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MAIN FEATURES OF PRESSURE PROFILE

In this section, we describe some of the main features of the
phenomena under consideration, and give a brief description of the basic
mechanisms that are responsible for the observed pressure profiles. Both
of these descriptions are given here simply to introduce the physical
quantities that are used later, and to set the stage for subsequent
discussion. More complete descriptions can be found in the open literature.

The basic purpose of the experiments is to measure the
backscattering, produced by the ocean surface, of acoustic signals
generated by explosions of charges detonated at a depth of approximately
1500 ft (Fig. 1).

Receiver

Source

Fig. 1. Scattering-experiment geometry

This review does not consider the scattered signal; it is limited to a
consideration of some mechanisms that might play a role in the
propagation of the direct pulse. A proper understanding of this propagation
is necessary as the amplitude levels in the direct signal affect the
estimated source level strengths, and this, in turn, affects the
backscattering strength through the sonar equation.
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A REVIEW OF THE PROPAGATION OF
PRESSURE PULSES PRODUCED BY SMALL

UNDERWATER EXPLOSIVE CHARGES

INTRODUCTION

Acoustic pulses produced by the explosion of small charges are used

for a variety of purposes in ocean acoustics. As is well known, these

pulses have very sharp leading fronts, even for the smallest charges

commonly used. These sharp fronts are the result of a balance between

dissipation mechanisms, which tend to smooth wave profiles, and

nonlinear effects, which tend to steepen them. Because these shock wave

fronts are observed at long distances from the explosion, and because even

at these distances the amplitudes of the pulses do not seem to decay as

predicted by linear acoustic theory, it has sometimes been assumed that

nonlinear effects are present which may affect the propagation and

reflection of the pulses.

This review considers, from the point of nonlinear acoustics, some

of the main features of the propagation, with the purpose of determining

whether nonlinear mechanisms affect those features. One of the main

conclusions of the review is that for the typical charges used in

scattering experiments, nonlinear effects are not important, except very

at. near the charge producing the pulse. In addition, several other mechanisms

are mentioned which could play a role in the propagation.

,Manuscnpt approved March 14, 1988.



Because the scattered signal arrives at the location of the receiver
over durations that are measured in seconds, experimental scattering
measurements are usually made over durations which are too large to
resolve the short duration profiles produced by the explosion of the
charge, as the main features in those profiles take place in a few
milliseconds. These profiles, as well as the corresponding energy spectra,
can nevertheless be obtained from similarity curves available in the
literature which were obtained from a large number of experiments
conducted in the last 40 years. The existing data appear to provide a good
quantitative description of those profiles in terms of the sequence of
events taking place after the charge is exploded. By this, we mean the very
rapid conversion of the solid material, of which the charge is made, into a
gaseous mass, commonly referred to as the bubble, at very high
temperature and pressure. The conversion is, of course, a rather
complicated chemical phenomenon, but its details are not of primary
importance in this discussion. What is presently relevant is that the
conversion is caused by a detonation wave travelling in the charge at a
very large speed. For TNT, for example, this detonation speed is of the
order of 20,000 ft/sec. Thus, a one foot radius sphere of explosive would
be converted into an incandescent gas at a very high temperature and
pressure in less than 25 p. sec.. For many purposes, this conversion can be
therefore assumed to take place instantaneously, so that at time t=0, say,
we have a region of high pressure surrounded by water at considerably
lower pressures. For example, the detonation of a 3 lb charge of TNT
produces, at the surface of the hot bubble, a pressure which is of the order
of 20 x 10 dyn/cm2. If the charge had been detonated at a depth of
600 m, the hydrostatic pressure outside the charge would be about
6.2x1 07 dyn/cm2 , or about 300 times smaller. Such pressure differences
are, of course, statically untenable, and a variety of processes are set in
motion that tend to eliminate them, including a substantial expansion of
the bubble. Of principal importance to this report are the pressure waves
that are produced as a result of this expan~sion. Appendix A gives a
heuristic description of these waves, in terms of the instantaneous
motion of the bubble. This description is intended to give some insight
about the main features of the the measured profiles, which typically
appear as the one shown in Fig. 2 below. The circles under the profile give
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Fig. 3 Radial distribution of overpressure at a fixed time.

an idea of the relative size of the bubble at the moment that a given

feature in the profile was produced.

The pulse can be also depicted as a traveling wave by assuming that the
pulse is a radially outgoing spherical wave, with features depending on
the distance R and on time t through the variable (R - ct), where c is the
speed of propagation. Thus, at some instant of time, the distribution of
pressure along the radial direction may have the following appearance.
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To fix ideas, we give in the table below approximate values of the
relevant quantities for a pulse produced by a 1.8 lb TNT charge, burst at a
depth of 800 ft, and measured at a radial distance of 300 ft.

Table 1. Approximate Values of Relevant Parameters for a 1.8 lb TNT Charge.

R Distance between charge 300 ft
and shock front

W Weight of explosive charge 1.8 lb

Ph Hydrostatic pressure at 800 ft 150 lb in" 2

P Peak Pressure 61 lb in 2

Pmin Minimum underpressure 22 lb. in' 2

L Length of first positive- 7.7 m
PP

pressure phase

T Duration of first positive- 5.3 msec

pressure phase

T Time between shock and 42 msec

first bubble pulse

T Time between first and 29 msec

second bubble pulse

T Time between second and 24 msec
3 b l sthird bubble pulse "'

5



The values given in the table were obtained from empirical fits of

experimental data that have been obtained over the last 40 years by
several investigators, and which are believed to be accurate
representations of the respective parameters in actual pulses. Of central
importance to much of the work with explosive sounds are the fits for the
peak pressure P0, and for the duration of the various phases of the pulse.

The fits for the peak and first bubble pulse pressures, as given by Slifko
(1967), are

P0 -2.08x10 4 (W113/R)'. 3  psi

P1 -3300 W" 3 /R psi

where W is in pounds and R is in feet. Fits for other quantities will be
considered later. ,t more complete list of them is given in Appendix B.

The dependence of these pressures on the ratio (W113 /R) is of
considerable importance in the determination of the energy spectrum
levels for the complete pulse. It should be noted that in the peak pressure
fit, that ratio appears raised to the 1.13 power, whereas in linear
acoustic theory, it is raised to the first power. At a range of few hundred
meters, for example, such differences in the exponent can give rise to a
few dB difference in the energy spectrum levels.

