SOVIET REINFORCEMENT IN EUROPE

SOVIET ARMY STUDIES OFFICE

DISTRIBUTION STATEMENT A
Approved for public release; distribution unlimited

Fort Leavenworth, Kansas
REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION: Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY: Soviet Army Studies Office

2b. DECLASSIFICATION/DECLASSIFICATION SCHEDULE: ATZL: SAS

4. PERFORMING ORGANIZATION REPORT NUMBER(S): ATZL: SAS

5a. NAME OF PERFORMING ORGANIZATION: Soviet Army Studies Office

5b. OFFICE SYMBOL: ATZL: SAS

7a. NAME OF MONITORING ORGANIZATION: Combined Arms Center

7b. OFFICE SYMBOL: CAC

8a. ADDRESS (City, State, and Zip Code): Ft. Leavenworth, KS 66027-5015

8b. ADDRESS (City, State, and Zip Code): CAC

11. TITLE (Include Security Classification): **SOVIET REINFORCEMENT IN EUROPE**

12. PERSONAL AUTHOR(S): KELTNER, KENNETH M. AND TURBIVILLE, JR, GRAHAM H.

13a. TYPE OF REPORT: Final

13b. TIME COVERED: FROM 1973 TO 1985

14. DATE OF REPORT (Year, Month, Day): 1987

15. PAGE COUNT: 12

16. SUPPLEMENTARY NOTATION: THE ARTICLE ORIGINALLY APPEARED IN MILITARY REVIEW, APRIL 1987, P. 34-43

17. COSATI CODES:

<table>
<thead>
<tr>
<th>FIELD</th>
<th>GROUP</th>
<th>SUB-GROUP</th>
</tr>
</thead>
</table>

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number): REINFORCEMENT, TRANSPORTATION, STRATEGIC MOBILITY

19. ABSTRACT (Continue on reverse if necessary and identify by block number): LINES OF COMMUNICATION, INTERDIRECTION, MILITARY STRATEGY, LOGISTICS

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT: Unclassified/Unlimited

21. ABSTRACT SECURITY CLASSIFICATION: Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL: Tim Sanz

22b. TELEPHONE (Include Area Code): 913-684-4333

22c. OFFICE SYMBOL: ATZL: SAS
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
SOVIET REINFORCEMENT
IN EUROPE

by

LTC Kenneth M. Keltner
U.S. Army Command and General Staff College
and
GRAHAM H. TURBIVILLE, JR.
Soviet Army Studies Office

This article appeared in Military Review,
April 1987, pages 34-43.

APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION UNLIMITED.
Soviet Reinforcement in Europe

Force projection is not a unique consideration of the United States. The Soviet Union has devoted much effort to researching and developing strategic mobility capabilities. This article looks at factors influencing heavy lift unit development, the operational concepts governing their employment and some of their capabilities.
O

NE of the most striking developments in Soviet military capabilities since the end of World War II has been the creation of aviation and naval resources that have given Soviet general purpose forces truly global reach. Long-range airlift and sealift capabilities—through the delivery of military materiel and the transport of surrogate forces—have, for some years now, played an integral role in supporting Soviet foreign policy initiatives and goals throughout the Third World. In addition, the development of increasingly capable airborne and amphibious assault forces have at least raised the specter of direct Soviet military intervention worldwide.

These aspects of Soviet "strategic mobility" have justifiably received the closest attention from Western military analysts. Accompanying these visible and often dramatic demonstrations of Soviet long-range power-projection capabilities, however, has been a less-studied development in Soviet strategic mobility. This development has centered on enhancing theater war-fighting potential—the creation of heavy equipment transporter (HET) units for the rapid, long-distance movement of large military forces to, between and within the vast continental theaters of strategic military action (teatr voennykh deistvii (TVDs)) around the Soviet periphery.

Soviet military planners view HET resources as a means of rapidly—and, in some cases, decisively—shifting the correlation of armored forces on future theater battlefields. In recognition of this potential, major components of the HET fleet are designated by the Soviets as strategic movement assets.

