
D-R192 869 AFW. (AIR FORCE WEAPONS LABORATORY) VECTOIIZED EPHULL 1/2
(ELASTIC/PLASTIC NU..(U) MEN MEXICO ENGINEERING
RESEARCH INST ALBUQUERQUE R L BELL FED 86 NNERI-MALL-2

ULNCLAkSSIFIED FWNL-TR-96-146 F29601-84-C-9009 F/fl 16/3 M

15 11-4

ViIl(.FXOPY RtI,(LIJK~ lIO ST CHARI

*40 '0 lr

%~%

'% UK -. -W -w ?w -S - - - -N %W

AFWL-TR-86-146 AFWL-TR-
86-146

AD-A193 869
AFWL VECTORIZED EPHULL CODE USER MANUAL

R. L. Bell

New Mexico Engineering Research Institute

University of New Mexico
Albuquerque, NM 87131

February 1988

Final Report

Approved for public release; distribution unlimited.

DTIC

S APR2 098

AIR FORCE WEAPONS LABORATORY S"
Air Force Systems Command
Kirtland Air Force Base, NM 87117-6008

)1 0 0

AFWL-TR-86-146

This final report was prepared by The New Mexico Engineering Research
Institute, University of New Mexico, Albuquerque, New Mexico under Contract
F29601-84-C-U0O80, Job Order 8809131C with the Air Force Weapons Laboratory,
Kirtland Air Force Base, New Mexico. Capt Glenn E. James (NTEDA) was the
Laboratory Project Officer-in-Charge.

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely Government-related procure-
ment, the United States Government incurs no responsibility or any obligation
whatsoever. The fact that the Government may have formulated or in any way
supplied the said drawings, specifications, or other data, is not to be
regarded by implication, or otherwise in any manner construed, as licensing
the holder, or any other person or corporation; or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

This report has been authored by a contractor of the United States
Government. Accordingly, the United States Government retains a nonexclusive,
royalty-free license to publish or reproduce the material contained herein, or
allow others to do so, for the United States Government purposes.

This report has been reviewed by the Public Affairs Office and is
releasable to the National Technical Information Service (NTIS). At NTIS, it
will be available to the general public, including foreign nationals.

If your address has changed, if you wish to be removed from our mailing
list, or if your organization no longer employs the addressee, please notify
AFWL/NTED, Kirtland Air Force Base, NM 87117-6008 to help us maintain a
current mailing list.

This report has been reviewed and is approved for publication.

STEVEN D. WERT
Capt, USAF
Project Officer

J~hCO"ANDER

CARL L. DAVIDSON
Lieutenant/Col el, USAF Colonel, USAF
Chief, Tec logy Br Chief, Civil Engineering Research Div

DO NOT RETURN COPIES OF THIS REPORT UNLESS CONTRACTUAL OBLIGATIONS OR NOTICE
ON A SPECIFIC DOCUMENT REQUIRES THAT IT BE RETURNED.

UNCLASSI FIED
SECURITY CLASSIFICATIONI OF MIS1 OAGE

REPORT DOCUMENTATION PAGE
I& REPORT SE URITY CLASSIFICATION lb RESTRICTIVE MARKINGS
Unclassi fed

2a SECURITY CLASSIFICATION AUTHORITY I DISTRIUUT1O4i AVAILABILITY OF REPORT

Approved for public release; distribution
I','2b DECLASSIFICATION DOWNGRADING SCHEDULE unlimited.

4 PERFORMING5 ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

NMERI WA11-2 AFWL-TR-86-1 46

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL ?a NAME OF MONITORING ORGANIZATION
*New Mexico Engineering(i pow
*Research Institute Air Force Weapons Laboratory

6 c. ADDRESS (Crty, State, and ZIP Code) 7b ADDRESS (City, State. and ZIP Code)

P0 Box 4825 Kirtland AFB, NM 87117-6008
Albuquerque. NM 87196

So. NAME OF FUNDING /SPONSORING Sb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGAIZATON f aplocole) F29601 -84-C-0080
8c. ADDRESS (City, State. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO 0 NO ACCESSION NO
62601 F 8809 13 1iC

11 TITLE (Include Security Clasolikaanon)

AFWL VECTORIZED EPHULL CODE USER MANUAL

12 PERSONAL AUTHOR(S)
Bell, Raymond L.

13a, TYPE OF REPORT 1bTM OIRD1%rFtORT (Year month, Day) S PGCON

16 SUPPLEMENTARY NO0TATION

FIELD GROUP SUB-GROUP ULL, Elastic-plastic, Hydrocode, Fluid dynamics, Equations-

4 I ABSTRACT (Continue on re es If necenary anW den tok~ by block nu be)IF
This report was prepared as a user manual for implementing the vectorized Elastic/Plasti
HULL (EPHULL) Composite HULL code and SAIL code on the AFWL CRAY computer. Major programs
required to operate the Composite HULL code and supporting programs and files on the AFWL

- CRAY are described. The Composite HULL code developed through this work is usable over the
range of problems formerly accommiodated by either Vector HULL or EPHULL, and is simpler and
less time-consuming for newq users to learn. The Cylinder In Situ Test (CIST) Equation of
State CEOS) in this manual was rewritten from the California Research Arbitrary Lagrangian-
Eulerian (CRALE) code for use with a variety of soils. ~*

120. DISTRIBUTION i AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

WUNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0QDTIC USERS Unclassified
22s. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPH4ONE (Include Are oe 22c. OFFICE SYMBOL

CtStve D.Wert -(505) 844-0261 =AFWL/NTEDA
DO FORM 1473,84MAR 83 APRtedition may bisused untl owhousted. SECURITY CLASSIFICATION OF -HISPG

All other editions ors bos UNCLASS I FIED

.1%

UNCLASSIFIED

SCUftIT CLASSIF-CATION 00 ?wIS PAGE

18. SUBJECT TERMS (continued)

CFS, COSMOS, Airbiast code, High explosives predictions

%II
1U.-KU

PREFACE

This technical report has been prepared as a user manual for implementing

the vectorized EPHULL (Composite HULL) code and SAIL code on the AFWL CRAY

computer. Information in this report is organized into sections numbered for

clarity and easy reference. Nonstandard terminology peculiar to computers is

used as required to clearly and accurately convey essential information. Any

engineering or scientific term given in other than SI units is shown in the

form mandated for use in the relevant program(s). The symbol, case, and

spacing of some mathematical terms are presented in required user and computer

forms.

Acoession For

'C NTIS GRA&II 0~,C'DTIC TAB
, 'Uuannounced 0

'~ju.t
f oat lon

Dt!i t ributlion/
Availe lity Co.eS

!Avail ald/or

U hillyDis;t Special

I _____

CONTENTS

Section Page

I INTRODUCTION 1

1. OBJECTIVES AND REQUIREMENTS 1
2. REPORT DESCRIPTION 2

II AFWL CRAY OPERATING ENVIRONMENT 3

1. CRAY TIME SHARING SYSTEM (CTSS) AND COSMOS 3
2. COMMON FILE SYSTEM (CFS) 3

III COMPOSITE HULL CODE 6

1. HULL119 - THE PRIMARY SOURCE 6
2. OTHER HULL VARIANTS 7

a. Vector HULL 7

b. Scalar HULL 8

3. COMPOSITE HULL 8

a. Description 8
b. Change Files 9

IV SAIL CODE 12

1. BACKGROUND 12
2. GENERAL DESCRIPTION 12

3. USING SAIL ON THE AFWL CRAY 13

V EXAMPLE PROBLEMS 14

1. COSMOS FILES 14

a. KEEL Job File 23
b. HULL Job File 24
c. PULL Job File 27
d. STATION Job File 27

2. ADDITIONAL EXAMPLES 28

VI OTHER CODE MODIFICATIONS 31

1. CIST EQUATION OF STATE 31
2. CONTROL FEATURE 36

v

'0m

CONTENTS (Concluded)

Section Page

VII CONCLUSIONS AND RECOMMENDATIONS 38

REFERENCES 39/40

APPENDIXES

A. AFWL SAIL CODE SUMMARY 41

B. AFWL HULL CODE SUMMARY 73

vi

1,,

,,'