Historically, the W" 3 /R dependence is known as Hilliar's principle,
which for spherical charges may be expressed as follows. "Distances to

equal overpressures, are proportional to the cube roots of charge weights."
By 1924, Wood had found that the principle did not hold well for the peak
pressure produced in shallow underwater explosions. Instead of the

W1/3 /R dependence, he found that the peak pressure scaled as

W 0 "3 8 /R =(W 1/3 )1. 13/R w

6
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Although Wood could not explain the differences, he noted that the
principle did not include many factors present in the experiments. We note
in passing that the dependence of Wood's peak pressures on distance did

scale with the predicted 1/R, and that this scaling coincides with
acoustic theory. Nevertheless, in 1946, Coles et al reported pressure peak
results that were well fitted by

P - 2.16x10 4  (W 1 3 /R)1 1 3  psi; 0.03<W 13 /R<0.85 Ibl13ft 1

Because the raw data upon which this result is based is still available, we
may use the data to show some of the features of the correlation. The data
were obtained with charges weighing 48 and 76 pounds, burst at a depth of
40 ft. The table below shows the 76 lb data. The 48 lb data shows similar

trends.

Table 2. Pulse data obtained by Coles et al. W = 76 lbs.

Shot No. R, ft P0, psia 1, msec W 113 /R, ib l1 3/ft

393 5 18950 0.260 0.847

387 7 12400 0.270 0.605
385 10 8185 0.300 0.424
393 1 5 4530 0.335 0.282
387 17 4215 0.315 0.249
385 20 3755 0.325 0.212
393 38 2115 0.355 0.111
387 47 1595 0.355 0.090
385 60 1066 0.435 0.071
393 78 814 0.435 0.054
387 87 760 0.440 0.049
385 100 760 0.480 0.042

The quantity t5 given in the fourth column is the elapsed time since the

arrival of the shock front and the place on the wave where the pressure

P P Pv - S .1.6...



equals lie of the peak value. 5 is therefore a measure of the duration of

the positive-pressure region in the pulse. The last column, giving WI" 3 /R

was added for convenience, as it gives the value of the variable used to fit

the data.

The correlation was given further support when in 1954 Arons published

additional shallow-water data that extended it to lower values of W113 /R.

Thus, for TNT charges, he found that

P0o2.1 6x104 (W" 3/R)' " 3 psi; 0.005<Wl/ 3/R<0.85 lb" 3ft 1

Incidentally, the pressure differences predicted by the constant of

proportionality in the fit changing from 2.08x10 4 to 2.16x10 4 is well
within the experimental errors. In our computations we will use the later

figure.

While Arons's paper does not contain a detailed description of his

experiments, he did note that they were performed in well mixed tidal

waters, and that refraction effects were known to be negligible.

Arons also attempted to compare his results for large ranges with

those predicted by the asymptotic theory of Kirkwood and Bethe. This
theory predicts that for large ranges, the peak pressure should decay with
distance as

* Po _ (Ro/R) (In R /2

where Ro is a reference distance (Arons's paper has a typographical error

in this equation, which appears there without the 1/2 power on the

logarithmic term). What Arons attempted to do was to fit the logarithmic

term, in a given range of W1/3/R, with a power function. While he found

this could be done, at least in a limited range, he also found that the
power function had a slope of 0.06 rather than the experimentally

determined value of 1.13. An implication of this is that the asymptotic
prediction of the Kirkwood-Bethe theory is in question. As we will see
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later, such a conclusion is not warranted. Nevertheless, it should be

emphasized that the theory does not predict a decay proportional to
(W 113 /R) 1"13 as stated by some authorities.

Extension of the correlation to deep water explosions was first

reported by Blaik and Christian, who in 1965 published measurements of

pulses from charges at depths varying from 3000 to 22000 ft. The

measurements were made directly above the charges to avoid refraction

effects. While some differences were found relative to the shallow-water
data, the peak pressure fit was found to agree with Arons's, thus

extending its range of applicability. Thus,

P 0 -2.16x10 4 (Wl13/R)1.13 psi; 2.5x10- <W113 /R<0.85 l/3ft1

Additional work in both shallow and deep water was reported in 1967 by

Slifko, who performed measurements for bursts at depths ranging from

500 to 14,000 ft. Slifko's measurements were also performed directly

above the charges. His report also contains valuable fits for all quantities

of importance in the pulse, as functions of depth, weight and range. For

the case of the peak-pressure of pulses due to TNT charges, Slifko's
results are within 4% of those previously reported, viz.,

Po-2.08x10 4 (W1/3/R) 1.13  psi; 7.1x10 S<W /3/R<0.85 lb /3ft 1

If we disregard the small differences between the several fits, then it

follows that the pressure-peak correlation is accurate for values of

W 1 / 3 /R ranging from 7x10 "5 to 8.5x10 "1 . This implies, for example, that

for a 1 lb charge, the correlation correctly predicts the peak pressure in

pulses as close as 1.18 ft to the center of the charge, and as far as 40,000

ft from it.

A remarkable conclusion of all this is that even at such long ranges

as those given by the upper range just computed, does the

pressure peak decay as R-1 13, rather than the theoretical acoustic decay
given by R 1 . The most obvious implication is that for all values of R, the

9:e.3 \~~ . % aa'



pressure decays more rapidly than linear theory predicts, as indicated by
Fig. 4, where the two decays are plotted as a function of (R/Ro).

1.00 o

0.90

0.80 -10

0.70

0.60

P/PO 0.50

0.40

0.30

0.20

0.10

0.00 I I I I I I I I ,

1 2 3 4 5 6 7 8 9 10

R/R
0

Fig. 4. Linear and empirical pressure peak decays

POSSIBLE NONLINEAR EFFECTS

Because the front of the wave is a shock wave, it has often been

suggested that the discrepancies between observation and acoustic theory
are due to the nonlinear effects that maintain the sharp front. This
possibility is considered here in terms of the simplest possible model;

e.g., a spherical pulse expanding in an infinite, homogeneous medium
devoid of viscosity. This model is only intended to provide an order of
magnitude estimate for the effects of nonlinearity. We will limit this

*: discussion to the nonlinear effects that may take place between the front

of the wave and the first point in the pulse where the overpressure
vanishes. This region is depicted below for pulses that are triangular in
shape.

10
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Fig. 5. Front region of pressure profile

In an actual pulse, the pressure decay regions are not straight lines

as shown above, but for the purposes of this discussion, these differences
can be disregarded.

It should be added that considering only the first positive region of

the total pulse is sufficient, as this portion of the pulse is effectively
decoupled from the rest. The reason for this is simply that the point of
zero pressure has, at sufficient distances from the charge, also zero fluid
velocity. Thus, that point propagates with exactly the ambient speed of

sound. No wavelets on any portion of the profile can propagate through this
point because (see Fig. 3 ) to its left the speed of propagation is lower, 3o
that wavelets in that region move to the left. Similarly, wavelets to the
right of the zero crossing point move faster than the ambient speed of

sound, and therefore move to the right of that point.

