ELECTRONIC STATES OF THE XENON SYSTEMS IN GAS AND CONDENSED PHASES. (U) STATE LAB OF NEW YORK AT BUFFALO
DEPT OF CHEMISTRY UNCLASSIFIED MAY 88
F/07/2
OFFICE OF NAVAL RESEARCH
Contract N00014-86-K-0043
TECHNICAL REPORT No. 68

Electronic States of the Xe\textsubscript{n} HCl Systems in Gas and Condensed Phases

by

Isidore Last and Thomas F. George

Prepared for Publication

in

Journal of Chemical Physics

Departments of Chemistry and Physics
State University of New York at Buffalo
Buffalo, New York 14260

May 1988

Reproduction in whole or in part is permitted for any purpose of the
United States Government.

This document has been approved for public release and sale;
it's distribution is unlimited.

DTIC ELECTED MAY 25 1988
Electronic States of the XeₙHCl Systems in Gas and Condensed Phases

Isidore Last and Thomas F. George

Prepared for Publication in Journal of Chemical Physics

Systems formed by one Cl, one H and one or several Xe atoms are considered by the semiempirical diatoms-in-ionic-systems method, which takes into account the charge delocalization in ionic states and the coupling between the neutral and ionic states. Calculations are performed both for gas-phase systems, such as van der Waals complexes and clusters XeₙHCl (n = 1,2,4,8,12) and ionic molecules (Hxeₙ)⁺Cl⁻, and for systems formed in Xe solids doped by HCl molecules. The calculations give the structure of the systems, dissociation energies and energies of electronic transitions. The calculations show, in particular, the existence of the ground-state ionic molecule (Hxeₙ)⁺Cl⁻, the decrease of the HCl electronic excitation energy in clusters and solids, and the increase of the emission photon energy of the ionic Hxeₙ⁺Cl⁻ systems as compared to the Xeₙ⁺Cl⁻ molecule.
Abstract

Systems formed by one Cl, one H and one or several Xe atoms are considered by the semiempirical diatomics-in-ionic-systems method, which takes into account the charge delocalization in ionic states and the coupling between the neutral and ionic states. Calculations are performed both for gas-phase systems, such as van der Waals complexes and clusters Xe$_n$HCl ($n = 1, 2, 4, 8, 12$) and ionic molecules (HXe$_n$)$^+Cl^-$, and for systems formed in Xe solids doped by HCl molecules. The calculations give the structure of the systems, dissociation energies and energies of electronic transitions. The calculations show, in particular, the existence of the ground-state ionic molecule (HXe)$^+Cl^-$, the decrease of the HCl electronic excitation energy in clusters and solids, and the increase of the emission photon energy of the ionic HXe$_n^+Cl^-$ systems as compared to the Xe$_n^+Cl^-$ molecule.
1. Introduction

Systems formed by rare-gas atoms R and halogen atoms X or halogen-containing molecules have recently attracted much attention, particularly in regard to their spectroscopic properties. Save for some spatial cases, the halogen molecules X_2 and hydrogen halides HX form with rare-gas atoms van der Waals complexes, whose vibrational and rotational spectroscopy has been intensively studied.1-9 The infrared spectroscopy of the molecules X_2 and HCl has been studied also in rare-gas matrixes.10,11 Both in the van der Waals complexes and in the rare-gas matrixes the electronic structure of the molecules X_2 and HX is unaffected by the rare-gas atoms, which can thus be considered as real inert atoms. Even in excited valence states, the molecules are not affected significantly by the rare-gas atoms either in the gas phase12 or in solids.13,14

The rather different class of rare-gas-halogen systems contain quasistable ionic molecules like R^+X^- or $R_n^+X^-$ ($n > 1$) with electron transfer from the rare-gas atom (or atoms) to the halogen atom.15-17 In these molecules the halogen and rare-gas atoms form a common electronic structure, in contrast to the van der Waals complexes and halogen molecules in a matrix. The ionic rare-gas-halogen molecules have also been detected in the condensed phase.18-22 Electronic transitions in the ionic rare-gas-halogen molecules are of great interest, especially because of their lasing properties. The neutral R_nX and the ionic $R_n^+X^-$ electronic configurations are coupled one with another. Due to this coupling, the ground-state R_nX systems can not be considered as pure van der Waals complexes, since the coupling contributes to some valence attraction between the halogen and rare-gas atoms.23 For example, the contribution of the coupling (valence) energy constitute 45\% of the XeCl dissociation energy, and the Xe-Cl equilibrium distance (3.23 Å) is much smaller than the sum of the van
under Vaals radii of Xe and Cl atoms (4 Å). The coupling between the neutral and ionic configurations becomes much more important in the case of heavy rare-gas atoms Xe and Kr and light halogen atom F, leading, for example, to the formation of XeF$_2$ or XeF$_4$ molecules where F atoms can be considered as ligands. Such molecules have also been detected in rare-gas solids. There are even claims about the detection of a XeCl$_2$ molecule in rare-gas solids, although, according to Ref. 20, the Cl$_2$ molecules preserve their individuality in a rare gas matrix. Excluding F$_2$ molecules which can be easily dissociated, other halogen molecules, as well as halogen hydrogens, are not much affected by rare gas atoms, as mentioned above.

Theoretical consideration of the electronic structure of the rare-gas-halogen systems R_nX, R_nHX and R_nX_2 in their ground and excited states, including the states with electron transfer, is of obvious interest. *Ab initio* calculations have been performed for a few systems only, such as RX, ArF, KrF, and with some simplifications, XeF and XeCl. Semiempirical DIM calculations have been performed for a few R_2X systems, however, without taking into account the coupling between neutral and ionic states. Some RX potential curves have been constructed using empirical data.

In order to calculate the electronic structure of rare-gas-halogen systems with arbitrary numbers of rare-gas atoms, we presented earlier a semiempirical diatomics-in-ionic systems (DIIS) method which takes into account the coupling between electronic configurations with different number of electrons on atoms. The version of the DIIS method presented in Ref. 24 was designed to treat R_nX systems containing one halogen only, and the calculations were performed for different Xe$_n$Cl systems in the gas phase. The DIIS method was applied later to the Xe$_n$Cl systems formed in a Xe solid matrix. In the present paper, we shall extend the DIIS method to the R_nHX systems containing...
one halogen atom, one hydrogen atom and an arbitrary number of rare-gas atoms. This version of the DIIS method will be applied to the specific case of the Xe$_n$HCl systems in gas and condensed phases. The brief description of the DIIS method and its version for the R$_n$HX systems is given in Sec. 2. Sections 3 and 4 present the results of the calculation of the Xe$_2$HCl system in different electronic states in the gas phase and Xe solids, respectively. Conclusions are given in Section 5.