-WPa 7- I - -w -- - LSV

ILLUSTRATIONS

Figure Page

1 CFS Tree Structure; Root Node /NTEPHULL 4

2 CIST EOS loading curve 32

3 CIST EOS unloading curve 34

TABLES

Table Page

I KEEL COSMOS job file 15

2 HULL COSMOS job file 16

3 PULL COSMOS job file 17

4 STATION COSMOS job file 18

5 BOWDATA file structure 25

6 KEEL input file 29

7 HULL input file 29

8 PULL input file 29

9 STATION input file 29

Al SLF header record 44

A2 SLF option directory record 46

A3 SAIL directives 47

A4 SAIL input/output files 60

A5 SAIL mode parameters and file functions 61

A6 Executive (normal) mode input parameters 62

A7 Update mode input parameters 64

A8 List mode parameters 65

vii

TABLES (Continued)

A9 Copy mode input parameters 66

AIO Scan and extract mode input parameters 67

All Generate mode input parameters 68

BI AFWL HULL code files 75

B2 BOWDATABASE file structure 76

B3 BUSYBIT file structure 77

84 BOWDATA file structure 78

B5 BOWBUSY file structure 79

B6 HULLSTATUS file structure 79

B7 HULLCNTRL file structure 80

B8 Restart file structure 81

89 Station file structure 82

B10 Station file header record structure 83

B11 Station file active station data record structure 84

812 HLIBA file structure 86

813 Change file structure 86

B14 Message file structure 87

815 Temporary disk files 88

816 LIBGEN COSMOS file 88

B17 BOWGEN COSMOS file 90

B18 BOW parameters 93 .

819 Z-BLOCK options 95 4-

820 PLANK program parameters 99

821 PLANK parameters for KEEL 99

822 PLANK parameters for HULL 100

823 PLANK parameters for PULL 101 i

B24 Lagrangian options 102

viii

I

I

TABLES (Concluded)

B25 Lagrangian regional parameters 103

826 Lagrangian mesh station parameters 104

827 Basic KEEL parameters 106

828 KEEL standard mesh parameters 107

B29 KEEL subgrid mesh parameters 107

830 KEEL generate parameters 108

B31 Two-dimensional geometries for KEEL 109

B32 Three-dimensional geometries for KEEL 110

833 Geometry parameter names and defaults 111

B34 BURN2 parameters 112

B35 Parameters to specify location of GFOR 112

B36 Basic HULL parameters 115
B37 PULL control commands 118

B38 PULL global plot commands 119

839 PULL data names 122

B40 PULL plot-type names 123

B41 Individual plot parameters 124

B42 STATION plot names 127
B43 Variables in PROC HULLCOM (2-0) 130

B44 Variables in PROC HULLCOM (3-D) 131

B45 Variables in PROC HULLCOM (for 2-D and 3-D) 132

846 HYDRO array equivalences for 2-D 135

847 HYDRO array equivalences for 3-D 137

848 2-D common blocks 138

B49 3-D common blocks 140

B50 Vector variables 141

ix/x

i xl

I. INTRODUCTION

1. OBJECTIVES AND REQUIREMENTS

New Mexico Engineering Research Institute (NMERI) was tasked to review

the optimization methods used in the Vector HULL (sic) code, and to use those

methods deemed adequate and effective, to produce a vectorized version of the

latest available Elastic/Plastic HULL (EPHULL) code version. A further task

was to implement the various boundary options available in Vector HULL but not

in EPHULL, in the new version of EPHULL. The objective of this tasking was to

create a new code (Composite HULL) able to handle all the different types of

problems previously requiring the use of either Vector HULL or EPHULL. With

the advent of Composite HULL, users will no longer have to learn or maintain

multiple versions of the HULL code, thus reducing the time required to become

a proficient code user. Also, user confusion created by the existence of

several versions of HULL (each requiring different procedures) will be

eliminated.

Another requirement was to rewrite the Cylinder In Situ Test (CIST)

Equation Of State (EDS) from the California Research Arbitrary Lagrangian-

Eulerian (CRALE) code (Ref. 1) for use in the Composite HULL code. This will

give users a flexible equation of state, usable for various soils simply by

changing the parameters in the material library as indicated by the in situ

test results.

The deliverables include copies of all change files, copies of all COSMOS

(job control language) job files, and a comprehensive final report. The final
Ne, report was to include a description of all major programs required to operate

the HULL system on the AFWL CRAY computer system.

2. REPORT DESCRIPTION

This report consists of seven sections and two appendixes. Sections I-IV

narratively describe: (1) the effort objectives; (2) the U.S. Air Force

Weapons Laboratory (AFWL) CRAY operating environment; (3) creation of the

1. Schuster, S., Crale Users Manual, AFWL-TR-82-45, Air Force
Weapons Laboratory, Kirtland AFB, NM, September 1982.

. m.

Composite HULL code; and (4) the background and use of the preprocessor code

SAIL. Section V describes the COSMOS job files for an example problem.

Section VI sunmarizes the other modifications completed. Section VII provides

conclusions and recommendations.

The appendixes are guides that can be used independently, for the SAIL

code (Appendix A) and the Composite HULL code (Appendix B), as implemented on

the AFWL CRAY computer. Appendix A contains a complete description of SAIL

directives and procedures. Appendix B contains HULL system generation and

operation procedures.

2N

I

I

I

II. AFWL CRAY OPERATING ENVIRONMENT

1. CRAY TIME SHARING SYSTEM (CTSS) AND COSMOS

AFWL presently has a 2,000,000 decimal-word CRAY 1-S computer using the

CRAY Time Sharing System (CTSS) operating system. This system was originally
developed by the Lawrence Livermore National Laboratory (LLNL) and the Los

Alamos National Laboratory (LANL). Under pressure from a small group of
users, AFWL adopted CTSS in 1981 to replace the original CRAY Operating System

(COS). The major "advantage" of CTSS over COS is that with CTSS, users can
work interactively on the CRAY (COS was a batch-only system). Because of this

interactive ability, CTSS does offer several capabilities not available under
COS. One of the most useful of these capabilities is the Dynamic Debugging

Tool (DDT), which allows a user to step through a large program to follow the
progress of a calculation. DDT was used extensively in this project to detect

subtle coding errors.

Production jobs can be submitted under CTSS either directly (from CTSS),

or from a front-end machine. The job streams for production jobs use the

COSMOS job control language. COSMOS commands are very similar to interactive
CTSS commands. An asterisk (*) in the first column of a line must immediately

precede a CTSS command in a COSMOS file (Ref. 2). COSMOS files may also be
run interactively, by typing: COSMOS input file / time priority <carriage

return>.

2. COMMON FILE SYSTEM (CFS)

Along with CTSS, AFWL also acquired the hardware and software to adopt

the Common File System (CFS) developed by the national laboratories. CFS is a

flexible permanent file system that uses an IBM mass store unit. Users must

create root nodes under which files may be saved and subdirectories may be

formed. The resulting tree structure allows files to be arranged in
convenient patterns. The creator of a particular root node can give other

users access by setting appropriate parameters. Files under a particular node
may be made available for read-only by another user (or users), or read/write

permission may be granted, etc. Figure 1 shows the CFS tree structure used by

2. CTSS MINI-REFERENCE, Los Alamos National Laboratory, August 1984.

3

Root node

.1'/NTEPHULL Permanent filies

/SOURCELIB ________________________________

Ihullib hliba chl2O afwlch vproc chnew

/RESTARTFILESC

/PaaaaaPaaaa___________________________

4jbowdata t4cOOOOO t9cOOOOO t4cOOlQO bowbusy

i I /PbbbbbPbbbb___________________________

bowdata t4cOOOOO t4cOOlOO t4c00200 t~cOO300

/EPHULLPROBLIB________________

bowdatabase busybit

/SYSGEN _________________________________

xsail libgen ephulil2O afwlch vproc chnew

Figure 1. CFS Tree Structure; Root Node /NTEPHULL.

* 4

'U per

the HULL system (Ref. 3). All users are granted all rights under the HULL

system root node /NTEPHULL.