Now, every experimental investigation with explosive sounds in

water shows that near the charge the shock wave is followed by an
exponential decay, with no apparent zero crossing point. This is the strong
shock wave region. Further out, the profile develops near its front a nearly
triangular region which is maintained for considerable distances. This is
the region where the weak shock wave theory applies. In this region,
changes may be taking place in the pulse front, but the agencies causing
them, e.g. dissipation, are apparently not able to eliminate the rapid
transition, or shock, at the front. Nevertheless, a significant amount of
energy dissipation must take place there, for dissipation due to viscous
and thermal effects is proportional to the squares of the velocity and

11t



temperature gradients, and these are necessarily large at the shocK. Thus,

one effect of the sharp front is to produce dissipation of the energy of the
pulse, and this should result in a faster decrease of the pulse's amplitude
than that due to wavefront spreading alone.

A second effect, solely due to nonlinearities, is that the length (or

duration) of the nearly triangular pulse increases as the pulse travels.
This is caused by points in the shock front travelling with a speed that is
larger than the speed of the zero-crossing point.

The combined results of lengthening and attenuation due to

dissipation at the shock may be visualized in terms of two snapshots of
the pulse taken at two different instants. If we now take the zero-

crossing points of both and superimpose them, we get profiles similar to

the following figure.

0 R

Lpp

Fig. 6. Superimposed pressure profiles

In this figure, the superscript zero on Po represents the peak pressure

evaluated at some fixed distance Ro.
The theory describing such effects is well developed (see, for

example, DuMond et al, 1946; Landau and Lifshitz, 1959; Blackstock,
1972), and has been experimentally verified for both short spherical

pulses (Wright, 1983) and for plane pulses (Temkin and Maxham, 1985). In
the notation of Fig. 4, the spherical-case theory gives for spherical waves
at distances R large compared with the length L of the pulse

12
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R /Rp =pO 0 (1)
pP0 0

So1 + p. (P o /p oc o
2) (Ro/Lop) In (R/Ro)

LPp= 0 1 + 13 (P-o/PC 0
2) (Ro/Lp) In (R/Ro) (2)

In these equations po is the ambient density and Po is a

thermodynamic property of the fluid, known in the acoustic literature as
the coefficient of nonlinearity. It is given by

P3ow 1 + P 0o 3 2P21s,p = po(3

where s is the entropy per unit mass of fluid. The quantity 3° can be

written in other useful forms, including

;if

PO 1o + PoCo ( p 'p =P 4pc (,. )(4)

+ LBP
.. )X 1Ol

The last form gives P. in terms of the nonlinearity parameter (B/A), which

plays an important role in nonlinear acoustics, particularly for fluids
whose equations of state are known only experimentally. Thus, while the

value of Io can be computed for a perfect gas from the perfect gas

equation of state, its value for other fluids must be determined
experimentally. For sea water at 20 C and at atmospheric pressure, for
example, experiments give (see Beyer, 1974)

B/A = 5.25

13
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Landau (1945) appears to have considered nonlinear effects first

(although Brinkley and Kirkwood made similar calculations

independently). These investigators correctly argued that for sufficiently

large values of R, the second term in the radical of Eq. (1) or (2) becomes

dominant, so that at large distances from the explosion, the peak pressure

should decrease as

P0  " (R /R) (In R/R 0) -/2

This is the asymptotic expression used by Arons, who, as noted earlier,

found that it does not compare well with the results of measurements at

long distances. As we will show later, the asymptotic expression does not

apply for the relatively weak shocks used in underwater acoustics

research.

Equations 1 and 2 are used as follows: Select an initial distance to

the shock front where the theory is expected to be accurate, i.e., where

the scaled pressure amplitude P0/P C 2 is small, and where Ro/LO is large.

The nondimensional pressure amplitudes and lengths at other ranges R are

the obtained by simple substitutions of these parameters into Eqs. 1 and 2.

Figure 7 shows theoretical predictions for three values of the parameter

'Tp (P'/PC) (Ro/L )

The case t - 0 corresponds to linear, ideal-fluid theory. It is thus seen

that the nonlinear decay, which includes dissipation at the shock front, is
faster than that predicted by linear, ideal acoustics. Had dissipation in the
main body of the wave been taken into account, the decay would be faster

for both linear and nonlinear decays, with the nonlinear theory still
predicting a more rapid decay than the linear theory. The reason for this is

that, for waves with weak shocks, the region outside the shock, the wave
behaves linearly. That is, in this approximation, the energy dissipated in
the main portion of the wave can be computed from linear theory. This

energy dissipation is thus the same for both linear and nonlinear waves.

14
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Figure 7. Nonlinear decay. *: r=O ; 0: -c=0.01; 0 : =10.

To compare the nonlinear decay prediction for the peak pressure
with the empirical fit, we express the fit in a non-dimensional form' as

(P P'()r- (R/R)'.13

As this form shows, the fit, like the ideal theory, also predicts a non-
dimensional decay which depend only on the non-dimensional range (R0/R).
By contrast, the nonlinear decay depends on initial amplitude through the
parameter -r in equation (1). Figure (8) shows graphical comparisons
between nonlinear theory and fit for two values of r used in Fig. 8. Again,
the curve with ctequal to zero corresponds to the ideal theory.

The other curve is merely intended to show the results of a different
value of t . As one of the two values of r predicts slower decay than the
fit, whereas the other predicts a faster decay, it ought to be possible to
obtain a value of ~r which will match the fit, at least for some range of
R/Ro. This is, of course, what Arons attempted to do. He however, used the
asymptotic expression given earlier. A cursory inspection of Eq. (1) shows
that for realistic values of t, the asymptotic expression does not apply,
except at very large values of R/R0, because the logarithmic function

15



increases very slowly. Thus, a one hundred fold increase of R/R increases

In(R/Ro) only by a factor of 2. It is therefore clear that in order to find a
match between the two predictions, both terms in Eq. (1) have to be
retained. That this is indeed the case can be seen in Fig. 9, which shows
the two decays for T. 0.37, in the range 1< R/R 0<10. The trends begin to
diverge at values of R/R0 equal to about 100, as shown in Fig. 10.

1.00 U

0.90

0.80
P/P 0 0.70

0

0.60*

0.50 \~
0.40

0.30

0.20

0.10

0.00 20
1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00. 9.00 10.00

R/R
0

Fig. 8. Empirical fit and nonlinear decays. 0: t-=0 . 4: Empirical fit .n: r= 10.

1.00o

0.90

0.80.

0.70

0.60
'/PO 0.50 

,0.40
0.300.20

0.10

0.00 I
1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

R/R
0

Fig. 9. Empirical and nonlinear pressure-peak decays. r=0.37.
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Fig. 10. Empirical and nonlinear pressure-peak decays. Thick line
represents nonlinear theory for -=0.37.