2. DIIS Method for R$_n$HX Systems

The semiempirical DIIS method is presented in Ref. 24 where it was applied for the calculations of the R$_n$X systems. In this method, the wave function is given as a linear combination of polyatomic wave functions which describe diabatic states with fixed electronic configurations on each atom. In the case of the R$_n$XH system, the wave function is

$$\Phi = \sum_{i=1}^{J} \sum_{m=1}^{M_i} C_{im} \Phi_{im}, \quad (1)$$

where $J = n + 2$ is the number of atoms in the system, Φ_{im} ($i = 1, 2, \ldots, n$) is a polyatomic wave function of the ionic configuration $R_1 \ldots R_{i-1}^{+} R_i^{+} R_{i+1} \ldots R_n^+$, with rare-gas $R_{i,m}^+$ ion in the m-orientation of its P-symmetry electronic shell ($M_i = 3$), $\Phi_{n+1,m}$ is a polyatomic wave function of the neutral configuration $R_1 \ldots R_{n+1}^+$ with the halogen atom X in the m-orientation of its P-symmetry electronic shell ($M_{n+1} = 3$), and $\Phi_{j,1}$ ($M_j = 1$) is a polyatomic wave function of the ionic configuration $R_1 \ldots R_n^+$ with S-symmetry electronic shells of all atoms. The expression (1) does not include the spin-orbit coupling directly,
although the shift of the levels due to the spin-orbit coupling can be accounted for indirectly by the proper incorporation of the diatomic potentials. Representing the wave function as the linear combination (1), we describe the electronic structure by the motion of a positive-charged hole in the system RCl\(^{n}\)H with S-symmetry atomic shells. The positive hole changes the symmetry of the atoms except for the hydrogen atom. The 3J-2 diabatic wave functions \(\Phi_{1m}\) produce the (3J-2)\(\times\)(3J-2) Hamiltonian matrix which determines the eigenstates and eigenvalues of the adiabatic wave function (1).

The DIIS matrix elements are expressed in terms of diatomic fragments of the system.\(^{24}\) As the polarization energy can not be expressed in a pairwise way, it is singled out into a separate term \(\epsilon_{i}\). The diagonal matrix elements are expressed as a sum of polarization energy \(\epsilon\) and diatomic diabatic (Coulombic) potentials \(\bar{U}\) with no polarization terms.

\[
H_{im,im} = E_{i}^{*} + \sum_{j} E_{j} + \sum_{j_{1}j_{2} (\neq j_{1})} \bar{U}_{j_{1}j_{2}} + \sum_{j} \bar{U}_{j,im} + \epsilon_{i}, \quad (2)
\]

where \(E_{j}\) is the energy of an atom without a hole (R, X\(^{-}\), H), \(E_{i}^{*}\) is the energy of an atom with a hole (R\(^{+}\), X, H\(^{+}\)), \(\epsilon_{i}\) is the polarization energy of neutral atoms in the field of charged atoms (\(\epsilon_{i} = 0\) for the neutral configuration \(i = n + 1\)), \(\bar{U}_{j_{1}j_{2}}\) are the Coulombic potentials between pairs of atoms without a hole (R-R, R-X\(^{-}\), R-H, X\(^{-}\)-H), and \(\bar{U}_{j,im}\) are the Coulombic potentials between atoms with a hole and atoms without a hole (R\(^{+}\)-R, R\(^{+}\)-X\(^{-}\), R\(^{+}\)-H, X-R, X-H, H\(^{+}\)-R, H\(^{+}\)-X). The diatomic polarization terms are excluded from the Coulombic potentials \(U\) of the interaction between ions (j) and neutral atoms \(j'\).\(^{33}\)
\[U_{ij} = U_{jj} - \frac{e^2 a_j}{2 R_{jj}} \]

(3)

where \(a_j \) is the polarizability of the j' atom, and \(R_{jj} \) is the ion-atom separation. In the case of the interaction between two ions or neutral atoms, \(U_{jj} = U_{jj} \). By using a proper transformation of the orientation of P-functions, it is possible to express \(U_{ij} \) in Eq. (2) in terms of the Coulombic potentials \(U \) of \(\Sigma \)- and \(\Pi \)-symmetry. The off-diagonal matrix elements

\[H_{i_1 m_1, i_2 m_2}^{1} = i_2 \cdot i_1 \]

are expressed by the exchange terms \(V_{i_1 i_2} \) of the diatomic fragments \(i_1 i_2 \). The diatomic Coulombic potentials \(U \) for the diatomic fragments \(\text{XeXe}, \text{Xe}^+\text{Xe}, \text{XeCl}, \text{Xe}^+\text{Cl}^- \) and \(\text{XeCl}^- \) and the exchange terms between configurations \(\text{Xe}^+\text{Xe}^-)\text{-(XeXe)}^+ \) and \(\text{XeCl}^-\text{-(Xe}^+\text{Cl}^-) \) are presented in Ref. 24.

In the case of the \(\text{XeCl}^-\text{H} \) system, one needs also the Coulombic potentials for the fragments \(\text{XeH}, \text{Xe}^+\text{H}, \text{XeH}^+, \text{ClH}, \text{Cl}^-\text{H}^+ \) and the exchange terms between the configurations \(\text{Xe}^+\text{H}^-\text{-(XeH)}^+ \) and \(\text{ClH}^-\text{-(Cl}^-\text{H})^+ \).

A. \textbf{XeH Diatomic Fragment}

The empirical van der Waals potential of the \(\text{Xe-H} \) interaction is taken from Ref. 34:

\[U_{\text{XeH}}(R) = 0.0274[(3.5/R)^{12} - (3.5/R)^6] \]

(4)

The \((\text{HXe})^+ \Sigma \)-potentials are obtained by fitting the results of an \textit{ab initio} calculation. In this calculation, the equilibrium distance is \(R_e = 1.61 \) Å, which coincides with the spectroscopic value of 1.60 Å. The \textit{ab initio} dissociation energy is \(D_e = 4.05 \text{ eV} \) \((D_o = 3.90 \text{ eV}) \), which is also in good agreement with the empirical value of \(D_o = 3.64 \text{ eV} \) obtained by measuring the
proton affinity. In the approximation accepted here, the ground-state \((\text{XeH})^+\) energy is obtained as the eigenvalue of the 2x2 matrix whose elements are

\[
H_{11} = U_{\Sigma, \text{XeH}^+}, \quad H_{22} = U_{\Sigma, \text{XeH}^+}, \quad H_{12} = V_{\Sigma} .
\]

(5)

where \(U_{\Sigma, \text{XeH}^+}\) and \(U_{\Sigma, \text{XeH}^+}\) are the Coulombic potentials of the diabatic states with \(\text{Xe}^+ + \text{H}\) and \(\text{Xe} + \text{H}^+\) asymptotic configurations, respectively, and \(V_{\Sigma}\) is the \((\text{Xe}^+\text{H})-(\text{XeH}^+)\) exchange integral. The potentials \(U_{\Sigma, \text{XeH}^+}\) and \(U_{\Sigma, \text{XeH}^+}\) and the exchange integral \(V_{\Sigma}\) which fit the \textit{ab initio}\(^3\) ground-state potential \(1\Sigma\) and the dipole moment \(\mu\) are expressed in the following way (\(U, V\) in eV, \(R\) in Å):

\[
U_{\Sigma, \text{XeH}^+} = 307\exp(-2.6R) - 4.8/R^4
\]

