U.S. ARMY INTELLIGENCE CENTER AND SCHOOL
SOFTWARE ANALYSIS AND MANAGEMENT SYSTEM

MINIMIZATION OF SQUARED ANGULAR ERROR TO REDUCE BIAS

TECHNICAL MEMORANDUM No. 26

MARC
Mathematical Analysis Research Corporation

23 March 1987
National Aeronautics and Space Administration

JET PROPULSION LABORATORY
California Institute of Technology
Pasadena, California

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited

As a follow-up to the results of "Two Dimensional Uncorrelated Bias in Fix Algorithms", DTIC #AD-A189473, MARC has examined the replacement of the Weighted Perpendicular algorithm with the Minimization of Squared Angular Error algorithm. Standard modeled errors are discussed. Basic code for both the Minimization of Squared Angular Error and the Squared Sine of Angular Error are included.
Minimization Of Squared Angular Error
To Reduced Bias

Technical Memorandum No. 26
23 March 1987

Author:

MARC
Mathematical Analysis Research Corporation

Approval:

James W. Gillis, Subgroup Leader
Algorithm Analysis Subgroup

Edward J. Records, Supervisor
USAMS Task

Concur:

A. F. Ellman, Manager
Ground Data Systems Section

Fred Vote, Manager
Advanced Tactical Systems

JET PROPULSION LABORATORY
California Institute of Technology
Pasadena, California

JPL D-4623
PREFACE

The work described in this publication was performed by the Mathematical Analysis Research Corporation (MARC) under contract to the Jet Propulsion Laboratory, an operating division of the California Institute of Technology. This activity is sponsored by the Jet Propulsion Laboratory under contract NAS7-918, RE182, A187 with the National Aeronautics and Space Administration, for the United States Army Intelligence Center and School.

This specific work was performed in accordance with the FY-87 statement of work (SOW #2).
EXECUTIVE SUMMARY

This Technical Memorandum was prepared to summarize the results of work performed under both the FY-86 and FY-87 Statements of Work and was funded by the FY-86 funds.

The purpose of this Technical Memorandum is to finalize the results of one phase of the statistical bias investigation for fixing algorithms. It discusses the trade-offs between the two competing optimization factors.
Minimization Of Squared Angular Error To Reduce Bias

SUMMARY

The systems reviewed to date use the weighted perpendicular method. As the number of bearings increases the bias of this approach becomes a larger and larger percentage of the total error. This does not happen to minimization of angular error. On the other hand, minimization of angular error is harder to compute. How much harder?

I. Number of Iterations after a Perpendicular Method Start-
 - Weighted Perpendicular converges in one or two iterations whereas Minimization of Squared Angular Error of angular error should probably use two to three iterations (after using the Perpendicular Method.)

II. Shared calculations-
 - In the Weighted Perpendicular reweighting can be done on saved terms without significantly reducing recalculation. Minimization of Squared Angular Error must recalculate all terms each iteration.

III. Number of multiplications and additions-
 - Minimization of Squared Angular Error has slightly more than Weighted Perpendicular. This difference should be fairly insignificant for total program run time however.

IV. Computation of Transcendental Functions-
 - Minimization of Squared Angular Error requires computing an inverse trig. All other methods require computation of trig functions but minimization of angular error does not. The primary difference is probably not the difference between trig functions and inverse trig functions. The primary difference is the trig functions need only be computed once whereas the inverse trig functions must be recomputed each time a new fix is found. To get the benefits of a fix with bias properties similar to Minimization of Squared Angular Error without having to recompute transcendental functions one should use Minimization of Sine Squared of Angular Error. According to its documentation this sin variation was used by FFIX. MARC has not seen the algorithm FFIX used. Our own code for this method is included later in this report.

MARC recommends that slowdown in the number of fixes that can be processed be compared against the percentage of error resulting from fix algorithm bias. Analysis of data from field trials should be an important part of determining this percentage. Analysis based on models can predict what the result will be but only field trials can validate that important sources of error have not been left out of a model. Models should be a consideration in the planning and evaluation of trials but they are only one
element of an integrated investigation.