While the agreement between the theoretical curve for x =0.37 and
the fit appears, to be reasonable, it should be remembered that we forced
the agreement by selecting a value of r that gave good results. For this
agreement to be meaningful, the chosen value of r must be one that applies

to an actual case, and the particular values of Po/poc and R /LO must be
0 0 0 0 PP

such that they fall within the range of applicability of the nonlinear
theory. For this theory to be applicable, the first quantity must be small,
and the distance R should be large compared to the initial length Lp at

that location.

To compare the fit and nonlinear theories in a particular example,

we need to obtain values of Po/p c 2 and R /Lp at some range R, due to the

explosion of a given charge. To obtain these parameters, we use the
empirical fits presented earlier. Thus, the length Lp can be estimated

from the fit for T by means of

17
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T T0 L0(5Tppl pp =Lpplp (5)

This equality holds because the length Lpp is related to the duration Tpp by
means of L =C Tpp

As a "typical" case of interest to some scattering
experiments, we consider the pulse produced by an 1.8 lb TNT charge
detonated at a depth of 1000 ft. According to the correlation given by
Slifko, the duration of the first positive phase is given by

T = 0.555 W113/z516

If we accept this result, which states that Tpp is independent of range, so
that no lengthening takes place, then Tpp - 2.08 msec. Using a nominal
speed of sound of 1450 m/sec, this gives a length L 0 of about 10 ft. Thus,

if we take Ro - 50 ft, the ratio Ro/Lp is approximately 5, and may be

therefore taken as "large." At this distance, the peak pressure in the pulse
is Po=2.16x104 (1.81/3/50)1.13=324 psi. While this is a significant

absolute overpressure, it is nevertheless very small when compared with
PoCo 2. For sea water, the nominal value of this quantity is 2.25 x 1010

dyn/cm2, or 2.25 x 104 Atm. Hence, for this example, Po/poc 2 =xO -3 . The

last parameter that remains to be evaluated for the example is 3o. We saw

earlier that at 200 C and at atmospheric pressure, it is equal to about 4.
Morfey (1984) computes the variation of that quantity with pressure and
salinity, and gives values that are about 4-5. For simplicity, we will
simply assume that it does not exceed the value of 5 throughout the range
of interest. Thus, the decay prediction including nonlinear and spreading
effects gives for this numerical example

P/P 0 = (R/R) (1 + 5 x10- 2 In R/Ro}-1 /2

At a distance of 500 ft, or 10 times Ro , this gives 0.947 (Ro/R). At 5000
ft, it gives 0.902 (Ro/R). For comparison, the decay predicted by linear
l "18
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theory is simply given by the wavefront spread factor (Ro/R), whereas

that predicted by the empirical fit, can be expressed as

(Poo)fit - (Ro/R)'' 3

At R/Ro--100 this gives 0.55 (Ro/R), representing a considerably faster

decay than either the linear or the nonlinear decay.

We have thus shown that for small charges, nonlinear effects
produce a few percentage difference in the peak-pressure values at
moderate values of (R/Ro), and at distances from the charge which are not

too small. This conclusion follows simply from the smallness of the
quantity Po/pc 2 in the selected example, and applies to other situations

provided the main assumptions are satisfied. These are as follows:

1. Refraction effects can be disregarded.
2. Curvature effects are negligible.
3. Dissipation exists only at the shock front.

4. Nondimensional pressure amplitudes Po/poc 2 are small.

As described later, some of these assumptions require further
investigation.

We may turn the question around and ask when are nonlinear
effects so significant that the decays predicted by the nonlinear
theory significantly depart from linear theory. This occurs, of
course, when the quantity multiplying the logarithmic term in Eq. (1)
is large. However, such large values of r are outside the limits of
applicability of the nonlinear theory. Nevertheless, if r is of order
one, nonlinear effects are significant, as the agreement with the
experimental fit for r equal to about 0.37, indicated. Also, for r =0(1),
it is possible to satisfy the basic assumptions of the theory. We will
therefore use a value of r - 1/2 to guide the discussion. This
relatively large value of r could easily occur if the ratio Po/Pc o2 is
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sufficiently large. It should nevertheless be remembered that weak

shock theory requires that quantity to be small. One reason for the
limitation is that weak shock theory depends on an approximation for

the entropy increase across the shock which is valid only for small
pressure differences across it. In air, for example, weak shock theory
predicts entropy increases across a shock wave which agree within

15% of the actual increases for values of P°/Poc 2 up to about 0.1

(Temkin, 1969). No similar comparisons seem to have been made for

shocks in water. Nevertheless, we must take Po/pc 2 to be "small."

The quantity r multiplying the logarithmic term could still be of

order one if Po/PoCo2 - Lpp/R o , with R /L >>1, as required. Taking r

equal to 0.5, as indicated above, we obtain

/ 2 . 0.5 [po(Ro/Lop)]'

Before we compare the nonlinear-decay predictions with actual data,
let us compute the charges that are needed to provide such
significantly nonlinear behavior as the case r =0.5 requires. For this

we need values of 13o and (Ro/Lop). Now, the value of 030 is nearly
0 0 0

constant and equal to about 5. On the other hand, R /Lo must be

"large" for the theory to be applicable. If we take for it a value of 5
and also put P. = 5, as before, the approximate equation above, yields

Po 0 c 2 - 0.02. While this value is 20 times larger than that found

for the scattering-experiment example above, it is not unusually
large. Moderate charges may produce it at relatively small ranges.
Let us use the empirical fit to compute the weight of the charge that
is needed to produce such a peak pressure at some distance R from

the charge. Using Eq. (B1) we obtain W1/3/R0. = 0.350 Ib1/3 ft "1. This

value of W1/ 3 /R is within the range of validity of the empirical fit.
At R o10 ft, this gives W= 43 lb. At smaller distances, the required
weights will, of course, be smaller. However, at values of R°

20



comparable to the lateral size of the charge, the applicability of the
theory is doubtful, because the existence there of a well defined L P

is questionable. Further, even if a well defined Lop could be obtained,

the assumption R /LO >>1 cannot be satisfied.
0 PP

As might be expected from the above discussion, the nonlinear
theory should predict, for ~r - 0(l), decays that are comparable with those
obtained experimentally, at least in a limited range of the parameters
involved. This is likely to occur in regions where the amplitude of the

wave is large. For moderate charges, this occurs at distances not too far
from the charge. Consider the data of Coles et al, that was mentioned
earlier. They were obtained with 48 and 76 lb charges at ranges varying
between 5 and 100 ft. The charge diameters were 12 and 14 inches,
respectively. We may therefore attempt to use those data for comparison
purposes. Now, the nonlinear theory is not capable of predicting the
magnitude of the pressure produced by a given explosion. All it does is to
predict the pressure peak decay from a known value obtained at a given
distance. Thus, we use the measured value of P0 at the first distance and

equate it to P 0 in Eq. (1). The resulting decay follows from that equation

once t~ is known. As before, we take t - 0.5, even though we have no
theoretical reason to do so ( but as we wilt later see, such a value may be
inferred from the data as well). The results for the 76 lb charges are
shown in tabular form below, and in graphical form in Fig. (11).