(6)

\[
U_{\Sigma, \text{XeH}^+} = 1.47 + 5340\exp(-3.2R) - 29.14/R^4
\]

(7)

\[
V_{\Sigma} = -414\exp(-2.02R)
\]

(8)

The \(\Pi\)-potential with the \(\text{Xe}^+\text{H}\) asymptotic configuration is obtained by fitting the \textit{ab initio}\(^3\) \(\Pi\)-potential of Ref. 38:

\[
U_{\Pi, \text{Xe}^+\text{H}} = 1710\exp(-3.6R) - 4.8/R^4
\]

(9)

The last terms in Eqs. (6), (7) and (9) representing the polarization energy are excluded when the potentials \(\tilde{U}\) of Eq. (3) are calculated.
3. HCl Diatomic Fragment

The HCl diatomic fragment contributes the following Coulombic potentials: $U_{\Sigma, \text{ClH}}$, $U_{\Sigma, \text{Cl}^+ \text{H}}$, $U_{\Pi, \text{ClH}}$, $U_{\Sigma, \text{Cl}^- \text{H}}$. The electronic configurations Σ_{ClH} and Σ_{ClH^+} are coupled to each other by an exchange integral V_{Σ, ClH^+}, forming a 2x2 matrix whose eigenvalues $1\Sigma_{\text{ClH}}$ and $2\Sigma_{\text{ClH}}$ represent the potentials of the HCl ground and excited (ionic) states, respectively. The electronic configurations Π_{ClH} and $\Sigma_{\text{Cl}^- \text{H}}$ are uncoupled, and therefore the Coulombic potentials $U_{\Pi, \text{ClH}}$ and $U_{\Sigma, \text{Cl}^- \text{H}}$ coincide with the respective adiabatic potentials Π_{ClH} and $\Sigma_{\text{Cl}^- \text{H}}$.

In the case of the ClH fragment, in contrast to the case of the (XeH)$^+$ fragment, we express analytically not the Coulombic potentials but the adiabatic potentials. The ground state $1\Sigma_{\text{ClH}}$ is presented here as a Morse potential which fits the empirical HCl constants, namely $R_e = 1.275 \text{ Å}$, $\hbar \omega_e = 0.3708 \text{ eV}$, $D_e = 4.43 \text{ eV}$ ($D_e = 4.615 \text{ eV}$):

$$1\Sigma_{\text{ClH}} = 4.615G(G-2) \quad ,$$

$$G = \exp[-1.87(R-1.275)] \quad .$$

The lowest excited Σ-symmetry adiabatic potential 2Σ is expressed as

$$2\Sigma_{\text{ClH}} = 9.985 + 3.6 \cdot 10^6 \exp(-9R) + 303\exp(-2R) - 14.4/R - 55/R^4 \quad ,$$

where 9.985 is the difference between $I_H = 13.599 \text{ eV}$ and $A_{\text{Cl}} = 3.614 \text{ eV}$. The potential fits approximately the spectroscopic parameters of the 2Σ state, such as $R_e = 2.51\text{ Å}$ (2.30 Å), $\hbar \omega_e = 0.1087 \text{ eV}$ (0.094 eV) and $T_0 = 9.6 \text{ eV}$ (9.7 eV), where the numbers in the brackets stand for the potential (12) values. The potential (12) has a second minimum at $R = 1.4\text{ Å}$, as in the ab initio
calculation of Ref. 39. The exchange integral of the \((\text{ClH})-(\text{Cl}^-\text{H}^+)\) coupling fits the empirical dipole moment \(\mu_e = 1.09\,\text{D}\) and its derivative \(0.94\,\text{D/Å}\) at the ground-state equilibrium point.\(^{41}\)

\[
v_{\Sigma,\text{HCl}} = -9.25\exp(0.7R) \quad (13)
\]

The adiabatic potentials (10) and (12) are eigenvalues of a 2×2 matrix similar to that presented by Eq. (5). The off-diagonal elements, \(v_{\Sigma,\text{HCl}}\), are given by Eq. (13), whereas the diagonal elements are the diabatic potentials which can be expressed in terms of the adiabatic potentials and the exchange integral:

\[
w = (2v_{\Sigma,\text{HCl}} - v_{\Sigma,\text{HCl}})^2 - 4(v_{\Sigma,\text{HCl}})^2 \quad (14)
\]

\[
u_{\Sigma,\text{HCl}} = \frac{1}{2}(v_{\Sigma,\text{HCl}} + 2v_{\Sigma,\text{HCl}} - \sqrt{w}) \quad (15)
\]

\[
u_{\Sigma,\text{H}^+\text{Cl}^-} = \frac{1}{2}(v_{\Sigma,\text{HCl}} + 2v_{\Sigma,\text{HCl}} + \sqrt{w}) \quad (15')
\]

The \(\text{HCl}\) \(^1\Pi\)-potential is determined by fitting the \textit{ab initio} slope of the potential at the ground-state equilibrium point \(R_e = 1.275\,\text{Å}\) and the empirical transition energy \(T_e = 8.12\,\text{eV} \).\(^{40}\)

\[
u_{\Pi,\text{ClH}} = {^1\Pi_{\text{ClH}}} = 97.8\exp(-2.57R) \quad (16)
\]

The \(\text{HCl}^-\) \(^2\Sigma\) potential is obtained through \textit{ab initio} calculations.\(^{42-45}\)

Reference 42 gives a weakly-repulsive potential curve, whereas in two other calculations a potential well is found. In the last and most sophisticated
calculation, the potential well is found to be shallow with the location of the minimum at \(R = 2.1 \ \text{Å} \) and the energy of dissociation to separated \(\text{H} + \text{Cl}^- \) as \(D_e = 0.08 \ \text{eV} \). A deeper well of \(D_e = 0.35 \ \text{eV} \) at the same separation, approximately, is found in Ref. 42. An inspection of experimental data leads us to suggest that at the \(\text{HCl} \) equilibrium point \(R_e = 1.275 \ \text{Å} \), the \(\text{HCl}^- \) potential is not higher than the asymptotic \(\text{H} + \text{Cl}^- \) energy.\(^{45}\) Taking into account this suggestion as well as the results of the \textit{ab initio} calculations, we construct a \(\text{HCl}^- \) potential curve with a shallow well of 0.18 \(\text{eV} \) at 1.5 \(\text{Å} \) and an energy of -0.1 \(\text{eV} \) at the \(\text{HCl} \) equilibrium point \(R_e = 1.275 \ \text{Å} \):

\[
U_{\text{Cl}^-\text{H}} = 1800\exp(-6R) + 12.8\exp(-2.1R) - 4.8/R \quad (17)
\]