The establishment of these strategic heavy lift units constitutes a new Soviet response to a longstanding Russian military imperative. That is, contemporary Soviet planners—like their czarist predecessors—are compelled to deal with the many complexities of mobilizing, moving and sustaining large force groupings tasked to conduct combat operations at the end of long, tenuous lines of communication (LOCs). While road, rail, inland and coastal waterway, and air transportation means will all be drawn upon, land LOCs, as in the past, will bear the greatest burden in Soviet strategic movements today.

In the Soviet view, these land LOCs have become more fragile due to the accuracy and destructiveness of modern weapons systems. Meanwhile, the time available to mobilize and deploy large armored and mechanized forces has been greatly reduced by the threat of these same systems.

HET Development

During the course of World War II, the Soviet armed forces shifted from strategic defensive operations to successive and sometimes simultaneous strategic offensives. This shift increasingly focused the attention of Soviet planners on the employment of strategic transportation resources. Transportation management became far more centralized within operational formations and at the national level. A central transportation management body coordinating all movement means was established under Soviet Deputy Minister of Defense for Rear Services (and Red Army Chief of the Rear) General A. V. Khrulev.

Designated the Military Transport Serv-
ice (Sluzhba Voyennych Soobshcheniy (VO-
SO)), this central transportation manage-
ment organization was also represented on
army and front rear service staffs. There, it
was subordinate to a deputy commander for
rear services/chief of the rear at each level.

Today, the Soviet military press is filled
with retrospective analyses of World War II
operations in which success hinged on the
effective strategic movement of large ar-
mored and mechanized forces. These assess-
ments address Soviet and foreign military
experience. They include examples of every
form of strategic movement conducted as
well as the various ways the whole spectrum
of transport means available in the period
were employed.

In the Soviet experience, particular em-
phasis is placed on the movement and commit-
mnt of strategic reserves and the re-
grouping of forces within and between the-
aters of military operations. Certainly, the
most notable example of Soviet strategic
concentration of units and materiel in the Soviet
Far East prior to the August 1945
Manchurian operation.

This effort included the transfer of a tank
and three combined arms armies over di-
tances that, in some cases, exceeded 12,000
kilometers. Included in the theater Hligh
Command of Forces controlling the three-
front operation was a rear service body di-
rected by the Red Army deputy chief of rear
services. This officer, his subordinate VOSO
representative and other rear service offi-
cers:

\[\text{. . . planned shipments of incoming mate-
riel, distributed and redeployed this materiel}
within theater boundaries, as well as con-
trolled the activities of the front"s rear service
staffs.}\]

Transportation statistics from the Man-
churian operation and from World War II as
a whole support the judgment of contempo-
rary Soviet planners. They feel the effective
use of all forms of transportation was essen-
tial for the support of the vast and sweeping
combined arms operations characterizing
the Soviet war effort.

While motor trans-
port and aviation became increasingly im-
portant at the tactical and operational lev-
els and the waterways—when open and in
proximity to designated delivery points—
transported large amounts of men and ma-
terial, the railroads stood as the principal
Soviet means of long-distance strategic mil-
itary movement.

The railroads were capable of rapidly
moving large combined arms units, supplies
and the heaviest equipment over great dis-
tances in the most severe weather condi-
tions. Recognizing its importance, German
efforts to interdict Soviet rail lines were ex-
tensive. German aircraft attacked Soviet
rail facilities to depths of up to 400 kilome-
ters. The Soviets estimated that 44 percent
of all German bombs dropped on the Soviet-
German front were directed against rail fa-
cilities. In addition, the Germans destroyed
the rail system as they retreated and as-
nigned sabotage squads to interdict rail
lines in Soviet rear areas.

Despite the many difficulties encoun-
tered during World War II, Soviet planners ended the conflict convinced that their approaches to strategic movement had been largely successful. During the early postwar years, lessons learned were carefully studied. Based on an expectation that future military operations would resemble those large strategic offensives, by 1947, Soviet transportation planners believed they had "actually solved" the problem of wartime military transportation.2

This judgment was short-lived. By the end of the 1950s, the significance of the growing number of nuclear weapons in military arsenals, and the likely consequences of nuclear war, shook the Soviet view of military requirements in every area.