We may also compare the various decay trends by plotting the data
on a log-log scale, or alternatively, by plotting the logs of the data on a
linear scale. Figure (12) shows the logs of the experimental, linear,
empirical and nonlinear fits, plotted against the log of w113/R. The linear
decay was added to show the divergence in this range of w1/ 3 /R. The other
two lines give fits which are equally good.

The agreement is somewhat surprising because of the value of tC was
not selected to obtain a best fit. Rather, it was chosen because it seemed
to be reasonable. As it turns out, however, the figure was of the correct
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Table 3. Experimental, Empirical Fit and Nonlinear Peak Pressure Decays. %.

Pressure, psi

R w1/a/R Experimental Empirical Fit Nonlinear

ft lb /3ft"1  76 lb data 21600x(W /3/R) 3  = 0.5
5-

5 0.847 18950 17908 18950

7 0.605 12400 12244 12523
10 0.424 8185 8183 8165
15 0.282 4530 5175 5075
17 0.249 4215 4492 4390
20 0.212 3755 3739 3641

38 0.111 2115 1810 1757
47 0.090 1595 1424 1384
60 0.071 1066 1080 1055
78 0.054 814 803 788

87 0.049 760 710 699

100 0.042 577 607 600

order of magnitude. Consider, again, the definition of r. It is given by

=130 (Po/poCo 2) (Ro/LPP)
oI

To obtain a numerical value for this, approximately valid for the date of ..

Coles et al, we use the data they obtained at R- 47 ft. This point is halfway
the range they used. This distance becomes Ro.At that location (see Table

2.), Po 1595 lb/ft2 , so that Po/pCo2  0.005. The value of Lo can be

estimated from the value of 15 at that location. This is also given in the

table. Thus, Lo co o. This gives Ro/Lop 27, which in turn yields r =0.64.

S
%:.7
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It is thus clear that values of r can be found which give theoretical
predictions in agreement with experimental data. However, for the theory
to have any meaning, those values must be realistic for the particular data
to which the theory is being compared.

DISCUSSION OF SOME EXPERIMENTAL AND THEORETICAL RESULTS

In section II, we estimated the effect of nonlinearities as they
might possibly affect the decay of the peak pressure, over moderate
distances, in pulses obtained from underwater explosions of small
charges. This portion of the pulse was selected as it is the one most likely
to display such effects. Also, other portions of the pulse appear to decay
as 1/R, that is, as predicted by linear theory.

Although the evidence for a decay of the pressure proportional to R-'*' 3

is extensive, there are two factors which, in this writers opinion, appear to

be inconsistent. These are:

1) For a given range, the peak pressure only depends on WO '38

While it is clear that the energy released by a given explosive may

scale with its modified lateral size (Wl/3) . 3, the fact remains that the
pressure pulse produced by it depends on the ability of the bubble to
expand against the surrounding water. The forces resisting the expansion
are largely due to the hydrostatic pressure around the bubble, and this
depends on the depth. Thus, the pressure peak must depend on depth as
well as on range. Investigators have been apparently aware of this point.
Blaik and Christian, for example, pointed out that their experimental setup
prevented them from separating the effects of range from those of depth.
It is also of interest to note that the empirical fit for Pmn (Eq. B2) does

depend on depth, for both shallow and deep explosions.

2) Correlation is not affected by stratification

Except for the initial measurements in shallow waters, which were
conducted with either both charge and receiver at the same horizontal
levels, or in well mixed waters, the bulk of the pressure-peak data has
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been obtained by measuring, near the surface, the pulses produced by
charges at depths extending to 22000 ft (Blaik and Christian, Slifko). In
order to avoid refraction effects due to stratification, these investigators
made the measurements along the vertical, that is, directly above the
charge. Such a configuration eliminates bending of the direction of
propagation due to stratification. However, as a result of the significant
horizontal stratification that must have been present in the experiments
between the charge and the receiver, some acoustic energy must have been
reflected back to the source. As no calculations of this reflection have
been made, the magnitude of the effect cannot be assessed. It is therefore
possible that it was negligible. Nevertheless, the significant speed of
sound changes below 4-5000 ft, may cause some changes in the amplitude
of the wave. Yet, the pressure-peak correlation shows no such effect. In
fact, it agrees with data obtained in well mixed waters. Of course, as the
gradient of the speed of sound at such depths changes sign somewhere
along the vertical propagation, it is also possible that on its way to the
surface, a pulse is first amplified due to reflection from layers of
decreased impedance, and then attenuated by layers of increasing
impedance. It is thereforb also possible that reflection and amplification
were of about the same magnitude, so as to eliminate stratification
effects. None of these possibilities can be assessed without further study
of the data and of the effects of stratification on vertical propagation.

Theoretical work

The limitations of theoretical work for nonlinear propagation that
was introduced earlier include the effects of: 1). curvature, 2) dissipation
in the main parts of the wave, and 3) the effects of stratification.

The first of these effects is likely to be of little importance,
as most measurements are taken sufficiently far from the charge, and at

these distances the spherical wavefronts may be regarded as being locally
plane. Dissipation in the main portion of the wave, may also prove to be of
little importance, at least at low frequencies, because that dissipation is
proportional to the square of the gradient of the pressure, and this is
small everywhere in the main pulse. Further, that dissipation is also
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proportional to the kinematic viscosity of the fluid, and for water, this is
considerably smaller than for air. However, since these effects affect the
peak pressure through an exponential decay, propagation over long

distances will necessarily show their effects. Finally, the effects of
stratification remains to be ascertained for realistic depths, ranges, and
sound speed gradients, although results presented recently by Cotaras et
al seem to show that the effect of inhomogeneity on nonlinear
propagation is small.

The work of Cotaras et al is important to the subject of this
review, as these investigators conducted extensive numerical
computations with the specific purpose of assessing the importance of
nonlinearities in the propagation of two different types of model pulses.
The first, generated at a depth of 300 m, consisted of a shock wave
followed by an exponential decay. The second pulse included the first
bubble peak and was generated at a depth of 4300 m. In both cases, the
effects of nonlinearity, dispersion, and attenuation were estimated by
numerically allowing the pulses to travel long distances. The numerical
algorithm used was based on geometrical acoustics, and included the
effects of nonlinearity, attenuation and dispersion.