3. \(\text{Xe}_n\text{HCl} \) van der Waals Complexes and Excited Ionic Molecules

A. \(\text{XeHCl} \)

The ground-state \(\text{RHCl} \) systems are typical van der Waals complexes whose vibrational and rotational spectra have been extensively studied.\(^3-9\) The theoretical analysis of these spectra allows us to construct empirical potentials and to determine the equilibrium configurations of the \(\text{RHCl} \) systems.\(^{46-52}\) The results concerning the equilibrium configurations of the \(\text{ArHCl} \) complex, which is most often studied, are rather contradictory. According to some of the calculations, there are two local minima in the collinear \(\text{ArHCl} \) and \(\text{ArClH} \) configurations.\(^{46,47}\) The experimental studies support the presence of two local minima.\(^8,49,52\) However, the accuracy of the potential energy calculations based on the fitting of experimental data is too low to decide whether the configurations are really collinear.\(^{46}\) A recent study of \(\text{ArHCl} \), as well as \(\text{KrHCl} \) and \(\text{XeHCl} \), gives a bent geometry for the only equilibrium configuration.\(^{51}\) The \(\text{XeHCl} \) van der Waals complex has, according to
Ref. 51. a Xe-Cl-H angle of 34° and interatomic distances of $R_{\text{XeCl}} = 4.272$ Å and $R_{\text{XeH}} = 3.30$ Å. The dissociation energy is found to be $D_0 = 0.0255$ eV, which gives for the minimum energy configuration a value $D_e = 0.027$ eV.

According to the results of our semiempirical calculation of the XeHCl van der Waals complex, there are two equilibrium configurations with practically the same minimum energy values. The parameters of these complexes are presented in Table 1, denoted as 1n and 2n, and their geometry is shown in Fig. 1a. One of these configurations has a bent geometry, as in Ref. 51. However, this geometry is close to the perpendicular one with an Xe-Cl-H angle of 78°. The interatomic distances of this configuration are found to be equal to $R_{\text{XeCl}} = 4.10$ Å and $R_{\text{XeH}} = 4.03$ Å and the dissociation energy equal to $D_e = 0.019$ eV.

The second equilibrium configuration has a collinear XeClH geometry with $R_{\text{XeCl}} = 3.82$ Å and $D_e = 0.018$ eV. The presence of two equilibrium geometries in the XeHCl van der Waals complex is supported by a similar finding in the case of the ArHCl complex. It is important to note that the location of the equilibrium points is sensitive to very small variations of energy, and consequently the accuracy of the parameters of the van der Waals complex is low. The HCl excitation energies in the van der Waals complex (Table 2) are almost the same as in a free HCl molecule, where they are equal to 8.31 eV and 9.89 eV for the $\Sigma_H^+ \rightarrow \Pi_H^+$ and $\Sigma_H^+ \rightarrow \Sigma_H^+$ transitions, respectively. The excitation energy to the states with Xe-Cl electron transfer (9.3-9.4 eV) is much lower than the energy of electron transfer between the separated Xe atom and HCl molecule, which is equal for our HCl potential to 13.05 eV. In the lowest excited states, $k = 2,3$, there are also van der Waals complexes, although with weak bounding between all three atoms. The $k = 2,3$ complexes are not presented in Table 1.
Strongly-bound triatomic ionic molecules are found in all states save for the highest one, \(k = 7 \) (Table 1). Even in the ground state, an ionic molecule is formed (1i). The ground-state ionic molecule has a collinear \((HXe)^+Cl^-\) configuration of \(\Sigma \) symmetry and is separated from the van der Waals complex by a barrier of 0.41 eV (Fig. 1b). The energy of this molecule is low, -0.39 eV, as the atoms are linked by two strong bonds, namely \((H-Xe)^+\) and \(Xe^+-Cl^-\), and by Coulombic attraction between a partly-ionized H atom and Cl\(^-\) ion. The \((HXe)^+Cl^-\) molecule may be detected because of its large dipole moment of 15 D, although it is not clear which process will lead to the formation of this molecule.

An ionic collinear molecule of \(\Sigma \) symmetry is also formed in the first excited \((k = 2)\) state (2i). The arrangement of the atoms is different from that of the ground-state ionic molecule, namely \((XeH)^+Cl^-\). The ionic molecule is separated from the van der Waals complex of the excited \(k = 2 \) state by a barrier of 0.18 eV. The \((XeH)^+Cl^-\) molecule emits in the near UV (\(\lambda = 0.232 \) \(\mu \)m).

In the states \(k = 4-6 \) there are four quasistable ionic molecules (Table 1). Three of these molecules (4i-6i) have the structure of a complex formed by an ionic molecule \(Xe^+Cl^-\) and a neutral or almost-neutral H-atom bound to the \(Xe^+Cl^-\) molecule by polarization forces. The ionic 4i molecule is shown in Fig. 1b. The energy of the H atom separation lies within the limits 0.12-0.18 eV, much larger than in the van der Waals complexes but much less than in the valence-bound molecules. The transition energy to the ground state lies within the limits 7.3-7.5 eV, which well exceeds the transition energy of the \(2\Sigma(B)\) and \(2\Sigma(C)\) \(Xe^+Cl^-\) molecules equal to 4 eV, roughly. The increase in the transition energy as compared to the diatomic case is due to the difference in the ground-state energies of \(XeClH\) and \(XeCl\) in the configurations of their
respective ionic molecules. In the triatomic case the ground state Cl-H interaction is relatively strong and significantly lowers the XeClH energy.

In the ionic molecule 3i ($k = 4$), in contrast to the ionic molecules 4i-6i, the H atom shares an important part of the positive charge, which makes the molecule more stable due to the (Xe-H)$^+$ binding (Fig. 1b). Consequently, the energy of the H atom separation is large, 1.26 eV. The transition energy to the ground state is very low, only 0.8 eV.

The foregoing consideration demonstrates that the quasistable ionic XeHCl molecules provides emission both in the near-infrared (3i molecule) and UV regions (2i, 4i-6i molecules). It is important to note that the UV emission of the 4i-6i molecules is of much shorter wavelength than that of the Xe$^+Cl^-$ molecule. Some of these quasistable molecules can be formed by photoexcitation of the XeHCl van der Waals complexes. However, the energy of excitation is high, so that one needs the UV excitation in the case of single-photon excitation. The ionic XeHCl molecules can be formed, probably, by discharge in a Xe-HCl mixture.