As a restricted Soviet source put it, the appearance of nuclear weapons meant that military transportation had entered a "completely new stage"—one for which the experience of past wars did not entirely provide answers.3 Enemy nuclear strikes, unlike the deep strikes carried out by enemy aviation in World War II, were judged capable of decisively affecting the operation of Soviet transportation systems as well as inflicting massive damage to the Soviet homeland.4

Perceived as a primary target, railroads, in particular, were seen as highly vulnerable to nuclear strikes. Railroad beds could be restored at a maximum rate of only 40 to 50 kilometers a day and rail bridges at a rate of no more than 120 to 150 meters per day. Therefore, it was judged by the early 1960s that, "in theaters of [strategic] military action, railways can no longer ensure the delivery of materiel means to the troops."5

Rather, a heavier burden would have to
MAZ537 Characteristics and Performance Data

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>48,502 pounds</td>
</tr>
<tr>
<td>Engine horsepower</td>
<td>525 at 2,100 revolutions per minute</td>
</tr>
<tr>
<td>Fuel capacity (main and auxiliary)</td>
<td>220 gallons (diesel)</td>
</tr>
<tr>
<td>Road speed (maximum, loaded)</td>
<td>34 miles per hour</td>
</tr>
<tr>
<td>Fuel consumption (loaded)</td>
<td>1.9 miles per gallon</td>
</tr>
<tr>
<td>Cruising range (loaded)</td>
<td>404 miles</td>
</tr>
<tr>
<td>Fording depth</td>
<td>39.4 inches</td>
</tr>
<tr>
<td>Maximum towed load</td>
<td>143,000 pounds (55 metric tons)</td>
</tr>
</tbody>
</table>

fall on motor transport, and new approaches to moving combat units and their heavy equipment would have to be developed. In addition, the requirement for the rapid strategic movement of combined arms units and all types of supplies would be greater since the need to reinforce and regroup heavily attrited theater forces could be present from the first hours of a nuclear war.

By the early 1960s, faced with this apocalyptic vision of future theater battlefields, Soviet logistic planners had turned their attention to the development of what they generically term "heavy tractor-trailers" (tiazhelye avtopoezda) as a means of strategic movement. Heavy tractor-trailers, for which comparable Western designations such as HET and tank transporter may also be accurately used, were certainly not new innovations.

Between 1943 and 1945, the United States provided the Soviet Union with some 531 45-ton tank transporters under lend-lease. At a minimum, these heavy lift assets were used in limited numbers for moves of tanks and self-propelled artillery. Typically, however, when the current employment and value of HETs are discussed, no historic examples are given. This suggests that HETs—while clearly used for tactical moves—played no significant role in the major troop regroupings and concentrations that have been so carefully analyzed by the Soviets.

In any event, their utility for at least the local movement of tanks and other tracked combat equipment was reflected in the post-war indigenous production of prime movers capable of towing tank-transporter trailers. This became apparent in the mid-1960s with the appearance of the MAZ537 tractor truck and ChMZAP5247 semi-trailer and their subsequent variants. The significance of these heavy tractor-trailer rigs for strategic movement was made explicit in a Soviet book. This 1966 publication, The
Long-Distance Move of Small Units, pointed out what the two Soviet authors saw as a pressing requirement of modern war:

Under modern conditions, the significance of long-distance movements of small units has grown immeasurably. This is explained by the fact that wide employment of nuclear weapons in the very beginning of a war can result in great losses of forces. It is possible that the combat effectiveness of many small units and organizations may be considerably lowered or even lost in the first days of war. Therefore, timely movement of motorized rifle and tank small units from the interior of the country acquires important significance for reinforcing advance operating forces. The movement of small units will be carried out over very great distances.¹¹

The authors also described the spectrum of enemy nuclear and conventional combat means threatening the effective movement of small maneuver units and addressed how various transportation modes could operate in such an environment. Included was a substantial discussion of the long-distance movement of tank units by heavy tractor-trailer rigs explicitly identified as MAZ537s and ChMZAP5247s.²¹

The strategic movement potential represented by the Soviet Union's growing fleet of HETs was strikingly illustrated in summer 1968 when military forces of the Soviet-led Warsaw Pact invaded Czechoslovakia. Accompanying the invasion force were several hundred Soviet tanks and other tracked combat equipment towed on ChMZAP semi-trailers by MAZ537 truck tractors.