Their conclusions regarding long range propagation seem to indicate
that nonlinearity is more important at moderate ranges than our crude
estimates show. For the exponentially decaying pulse they present
pressure profiles at various distances which show significant lengthening
taking place at moderate absolute ranges. In the second type of pulse, they
state that beyond a certain distance which depends on frequency and
source strengths, nonlinear effects can be disregarded. Nonlinearity was
found to have no effects below 4000 Hz.

While these conclusions are based on possibly the most complete
study ever made, they are nevertheless open to question because of the
values used for some of the assumed initial conditions. These are as
follows:

1. The reference, or initial, value of R was taken to be 1.31 ft for the
1.8 lb charges and 3.61 ft for the 50 lb charges. These distances probably

give values of Ro/Lpwhich are too small for the theory to be applicable.
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Incidentally, a 50 lb TNT charge has a lateral dimension of about 1 ft, and
this not too small when compared to 3.61 ft.

2. The initial value of Pp0 C 2 was taken equal to 0.06 for both

charges. While this is probably within the limits of the nonlinear theory,
it corresponds to a value of W113/R equal to 0.92 for the 1.8 lb charge and
equal to 1.02 for the 50 lb charge. These values are beyond the upper range
of validity of the fit (Wl/ 3/R 50.85). This is relevant because the fit was
used to obtain the charge weight needed to produce the assumed values of
PO at the desired initial ranges.

3. The effective value of our quantity T used in the calculations was
unity. As stated earlier, this value is perhaps unrealistically high.

OTHER EFFECTS CONSIDERED

In addition to the propagation effects considered above, there may
be other effects that may play a role in scattering experiments as a result
of the interaction of a shock wave and a free surface. One such effect is
the possible nonlinear behavior of the reflection coefficient. Other
possibilities include cavitation and surface motion induced by the pulses

* reaching the surface. Cavitation may create extensive bubbly regions near
* the surface which may affect the transmission of the surface-scattered
* signal. Surface motion, on the other hand, can radiate sound waves which

may contaminate the signal.

As it turns out, none of these effects is important for the pulses
used in the scattering experiments under consideration, as the charges
used were considerably smaller than those required for these effects to

* * be significant. These effects are mentioned here only because they were
considered during the review.

Both cavitation and surface motion effects were given considerable
attention in the forties, and the literature contains many papers on them.
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Earlier papers by Arons contain schematic diagrams of the cavitation
region below an air-water interface, due to an underwater explosion.
Similar figures as well as a discussion of their effect on the
backscattered signal may be found in a 1979 paper by Gaspin et al. The
discussion below is mainly intended to provide a rough estimate of the
charge weights needed to initiate cavitation.

The occurrence of cavitation may be considered in terms of plane
waves reaching the surface, and some aspects of the reflection of plane
shock waves have been treated in that manner by Wentzell et al. For our
purposes, the spherical geometry is just as convenient, provided that the
angles of incidence are not too close to the horizontal, because at such
angles, a lateral wave appears which would invalidate the arguments
presented in Appendix C. There, it is shown that due to the interaction of
an incident and a reflected spherical wave, a region of considerable
acoustic underpressure, that is, a region where the total pressure may be
considerably below that of the ambient, is created at a small distance h
below the surface. Provided that the charges are not too near the surface,
that distance may be expressed as

h(0)/d - (coTm n/2d){1 -coT /2dcose -

where Tmin is the time between the pulse's front and the point of minimum

pressure behind it, 0 is the slant angle shown in Fig. C1, and d is the

charge depth. Except for very small grazing angles, this gives a depth of a
few meters below the surface. For example, an 8 lb charge of TNT
detonated at a depth of 500 m, will produce the lowest pressure at about
4 m below the surface. As stated earlier, if this pressure is lower than
the hydrostatic, then cavitation would be produced somewhere below the
surface that could result in a layer of bubbly liquid. Such a layer could
affect the backscattering strength significantly. The place where this is
most likely to occur is directly above the charge. Thus for 0=0 and at h=h0 ,

the total pressure is

Ptotal(ho ' 0 =0 )= Ph + Prmin(R 3 w0*=0 ) -Po(RIe*=O)
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where Phis the hydrostatic pressure, Pmi is the minimum negative
pressure in the incident pulse, and P0 is the peak pressure in the reflected
pulse. Pmin and Pomay be computed using the experimental fits. Thus,
assuming that cavitation occurs for P total -* 0, we must have

K, z1/2 (W/3/R,) + K, (W"3/R 1)1.13 >

where the constants Kand K2 are given by the fits of the minimum and

peak pressure fits, respectively. The problem then reduces to finding the
smallest values of W1 3 /R1 ( or those of W1/ 3/R 3 ) that satisfy this
approximate inequality. This can be done numerically with the aid of Eq.
(Cl) for R, " For a charge detonated at a depth of 500 m, this procedure

shows that the minimum charge weight would produce cavitation directly
above the charge, at about 4 meters below the surface, is about 22 lb, or
considerably larger than those actually used. Of course, as the burst depth
is decreased, the charge weight required for cavitation is also decreased.

The second effect mentioned is the the possible re-radiation over
long periods of time, by points on the surface due to oscillations induced
there by the incoming pulse. The effect could be of some importance for
strong explosions, but for the typical charges used in scattering
experiments, it is negligible, as the maximum velocities induced then at
the surface is a few cm/sec. These velocities are too low to produce any
noticeable signals at the location of the receiver.

Both of the above results depend on the correctness of the pressure
release boundary condition at the air-water interface. This is based on
linear theory which might not be applicable to finite-amplitude pulses,
specially in view of a recent report by Temperly which appears to indicate
that, even in ideal situations, the reflection coefficient at such an
interface differs from the value predicted by linear theory. Because of
these reasons, we considered the reflection of a pulse at an interface
between two fluid media, one of which (air in this case) might respond
nonlinearly to a pulse propagating as a linear signal in the other. However,
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as shown in Appendix D, the departures of the reflection coefficient czr

from unity are insignificant for typical incident pressure amplitudes, so
that one can safely neglect nonlinear effects on normal incidence.

