Development of Inductive Storage Pulsed Power Generators

R.J. Commissso, J.R. Boller, G. Cooperstein, R.D. Ford, D.J. Jenkins and J.C. Kellogg

Plasma Physics Division

Jaycor, Vienna, VA 22180-2270

J.D. Shipman, Jr.
Sachs/Freeman
Landover, MD 20785

April 6, 1988

Approved for public release; distribution unlimited.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
A pulse generator, Pawn, has been assembled at the Naval Research Laboratory. It employs inductive energy storage and opening switch power conditioning techniques with high energy density capacitors as the primary energy store. The capacitor bank stores 1 MJ at 44 kV. The energy stored in the capacitor bank is transferred to a vacuum storage inductor in 20 μs. Wire fuses provide the first stage of pulse compression. Further pulse compression is obtained from a plasma erosion opening switch.

Initial results are encouraging. Nearly 0.1 TW of electrical power was delivered to an electron-beam diode load in a 100-ns FWHM pulse. A peak voltage at the load of ±350 kV represents a factor of ±14 voltage gain over the initial, 25-kV bank voltage.
10. SOURCE OF FUNDING NUMBERS

<table>
<thead>
<tr>
<th>PROGRAM ELEMENT NO.</th>
<th>PROJECT NO.</th>
<th>TASK NO.</th>
<th>WORK UNIT ACCESSION NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONR</td>
<td>NONE</td>
<td>NONE</td>
<td>47-0878-08</td>
</tr>
<tr>
<td>DNA 62715H</td>
<td>NONE</td>
<td>T99ZAXLA-00038</td>
<td>DN-320-094</td>
</tr>
</tbody>
</table>

12. PERSONAL AUTHORS

Commissio, R.J., Boller, J.R., Cooperstein, G., Ford, R.D., Goodrich,* P.J., Hinshelwood,* D.D., Jenkins, D.J., Kellogg, J.C., Lupton,* W.H., Shipman, Jr. J.D. and Weber,* B.V.
CONTENTS

I. INTRODUCTION .. 1

II. SYSTEM DESCRIPTION ... 1

III. CHARACTERIZATION OF FUSE OPERATION .. 2

IV. FUSE DRIVEN PEOS EXPERIMENT .. 2

V. SUMMARY ... 3

ACKNOWLEDGEMENTS ... 3

REFERENCES ... 3

DISTRIBUTION ... 5
Development of Inductive Storage
Pulsed Power Generators

R.J. Commissio, J.R. Boller, C. Cooperstein,
R.D. Ford, P.J. Goodrich, D.D. Hinselwood,
D.J. Jenkins, J.C. Kellogg, V.H. Lipton,
J.D. Shipman, Jr., and B.V. Veber

Naval Research Laboratory
Washington, DC
USA

ABSTRACT

A pulse generator, Pawn, has been assembled at the Naval Research Laboratory. It employs inductive energy storage and opening switch power conditioning techniques together with high energy density capacitors as the primary energy store. The capacitor bank stores 1 MJ at 44 kV. The energy stored in the capacitor bank is transferred to a vacuum storage inductor in 20 ns. Wire fuses provide the first stage of pulse compression. Further pulse compression is obtained from a plasma erosion opening switch.

Initial results are encouraging. Nearly 0.1 TV of electrical power was delivered to an electron-beam diode load in a 100-ns FWHM pulse. A peak voltage at the load of = 350 kV represents a factor of ≈ 14 voltage gain over the initial, 25-kV bank voltage.

I. Introduction

Inductive energy storage in combination with opening switch power conditioning techniques offers several attractive features for pulsed power applications when compared with conventional, capacitive technology /1-3/. These advantages include compactness and low cost of the primary energy store. Also, because the voltage is high only during the last stages of the power conditioning sequence, some complexities associated with high voltage, such as oil insulated Marx banks, water filled pulse forming lines, and power limiting interfaces, are eliminated. The technical difficulty has always been obtaining the required power conditioning for practical, pulsed power applications, i.e., obtaining > 1-TV, 100-ns pulses. With inductive storage, the power conditioning must be accomplished by a sequence of opening switches electrically in parallel with each other and the load. Each successive switch opens faster, resulting in higher and higher voltage. The challenge is to understand the physics governing the opening switch behavior well enough to design a system for which the interaction between the system components produces the desired power pulse.