B. Xe$_2$HCl

The XeHCl van der Waals complexes attract more Xe atoms, forming Xe$_n$HCl clusters. The van der Waals cluster Xe$_2$HCl is found to have an off-planar geometry with symmetrical arrangement of the two Xe atoms. The interatomic distances are: $R_{\text{XeCl}} = 4.1$ Å, $R_{\text{XeH}} = 4.05$ Å, $R_{\text{XeXe}} = 4.5$ Å. The cluster is rather stable, as the energy for the separation of one Xe atom is as large as 0.043 eV, much larger than the dissociation energy of the XeHCl van der Waals complex. The dissociation energy of the cluster, i.e., the detachment of both Xe atoms, is 0.062 eV (0.031 eV per Xe atom). The excitation energies of the Xe$_2$HCl cluster are close to those of the XeHCl complex.
A strongly-bound ionic molecule $\text{Cl}^-(\text{Xe}_2\text{H})^+$ is found in the state $k = 4$ (Fig. 2). The molecule has a plane geometry with symmetrical arrangement of the two Xe atoms. The interatomic distances are: $R_{\text{XeCl}} = 3.22 \, \text{Å}$, $R_{\text{XeXe}} = 3.6 \, \text{Å}$, $R_{\text{XeH}} = 2.61 \, \text{Å}$, $R_{\text{ClH}} = 4.56 \, \text{Å}$. The ion Cl^- with a charge $q_{\text{Cl}} = 0.93$ is bound to the partly-ionized Xe atoms ($q_{\text{Xe}} = +0.34$), like in the Xe_2^+Cl^- molecule. The H atom carries a charge of $q_{\text{H}} = +0.24$ and is bound to the Cl ion by Coulombic attraction. The energy of dissociation to $\text{H} + \text{Xe}_2^+\text{Cl}^-$ is $D_e = 0.33 \, \text{eV}$. The dipole moment of the molecule is as large as 14 D. The energy of transition to the ground state is $T_{4-1} = 1.18 \, \text{eV}$, with a transition moment of about 2 D.

The Xe_2ClH system forms a few other ionic molecules which have the structure of the $\text{Xe}_2^+\text{Cl}^-\text{H}$ molecule with a weakly-bound H atom which is neutral or slightly charged. As in the case of the $\text{Xe}^+\text{Cl}^-\text{H}$ ionic molecules $4i-6i$ with a weakly-bound H atom, the transition energies to the ground state are much larger than without the H atom, due to the much weaker H-Cl interaction in the ionic $\text{Xe}_2^+\text{Cl}^-\text{H}$ molecule than in the ground-state Xe_2ClH system of the same geometry. A $\text{Xe}_2^+\text{Cl}^-\text{H}$ ionic molecule in the state $k = 4$ is presented in Fig. 2. The energy of dissociation of this molecule to $\text{Xe}_2^+\text{Cl}^- + \text{H}$ is $D_e = 0.09 \, \text{eV}$.

C. $\text{Xe}_4\text{HCl}, \text{Xe}_8\text{HCl}, \text{Xe}_{12}\text{HCl}$

The $\text{Xe}_4\text{HCl}, \text{Xe}_8\text{HCl}$ and Xe_{12}HCl clusters are considered in the ground state only (Table 2). All of these clusters are of C_4 symmetry with the symmetry axis along the HCl molecule. In the Xe_4HCl cluster, the ClXe lines form an angle of $\theta = 128^\circ$ with the HCl line. The distances are $R_{\text{ClXe}} = 3.99 \, \text{Å}$ and $R_{\text{HXe}} = 4.88 \, \text{Å}$. The dissociation energy of the cluster is 0.172 eV (0.043 eV per Xe atom). In the Xe_8HCl cluster, four of the eight Xe atoms have the same location as in the Xe_4HCl cluster. The location of the other four Xe atoms is: $\theta = 74^\circ$, $R_{\text{ClXe}} = 3.96 \, \text{Å}$, $R_{\text{HXe}} = 3.81 \, \text{Å}$. The dissociation energy of the Xe_8HCl
cluster is 0.496 eV (0.062 eV per Xe atom). As in the case of the Xe₄HCl cluster, the addition of four more Xe atoms to the Xe₆HCl cluster does not change the arrangement of the previous Xe atoms. However, the four new atoms are located in the Xe₁₂HCl cluster at R_{ClXe} = 5.5 Å, much farther from the Cl atom than the other Xe atoms. The angle is \(\theta = 34^\circ \) and the H-Xe distance is \(R_{HXe} = 4.51 \) Å. The dissociation energy of the Xe₁₂HCl cluster is 0.851 eV (0.071 eV per Xe atom).

The dissociation energy per Xe atom in the XeₙHCl clusters increases with \(n \) up to a maximum value of 0.071 eV for \(n = 12 \). The binding in the XeₙHCl clusters is of van der Waals origin with a small polarization component produced by a HCl dipole moment. The number of Xe-Xe interactions in XeₙHCl clusters increases faster than \(n \), which explains the increase of the dissociation energy per one atom. The situation is quite different for XeₙCl clusters, where the Xe-Cl interaction is partly of valence origin. For XeₙCl clusters, one or two of the Xe atoms are bound much more strongly to the Cl atom than other Xe atoms, which complicates the dependence of the dissociation energy on \(n \) compared to that of the van der Waals cluster.

The \(\Sigma \rightarrow \Pi \) transition energy of the HCl molecule in the clusters decreases slightly with \(n \) down to \(T = 8 \) eV for \(n = 8,12 \), compared to \(T = 8.31 \) eV in a free HCl. The energy of transition to the \(k = 4 \) ionic state depends much more strongly on the number of Xe atoms. It is equal to \(T = 8.5 \) eV for \(n = 12 \), compared to \(T = 9.3 \) eV in a van der Waals complex, and \(T = 13 \) eV for separated Xe and HCl. The transition energies of clusters are represented in Table 2.

4. HCl Molecule in a Xe Solid Matrix

We consider here a HCl molecule located at a substitutional site in a Xe solid matrix. The surrounding twelve Xe atoms form a cage and are considered
together with the H and Cl atoms as a Xe_{12}HCl molecule. All other Xe atoms of the solid form a rigid matrix. The Xe_{12}HCl molecule is considered here by the DIIS method, which takes into account the electron (hole) delocalization among all 14 atoms of the Xe_{12}HCl molecule but neglects the exchange interaction and electron transfer between the atoms of Xe_{12}HCl and the Xe atoms of the rigid matrix. Any other interactions between the Xe_{12}HCl atoms and the matrix atoms, like van der Waals and polarization interactions, are taken into account in the calculation.\(^\text{32}\)