By rapidly moving armored vehicles from the Soviet Union, these heavy lift resources were judged by one US government study to have "played a key role in the 1968 invasion of Czechoslovakia" and to be "instrumental in a change in Soviet doctrine that previously relied primarily on railroads to transport armored vehicles."¹⁰ While the 1968 movement may have been deemed an operational necessity by Soviet invasion planners, the mass use of these vehicles also constituted a test of heavy lift units in a strategic movement role.

The Soviets were seemingly satisfied with the performance of their heavy lift units and

Soviet analysts have noted that precision-guided munitions (PGMs) have been equated with 'low-yield nuclear weapons,' and they believe that military transportation and logistic resources will be primary PGM targets. . . . The capabilities and employment options for heavy truck tractor units then become all the more important.

¹¹ Soviet Review, April 1967, p. 39
Capabilities and Employment

Today, the Soviet heavy truck tractor fleet designated for strategic movement comprises some 3,500 MAZ537s with ChMZAP5247 trailers organized into heavy lift regiments. These regiments constitute Reserves of the Supreme High Command (Rezervy Verkhovnogo Glavno komandovania (RVGK))—assets employed under the direct supervision of the Supreme High Command (VGK) or allocated to field commands at the VGK's discretion. Operating under the system that proved so effective in World War II, the employment of these regiments would be planned by the armed forces chief of the rear's VO SO organization.

Strategic heavy lift regiments may well be allocated by the Supreme High Command to the TVD High Commands established in 1985. As noted, VO SO representatives were included in the High Command of Forces in the Far East which directed the 1945 Manchurian operation, and their presence in current TVD High Commands seems likely as well.

Strategic heavy lift units will be employed to support a broad spectrum of strategic land movement—from the concentration of forces in the prewar and initial period of war phases, to the strategic regrouping or maneuvering of combined arms forces throughout a conflict. Heavy lift regiments have the potential of supporting all five continental TVDs around the Soviet periphery. For purposes of illustrating one employment option that is heavily weighted for the Soviets' most important theater, it is as-

Heavy lift regiments could also be used to rapidly concentrate supplies of all types, a role suggested by the existence of low-boy trailers configured for the transport of tracked armored vehicles and bulk cargo. . . It is worth noting that the US Army in World War II made use of 5-ton tank transporters to move large quantities of supplies after the Normandy landings.
sumed that about two-thirds of the strategic heavy lift assets—some 2,300 heavy tractor-trailers—have been allocated to support the High Command of the Western TVD.

These assets would be adequate to simultaneously move all tracked vehicles of either 10 tank regiments, 10 BMP-equipped motorized rifle regiments or perhaps two to three tank or motorized rifle divisions.\(^9\) Traveling 12 of every 24 hours at a speed of 25 to 30 kilometers per hour (which is a Soviet planning norm for road marches), such a move could be conducted over a distance of 1,000 kilometers—from staging areas within the Soviet Union’s western military districts to assembly areas in central East Germany, for example—in about 72 hours. With reserve drivers and adequate logistic support, this time could probably be cut in half.\(^9\)

About 1,500 heavy tractor-trailer rigs—less than one-half of the force—would be required to move one of the new corps-type organizations now being established in the Soviet armed forces.\(^9\) The new formations, nearly twice the size of a standard Soviet tank division, are judged particularly suitable for serving as operational maneuver groups. The rapid delivery of such a corps to the forward area with rested crews and combat-ready vehicles would be essential for its effective employment as a deep maneuver force.