The remainder of this memo consists of:
I. a section giving a general background on the issue of error from the fix algorithm (excluding bearing selection)
II. a section giving the algorithm for one iteration of the minimization of squared angular error

I. FIX ALGORITHM ERRORS (EXCLUDING BEARING SELECTION ERROR)

Analysis of fix algorithms under the standard normal angular error model yields the following conclusions:

A. Minimizing variance:
 Most of the error for small numbers of LOBs is reflected in the variance of the estimate. Minimization of the variance is therefore critical. Most fix methods have variances that are very similar. The method of minimization of Perpendicular Distance is an exception and hence should not be used. A Senior Thesis underway at Claremont McKenna College on a generalization of the Cramer Rao Inequality will show that the variance of the techniques such as Weighted Perpendicular, Minimization of Squared Angular Error, and Minimization of Sine Squared of Angular Error are essentially optimal relative to errors resulting from a shared angular uncertainty. (If there are known differences in angular uncertainty they should be incorporated. Any of these methods could be modified to weight for proportional accuracy.) The amount that the variance of the Perpendicular Method is larger depends on how much the relative distance from the emitter to the sensors varies depending on the sensor.

B. Reducing Bias:
 For small sample sizes bias is the second largest source of error. For large sample sizes it is the largest source of error. It can be shown that for most methods (certainly all Minimization of Square Error based methods) and 2 bearings the different methods give the same fix, and hence have the same bias. As sample size goes up some methods have bias shrink inversely proportionately to sample size and others do not. The Perpendicular Method and Weighted Perpendicular Method do not have shrinking bias in general. In fact, in some situations bias can increase with sample size for Perpendicular and Weighted Perpendicular.

C. Skewness:
 Intuition suggests that skewness depends on the relative size of an ellipse compared to the distance from the sensors. Skewness should decrease as sample size increases if this is the case. MARC would expect Weighted Perpendicular to have skewness similar to Minimization of Squared Angular Error. Furthermore MARC expects that both would be somewhat smaller than the skewness of the unweighted Perpendicular method in a way directly related to the larger variance of the Perpendicular method. MARC has not, however, tested these theories.

II. ITERATIONS TO UPDATE LOCATION ESTIMATES

Commented Squared Angular Error Minimization code is Attachment I. Minimization of Sin Squared of Angular Error code is Attachment II. Notes on the code: X and Y are used as subscripts. The initialization portion of the program is not included but it sets X-1 (for the first coordinate or X coordinate) and Y-2 (for the second coordinate or Y
coordinate.) ATN is the Arctangent function. Bearing(I) is the angle in degrees from true North of the bearing. The algorithm used is to update successive estimates of the fix by subtracting the inverse of the Hessian (second derivative) of the likelihood times the gradient of the likelihood.
ATTACHMENT I