A. Ground State

According to the results of the calculation performed for the ground (k = l) state, the HCl molecule in the Xe matrix has a fixed location, in contrast to the case of a Cl atom which has some freedom of motion inside the Xe cage.\(^\text{32}\) In the equilibrium position, the Cl atom of the HCl molecule is shifted from the cage center at 0.46 Å toward four Xe atoms, forming a symmetric tetragonal ClXe\(_4\) pyramid. The HCl molecule is oriented along the pyramidal axis with the H atom located out of the pyramid. The cage is slightly shrunk as compared to the atomic positions of the undeformed matrix, with a distance between neighboring Xe atoms of 4.4 Å. In the presence of the HCl molecule, eight of the cage Xe atoms, including those of the ClXe\(_4\) pyramid, are shifted toward the cage center at 0.04 Å and are located at 4.36 Å from the cage center. The interatomic distances in the pyramid are $R_{\text{XeXe}} = 4.36$ Å and $R_{\text{ClXe}} = 4.05$ Å. The distance between the four Xe atoms of the pyramid and the H atom is $R_{\text{Hxex}} = 4.97$ Å. Four of the cage atoms located in the plane perpendicular to the HCl molecule are shifted toward the cage center at 0.07 Å and are located at 4.33 Å from the cage center. The ground-state electronic structure is practically unaffected by Xe atoms, as in the case of Xe_nHCl van der Waals complexes or
clusters, and the interatomic distance (1.275 Å) is the same as in the free HCl molecule. The first-excited \(\Pi \) states of the HCl molecule are slightly affected by the surrounding Xe atoms, and consequently the transition energy to these states \(T_{1-2} = T_{1-3} = 8.06 \) eV is lower than in the case of the XeHCl van der Waals complex (8.28 eV) and the free HCl molecule (8.31 eV). The energy of transition to the HCl 2\(\Sigma \) state is found to be equal to \(T_{1-40} = 10.05 \) eV, which is a bit higher than in the free HCl molecule (9.89 eV).

The nature of ionic states with electron transfer from the Xe atoms to the Cl atom clearly depends much more strongly on the Xe atoms than in the case of the excited HCl valence states. The system formed by a HCl molecule and twelve surrounding Xe atoms has 36 ionic states, with the Cl\(^-\) ion and the positive charge distributed among all twelve Xe atoms. Although the distribution is non-uniform, there are no states where one or two Xe atoms share more than half of the charge. In all states, save for \(k = 15,16 \), the Cl\(^-\) charge is close to \(q_{Cl} = -1 \), and the charge in the states \(k = 15,16 \) is \(q_{Cl} = -0.75 \). In all ionic states (\(k = 4-39 \)), the H atom is neutral or almost neutral. The energies of the ionic states form almost a band with close-lying levels. The excitation energies from the ground state to these levels are arranged in the limits between \(T_{1-4} = 8.28 \) eV and \(T_{1-39} = 9.54 \) eV. The lower limit of the excitation energy 8.28 eV is much smaller than the transition energy to the ionic state in the van der Waals complex (9.3 eV).

The HCl potential curve is found to coincide with that of a free HCl molecule. Consequently, the HCl vibrational mode is the same as in a free HCl molecule. Rotational motion of the HCl molecule inside the Xe cage is impossible. The HCl molecule performs a transverse vibrational motion with \(\hbar \omega = 0.013 \) eV or \(\lambda = 0.01 \) cm.
B. HCl Excited \(k = 2,3 \) States

After the HCl molecule in the Xe matrix is excited to the molecule states of \(\Pi \) symmetry \((k = 2,3)\), the H atom begins to move apart from the Cl atom. If one considers the motion of the H atom in the adiabatic approximation, i.e., with fixed heavy atoms Xe and Cl, then the H atom has a minimum energy point at a large HCl distance, \(2.6 \) Å. However, the H atom can continue its motion and escape from the cage, since the potential barrier for escape is a little lower than the initial \((R_{\text{ClH}} = 1.275 \) Å) \(k = 2,3 \) state energy. The barrier becomes much lower when the Xe atoms are allowed to be shifted by the approaching H atom. According to this finding, the excitation of the HCl molecule to the \(\Pi \) state leads to molecular dissociation and the formation of free Cl and H atoms in the Xe solid, if to exclude or rule out recombination.

C. \(\text{Xe}^{+}_{12}\text{Cl}^{-}\text{H} \) Ionic Molecules

The quasistable ionic molecules with electron transfer from the Xe atoms to the Cl atom are formed in many, if not all, of the \(k = 4-39 \) ionic states. In contrast to the case of the molecular \(k = 2,3 \) excitation, the excitation to ionic states, at least \(k = 4-6 \), does not lead to the dissociation of the HCl molecule in the matrix, since the H atom is bound to the Cl\(^{-}\) ion by polarization forces, forming \(\text{Xe}^{+}_{12}\text{Cl}^{-}\text{H} \) molecules.

In the minimum energy \(\text{Xe}^{+}_{12}\text{Cl}^{-}\text{H} \) configuration of the lowest ionic \(k = 4 \) state, the Cl\(^{-}\) ion forms together with two charged Xe atoms almost an isosceles triangle, like in the case with the Cl\(^{-}\) ion, \(^{32}\) with a Xe-Cl-Xe angle of \(61.6^\circ \) and distances \(R_{\text{ClXe}} = 3.24 \) Å and \(R_{\text{XeXe}} = 3.32 \) Å. The H atom is located outside the Cl\(^{-}\)Xe\(^{+}\) triangle at a distance \(R_{\text{ClH}} = 1.57 \) Å. The charge of the Cl\(^{-}\) ion is \(q_{\text{Cl}} = -0.99 \), whereas the two strongly-bound Xe atoms bear together a charge of \(q_{\text{Xe}^2} = +0.91 \). A relatively-large charge of \(q_{\text{Xe}} = 0.04 \) is on one of the other
Xe atoms, and the remaining nine Xe atoms share together $q = 0.03$. The H atom bears only $q_H = 0.01$. The transition energy to the ground state is $T_{4-1} = 6$ eV.

The geometry and the electronic structure of the $k = 4$ ionic molecule in the solid matrix is similar to that of the gas-phase $\text{Xe}_{12}^+\text{Cl}^-\text{H}$ molecule. The geometry of the Xe_2^+Cl^- triangle of the $\text{Xe}_{12}^+\text{Cl}^-\text{H}$ molecule in the matrix, its location in the cage and the distribution of charge resemble those of the $\text{Xe}_{12}^+\text{Cl}^-$ molecule in the cage.

5. Conclusions

The main findings of our calculations are as follows:

(1) There are two XeHCl van der Waals complexes. One of these complexes has a collinear XeClH geometry, whereas another one has a bent configuration. The dissociation energy of these complexes is about 0.02 eV. The HCl molecule forms with Xe atoms also van der Waals clusters Xe_nHCl whose dissociation energy per Xe atom increases with n up to 0.07 eV at $n = 12$. The HCl $\Sigma \rightarrow \Pi$ excitation energy in the Xe_nHCl van der Waals complexes and clusters is only slightly lower than in the free HCl molecule. The excitation energy to the first ionic state ($k = 4$) with $\text{Xe}_n^−\text{Cl}$ electron transfer depends strongly on n, decreasing from 13 eV for separated Xe + HCl to 9.3 eV in the XeHCl complex and to 8.5 eV in the $\text{Xe}_{12}^+\text{HCl}$ cluster.