Heavy lift regiments could also be used to rapidly concentrate supplies of all types, a role suggested by the existence of low-boy trailers configured for the transport of tracked armored vehicles and bulk cargo (for example, the ChMZAP9990). It is worth noting that the US Army in World War II made use of 45-ton tank transporters to move large quantities of supplies after the Normandy landings.\(^9\)

The Soviets, however, may see one of their most effective heavy lift employment options as centered on the rapid reinforcement of theater forces by battalion increment, a view stated explicitly some 20 years ago. Smaller battalion-size columns moving on dispersed routes would be less vulnerable to discovery and attack by Special Operations Forces, PGMs, nuclear weapons or other strike means than a larger movement, while the associated organizational and support measures would be far less. Maneuver battalions would be used to reconstitute or reinforce attrited divisions or, less likely, used as the basis of forming new divisions in forward theater areas.

Under the small-unit reinforcement op-

Strategic heavy lift units will be employed to support a broad spectrum of strategic land movement—from the concentration of forces in the prewar and initial period of war phases, to the strategic regrouping or maneuvering of combined arms forces throughout a conflict. Heavy lift regiments have the potential of supporting all five continental TVDs around the Soviet periphery.
tion, more than 50 tank or motorized rifle battalions could be moved 1,000 kilometers in 72 hours or less by about two-thirds of the strategic heavy lift force. Under some assumptions, this move could influence the battlefield correlation of forces as decisively as the introduction of several new divisions.

Overall, in establishing heavy lift regiments, the Soviets have created a means of rapid, long-distance movement they believe will meet the demanding transportation requirements of future theater battles. While heavy tractor-trailers are by no means seen as replacing railroads for any other movement model, Soviet planners have added a degree of flexibility to their military transportation system that is truly of "strategic" significance.

As a consequence of their potential contribution to Soviet battlefield strength, the capabilities of these heavy lift regiments should be integral to all US and North Atlantic Treaty Organization assessments of Soviet theater movement and reinforcement capabilities. In addition, we need to be certain that the threats to this impressive reinforcement means set out by Soviet planners will be, should the need arise, more than just Soviet perceptions.

NOTES

1. As with a growing number of Soviet military analysts, we have chosen to translate the Soviet term teapotovyechnaya cheshaya (TTO) as "theater of strategic military action" In our judgment, this better captures the Soviet concept than does the interim translation, "theater of military action," or the widely used "theater of military operations." For a complete discussion of the Soviet concept and its application, see John G. Holmes and Philip A. Petersen, "Changing the Soviet System of Control," International Defense Review, Number 3, 1986, pp. 281-295.

2. M. Golosko, " Razvitie sistema upravleniya 'torno' " (Development of the Rear Service Control System), Tyly, snabzhennye sovetskikh voennych, v zheleznovodnykh servisakh. (Dictionary of Basic Military Terms) (A Soviet View), edited by B. S. Morozov, Voyenizdat. Moscow, USSR, 1965, p. 208, translated by the US Air Force in the Soviet Military Thought Series, Number 9, US Government Printing Office, Washington, D.C., and N. Popov, Sovetskikhvahodnoy system transporta obespecheniya v gody voiny ("Improving the Transportation Support System During the War"), Voyenno-castecheskii zhurnal, August 1982, p. 20-25. The Red Army chief of the rear (who for part of the war was also the people's commissar for railroads) controlled motor transport units of the Supreme High Command and directed the activities of centrally subordinate lines of communication construction and repair units—highway troops and railroad troops. Deputy commanders for rear services chiefs of the rear at operational levels performed analogous functions. Thus, the chief of the rear services at each level became the focal point for transportation management, together with his broader responsibilities for overall logistic planning and implementation.