An experimental, inductive storage, pulsed power generator, "Pawn" /4-5/, has been assembled at the Naval Research Laboratory (NRL) using a newly developed low voltage, compact capacitor bank /6/ as the primary store (1 MJ at 44 kV). The nominal 20-ns current pulse available from the discharge of this bank energizes the vacuum storage inductance. Wire fuses /1,3,5,7/ provide the first stage of pulse compression. Further pulse compression is obtained from a plasma erosion opening switch (PEOS) /8-11/.

Preliminary results are encouraging. Nearly 0.1 TV of electrical power was delivered to an electron-beam (e-beam) diode load in a pulse of 100-ns full width at half maximum (FWHM). A factor of ≈ 14 voltage gain over the initial, 25-kV bank voltage was achieved.

In Sec. II a description of the Pawn device and a discussion of its electrical operation are presented. Results demonstrating the fuse performance are discussed in Sec. III. In Sec. IV, preliminary, non-optimized results in which a fuse driven PEOS was coupled to an e-beam diode are reviewed. The work is summarized in Sec. V.

II. System Description

The system components are identified in Fig. 1. The pulse generator comprises a capacitor bank, a vacuum coaxial inductor attached to the capacitor bank via parallel plates, a low voltage vacuum feedthrough (not shown), a fuse array contained within a pressurized gas enclosure, a vacuum flashover closing switch that can be command or self-triggered, a vacuum opening switch (PEOS), and an e-beam diode load. The capacitor bank is divided into four submodels, each containing five, 32-uf capacitors connected in parallel in a low inductance (= 70 nH) configuration. At the maximum rated charge voltage of = 44 kV, one capacitor stores = 50 kJ. Each submodel is connected to the common parallel plate transmission line in series with an = 14-mΩ, stainless steel safety resistor and a high energy, pressurized, railgap switch. The coaxial energy storage inductor is made of aluminum tubing with welded flanges and connects to a load coupling "tee." This tee section provides mounting surfaces for connecting two coaxial fuse enclosures and the coaxial output assembly. The assembly as shown in Fig. 1 contains the vacuum flashover switch (VFS), the vacuum opening switch (PEOS), and the e-beam load. The latter two components were replaced by an electrolytic resistor when testing the fuse opening switch stage alone. The diagnosticians consisted of a Rogovski coil to measure the capacitor bank current, two B probes in the vacuum inductive store region, four B probes in the fuse tee vacuum

Figure 1. Schematic Illustration of Pawn System.

region (2 for each package), two 3 probes between the VPS and PEDS, four 3 probes on the capacitor side of the PEDS and four 3 probes on the load side of the PEDS. A resistive voltage divider was used to measure the fuse voltage. For experiments with diodes, an inductive voltmeter provided a direct measurement of the load voltage.

A schematic diagram of the equivalent electrical circuit for Pawn is shown in Fig. 2. The total bank capacitance, represented by C, is 1026 μF. The series resistance, R = 4.7 mΩ, is made up of R_s, the internal resistance of the capacitors and switches (S_1) and the parallel safety resistors (R_s). R_s is the skin resistance of the conductors associated with the transmission plate and coaxial conductor. The internal inductance of the bank, L, includes the switches and transmission plates and is estimated to be ≈ 40 nH. The calculated inductance of the coaxial storage inductor is L = 70 nH. The parallel leg of the circuit represents the fuse assembly with inductance L_f and a variable resistor R_f(t) symbolizing the time-dependent resistance of the fuse. The calculated inductance of a single fuse assembly for a 25 cm long fuse is L_f = 70 nH. This value becomes 35 nH when a second identical fuse assembly is connected at the tee section.

The capacitor bank is initially charged to a voltage of 20 = 44 kV. When it is discharged by closing of the railgap switches it produces a quasi-sinusoidal pulse of current I(t) in the storage inductor and fuse array. Just before the fuse opens the VPS is closed. The voltage pulse resulting from the increasing fuse resistance then transfers current I(t) from the fuse into the output loop of the circuit. The output pulse is shown in the circuit as an inductance L_f in series with an arbitrary element representing a fast opening switch in parallel with a load, or an electrolytic resistor.

III. Characterization of Fuse Operation

The first stage of pulse compression is achieved using wire fuses. Development work for the fuse and fuse package used on Pawn is described elsewhere [4-5]. The fuse is a non-linear resistive circuit element. As more energy is dissipated in the form of joule heating of the fuse wires, the fuse undergoes a phase change from solid to liquid to gas, with an accompanying increase in its resistance. The balance of energy dissipated in the fuse is crucial. Too much dissipated energy drives the fuse into a very low resistance plasma. This may result in a breakdown condition prohibiting any further current transfer or a restrick upon further voltage amplification in the power conditioning sequence. If too little energy is dissipated, the fuse never reaches the

![Figure 2. Equivalent circuit for Pawn System.](image)

Figure 2. Equivalent circuit for Pawn System.