(2) An ionic molecule of collinear geometry $(\text{HXe})^+\text{Cl}^-$ is formed in the ground state. This molecule is separated from the neutral XeHCl configuration by a potential barrier of 0.41 eV and has a negative energy of -0.39 eV. An ionic collinear molecule $(\text{XeH})^+\text{Cl}^-$ is formed in the first excited $k = 2$ state. The decay barrier of this molecule is 0.18 eV. It emits at $\hbar \omega = 5.35$ eV.
(3) A quasistable ionic molecule with strongly-bound atoms (ions) is formed in the \(k = 4 \) state. The dissociation energy of this molecule to \(\text{H} + \text{Xe}^+ \text{Cl}^- \) is \(D_e = 1.26 \text{ eV} \). The molecule emits in the infrared region.

(4) Quasistable ionic molecules with a weak-bound \(\text{H} \) atom and \(\text{Xe}^+ \text{Cl}^- \) molecule (\(D_e = 0.12-0.18 \text{ eV} \)) are formed in the states \(k = 4-6 \). In spite of the weakness of the \(\text{H} \) interaction with \(\text{Xe}^+ \text{Cl}^- \), these ionic molecules emit UV light of much higher photon energy (\(\hbar \omega = 7.3-7.5 \text{ eV} \)) than in the separated \(\text{Xe}^+ \text{Cl}^- \) molecule (\(\hbar \omega = 4 \text{ eV} \)).

(5) The \(\text{HCl} \) molecule in the \(\text{Xe} \) solid matrix has a fixed location, and its translation motion is restricted. The \(\text{HCl} \) vibrational frequency is the same as for a free molecule. The transverse vibrations of the \(\text{HCl} \) molecule in the \(\text{Xe} \) matrix produce emission at \(\hbar \omega = 0.013 \text{ eV} \). The excitation energy to the \(\text{HCl} \Pi \) state is 8.06 eV, almost the same as in the \(\text{Xe}_8 \text{HCl} \) and \(\text{Xe}_{12} \text{HCl} \) clusters. This excitation leads to the dissociation and escape of the \(\text{H} \) atom from the cage.

The excitation energies to the ionic states (\(k = 4-39 \)) form a band with a lower limit of 8.3 eV. The excitation to the ionic states leads to the formation of the ionic \(\text{Xe}^+_{12} \text{Cl}^- \text{H} \) molecule. This molecule in the lowest state (\(k = 4 \)) emits at \(\hbar \omega = 6 \text{ eV} \).

Acknowledgments

This research was supported by the National Science Foundation under Grant CHE-8620274, the Air Force Office of Scientific Research (AFSC), United States Air Force, under Contract F49620-86-C-0009, and the Office of Naval Research. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon. I. L.
thanks SUNY-Buffalo for its hospitality during a visit in 1986-87 when this work was initiated.
References

Parameters of stable and quasistable XeHCl systems: k - state number, \(\theta \) - Xe-Cl-H angle, R - interatomic distances (in Å), q - atomic charges (in e), \(\mu \) - dipole moment (in Debyes), E - system energy, \(D_e \) - dissociation energy for an atom detachment, T - transition energies to the lowest \(k = 1 \) states (E, \(D_e \), T in eV).

<table>
<thead>
<tr>
<th>ln</th>
<th>2n</th>
<th>3n</th>
<th>4n</th>
<th>5n</th>
<th>6n</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>(\theta)</td>
<td>78°</td>
<td>180°</td>
<td>0°</td>
<td>0°</td>
<td>26°</td>
</tr>
<tr>
<td>Xe-Cl</td>
<td>4.10</td>
<td>3.82</td>
<td>2.85</td>
<td>3.74</td>
<td>3.20</td>
</tr>
<tr>
<td>Xe-H</td>
<td>4.03</td>
<td>5.095</td>
<td>1.60</td>
<td>2.39</td>
<td>2.42</td>
</tr>
<tr>
<td>Cl-H</td>
<td>1.275</td>
<td>1.275</td>
<td>4.45</td>
<td>1.35</td>
<td>4.83</td>
</tr>
<tr>
<td>Xe</td>
<td>0</td>
<td>+0.001</td>
<td>+0.79</td>
<td>+0.66</td>
<td>+0.56</td>
</tr>
<tr>
<td>Cl</td>
<td>-0.178</td>
<td>-0.180</td>
<td>-1.0</td>
<td>-0.78</td>
<td>-0.77</td>
</tr>
<tr>
<td>H</td>
<td>+0.178</td>
<td>+0.179</td>
<td>+0.21</td>
<td>+0.12</td>
<td>+0.21</td>
</tr>
<tr>
<td>(\mu)</td>
<td>1.09</td>
<td>1.08</td>
<td>15.3</td>
<td>12.6</td>
<td>13.2</td>
</tr>
<tr>
<td>E</td>
<td>-4.634</td>
<td>-4.633</td>
<td>-0.391</td>
<td>2.68</td>
<td>2.71</td>
</tr>
<tr>
<td>(D_e)</td>
<td>0.019</td>
<td>0.018</td>
<td>0.41*</td>
<td>0.18*</td>
<td>1.26</td>
</tr>
<tr>
<td>atom: Xe</td>
<td>Xe</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>1</td>
<td>5.35</td>
<td>0.78</td>
<td>7.50</td>
<td>7.33</td>
<td>7.45</td>
</tr>
<tr>
<td>2</td>
<td>0.56</td>
<td>1.40</td>
<td>0.96</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.46</td>
<td>1.40</td>
<td>0.59</td>
<td>0.72</td>
<td></td>
</tr>
</tbody>
</table>

* potential barrier
Table 2

Dissociation energies D_e and excitation energies T (in eV) of the Xe_nHCl van der Waals complexes and clusters in the gas phase and the HCl molecule in a Xe solid (S).

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_e</td>
<td>-</td>
<td>0.019</td>
<td>0.018</td>
<td>0.062</td>
<td>0.172</td>
<td>0.493</td>
<td>0.851</td>
<td>0.234</td>
</tr>
<tr>
<td>D_e/n</td>
<td>-</td>
<td>0.019</td>
<td>0.018</td>
<td>0.031</td>
<td>0.043</td>
<td>0.062</td>
<td>0.071</td>
<td></td>
</tr>
<tr>
<td>T_{1-2}</td>
<td>8.31</td>
<td>8.28</td>
<td>8.31</td>
<td>8.24</td>
<td>8.22</td>
<td>8.02</td>
<td>8.00</td>
<td>8.06</td>
</tr>
<tr>
<td>T_{1-4}</td>
<td>13.05</td>
<td>9.40</td>
<td>9.30</td>
<td>9.12</td>
<td>8.97</td>
<td>8.60</td>
<td>8.52</td>
<td>8.24</td>
</tr>
</tbody>
</table>
Figure Captions

1. Geometry of the XeHCl system (see Table 1): (a) van der Waals complexes in an 2n; (b) ionic molecules 1i, 3i and 4i. The numbers stand for interatomic distances in Å and atomic charges.