CONCLUSIONS

This review has considered the propagation characteristics over
moderate ranges of pressure pulses due to small underwater explosions,
such as those used in scattering experiments. We have concentrated our
attention on the peak-pressure region, as it is here that nonlinear effects
are likely to appear. Another reason for doing this is that experimental
data show that other important portions of the pulse, such as the pressure
minimum behind the leading shock, or the first bubble maximum decay is
inversely proportional to the distance to the charge. That is, their decay is
linear. We have found that there must be ranges during the propagation
where nonlinear decay laws give values that are comparable to those
predicted by the experimental fit. These ranges are found for moderate
charges or at short distances from small charges. On the whole, it is
concluded that nonlinear effects must be negligible for small charges. By
implication, it is found that except for those ranges (as well as closer
ones, where the front shock is too strong to be considered as a weak shock
wave), the decay of the pressure peak in such pulses should be as
predicted by linear acoustic theory. As this is not found experimentally, it
is suggested that at least two effects were present in the experiments
that are not represented by the (WI' 3/R)1.13 fit. These are a possible
effect of burst-depth on peak pressure, and a possible effect, due to
horizontal stratification, on the amplitude of propagation along the
vertical.

We have also found that realistic choices of the parameter r
appearing in the nonlinear theory produces good agreement between theory
and experiment. This lends substantial support to the idea that the 1.13
exponent observed experimentally could indeed be due to nonlinear effects.
However, as the nonlinear theory does not predict the same trend at long
ranges, the 1.13 exponent found there remains to be explained.
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RECOMMENDATIONS

The following aspects of the problem have not been considered in the
past but may play a role in determining the propagation characteristics of
the pressure pulse.

1. The effects of curvature of the wavefront on nonlinear decay.
Current theories use an ad-hoc procedure, where a theory rigorously
derived for plane waves is adapted to spherical waves. There is no
theoretical development for small distances. Information provided by a
spherical theory could be important because nonlinear predictions at
subsequent ranges, use initial conditions close to the charge.

2. The possible reflection/amplification of vertically-propagating
nonlinear waves due to horizontal stratification should be studied for
profiles and ranges of actual interest. These effects may affect the
empirical fit for the peak-pressure, particularly when large vertical
ranges are considered.

3. The limitations of weak shock theory should be considered, in the
same manner as they have been in gases. Thus, the basic restriction is

that the quantity Po/poco2 =u /c be small. However, the value of this

quantity in water, which results in errors of, say, 10% is not known. Such
a value could properly delimit the ranges were the theory applies.

4. The effects of dissipation in the main part of the wave should be
studied in some detail, at least for linear pulses.

5. Although not considered in this report, the propagation of acoustic
pulses through liquids containing bubbly layers should be given
considerable attention. Such layers are likely to exist below the sea
surface as a result of various effects such as water waves breaking and
entraining air into the ocean. In order to study these aspects, the
interaction of sound pulses and single bubbles must be considered because
that interaction determines, in part, the acoustic characteristics of a

bubbly layer. Further, they are likely to produce considerable nonlinear
effects.
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Appendix A

PRODUCT'ION OF SOUND PULSE IDUE TO EXPLOSION

As stated in the introduction, the pressure pulse is due to the
motion of the surface of the explosion bubble. This motion is oscillatory
in time, but the oscillations are not linear nor periodic, as might be
expected from the very large initial pressure differences. There has been a
great deal of work on this problem, and much of it has been reported in the
literature. It turns out that the motion of the bubble can be computed
fairly accurately by assuming that the fluid around it is incompressible.
See, for example, the text by Batchelor. The time history of the position of
the surface in a bubble after an underwater explosion is depicted in the
figure below, reproduced from a 1943 paper by Kennard. It will be used to
guide our discussion of the waves emitted by the bubble.

R 5

K7 
0

Ti

Fig. Al. Radial motion of gas bubble. R0 denotes the radial position when
the pressure inside the bubble equals that outside.

Generally speaking, two kinds of waves are produced at the moving
interface r-,-oarating the high pressure gases from the water: outgoing and
incoming waves. Initially, the leading portions of each of these waves
must necessarily be compressive for the waves sent into the water, and
expansive for those sent into the bubble. If the pressure differences
across the interface were small, one could use linear acoustic theory to
analyze the waves produced by the sudden expansion of a spherical region,
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initially at a pressure slightly larger than its surroundings. That theory
shows that the sudden expansion creates a wave having a sharp front and
a sharp tail, as depicted below at (a) some instant, and (b) at some
location in space.

r 0

(a) (b)

Fig. A2. Pressure waves produced by sudden expansion of pressurized
* region. (a) Profile at a. fixed time. (b) Profile at fixed location

The negative acoustic pressures shown in the figures are due to the
radially incoming expansion wave created at the interface, which at the
times selected for the figures, has already been reflected at the origin.
Now, in an actual explosion, the pressure differences are much too large
for this model to apply to the expansion of the high pressure bubble.
However, the expansion takes place at a considerably lower velocity than
the velocity of the emitted waves. We may therefore visualize the actual
expansion as taking place in a large number of very small steps, each
producing two wavelets, one outgoing and one incoming, which travel
behind those produced by the previous step. Consider first the wavelets

sent outside the bubble. Their amplitude is proportional to the square of
the instantaneous radius of the bubble and to the acceleration of the
surface . As the radius is increasing and the acceleration is decreasing
continuously during the expansion stages, the amplitude of each
subsequent wavelet is roughly comparable with that of the first. However,
the propagation velocity of each is larger than that of its predecessor. One
of the results of this is that the leading front of the wave is reinforced by
each of these wavelets. Therefore, the wavefront travelling into the water
quickly becomes a rather strong shock wave, whose speed is considerably
larger than that of the ambient speed cop ahead of the shock.
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Consider now the expansion wavelets. These can be divided into two
kinds: those produced before the first wave is reflected from the origin,
and those produced afterwards, Because of the small size of typical
charges, the travel time of the first expansion wave before reflection is
very small compared with the time required by the bubble to expand to its
maximum radius. Therefore, most of the wavelets produced during this
first phase of the bubble motion are produced after the first wave is
reflected from the origin. They therefore continue to be produced at longer
distances from the origin, travelling towards it, then being reflected, and
then continuing to travel behind the reflection of the first produced wave.
One result of this is that the tail end of the wave is considerably
elongated, relative to that of the first wave. Another is that the sharp tail
is smoothed out somewhat. Hence, near the time the bubble has expanded
to its maximum radius, the pressure profile at some distance from it, has
the following shape

Fig. A3. Leading portion of outgoing wave.