3. See, for example, A. Zaporozhchenko and V. Galkin, "K voprosu strategicheskogo razryvovozitelia voennochnikh osnovnykh kapitalishteslykh zเฉพochnoy voennochnoy vari" (On the Question of the Strategic Deployment of the Armed Forces of the Principal Capitalist States in the Second World War). Voyenno-castecheskii zhurnal, April 1984, pp. 29-45; and V. Ostroko and V. Ovsyanikov, Materialnoe obespecheniye vas RSKhanchenkov ("Material Support of Troops During Regrouping"), Voyenno-castecheskii Zhurnal, April 1980, p. 27-34.

5. Tyly, snabzhennye sovetskikh voennych, v zheleznovodnykh servisakh. (Dictionary of Basic Military Terms) (A Soviet View), edited by B. S. Morozov, Voyenizdat. Moscow, USSR, 1965, p. 208, translated by the US Air Force in the Soviet Military Thought Series, Number 9, US Government Printing Office, Washington, D.C., and N. Popov, Sovetskikhvahodnoy system transporta obespecheniya v gody voiny ("Improving the Transportation Support System During the War"), Voyenno-castecheskii zhurnal, August 1982, p. 20-25. The Red Army chief of the rear (who for part of the war was also the people's commissar for railroads) controlled motor transport units of the Supreme High Command and directed the activities of centrally subordinate lines of communication construction and repair units—highway troops and railroad troops. Deputy commanders for rear services chiefs of the rear at operational levels performed analogous functions. Thus, the chief of the rear services at each level became the focal point for transportation management, together with his broader responsibilities for overall logistic planning and implementation.

7. Popov, op. cit., p. 25, and Tyl' sovetskikh voenych, v zheleznovodnykh servisakh (Dictionary of Basic Military Terms) (A Soviet View), edited by B. S. Morozov, Voyenizdat. Moscow, USSR, 1965, p. 208, translated by the US Air Force in the Soviet Military Thought Series, Number 9, US Government Printing Office, Washington, D.C., and N. Popov, Sovetskikhvahodnoy system transporta obespecheniya v gody voiny ("Improving the Transportation Support System During the War"), Voyenno-castecheskii zhurnal, August 1982, p. 20-25. The Red Army chief of the rear (who for part of the war was also the people's commissar for railroads) controlled motor transport units of the Supreme High Command and directed the activities of centrally subordinate lines of communication construction and repair units—highway troops and railroad troops. Deputy commanders for rear services chiefs of the rear at operational levels performed analogous functions. Thus, the chief of the rear services at each level became the focal point for transportation management, together with his broader responsibilities for overall logistic planning and implementation.

8. Ibid., pp. 24.

9. Ibid. To deal with losses inflicted by such enemy actions, the Soviets assigned increasingly larger and more capable railroad troops to repair and construction units to mobilize formations, as well as highway troops to build and repair military roads.

11. Ibid.

13. Ibid., p. 42.

14. Ibid.

18. The US Army in World War II, and perhaps more so, the Soviets as well, viewed tank transporters as more as a damaged vehicle recovery and evacuation resource than as a means of armor movement and concentration. See, for example, Operations Field Manual, edited by William C. Farrier, Military Service Publishing Co., Harrisburg, Pa., 1945, p. 559; and E. Hofschmidt and W. H. Tani, U.S. Military Vehicles, World War II, Sycamore and Books, Boulder, Colo., 1978, p. 38. The Soviets clearly saw the advantages such a movement means had in preserving the motor life of armor, however. In F.I. Galkin, Voinchina strategiya (Military Thought), edited by V. D. Sokolovsky, Voyenizdat. Moscow, USSR, 1963, pp. 148-49, the author concludes the prime movers, tractors and tractors available in the two evacuation transporters of the 5th Guards Tank Army, the Basic Front, mid-1944. This indicates that the 70- and 40-metric-ton tractors were capable of carrying light and medium tanks.
describes how 10 of these trailers were employed to move 20 tanks (in two batches) a distance of 100 to 120 kilometers. These tanks moved with limited engine running time remaining before maintenance would be required.