When a file is obtained from CFS (by executing a MASS GET NAME command),

the file is copied into the user's disk space. Unfortunately, no indication is

given to CFS that the file obtained from CFS is in use. Thus, a file available

to several users may be modified simultaneously by more than one user, then

stored on CFS. Only the modifications added by the last user replacing the CFS
file will be on that file; all other modifications will be lost.

When EPHULL was first modified for CTSS, Ms. Cydney Westmoreland of
t

Orlando Technology, Inc. (OTI) developed a unique method to allow the HULL

system to maintain all problem numbers, in a database that avoids the multiple-

user problem described above (Ref. 4). On CFS, a file that does not presently

exist can be created by using either the MASS SAVE NAME or MASS STORE NAME

command. If the file does exist, the MASS STORE NAME command causes the file

NAME to be overwritten, but the MASS SAVE NAME command causes an error

condition. Using Ms. Westmoreland's method, the HULL system program BOW

attempts to SAVE a file (named BUSYBIT) under the node where the database file

is maintained. If BUSYBIT is successfully saved, the database is accessed,

modified, and stored. The BUSYBIT file is then deleted, allowing another user

to access the database. If an error is detected when MASS SAVE BUSYBIT is

attempted, the program detecting the error suspends itself for a time, then

tries again. This process is repeated until the other program (the program

that has saved BUSYBIT) completes its modifications and deletes BUSYBIT. A

program that suspends itself an excessive number of times writes a message

suggesting that BUSYBIT should be checked, and then aborts itself.

3. Bell, R. L., Cray Time SharingSSystem (CTSS) Version of the HULL
File Maintenance Progrm -- BOW, AFWL-TR-84-58, Air Force Weapons
Laboratory, Kirtland AFB, NM, August 1984.

4. Bell, R. and Westmoreland, C., Elastic/Plastic HULL (EPHULL) Operation
on the CRAY Time Sharing System (CTSS), AFWL-TR-83-6, Air Force Weapons
Laboratory, Kirtland AFB, NM, April 1983.

t 60 Second St., Bldg. 5, Shalimar, FL 32579

5

.INV

III. COMPOSITE HULL CODE

1. HULL119 - THE PRIMARY SOURCE

The HULL family of hydrodynamics codes has been in existence for nearly

20 years (Ref. 5). Initially, all users were periodically given copies of the

most recent "authorized" version. Eventually, however, several different

versions of the code began evolving independently at different locations. An

elastic/plastic version of the code (EPHULL) rapidly evolved at the Air Force

Armament Laboratory (AFATL), Eglin AFB, FL. Other versions maintained by AFWL,

the U. S. Army Ballistic Research Laboratory (BRL), and McDonnell Aircraft Co.,

continued to evolve as pure fluid codes (no stress formulation) used for air-

blast and high-explosive (HE) simulation problems. The AFWL version of the

code migrated to S-Cubedt when Mr. Charles Needham left AFWL. During the early

1980s, Mr. Daniel Matuska and Mr. John Osborn (of OTI) added a separate

Lagrangian capability to EPHULL for AFATL. The Lagrangian module can be used

independently, or in conjunction with the original Lagrangian-Eulerian remap

scheme (Ref. 6).

When the composite HULL effort began, version 119 (HULL119) was the latest

version of EPHULL. This code was used as the primary source code for composite

HULL. It was decided to vectorize only the "number crunching" routines; i.e.,

those associated with the equations of state (EOS), hydro, and flux. Some

minor changes were required in a few other routines, to maintain compatibility

with the expanded EOS common blocks. An effort was made to maintain the order

and names of the major subroutines, and the variable names and uses within

-. these subroutines. Maximum resemblance to the scalar (EPHULL) code was thus

Jretained, allowing people familiar with the scalar version to easily learn the

vectorized version.

Although the vector changes were originally written for EPHULL119, at

least two subsequent versions were produced and distributed since that time.

5. Durrett, R. E. and Matuska, D. A., The HULL Code Finite Difference
Solution to the Equations of Continuum Mechanics, AFATL-TR-78-125, Air
Force Armament Laboratory, Eglin AFB, FL, November 1978.

6. Matuska, D. A., and Osborn, J., HULL Documentation, Orlando
Technology, Inc., 60 Second St., Bldg. 5, Shalimar, FL.

t Div. of Maxwell Laboratories, Inc., 5905 Marble N.E., Albuquerque, NM.

6

.

HULL119 was maintained as the base code until all vector routines were fully

debugged, to eliminate the need to continuously update the sequence numbers on

the change files each time a new version was distributed.

2. OTHER HULL VARIANTS

a. Vector HULL--In the early 1980s, the AFWL airblast version of HULL P

was completely rewritten by Dr. John Hasdal, to take advantage of the excep-

tional speed available through vector techniques on the CRAY computer (Ref. 7).

His efforts produced an efficient new code, known as Vector HULL. Because

Vector HULL does not use subroutine and variable names used in other versions

of HULL, there is no direct correlation between Vector HULL and other v
versions.

Vector HULL abandoned the SAIL code for the commercially available UPDATE

system, plus a preprocessor called POST. Vector HULL was divided into three

different UPDATE libraries. Each library is made up of numerous UPDATE

"decks." When making modifications, it may be difficult to determine which

library contains the deck requiring change.

The Vector HULL version of program BOW uses a "lock file" scheme similar

to EPHULL's BUSYBIT. The database is a buffered file. If it requires correc-

tion, the file must be decoded. Also, information concerning all files for all

problems resides on this one file, so the various problems run under Vector

HULL frequently cause saving and deleting of the lock file. A BOW program

(Ref. 3) which uses ASCII files, has been written for EPHULL.

The methodologies used in Vector HULL have been carefully studied. Those

considered most efficient have been incorporated into the vector routines of I
the new Composite HULL code.

Vector HULL also has a variety of boundary input capabilities based on the

1-kt standard (Ref. 8), and on station values from a previous calculation.

These capabilities have also been implemented in the new code.

7. Vector HULL Report by J. Hasdal (unpublished, periodic progress report for
Air Force Weapons Laboratory).

8. Needham, C. E., Havens, M. L., and Knauth, C. S., Nuclear Blast Standard
(I kt), AFW-TR-73-55, Air Force Weapons Laboratory, Kirtland Air Force
Base, NM, April 1975.

7

I

b. Scalar HULL--This code is the most recent version of the original

airblast code (Ref. 9). It was written when computer central memory was rather '

limited. Many of the routines available in Scalar HULL have proven quite use-

ful to the airblast community. Most of these routines were previously trans-

ferred to the Vector HULL code, but both codes were used as sources for the

1-kt boundary input and the dust capabilities written for Composite HULL.

3. COMPOSITE HULL

a. Description--Composite HULL is the name given to the AFWL code

incorporating the latest version of EPHULL, and the changes from files CHAFWL

and CHVECT. These two change files have been modified, and the blocks of

changes have been put in variously named "PROCs" (Appendix A). These PROCs are

all added at a particular line sequence number, depending on the HULL version.

A new file (AFkLCH) consists of a series of

*KEEPTO LABEL NOT "DEF" VECTOR

and

*INCLUDE PROCNAME "DEF" VECTOR

lines added at appropriate line sequence numbers for the latest version of

EPHULL.

This last file (AFWLCH) has been transferred to AFATL, and may be included

in the next update to EPHULL. Using the vector version of this code at AFWL

will require only the current version of EPHULL, the current change file, and

the file VPROC (which contains all the PROCs produced from files CHAFWL and

CHVECT). One change that may be required for a new EPHULL version is the

sequence number where these PROCs are to be added.

The previously neglected, single-material (airblast) routines in EPHULL

have been rewritten in vector form, to allow organizations to again use a

single HULL code to solve virtually all their continuum-mechanics problems.

9. Durrett, R. E., et al., The HULL Hydrodynmlcs Computer Code, AFWL-TR-
76-183, Air Force Weapons Laboratory, Kirtland AFB, NM, September 1976.