At this stage, the bubble has reached its maximum radius. The motion does
not end here because at this time, the pressure in the bubble has become
smaller than the hydrostatic pressure around it. This has happened
because during the expanding motion of the bubble, the water in its
vicinity has acquired an outward motion, which does not cease the moment
the pressure inside the bubble becomes equal to that outside. However,
when the bubble has reached its maximum radius, the external pressure
has become larger than that inside. It therefore begins to push the bubble
in. The moment the bubble reverses direction, it begins to send outside
wavelets whose fronts are expansive, and their tails are compressive.
These wavelets join with the main pulse, producing a slow increase from
the negative overpressure where it joins. The inward, radial motion of the
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bubble continues for sometime, with the bubble now overshooting its
equilibrium position once more, this time on its way to smaller radius. As
the mass of the gases in the bubble is not large, and its temperature by

-now does not differ much from the ambient, the water is able to compress
the bubble to a very small radius. Nevertheless, the pressure inside the
bubble can become quite high, and results, when the bubble rebounds, in
the emission of a second pressure pulse, called the first bubble pulse. The
amplitude of this secondary pulse is smaller than that of the primary
shock wave, but it can also have substantial amplitudes. Of course, the
motion does not stop here, as the bubble can perform several of these
oscillations. In each subsequent oscillation, the pulse amplitudes and
bubble periods decrease. The combined pressure profile observed at some
distance from the explosion can contain a few of these bubble pulses, as
depicted schematically in Fig. 2. Also shown in the figure are the relative
size of the bubble at the times when the corresponding pulse features
were created.
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Appendix B.

EXPERIMENTAL CORRELATIONS FOR PULSE PARAMETERS. TNT CHARGES*

All parameters are fitted by equations of the form Y=KZ O(Wl/ 3/R)P
0

Paramete Units K. Limits of variables

PO lb/in2  20800 0 1.13 7x10-5<W1/3 /R<o.85+ (B1)

Pmin lb/in 2  .77 1/3 -1.0 14,000 >_ Z >-" 4500 (12)

3300 0 -1.0 4,000 _ Z >_ 500 (B3)0

P1  lb/in {
875 1/6 -1.00 14.000 2! Z > 4500 (84)

0

0.555 -5/6 0 4,500 > Z ° 500 (15)

T W - 1/3  sec/lb"3 {
pp

0.014 -2/5 0 22,500>2Z Z 4500 (B6)
0

T1W-"r sec/lb" 3  4.34 -5/6 0 14,000 _ Z -2 4500 (B7)

Adapted from Slifko, 1967.
+Includes high range data of Coles eLai.
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Appendix C.

SPHERICAL PULSE FROM REFLECTION AT AN AIR-WATER INTERFACE

In this appendix we consider the reflection of an incident spherical
pulse reaching the air-water surface from the water side, as depicted in
the figure below. This shows a pulse produced at some depth reaching the
surface from below, and its mirror image, an expansion wave of the same
amplitude,

ir1 '.

Reflected

Fig. Cl Reflection at air-water interface

produced at the same distance above the surface. The combination insures

that the pressure release boundary condition is satisfied everywhere on
the surface. Now, as the expansion wave moves into the liquid, it interacts
with the pressure profile behind the incident pulse. The loci where the
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expansion wavefront meets the point of minimum pressure, Pmin' in the

incident wave, determines the lowest possible underpressure in the liquid.

If this underpressure reaches a magnitude equal to the hydrostatic
pressure at that location, cavitation is likely to occur because real sea
water, containing as it does, dust particles having small pockets of
trapped air, cannot sustain negative pressures. Cavitation can occur
earlier in the interaction between the two waves, but we concentrate on
that location as it yields the lowest possible pressure. Now, as denoted in
the figure, R, represents the distance from the image charge to the front
of the expansion wave, and R3 the distance from the actual charge to the
location of the minimum pressure behind the incident pulse. That front is
at a distance Ri=Rj+coTmin from the charge. From the geometry of the

problem it follows that

R3- {RI 2 - 4dRcose*+ 4 d2} 2

Because the point of minimum pressure is located very close to the
incident wavefront, it follows that the distance from the surface where
the intersection occurs should be small compared to either R or to d. Thus,
it follows that h/d.(R l cosO*/d)-I << 1. This can be used in the equation
for R3 above to yield

R 3 __ R 1{1 - [(Rlcos@/d)-l]/2(R1 /2d 2)}

In addition, Rl1 cot and R3=co(t-Tmn), where Tmin is the time between the

wavefront and the location of minimum pressure. Combining these results, ip

we obtain

R 1 - d {cosO*-coTminmin/2d} - 1  (Cl)

This gives the distance from the image charge. The distance to the surface
for any angle 0 is simply R,=d/cosO. Thus, the distance below the surface
where the minimum pressure occurs is h=(R-Rs)cosO, or

h(e)= d (coTmin/2d){1-coTmin/2dcos9}-1

as given on page 28.
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Appendix D

REFLECTION COEFFICIENT AT AIR-WATER INTERFACE

In this appendix we consider the reflection of a normal, plane wave
from a water-air interface. The incident pulse reaches the interface from
the water side, where it travels as a linear acoustic wave. Because of the
interface, a fraction of the acoustic energy is reflected back into the water,

and part is transmitted into the air. The reflected pulse is also well
described by linear acoustics. In the linear approximation, the transmitted
pulse also behaves linearly, so that the reflection coefficient is given by

1Z 2 1 2

(r =I IZ211

where Z2z=p2c2/p1cj. Although the smallness of this ratio dictates that the

transmitted wave should have a rather small amplitude, it is in principle
possible that the small compressibility of the air, p2c2 2, relative to that of
the water, can result in a value of P2(o)/p 2c 22 that is too large for linear

theory to apply.

To study that possibility, we consider a plane wave whose velocity
profile is given by f(x-cit) traveling towards the interface. The particle
velocity in the reflected wave is given by g(x+ctt). At the interface, the
pressures and velocities on either side match, so that

Po + pic1 [f(-cit) -g(clt)] = P2 (o) (DI)

pIcI[f(-clt) + g(clt)] = u2(o) (D2)
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where Pa is the ambient pressure at the interface, and P2(o) and U2(o) are.

respectively, the total pressure and velocity on the air side. Now, for

simple waves in a perfect gas, the pressure is related to the velocity by
means of

P2(0) = { [l-(y-1)u 2(0)/c 2][2( "r-')] -1 (D3)

We are interested in the ratio g(O,t)/f(O,t), as it is this ratio that
determines the value of the reflection coefficient. Combining (D1)-(D3), and
introducing

w 2[1 + g(O,t)/f(O,t)]/(1+Z 21 )

we obtain

= {2 -(c2/ct)(Z2l/YE)[1-(y-1)(c2/cl)3P/(1+Z 21)] [2'/(Y-I)] -1 }

where e is given by e = Pl(o)/pc,2 . In terms of 13, the reflection coefficient

is given by

2
213-1-Z 21  (D4)

IX I+Z21 (4

The linear case is obtained in the limit e <<. 1. This yields 13 = 1, so that Eq.
(Dl) is obtained from (D4). The next order approximation for 13, valid to

order e2 and small Z21 gives

I 1

l+2(y-l)Z21 (clIc2)E

which shows that 13<1, so that a r is less than one. However, the differences

are insignificant. Thus, for e =0.1, 13 differs from unity by less than 1/10 of

1%.
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