ALGORITHM LISTING

ITERATION FROM MINIMIZATION OF ANGULAR ERROR

2548 ! ** Variables **
2549 !
2550 ! Partial_wrt(X) is the partial of the likelihood L with respect to X
2551 ! Partial_wrt(Y) is the partial of the likelihood L with respect to Y
2552 ! L(X,X),L(X,Y), and L(Y,Y) are the second partials of L
2553 ! Diff=Angular Difference
2554 ! Sensor(I,X)=X coordinate of the ith sensor
2555 ! Sensor(I,Y)=Y coordinate of the ith sensor
2556 ! Fix(X)=X coordinate of the current location estimate
2557 ! Fix(Y)=Y coordinate of the current location estimate
2558 ! Dx is the difference in X coordinates of the estimate and the sensor
2559 ! Dy is the difference in Y coordinates of the estimate and the sensor
2560 ! Determinant=L(X,X)L(Y,Y)-L(X,Y)L(Y,X)
2561 ! Other variables should be self-explanatory
2562 !
2563 ! ENTER THIS LOOP WITH AN ESTIMATE BASED ON THE PERPENDICULAR METHOD
2564 !
2565 FOR Iteration=1 TO 4
2566 ! **************************** INITIALIZE TO COMPUTE A SUMMATION **************************
2567 Partial_wrt(X)=0
2568 Partial_wrt(Y)=0
2569 L(X,X)=0
2570 L(X,Y)=0
2571 L(Y,Y)=0
2572 ! **************************** COMPUTE SUMMATION FOR L & Partial_wrt ****************************
2573 FOR I=1 TO Nsensors
2574 Diff=(Bearing(I)-ATN((Sensor(I,X)-Fix(X))/(Sensor(I,Y)-Fix(Y))))
2575 IF Diff>180 THEN Diff=Diff-360
2576 IF Diff<-180 THEN Diff=Diff+360
2577 Diff=Diff*PI/180.0 ! *** convert to radians ***
2578 Dx=Fix(X)-Sensor(I,X)
2579 Dy=Fix(Y)-Sensor(I,Y)
2580 Dx_2=Dx*Dx
2581 Dy_2=Dy*Dy
2582 Dxy=Dx*Dy
2583 Distance_sq=Dx_2+Dy_2
2584 Distance_4=Distance_sq*Distance_sq
2585 Partial_wrt(X)=Partial_wrt(X)-2.0*Dy*Diff/Distance_sq
2586 Partial_wrt(Y)=Partial_wrt(Y)+2.0*Dx*Diff/Distance_sq
2587 L(X,X)=L(X,X)+2.0*(2.0-Diff*Dxy+Dy_2)/Distance_4
2588 L(X,Y)=L(X,Y)+2.0*((2.0*Diff*Dy_2-Dxy)/Distance_4-Diff/Distance_sq)
2589 L(Y,Y)=L(Y,Y)+2.0*(-2.0*Diff*Dxy+Dx_2)/Distance_4
2590 NEXT I
2591
2592 L(Y,X)=L(X,Y) ! *** no sense computing it twice ***
2593 !
2594 ! Now update the Fix by subtracting (L inverse) times (Partial_wrt)
2595 !
2596 Determinant=L(X,X)*L(Y,Y)-L(X,Y)*L(Y,X)
2597 Fix(X)=Fix(X)-(L(Y,Y)*Partial_wrt(X)-L(X,Y)*Partial_wrt(Y))/Determinant
2598 Fix(Y)=Fix(Y)-(-L(Y,X)*Partial_wrt(X)+L(X,X)*Partial_wrt(Y))/Determinant
2599 PRINT "FIX=";Fix(X);"";Fix(Y);"
2600 NEXT Iteration
FOR I=1 TO Nsensors
 S2(I) = SIN(2*Bearing(I))
 C2(I) = COS(2*Bearing(I))
NEXT I
FOR Iteration=1 TO 3
 ! ************ INITIALIZE TO COMPUTE A SUMMATION ************
 Partial_wrt(X)=0
 Partial_wrt(Y)=0
 L(X,X)=0
 L(X,Y)=0
 L(Y,X)=0
 L(Y,Y)=0
 ! ************ COMPUTE SUMMATION FOR L & Partial_wrt ************
 FOR I=1 TO Nsensors
 Dx=Fix(X)-Sensor(I,X)
 Dy=Fix(Y)-Sensor(I,Y)
 Dx_2=Dx*Dx
 Dy_2=Dy*Dy
 Dx_3=Dx*Dx_2
 Dy_3=Dy*Dy_2
 Dx_4=Dx*Dx_3
 Dy_4=Dy*Dy_3
 L(X,X)=L(X,X)+2.0*(S*(Dx*Dy_4-Dx_4*Dy+Dx_2*Dy_3)+C*(3.0*Dy*Dx_2-Dx_2*Dy_3))/D4
 L(X,Y)=L(X,Y)+2.0*(S*(Dx*Dy_4-Dx_4*Dy+Dx_2*Dy_3)+C*(3.0*Dy*Dx_2-Dx_2*Dy_3))/D6
 L(Y,X)=L(Y,X)+2.0*(S*(3.0*Dx_3*Dy-2*Dx_2*Dy_2+Dy_2*Dx_3)+C*(3.0*Dy_2*Dx_2-Dx_2*Dy_3))/D6
 L(Y,Y)=L(Y,Y)+2.0*(S*(3.0*Dx_3*Dy-2*Dx_2*Dy_2+Dy_2*Dx_3)+C*(3.0*Dy_2*Dx_2-Dx_2*Dy_3))/D6
 NEXT I
 L(Y,X)=L(Y,X) ! *** no sense computing it twice ***
 ! Now update the Fix by subtracting (L inverse) times (Partial_wrt)
 Determinant=L(X,X)*L(Y,Y)-L(X,Y)*L(Y,X)
 Fix(X)=Fix(X)-L(Y,Y)*Partial_wrt(X)-L(X,Y)*Partial_wrt(Y))/Determinant
 Fix(Y)=Fix(Y)-(-L(X,X)*Partial_wrt(X)+L(X,Y)*Partial_wrt(Y))/Determinant
 PRINT "Fix(X)=",Fix(X),"; Fix(Y)=",Fix(Y)"
NEXT Iteration