8

Use of this code should relieve user organizations from the requirement

to maintain several specialized versions of the HULL code. This composite code
is intended to be maintained under the SAIL executive system (rather than the

UPDATE-POST system to which some versions have migrated).

b. Change files--The change file CHVECT consists of over 14,000 lines.

It modifies program PLANK to recognize the keyword VECTOR. When running a HULL
job, PLANK notifies program SAIL that vector coding is desired by setting the

VECTOR option to one in file INPUT2. The vector option has not been added to',
the Z-BLOCK, and therefore must be specified in HULL input each time a problem

is restarted. If the vector option is not specified, the default scalar code
is produced by SAIL.

The optimization techniques in CHVECT use the well-publicized idea of

innermost do-loop vectorization. On the CRAY computer, only the innermost do-

loop will be vectorized, but even this loop will not be vectorized if there is
a vector inhibitor present. Vector inhibitors include calls to externals, if-

checks inside the loop, and input/output operations. During code checkout,
another vector inhibitor was discovered: any if-check branching to the end of

an outer do-loop inhibits an inner do-loop using the same statement number as

its end.

Many loops in HULL are dual loops: one index is run over the number of

materials in the problem, and the other index is run over the number of cells

in a row. HULL can presently handle a maximum of 10 materials, but most
problems have fewer than 5. The nuber of cells in a row is completely

arbitrary, but most HULL problems have more than 10 cells per row. In the

scalar versions of HULL, the outer loops are usually over the cells in a row,
and the inner loops are over the materials. Since the largest gain can be
realized by having the inner loops operate on the longest possible vectors, the

loops in Composite HULL have been inverted. The outer loops in the new code

are over the materials, and the inner loops are over the cells in a row. This

scheme often results in several additional loops being required, but usually no
additional calculations are involved. If a quantity is needed in more than one

loop, a vector temporary is employed to store the quantity for subsequent

loops.

9

Most of CHVECT is concerned with modifications to program HULL.

Vectorized versions of subroutines EOSSET, BHYDRO, HYDRO, TRHYDRO, THYDRO,

BFLUX, FLUX, TRFLUX, BFLUX2, FLUX2, TFLUX2, STATE, and most EOS routines have

been provided. Changes were also required in subroutine OUTPUT to make it

compatible with the revised EOS common blocks.

In the modified subroutines, cells in a row are scanned to determine a

subset of adjacent cells that are "the same" as the current leftmost cell. In

some routines "the same" may mean "all fluid cells" or "all island cells"

(HYDRO routines): in others "the same" may mean "all containing the same

material mix" (FLUX routines, STATE, etc). The actual selection of a subgroup

is accomplished by using a new array called ICD, which is dimensioned to

IMAX*NROWIC; therefore, an element of this array is available for each cell in

core. Subroutine EOSSET is responsible for setting the cell descriptor (ICD)

word for each cell at the start of each cycle. If a cell is an island cell (a

rigid nonfluid cell), ICD for that cell is set to -1. If a cell contains only

one material, ICD is set to 2**IM (where IM is the material number). If the

cell is a multimaterial cell, ICD is set to the sum of2**IM (where IM is the

material number for each material in the cell) plus 99000. A new integer

function called ICOUNT counts the number of elements in the ICD array that are

"the same." ICOUNT requires three arguments: (1) the number of elements to

scan; (2) the first element of the array; and (3) the type of scan. There are

three types of scans: (1) elements greater than or less than zero (fluid or

island cells); (2) positive elements greater than or less than 99000 (mixed- or

single-material cells); and (3) exact agreement (same single material or same

mixture, or islands).

Once a group has been determined, the cells are processed in vector loops.

Since they are all "the same," no decisions have to be made in the loops;

therefore, the loops can be vectorized. A further restriction is that groups

of adjacent cells cannot be longer than 64. Most of the temporary arrays

(vector temporaries) have been dimensioned to 65 words, to minimize the

additional memory required. The size is set to 65, to facilitate left-right

equivalenced arrays each 64 words long, but offset by one word; for instance:

UL(l+1) (horizontal velocity at the left boundary of cell 1+1) is the same

memory location as UR(I) (the horizontal velocity at the right boundary of

cell I). The size of these vector temporaries can be established by setting

10

the option SIZE in the SAIL input file (Appendix A). For very long rows, some

speedup can be realized by setting SIZE equal to IMAX.

The variable names used in the scalar version have been retained as often

as possible, but some of these variables (undimensioned variables) have been
made into vectors with the same name [example: UL into UL(I), etc.]. The

order of calculation has also remained virtually unchanged.

The change file CHAFWL contains coding changes required for AFWL CRAY

compatibility. CHAFWL includes the modified BOW program, and changes to all
the permanent file manipulation subroutines. The change files CHVECT, CHAFWL,

AFWLCH, and VPROC are located on CFS under the /NTEPHULL/SOURCELIB subdirectory

(Fig. 1).

5, c. Latest Update--As of the last edit of this report, Composite HULL

may be accessed in Version 120 by using the change files: CH120, CHNEW, and

VPROC. These files can be found under both the /NTEPHULL/SOURCELIB and

/NTEPHULL/SYSGEN subdirectories.

'S11

4NJ
11,1111

IV. SAIL CODE

I. BACKGROUND

During initial development of the HULL code in 1971, Daniel Matuska and

Richard Durrett (then Captains) created the original SAIL code based on

concepts borrowed from Dr. Reginald W. Clemens. These concepts were expanded
to include an enlarged syntax, and were combined with an update system in

December 1973 by Lt. Lewis Gaby. Since then, SAIL has continued to evolve, and

is now essentially a commercial product maintained by OTI, the present employer

of Mr. Daniel Matuska (Ref. 10).

The most recent version of SAIL maintained by AFWL was acquired from AFATL

in 1981, and modified for CTSS by (then Captain) Raymond L. Bell and Ms. Cydney

Westmoreland. The source code (all Fortran) is maintained on CFS, under the

/NTEPHULL/SOURCELIB and /NTEPHULL/BACKUP subdirectories as file MSAIL. p

2. GENERAL DESCRIPTION

SAIL can be used to maintain virtually any computer file. The procedures

to convert a file to a SAIL Library File (SLF) are given in Appendix A. Each 0

program on an SLF is essentially equivalent to a "deck" under UPDATE. Instead

of a deck name followed by sequential numbers (as in UPDATE), SAIL uses only

sequential numbers for each line on the SLF. To differentiate between programs

on an SLF, the sequential numbers for each program start on a multiple of

10,000.

SAIL directives (*KEEPTO, *PRUC, etc.) embedded in the SLF allow users to

selectively keep or reject blocks of coding, based on the values of options

specified in the SAIL input File (and the file INPUT2, if running with program

PLANK). SAIL will make temporary changes to the SLF if changes are in the SAIL

input file, or if the input file contains a directive to read a particular

change file (*READ FILENAME). Changes can be in several change files; each one

must be local, and have a *READ NAME in the SAIL input file. The changes need

not be in sequence. SAIL will issue warning messages if any of the requested

changes conflict with each other.

10. SAIL Users Guide for Running the HULL and EPIC3 Codes, Orlando
Technology, Inc., 60 Second St., Bldg. 5, Shalimar, FL.

12

In NORMAL mode, SAIL will process the SLF using the default option values

on the SLF (and additional option values specified by the user), to produce one

or more source code files (named SAIL, SAIL1, SAIL2, etc.), and an output file

describing the SLF that was processed along with any SAIL diagnostic messages.

3. USING SAIL ON THE AFWL CRAY

All files (except for change files) required for running the HULL system

at AFWL are in a library file known as HLIBA. This library file is on CFS,

under subdirectories /NTEPHULL/SOURCELIB and /NTEPHULL/BACKUP. HLIBA contains:

(I) executable programs BOW, PLANK, and XSAIL (executable SAIL), (2) files OLD

(the SLF for EPHULL) and MATLIB (the material property library), and

(3) another library file (HULLIB), which contains relocatable utility routines

needed to load newly compiled HULL system programs.

To use SAIL on the AFWL CRAY, a user must first get HLIBA from CFS, then

enter the following CTSS commands:

LIB HLIBA <esc> X ALL. <esc> END <carriage return>

where <esc> = escape key. The user's file space will now contain all the files

listed above.