The excellent fuse reproducibility is illustrated in Fig. 4, which is a six-shot overlay of the measured fuse voltage as a function of time. The standard deviation in peak fuse voltage is < 4% and in time-to-peak is < 12.

IV. Fuse Driven PEDS Experiment

The PEDS is a fast, high power, vacuum opening switch [8-11]. It consists of plasma sources that inject a flowing plasma through an array of rods into the region between the inner and outer conductors (see Fig. 11) filling the annular region over a limited axial length (≈ 10 cm). The plasma sources are fired several microseconds before the VPS is closed so that when the VPS closes the PEDS isolates the e-beam diode from the system. The PEDS must conduct long enough to allow transfer of current out of the fuse stage and then open, generating sufficient voltage to drive electron emission in diode, which is initially an open circuit.
The authors gratefully acknowledge technical assistance of E. Featherstone, R. Fisher, P. Hollis, R. Lantham and J. Jacques.

This work was supported in part by the Defense Nuclear Agency and the Office of Naval Research.

Jaycor, Vienna, VA.

"Sachs/Freeman, Landover, MD.

References

Cooperstein, ..A. Grossmann, J.M. Jenkins, ..d.
Lupton, J.M. Merl, P.F. Ottinger, and J.D.
Shipman, Jr., NRL Memorandum Report 5852 (1986).

5. G. Cooperstein, J.R. Boller, R.J. Commisso, R.D.
Ford, J.M. Grossmann, D.D. Hinshelwood, D.J.
Jenkins, J.C. Kellogg, V.E. Lupton, R.A. Meger,
D. Mosher, J.M. Meri, P.F. Ottinger, J.D.
Shipman, Jr., and B.V. Weber. 6th International
Conference on High Power Particle Beams, Kobe,

6. J. Shannon, P. Krickhuhn, R. Dethlefsen, O.
Cose, and E. Kent, 5th IEEE Pulsed Power
Conference, Arlington, VA (1985), M.F. Rose and
F.J. Turchi, Eds., IEEE Cat. No. 85C2121-2,

8. P.F. Ottinger, Shyke A. Goldstein, and R.A.

9. R.J. Comisso, G. Cooperstein, R.A. Meger, J.M.
Meri, P.F. Ottinger and B.V. Weber, in Advances
in Pulsed Power Technology, H. Kristiansen and

10. B.V. Weber, J.R. Boller, D.G. Colomant, R.J.
Commisso, G. Cooperstein, J.M. Grossmann, D.D.
Hinshelwood, R.A. Meger, D. Mosher, J.M. Meri,
W.F. Oliphant, P.F. Ottinger, V.E. Scherrer,
S.J. Stephanakis, and F.C. Young, 6th
International Conference on High Power Particle
851.

11. D.D. Hinshelwood, J.R. Boller, R.J. Commisso, G.
Cooperstein, R.A. Meger, J.M. Meri, P.F.
Ottinger, and B.V. Weber, Appl. Phys. Lett. 49,
1635 (1986).
DISTRIBUTION FOR DNA SPONSORED WORK

Director
Defense Nuclear Agency
Washington, DC 20305
Attn: TISI Archives 1 copy
TITL Tech. Library 3 copies
J. Z. Farber (RAEV) 1 copy
G. Fisher 1 copy
C. Schubert 1 copy
E. E. Stobbs 1 copy

nr Force Office of Scientific Research
Physics Directorate
olling AFB, DC 20332
Attn: H. Pugh 1 copy
R. J. Barker 1 copy

nr Force Weapons Laboratory, AFSC
rland, AFB, NM 87117
Attn: NTYP (W. L. Baker) 1 copy

atomic Weapons Research Establishment
uilding H36
idermaston, Reading RG 7 4PR
ited Kingdom
Attn: J. C. Martin 1 copy

eing Company, The
.O. Box 3707
attle, WA 98124
Attn: Aerospace Library 1 copy

rockhaven National Laboratory
pton, NY 1193
Attn: A. F. Maschke 1 copy

o/EN
orton AFB, CA
Attn: ENSN 1 copy

ornell University
thaca, NY 14850
Attn: D. A. Hammer 1 copy
R. N. Sudan 1 copy

Commander
Harry Diamond Laboratory
2800 Powder Mill Rd.
Adelphi, MD 20783
(CHASE-INNER ENVELOPE: ATTN: DELHD-RBH)
Attn: DELHD-NP 1 copy
DELHD-RCC-J. A. Rosando 1 copy
DRXDO-RBH-J. Agee 1 copy
DRXDO-TI-Tech Lib. 1 copy

nomic Weapons Research Establishment Center
ameron Station
5010 Duke Street
Alexandria, VA 22314
Attn: T. C. 2 copy