Notable in this regard was the KrAZ-214 6x6 heavy truck. With production beginning in 1956, KrAZ-214s were used to tow heavy equipment, transporter trailers in addition to serving in a number of other heavy truck roles. See ST-CS 07-280-74, Ground Transport Vehicles (Current and Projected)—Eurasian Communist Countries, US Army Ministry of Defense, Foreign Science and Technology Center, Defense Intelligence Agency, Washington, D.C., January 1974, p 282-84.

21 M. Nikitin and B. A. Vvedenskii, Perepadnutie podskidkave na bashe rassoslanie (The Long-Distance Movement of Small Units), Voronezh, Moscow, USSR, 1966. Translated by the Office of the Assistant Chief of Staff for Intelligence, Washington, D.C., Number J-4943, p 14.

23 ST-CS 07-280-74, Ground Transport Vehicles (Current and Projected)—Eurasian Communist Countries, op cit., p 93. Field footage shown on US television indicates that MAZ-237s have been used to move armor in Afghanistan as well.

26 Soviet Army, Headquarters, Department of the Army, Washington, D.C., p 143, indicates that heavy lift regiments are Reserve of the Supreme High Command (RVSD) assets that may be allocated to lead or support tank divisions. This publication also notes that, in addition to the strategic heavy lift regiments, front-level motor transport will include a combat-size heavy lift unit (p 130), while army-level motor transport may be allocated a battalion as well. See DDB 2680-40-78, Handbook on the Soviet Armed Forces, Defense Intelligence Agency, Washington, D.C., pp 7-7 to 7-9, for a discussion of the Soviet Voennykh slovotchenskikh (Military Transport Service) transporation management role today.

27 Soviet Military Power, op cit., p 60.

29 This and following estimates, which the authors stress are intended only to broadly illustrate heavy lift potential, are made in recognition of the equipment asymmetries in tank and motorized rifle regiments and the equipment differences that may also exist between regiments of the same type. We have made this estimate on the assumption that BMP-equipped motorized rifle regiments and tank regiments of tank divisions will have from about 190 to 220 tracked vehicles of all types. Given the substantial tracked vehicle inventories in division-level support units and the previously noted requirement for reserve transporters in each column, we judge that no more than two tank or motorized rifle divisions could be transported simultaneously.

30 Planning factors associated with heavy lift employment can be found in Taksha (Facitcs). op cit., p 246-51, and Naksh and Vvedenskii, op cit., pp 13-14 and 60-64. It should be noted that the former source drew heavily on the latter publication, copy is specific. See Rezchnenko's first edition of Taksha, published in 1966. This was published the same year as Naksh and Vvedenskii. However, Rezchnenko gave the employment of heavy lift transporters only scant attention in that first edition, while, in 1984, it was featured prominently as a "new means" of movement (p 246).

31 Soviet Military Power, op cit., pp 65-66. Indicates that two new corps-type structures formed in the Soviet Union contain more than 450 tanks, 600 armored personnel carriers, and 300 artillery pieces and multiple-rocket launchers. We estimate that, with supporting elements, such a unit could contain some 1,500 tracked vehicles.

33 This is based on a tank battalion with 40 medium tanks and a motorized rifle battalion with 39 BMP infantry combat vehicles. A substantial larger number of tank battalions with 31 tanks—"the kind found in tank regiments of both tank and motorized rifle divisions—could be moved.

Lieutenant Colonel Kenneth M. Keilmori is an instructor with the Directorate of Sustainment and Resourcing Operations, US Army Command and General Staff College (USAGSC), Fort Leavenworth, Kansas. He received a B.A. from the University of Texas and an M.A. from George Washington University and a Ph.D. from the University of Montana. Previously, he served as the chief, Soviet Strategic Mobility Unit, Defense Intelligence Agency, Washington, D.C.

Graham H. Turville-Jr. is a sensor analyst with the Soviet Army Studies Office, US Army Combined Arms Center, Fort Leavenworth, Kansas. He received a B.A. from Southern Illinois University, an M.A. from George Washington University and a Ph.D. from the University of Minnesota. Previously, he served as the chief of the Soviet Warsaw Pact Logistic Force Structure and Operations Section, Defense Intelligence Agency, Washington, D.C.