The user can produce an input file for SAIL using any editor available on

CTSS. The format for SAIL input files is given in Appendix A. In general, the

file is free-format, but the word SAIL must be the first word on the file.

The file can be given any name. If SAIL is executed without specifying parti-

cular names for the input and output files, the input file must be called

INPUT, and the output file produced will be called OUTPUT. To specify

particular names for the input and output files, type: XSAIL I=INNAME

O=OUTNAME, where INNAME is the input file name and OUTNAME is the desired

output file name. More detailed procedures are given in Appendix A. Examples

in the next section show how SAIL is used in the NORMAL mode.

13

TW

V. EXAMPLE PROBLEMS

1. COSMOS FILES

The COSMOS files shown in Tables 1, 2, 3, and 4 are set up for jobs being

submitted from a Remote Job Entry Terminal (RJET). The first two lines on each

file are Control Data Corporation (CDC) Job Control Language (JCL) giving the

CDC job name, time limit, priority, and the instruction to stage the job to

the CRAY (STCRA). The second line is the CDC account card. The third line on

each file is the CRAY job card. This card contains the CRAY job name, user

name, password, CRAY account number, job time limit, class, and priority.

The next line is the COSMOS command

*INTERRUPT ON SOFTWAREERROR TO EXIT

which causes the COSMOS job stream to branch to the COSMOS line

*EXIT:

if an error occurs while executing any line before the *EXIT: label.

The next COSMOS command line

*MASS GET DIR=/NTEPHULL/SOURCELIB HLIBA CH120 VPROC CHNEW

causes the files HLIBA, CH120, and VPROC to be copied from CFS into the local
disk space reserved for this job.

The next COSMOS command line

F" *LIB HLIBA

executes the CTSS utility LIB. The next two lines are commands to LIB; there-

fore, they do not have an asterisk (*) in the first column

X ALL.

14

- -,

TABLE 1. KEEL COSMOS JOB FILE

KEEL,TXX ,PXX,STCRA.

ACCOUNT(NAME,OOOOXXXX-NED,NTEDA,PHONE)

*/JOB US=23l8,PW=XXXXXX,CC=00OOO,#u*s,TL=30.O,PR=1,CL=C

*INTERRUPT ON SOFTWAREERROR TO EXIT

*MASS GET OIR=/NTEPHULL/SOURCELIB HLIBA CH120 VPROC CHNEW

*LIB HLIBA

X ALL.

END
*FILE NAME=INPUT,END,=EOR

SAIL LINENO

*READ CH120

* *READ VPROC

*READ CHNEW

EOR

*FILE NAME=KEELIN,END=EOR (KEEL input file--See example problems)

E OR
*BOW I=KEELIN O=BOWOUT

*PLANK I=KEELIN O=PLNKOUT

*XSAIL I=INPUT O=SAILOUT

*INTERRUPT ON SOFTWAREERROR TO SUNK
*CFT I=SAIL,B=BKEEL,L=KEELLST,ON=DINXZA

*LDR BIN=BKEEL,LIB=(HULLJB,CFTMATH) ,MO=FULL,ML=KEELMAP,X=XKEEL

*XKEEL I=KEELIN O=KEELOUT

*GOTO EXIT
*SUNK:

*CONCAT OUTi KEELLST KEELMAP

*DISPOSE DN=OUT1 ,FID=SINKLST

*EXIT:

*CONCAT OUT2/CC BOWOUT/CC PLNKOUT/CC SAILOUT/CC KEELOUT/CC

*SELECT PRINTLOG=KEELOG

*CONCAT KEELOT/CC OUT2/CC KEELOG KEELOUT/CC

*DISPOSE DN=KEELOT,FID=KEELOUT,SF=CC

15

TABLE 2. HULL COSMOS JOB FILE

HULL,Pxz ,Txx,STCRA.

ACCOUNT(NAME,OOOOXXXX-NED, NTEDA ,PHONE)

*/JOB US=2318,PW=XXXXXX,CC=OOQO#0##,TL=-30.Q,PR=l ,CL=C
*INTERRUPT ON SOFTWAREERROR TO EXIT

*MASS GET OIR=/NTEPHULL/SOURCELIB HLIBA CH120 VPROC CHNEW

*LIB HLIBA

X ALL.

END

*FILE NAME=INPUT,END=EOR

SAIL LINENO

*READ CH120

*READ VPROC

*READ CHNEW

EOR

*FILE NAME=HULLIN,ENNEOR (HULL input file--See example problems)

E OR

*BOW I=HULLIN O=BOWOUT

*PLANK I=HULLIN O=PLNKOUT

*XSAIL I=INPUT O=SAILOUT

*INTERRUPT ON SOFTWAREERROR TO SUNK

*CFT I=SAIL,B=BHULL,L=HULLLST,ON=D1NXZA

*LOR BIN=BHULL,LIB=(HULLIB,CFTMATH),MO=FULL,ML=HULLMAP,X=XHULL

*XHULL I=HULLIN O=HULLOUT

*GOTO EXIT

*SUNK:

*CONCAT OUTI HULLLST HULLMAP

*DISPOSE DN=OUT1 ,FID=SINKLST

*EX IT:

*CONCAT 0UT2/CC BOWOUT/CC PLNKOUT/CC SAILOUT/CC

*SELECT PRINTLOG=HULLLOG

*CONCAT HULLOT/CC OUT2/CC HULLLOG

*DISPOSE DN=HULLOT,FIDHULLOUT,SF=CC

16

-6 .- * v N US 9 9S - -P

TABLE 3. PULL COSMOS JOB FILE

PULL ,Pxx,Txx,STCRA.

AC COUN T(NAMEOOOOXXXX-NED N TEDAPHONE)

*/JOB US=2318,PW-XXXXXX,CCuOOOO####,TL-3O.O,PR=1,CL:C

*INTERRUPT ON SOFTWAREERROR TO EXIT

*MASS GET DIR=/NTEPHULL/SOURCELIB HLIBA CH120 VPROC CHNEW

*LIB HLIBA

X ALL.

END

*FILE NAME=INPUT,ENO=EOR

SAIL LINENO

*READ CH120

*READ VPROC
*READ CHNEW

EOR

*FILE NAME=PULLIN,ENLNEOR (PULL input file--See example problems)

EOR

*BOW I=PULLIN O=BOWOUT

*PLANK I=PULLIN O=PLNKOUT

*XSAIL I=INPUT O=SAILOUT
*INTERRUPT ONSOFTWAREERROR TO SUNK
*CFT I=SAIL1,B=BPULL,L=PULLLST,ON=DINXZA

*LDR BIN=BPULL,LIB=(HULLIB,CFTMATH,METALIB),

MO=FULL, JL=PULLMAP,X=XPULL
*XPULL I=PULLIN O=PULLOUT

*MASS STORE PLTFILE :/NTEPHULL/RESTARTFILESC/PxxxxxPxxxx/PULLPLOTS

*GOTO EXIT

*SUNK:

*CONCAT OUfl PULLLST PULLMAP

*DISPOSE ON=OUT1 ,FID=SINKLST

*EX IT:

A *CONCAT OuT2/CC BOWOUT/CC PLNKOUTICC SAILOUT/CC

*SELECT PRINTLOG=PULLLOG

*CONCAT PULLOT/CC OUT2/CC PULLOG PULLOUr/cc

*DISPOSE ON=PULLOT,SF=CC,FIO=PULLOUT

17

TABL E 4. STATION COSMOS JOB FILE

STAT,Pxx ,Txx, STCRA.

ACCOUNT(NAME,OOOOXXXX-NED,NTEOA,PHONE)

*IJOB US=2318,PW-XXXXXX,CCzOOOO####,TL=3O.O,PR=l ,CL=C

*INTERRUPT ON SOFTWAREERROR TO EXIT

*MASS GET DJR=/NTEPHULL/SOURCELIB HLJBA CH120 VPROC CHNEW

*LIB HLIBA

X ALL.

