent transition to supersonic burning. This
indicates that the VHBR combustion model used in the 1-D traveling charge code
requires modification. A paper by Kooker and Anderson 4 suggests a possible
alternate combustion model for the 1-D traveling charge code. In this model
there is a transition from normal convective propellant burning to pore
compression and propellant break up in depth. The propellant fragments
subsequently are entrained in the flame zone forming a two-phase flow
combustion process capable of supporting a very rapid increase in pressure.
Such a model, when perfected, may eliminate the difficulties encountered in
this investigation.

I
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