2. Geometry of the ionic molecules Cl\(^-\)(Xe\(_2\)H\(^+\)) and Xe\(_2\)Cl\(^-\)H in the k = 4 state. The numbers stand for interatomic distances in Å and atomic charges.
Fig. 1a
<table>
<thead>
<tr>
<th>No. Copies</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>Dr. David Young</td>
</tr>
<tr>
<td>Attn: Code 1113</td>
<td>Code 334</td>
</tr>
<tr>
<td>2</td>
<td>NORDA</td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td>NSTL, Mississippi</td>
</tr>
<tr>
<td>Arlington, Virginia 22217-5000</td>
<td>39529</td>
</tr>
<tr>
<td>Dr. Bernard Douda</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td>Attn: Dr. Ron Atkins</td>
</tr>
<tr>
<td>Code 50C</td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>Crane, Indiana 47522-5050</td>
<td>China Lake, California 93555</td>
</tr>
<tr>
<td>1</td>
<td>Scientific Advisor</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko, Code L52</td>
<td>Code RD-1</td>
</tr>
<tr>
<td>1</td>
<td>Washington, D.C. 20380</td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>Attn: CRD-AA-IP</td>
</tr>
<tr>
<td>12</td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td>Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>1</td>
<td>Mr. John Boyle</td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td>Materials Branch</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td>Attn: Dr. H. Singerman</td>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td>1</td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td></td>
<td>San Diego, California 91232</td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td>Superintendent</td>
<td>Attn: Dr. David L. Nelson</td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>1</td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td></td>
<td>San Diego, California 91232</td>
</tr>
<tr>
<td></td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td></td>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td></td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20375-5000</td>
</tr>
<tr>
<td></td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td></td>
<td>Attn: Code 1113</td>
</tr>
<tr>
<td></td>
<td>800 N. Quincy Street</td>
</tr>
<tr>
<td></td>
<td>Arlington, Virginia 22217-5000</td>
</tr>
<tr>
<td></td>
<td>Dr. Bernard Douda</td>
</tr>
<tr>
<td></td>
<td>Naval Weapons Support Center</td>
</tr>
<tr>
<td></td>
<td>Code 50C</td>
</tr>
<tr>
<td></td>
<td>Crane, Indiana 47522-5050</td>
</tr>
<tr>
<td></td>
<td>Naval Civil Engineering Laboratory</td>
</tr>
<tr>
<td></td>
<td>Attn: Dr. R. W. Drisko, Code L52</td>
</tr>
<tr>
<td></td>
<td>Port Hueneme, California 93401</td>
</tr>
<tr>
<td></td>
<td>Defense Technical Information Center</td>
</tr>
<tr>
<td></td>
<td>Building 5, Cameron Station</td>
</tr>
<tr>
<td></td>
<td>Alexandria, Virginia 22314</td>
</tr>
<tr>
<td></td>
<td>DTNSRDC</td>
</tr>
<tr>
<td></td>
<td>Attn: Dr. H. Singerman</td>
</tr>
<tr>
<td></td>
<td>Applied Chemistry Division</td>
</tr>
<tr>
<td></td>
<td>Annapolis, Maryland 21401</td>
</tr>
<tr>
<td></td>
<td>Dr. William Tolles</td>
</tr>
<tr>
<td></td>
<td>Superintendent</td>
</tr>
<tr>
<td></td>
<td>Chemistry Division, Code 6100</td>
</tr>
<tr>
<td></td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20375-5000</td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. J. E. Jensen
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. J. H. Weaver
Department of Chemical Engineering and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. A. Reisman
Microelectronics Center of North Carolina
Research Triangle Park, North Carolina 27709

Dr. M. Grunze
Laboratory for Surface Science and Technology
University of Maine
Orono, Maine 04469

Dr. J. Butler
Naval Research Laboratory
Code 6115
Washington D.C. 20375-5000

Dr. L. Interante
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Irvin Heard
Chemistry and Physics Department
Lincoln University
Lincoln University, Pennsylvania 19352

Dr. K.J. Klaubunde
Department of Chemistry
Kansas State University
Manhattan, Kansas 66506

Dr. C. B. Harris
Department of Chemistry
University of California
Berkeley, California 94720

Dr. F. Kutzler
Department of Chemistry
Box 5055
Tennessee Technological University
Cookesville, Tennessee 38501

Dr. D. DiLeïla
Chemistry Department
George Washington University
Washington D.C. 20052

Dr. R. Reeves
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Steven M. George
Stanford University
Department of Chemistry
Stanford, CA 94305

Dr. Mark Johnson
Yale University
Department of Chemistry
New Haven, CT 06511-8118

Dr. W. Knauer
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. J. Murday
Naval Research Laboratory
Code 6170
Washington, D.C. 20375-5000

Dr. J. B. Hudson
Materials Division
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Theodore E. Madey
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. M. G. Lagally
Department of Metallurgical and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60637

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. D. E. Harrison
Department of Physics
Naval Postgraduate School
Monterey, California 93940

Dr. R. L. Park
Director, Center of Materials Research
University of Maryland
College Park, Maryland 20742

Dr. W. T. Peria
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. Keith H. Johnson
Department of Metallurgy and Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Arnold Green
Quantum Surface Dynamics Branch
Code 3817
Naval Weapons Center
China Lake, California 93555

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. S. L. Bernasek
Department of Chemistry
Princeton University
Princeton, New Jersey 08544

Dr. W. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. F. Carter
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Richard Colton
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Dan Pierce
National Bureau of Standards
Optical Physics Division
Washington, D.C. 20234

Dr. R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. R. P. Messmer
Materials Characterization Lab.
General Electric Company
Schenectady, New York 22217

Dr. Robert Gomer
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Ronald Lee
R301
Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910

Dr. Paul Schoen
Code 6190
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. John T. Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Dr. Richard Greene
Code 5230
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. L. Kesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403

Dr. K. C. Janda
University of Pittsburgh
Chemistry Building
Pittsburgh, PA 15260

Dr. E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton 509 SMH
UNITED KINGDOM

Dr. H. Tachikawa
Chemistry Department
Jackson State University
Jackson, Mississippi 39217

Dr. John W. Wilkins
Cornell University
Laboratory of Atomic and
Solid State Physics
Ithaca, New York 14853
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. R. G. Wallis
Department of Physics
University of California
Irvine, California 92664

Dr. J. T. Keiser
Department of Chemistry
University of Richmond
Richmond, Virginia 23173

Dr. O. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. R. W. Plummer
Department of Physics
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 41106

Dr. T. F. George
Chemistry Department
University of Rochester
Rochester, New York 14627

Dr. N. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. G. Rubloff
IBM
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. Roald Hoffmann
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. Horia Metiu
Chemistry Department
University of California
Santa Barbara, California 93106

Dr. A. Steckl
Department of Electrical and Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. W. Goddard
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125

Dr. G. H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. P. Hansma
Department of Physics
University of California
Santa Barbara, California 93106

Dr. J. Baldeschwieler
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125
END DATE
FILMED
8-88
DTIC