END

*FILE NAME=INPUT,ENDI-EOR

SAIL LINENO

*READ CH120

*READ VPROC

*READ CHNEW

EOR -

*FILE NAME=STATIN,ENLNEOR (STATION input file--See examiple problems)

E OR

*BOW I=STATIN O=BOWOUT

*PLANK I=STATIN O=PLNKOUT I

*XSAIL I=INPUT O=SAILOUT

*INTERRUPT ON SOFIWAREERROR TO SUNK

*CFT I=SAIL,B=BSTAT,L=STATLST,ON=DINXZA

*LDR BIN=BSTAT,LIB=(HULLIB,CFTMATH,METALIB),

MO=FULL, ML=STATMAP,X=XSTAT

*XSTAT I=STATIN O=STATOUT

*MASS STORE PLTFILE:/NTEPHULL/RESTARTFILESC/PxxxxxPxxxx/STAPLOTS

*GOTO EXIT
*SUNK:

*CONCAT QuTI STATLST STATMAPV
*DISPOSE DN=OUT1,FID=SINKLST

*EXIT:

*CONCAT OUT2/CC BOWOUT/CC PLNKOUT/CC SAILOUT/CC

*CONCAT STATOT/CC OUT/CC STATLOG STATOUT/CC

*DISPOSE DN2SrArOT,SF=CC,FINSTATOUr

181

extracts all files from HLIBA, and

END

terminates LIB.

The next COSMOS command line

*FILE NAME=INPUT,END=EOR

causes the creation of a local file named INPUT consisting of the lines follow-

ing this line down to, but not including, the EOR line. The lines in file

INPUT

SAIL LINENO

*READ CH120

*READ VPROC

*READ CHNEW

were explained above with the exception of LINENO. The LINENO parameter

causes SAIL to append the sequence numbers from the SLF onto the lines of the

source code files that SAIL produces.

The next COSMOS command line

*FILE NAME=NNNNIN,END=EOR

(where NNNN=KEEL, HULL, PULL, or STAT, depending on which COSMOS file is being

run) causes creation of file NNNNIN, which consists of all lines following this

line down to, but not including, the EOR line.

*' The next COSMOS command line

*BOW I=NNNNIN OnBOWOUT

(where NNNNIN is defined above) executes program BOW using NNNNIN as input, and

creating BOWOUT as output. The actions accomplished by program BOW for each

COSMOS file are different, and are explained below.

19

ZThe next COSMOS command line

*PLANK I=NNNNIN O=PLNKOUT

(where NNNNIN is defined above) executes program PLANK using NNNNIN as input

and creating PLNKOUT as output. PLANK determines the program(s) and options

desired by the user, and produces file INPUT2 for program SAIL. Specific

actions accomplished by program PLANK for each COSMOS file are explained below.

The next COSMOS command line

*XSAIL I=INPUT O=SAILOUT

executes program SAIL. The executable code is named XSAIL to differentiate it
from the source code files named SAIL, SAIL1, SAIL2, etc. SAIL reads INPUT2

which indicates, through the option/value pairs, which program is to be
created, what the array sizes are to be, what program options are to be

included, and what materials are involved. Program SAIL also reads file

INPUT, which indicates that line numbers are to be appended to each line of the

source code as it is being created, and that changes are contained in files

CH120, VPROC, and CHNEW.

SAIL reads the change files and places the sorted changes in local file

CHANGE. SAIL then begins processing OLD (the SLF) along with the changes and

the defined options to produce file SAIL, which is a customized source code

for the appropriate program (KEEL, HULL, PULL, or STATION). Program SAIL then

writes a summary on file SAILOUT along with any error or warning messages. If
any fatal SAIL errors have occurred, SAIL calls abort; otherwise, it terminates

normally.

If an error had occurred in any of the above COSMOS command lines, the job

stream would have branched directly to the *EXIT: line. The next COSMOS

command line

*INTERRUPT ON SOFTWAREERROR TO SUNK

20

A*X x7K _'.' IN L

changes the destination label to which COSMOS will branch if an error is %,

detected from *EXIT: to *SUNK:.

The next COSMOS command line

*CFT I=SAIL,B=BNNNN,L=NNNNLST,ON=DINXZA

(where NNNN=KEEL, HULL, PULL, or STAT depending on which COSMOS file is being

run) executes the CRAY Fortran Compiler (CFT). CFT uses file SAIL as the

source code. The resulting binary code is placed in file BNNNN (NNNN defined

above), and the program listing is placed in file NNNNLST. The compiler option

list (ON=DINXZA) generates a comprehensive cross-reference map and list of

variables after each subroutine listing in NNNNLST.

The next COSMOS command line

*LDR BIN=BNNNN,LIB=(HULLIB,CFTMATH),MO=FULL,ML=NNNNMAP,X=XNNNN

(where NNNN is defined above) executes the CRAY Loader (LDR). LDR uses the

binary file BNNNN (produced by CFT) and the utility and math routines contained 0

in HULLIB and the CTSS library CFTMATH, to produce the executable program

XNNNN. The full loadmap is placed in file NNNNMAP (where NNNN is defined

above). The system library METALIB is also required for programs producing

graphics output (PULL and STATION).

The next COSMOS command line

*XNNNN I=NNNNIN O=NNNNOUT
S

(where NNNN is defined above) executes program NNNN. The actions accomplished

by each program are explained below. If an error is detected during execution

of CFT, LOR, or XNNNN, the Job stream branches to label *SUNK:. If XNNNN

terminates normally, the next COSMOS command line

*GOTO EXIT

executes, and the job stream branches to the label *EXIT:.

21r

The next COSMOS command line is the label

*SUNK:

which is the destination if an error is detected during execution of CFT, LOR, or

XNNNN. The COSMOS commands following this line will be executed only if the job

stream has been branched here. The next two COSMOS command lines

*CONCAT OUT1 NNNNLST NNNNMAP

(where NNNN is defined above) and

*DISPOSE DN=OUT1,FID=SINKLST

provide the user with the listings and loadmaps that may help determine what went

wrong.

The next COSMOS command line

*EXIT:

is the destination label if an error was detected in the lines preceding the

second *INTERRUPT command line, or if the job stream was branched due to the

*GOTO EXIT command line.

The remaining COSMOS command lines

*CONCAT OUT2/CC BOWOUT/CC PLNKOUT/CC SAILOUT/CC NNNNOUT/CC
*SELECT PRINTLOG=NNNNLOG

*CONCAT NNNNOT/CC OUT2/CC NNNNLOG
*DISPOSE DN=NNNNOT,FIEDNNNNOUT,SF=CC

(where NNNN is KEEL, HULL, PULL, or STAT) provide the printed output from the

executed programs and a record of the COSMOS commands that were executed. These

output files can then be physically picked up at the AFWL central computing

facility.

22

The operation of programs BOW, PLANK, KEEL, HULL, PULL, and STATION

(Tables 1-4) is described in detail below.

a. KEEL job file--Program BOW reads input file KEELIN, to determine the

problem number and whether the problem is being rerun. BOW creates and

attempts to SAVE file BUSYBIT under subdirectory /NTEPHULL/EPHULLPROBLIB as

described above in Section II. When BUSYBIT is successfully saved, BOW gets

file BOWDATABASE from this same subdirectory. BOWDATABASE is a sequential

listing of problem numbers that presently exist on CFS. BOW compares this

problem number with those listed on BOWDATABASE.

If this problem number is not found on BOWDATABASE, it is inserted in

sequence and a new subdirectory node is added on CFS under subdirectory

/NTEPHULL/RESTARTFILESC with the name PxxxxxPxxxx (where xxxxx.xxxx is this

problem number). BOW then creates file BOWBUSY and saves it under this new

subdirectory. The revised BOWDATABASE file is stored under subdirectory

/NTEPHULL/EPHULLPROBLIB.

If this problem number is found on BOWDATABASE and the keyword RERUN is

not specified on file KEELIN, BOW writes a message on BOWOUT and calls abort.

If this problem number is found on BOWDATABASE and the keyword RERUN is

specified on KEELIN, BOW creates file BOWBUSY and attempts to save it under
subdirectory /NTEPHULL/RESTARTFILESC/PxxxxxPxxxx (where xxxxx.xxxx is this

problem number). If an error occurs, BOW writes a message on BOWOUT and calls

abort. If the save is successful, BOW gets the file BOWDATA from this problem

subdirectory. BOW reads BOWDATA to determine the restart and station file
names stored under this subdirectory. BOW forms the path names for each of

these files and deletes them from CFS.