JAYCOR, Inc.
1608 Spring Hill Rd.
Vienna, VA 22180-2270
Attn: D. D. Hinshelwood 1 copy
B. V. Weber 1 copy

Kaman Tempo
616 State Street (P. O. Drawer QQ)
Santa Barbara, CA 93102
Attn: DASIAAC

awrence Berkeley Laboratory
Berkeley, CA 94720
Attn: D. Keefe 1 copy

awrence Livermore National Laboratory
P. O. Box 808
 Livermore, CA 94550
Attn: Tech. Info. Dept. L-3 1 copy
D. J. Meeker 1 copy

Los Alamos National Laboratory
P. O. Box 1663
 Los Alamos, NM 87545
Attn: M. Gillispie/Theo. Div. 1 copy

Massachusetts Institute of Technology
ambridge, MA 02139
Attn: R. C. Davidson 1 copy
G. Bekefi 1 copy
Maxwell Laboratories, Inc.
9244 Balboa Avenue
San Diego, CA 92123
Attn: M. Montgomery 1 copy

Mission Research Corporation
1400 San Mateo Blvd. SE
Albuquerque, NM 87108
Attn: B. B. Godfrey 1 copy

National Science Foundation
Mail Stop 19
Washington, DC 20550
Attn: D. Berley 1 copy

Naval Research Laboratory
Address: Attn: Name/Code
Code 2628 - TID Distribution 22 copies
Code 1001 - T. Coffey 1 copy
Code 4000 - W. Ellis 1 copy
Code 4040 - J. Boris 1 copy
Code 4700 - S. L. Ossakow 26 copies
Code 4701 - I. M. Vitkovitsky 1 copy
Code 4704 - C. Kapetanakos 1 copy
Code 4720 - J. Davis 1 copy
Code 4730 - S. Bodner 1 copy
Code 4740 - W. Manheimer 1 copy
Code 4760 - B. Robson 1 copy
Code 4770 - G. Cooperstein 10 copies
Code 4770.1 - F. C. Young 1 copy
Code 4770.2 - R. Comisso 20 copies
Code 4771 - P. Ottinger 1 copy
Code 4771 - J. Grossmann 1 copy
Code 4771 - J. Neri 1 copy
Code 4773 - S. J. Stephanakis 1 copy
Code 4773 - R. A. Mager 1 copy
Code 4790 - D. Colombant 1 copy
Code 4790 - I. Haber 1 copy
Code 4790 - M. Colombant 1 copy
Code 6682 - D. Nagel 1 copy

Physics International Co.
2700 Merced Street
San Leandro, CA 94577
Attn: C. Stallings 1 copy

Pulse Sciences, Inc.
1615 Broadway, Suite 610
Oakland, CA 94612
Attn: S. Putnam 1 copy

R&D Associates
Suite 500
1401 Wilson Blvd.
Arlington, VA 22209
Attn: P. J. Turchi 1 copy

R&D Associates
P.O. Box 9695
Marina Del Rey, CA 90291
Attn: C. MacDonald 1 copy

SAI
8400 W. Park Ave.
McLean, VA 22102
Attn: A. Drobot 1 copy

Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185
Attn: T. Martin/1250 1 copy
J. P. Vandevelde/1200 1 copy
D. L. Cook/1260 1 copy

Spire Corporation
P.O. Box D
Bedford, MA 01730
Attn: R. G. Little 1 copy

Stanford University
SLAC
P.O. Box 4349
Stanford, CA 94305
Attn: W. B. Herrmannsfeldt 1 copy

University of California
Irvine, CA 92717
Attn: N. Rostoker 1 copy

University of Washington
Dept. of Nuclear Engineering
BF-10
Seattle, WA 98115
Attn: F. Ribe 1 copy

U.S. Department of Energy
Division of Inertial Fusion
Washington, DC 20545
Attn: L. E. Kilicon 1 copy
M. Sluyter 1 copy
R. L. Schrieber 1 copy

U.S. Department of Energy
P.O. Box 62
Oak Ridge, TN 37830 1 copy

DIRECTOR OF RESEARCH
U.S. NAVAL ACADEMY
ANAPOLIS, MD 21402

CODE 1220 1 copy

Records 1 copy
END
DATE
FILMED
7-88
Dtic