Finally BOW creates a file named KEELMSG which contains the following:

BOWDATA FOR PROB xxxxx.xxxx

NSTA MM/DD/YY HH:MM:SS

T4COOOOO 0.0 0

LAST

23

where xxxxx.xxxx is this problem number, and where NSTA=NULL if this problem

does not have stations, or T9COOOOO if it does. The current date and time are
indicated by MM/DD/YY (month/day/year) and HH:MM:SS (hour:minute:second).

This file is used by program KEEL as the initial BOWDATA file.

BOW then deletes BUSYBIT from CFS. Note that BOW does not delete

BOWBUSY. The presence of BOWBUSY assures that no other job will be able to
modify files under this problem subdirectory until KEEL finishes successfully.

The last thing program KEEL does, is delete BOWBUSY. BOW writes a summary
message on file BOWOUT and terminates.

Program PLANK reads file KEELIN. The option/value pairs in KEELIN and
the program name (KEEL) are written on file INPUT2. PLANK writes a summary
message on file PLNKOUT and terminates.

Program KEEL reads file KEELIN, to set the problem number, to determine
problem mesh coordinates, to place the appropriate materials into the mesh,
to determine initial conditions (velocities, energies, etc.), and to establish
the initial locations of any included stations. KEEL then creates the initial
restart file (TAPE4) and stores it under the problem subdirectory as file

T4COOOOO. If stations are included, the initial station file (TAPEg) is
created and stored under the problem subdirectory as file Tgcoo000. File

KEELMSG is then stored under the problem subdirectory as file BOWDATA, and
file BOWBUSY is deleted. Program KEEL writes out the options set for this
problem (the Z-BLOCK), the mesh coordinates, material properties for the
materials used, descriptions of where various materials were placed in the

mesh, initial locations of any stations generated, and a material map of the
mesh. If an error is detected during execution, program KEEL calls abort

without deleting BOWBUSY, and the COSMOS job stream branches to *SUNK:.

b. HULL Job file--Program BOW reads input file HULLIN, to determine the
problem number and the restart conditions (the default is a restart, from the

last restart file available). BOW gets file BOWDATABASE from subdirectory
/NTEPHULL/EPHULLPROBLIB without unique access (BOW does not create and save

file BUSYBIT), since file BOWDATABASE will not be modified.

I

24

r-IIN-V-- - - .- ,-l;"% -. - -il%.- - - IV 7-7 7 -. 7 76 - ; IF 'N - . - . .

BOW compares this problem number with those listed on file BOWDATABASE. If

the problem number is not found on BOWDATABASE, BOW writes a message on BOWOUT

and calls abort. If the problem number is found on BOWDATABASE, BOW creates

and attempts to save file BOWBUSY under subdirectory

/NTEPHULL/RESTARTFILESC/PxxxxxPxxxx (where xxxxx.xxxx is the problem number).

If an error occurs on the save attemot, BOW writes a message on file BOWOUT

and calls abort. If the save is successful, BOW gets the BOWDATA file from

the problem subdirectory.

As shown in Table 5, BOWDATA contains a list of restart file names with

the problem time and cycle associated with each.

TABLE 5. BOWDATA FILE STRUCTURE

BOWDATA FOR PROB xxxxx.xxxx

NSTA MM/DD/YY HH:MM:SS

T4COOOOO 0.0 0

T4CO0100 timel cyclel

T4C00200 time2 cycle2
IH IS IS

T4COONOO timeN cycleN

LAST

If a restart time or cycle is specified on file HULLIN, BOW compares the

times (or cycles) on file BOWDATA to determine the proper restart file name.

All subsequent restart files are deleted from CFS, and the BOWDATA file is

revised and stored on CFS. If no restart time or cycle is specified, BOW

assumes the problem is to be restarted from the latest restart file. 6*

BOW creates file HULLMSG, which consists of the first two, and last two,

lines from file BOWDATA. HULLMSG provides the restart file name to program

HULL, so that subsequent restart file names are properly sequenced. BOW gets

the appropriate restart file from CFS, with the local file name TAPE4. If the

problem contains stations or particles, BOW also gets the station file

(T9COOOOO), with the local file name TAPE99.

25

As with KEEL, BOW does not delete BOWBUSY. The presence of BOWBUSY

assures that no other job can modify files for this problem until program HULL
finishes successfully and then deletes file BOWBUSY from CFS. BOW writes a

summary message on file BOWOUT, and terminates.

Program PLANK reads the options and values from the Z-BLOCK record on

TAPE4 (the restart file) and any option/values on file HULLIN. PLANK writes

these option name/value pairs and the program name (HULL), on file INPUT2 for

program SAIL. PLANK writes a summary message on file PLNKOUT and terminates.

Program HULL reads file HULLIN to determine if any parameters are to be

changed. HULL reads all of TAPE4 to set the coordinate arrays, the Z-BLOCK
variables, the material properties, and the mesh values for the problem

restart time. If TAPE99 is present, HULL creates a local file TAPE99, and
*copies TAPE9 to it. HULL then reads through TAPE9 to the appropriate restart

time.

HULL then proceeds to advance the mesh through time. Periodically, HULL

produces new restart files (based on the values of "dump" parameters). These

new restart files are written on a newly created local file TAPE4. HULL

stores this new TAPE4 under the problem subdirectory with the name T4CxxxOO

(where xxx is the next consecutive number between 001 and 999). If the

problem has a station file (TAPE9), HULL copies the current TAPE9 to a newly

created file (TAPE99), and stores this file under the problem subdirectory

with the name T9COOOOO. HULL then updates and stores the BOWDATA file. Upon

reaching the desired problem stop time (or detecting some other stop con-

dition), HULL produces and stores a restart file (and station file) as

described above, stores the revised BOWDATA file, deletes BOWBUSY, and then

terminates. Each time a restart file is created, HULL produces a significant

amount of printed output, which includes current values of the Z-BLOCK

variables, job statistics, and material and energy maps. If an error is

detected during execution, HULL writes a message on file HULLOUT describing

the nature of the error, and then calls abort. In this case, HULL does not

delete BOWBUSY, and the COSMOS job stream branches to *SUNK:.

26

C. PULL job file--Program BOW reads input file PULLIN, to determine the
problem number and plot times. BOW gets BOWDATABASE from subdirectory
/NTEPHULL/EPHULLPROBLIB without unique access, since the file will not be modi-
fied. BOW compares the problem number with those listed on file BOWDATABASE.
If the problem number is not found on BOWDATABASE, BOW writes a message on file
BOWOUT, and calls abort. If this problem number is found on BOWDATABASE, BOW
attempts to get file BOWDATA from the problem subdirectory. BOW does not

attempt to save BOWBUSY under the problem subdirectory, since PULL does not
modify any files under this subdirectory. As shown (Table 5), BOWDATA contains

a list of restart file names, with the problem time and cycle associated with
each. Based on the plot times requested in file PULLIN, BOW writes the
required restart file names on file PULLMSG. BOW then gets the first restart
file listed on PULLMSG, writes a summary message on file BOWOUT, and

terminates.

Program PLANK reads the options and values from the Z-BLOCK record on
TAPE4, and any option/value pairs on file PULLIN. PLANK writes these option/
value pairs and the program name (PULL) on file INPUT2 for program SAIL, writes
a summary message on file PLNKOUT, and then terminates.

Program XPULL reads file PULLIN, to determine what plots are required at

each plot time. The required restart file names for each time are read from
file PULLMSG. XPULL assumes that the existing TAPE4 is the first restart file
listed on PULLMSG. After completing all plots requested for a plot time, XPULL
destroys TAPE4, gets the next restart file listed on PULLMSG (if any) as TAPE4,

and produces plots requested for this plot time. After completing all
requested plots, XPULL writes a summary of the plots produced, and terminates.
The file containing the plots (PLTFILE) is then stored, under the problem sub-
directory with the name PULLPLOTS. For color plotting jobs, the file containing
the plots is called TAPE89.

d. STATION job file--Program BOW reads input file STATIN, to determine
the problem number. BOW gets BOWDATABASE from directory /NTEPHULL/

EPHULLPROBLIB without unique access, since the file will not be modified. BOW
compares the problem number with those listed on BOWDATABASE. If the problem

number is not found on BOWDATABASE, BOW writes a message on BOWOUT, and calls
abort. If the problem number is found on BOWDATABASE, BOW attempts to get file

27

X-- - - - - - - FX I

I

BOWDATA from the problem subdirectory. BOW does not attempt to save BOWBUSY
under the problem subdirectory, since STATION does not modify any files under N

this subdirectory. As Table 5 shows, BOWDATA contains the station file name

if the problem has stations. If the station file name found on BOWDATA is
NULL, BOW writes a message on file BOWOUT, and calls abort. If the station
file name is T9COOOOO, BOW gets the station file as TAPE4, writes a summary

message on file BOWOUT, and then terminates.

Program PLANK reads the options and values from the Z-BLOCK record on
TAPE4 (the station file), and from any option/value pairs on file STATIN.
PLANK writes these option name/value pairs and the program name (STATION) on

file INPUT2 for program SAIL, writes a summary message on file PLNKOUT, and
then terminates.

Program XSTAT reads file STATIN to determine what plots are required for

particular stations. XSTAT produces the requested plots for each of any 0
requested stations, writes a summary on file STATOUT, and then terminates.
File PLTFILE is then stored under the problem subdirectory as STAPLOTS.

2. ADDITIONAL EXAMPLES

Due to a scarcity of computer funds, the planned example problems for

nuclear airblast, high explosive burn, and penetration (with STRESS 1) have

been delayed. AFWL plans to run three example plans in the near future, and to
publish the results in an AFWL technical report. The following four tables

(Tables 6-9) contain typical input files for KEEL, HULL, PULL, and STATION

jobs.

28

TABLE 6. KEEL INPUT FILE

KEEL PROB 1.1

STRESS=O IMAX=I00 JMAX=1O0 NM=3 NSTN=1O NOP=I

AIR=1 TNTBRN=2 TNT=3 BURN=1 DIMEN=2

HEADER

TEST PROBLEM

MESH

XO-=O.O XMAX=IO0.O

YO=O.0 YMAX=100.0

GENERATE

PACKAGE AIR RECTANGLE

DELETE CIRCLE RAD=25.0

PACKAGE TNT CIRCLE RAD=25.0

DELETE CIRCLE RAD=3.0

PACKAGE TNTBRN CIRCLE RAD=3.0

STATIONS

XS:I.0 2.0 20.0 30.0

YS:1.O 2.0 20.0 30.0

TABLE 7. HULL INPUT FILE

HULL PROB 1.1

INPUT VECTOR

TIMES=3 OMDINT=5.0e-3

PTSTOP=3.Oe-3

TABLE 8. PULL INPUT FILE

PULL PROB 1.1

VELVECT PHHST

PCONT DCONT

29

I

*4.

TABLE 9. STATION INPUT FILE
.

PULL STATION PROB 1.1

STATIONS ALL ALL

END

30

^I

is.

,N

VI. OTHER CODE MODIFICATIONS

1. CIST EQUATION OF STATE

The CIST EOS, in the CRALE Code (Ref. 1), was rewritten to match the

structure and variable names used in HULL. Essentially, this EOS relates

pressure (stress) and volumetric strain, where the pressure is calculated as a

linear function of the volumetric strain. The particular linear function

changes at specific values of volumetric strain (un to seven different linear

segments), then transitions to a quadratic function at some limiting value of

volumetric strain (Fig. 2).

When the material is being loaded (density is increasing as the

calculation advances), the pressure is calculated as

P = PL(i)+BL(i)*(U-UL(i)) (1)

where

P = Pressure corresponding to U

BL(i) = Bulk modulus for Segment i (segment containing U)

UL(i) = Volumetric strain at left end of Segment i

PL(i) = Pressure on loading curve corresponding to UL(i)

U = Current value of volumetric strain for material in the

cell of interest

U = Rho/RhoO - 1.0

RhoO = Ambient density

Rho = Current density

as long as U is between UL(i) and UL(i+I). Once U exceeds the linear limit
[at most UL(7)], the pressure is calculated as

P = Ptran+Btran*(U-Utran)+Bsq*(U-Utran)**2 (2)

31

PL(5) = .0e20

PL(3)-

U tran

UL(1) UL(2) UL(3) UL(4) UL(S) = .0e20

Volumetric strain

PL1 Pmi n

Figure 2. CIST EOS loading curve.

**32

where

Utran = Volumetric strain where quadratic curve begins

Ptran = Pressure corresponding to Utran

Btran = Linear coefficient for quadratic curve

Bsq = Quadratic coefficient

The unloading curve (Fig. 3) for this cell is assumed to attach to its

loading curve (Fig. 2) at the point of maximum loading achieved. When the

material is being unloaded (p decreasing as the calculation advances), the

pressure is based on the appropriate unloading bulk modulus.

The index for the unloading segment is determined by calculating the

limiting volumetric strains, based on the unloading pressures and the maximum

volumetric strain for this cell (Umax, the point where the unloading curve

attaches to the loading curve). The pressure corresponding to the current

volumetric strain is then

P = PU(i)+BU(i)*(U-UU(i)) (3)

where

P = New pressure

UU(i) = Left end of Segment i (segment containing U)

PU(i) = Pressure corresponding to UU(i)

BU(i) = Bulk modulus on unloading segment i

U = Current value of volumetric strain

The unloading curve is also used for reloading the material, as long as

U is less than Umax. Once U exceeds Umax, the loading curve is used again.

If U then decreases, a new unloading curve is established.

The sound speed is calculated from the equation for bulk modulus

B = (1/3)(Rho C**2)(1+NU)/(1-NU) (4)

Cnew = (3*B/Rho)(1-NU)/(I+NU) (5)

33

PU(I) = .0e20

PU(2)- BL(i) Loading curve

BU(2

INU(2)

Fiue3. CVo Su ldnurve.tai

34

where

Cnew C* 2

C = Sound speed

B = Bulk modulus for segment containing U

NU = Poisson's ratio

Rho = Material density

For the quadratic portion of the loading curve an effective B is defined

Beff = Btran+2.0*Bsq(U-Utran) (6)

The quantity Rho*C**2 (variable name RHOCSQ) is calculated

RHOCSQ = Rho*Cnew (7)

The sound speed variable (CN) is set equal to the square root of Cnew

CN = SQRT(Cnew) (8)

For mixed cells, the variable DPDTAU is required and is calculated as

DPDTAU = -(Beff*Rho**2)/RhoO (9)

The stress deviators are calculated using the modulus

G1 = 1.5*(Beff*(1.0-2.0*NU))/(I+NU) (10)

then

DELTXX = 2.0*GI*DT*DEXX (11)

where

DELTXX = Increment in XX stress

DT = Current time step

DEXX = XX Strain rate

35
I

m= % -M-

The stress deviators are then calculated

DTXX = DTXXO+DELTXX (12)

where

DTXXO = Previous value of DTXX

Note: Special corrections are applied to account for rotation in two-

dimensional cylindrical geometry. See actual code for equations.

Before returning to the calling routine, the stress deviators calculated

above are tested against the Von Mises yield criteria. The flow stress (YLDD)

is calculated, using the hydrostatic pressure (P calculated above) and the

yield curve parameters. The second stress invariant (YTEST) is calculated,

using the new stress deviator values calculated above. If the resultant value

of YTEST exceeds YLDD, the deviators are modified by the value (YLDD/YTEST)

DTXX = DTXX*(YLDD/YTEST) (13)

Upon completing these calculations, the program returns to the calling routine.

2. CONTROL FEATURE

The AF4. CRAY and other computers do not report the status of long

calculations to the user, between restart files. This problem is especially

difficult for the iser if the calculation is a batch job, rather than one being

run interactively.

To respond to user desires to conserve scarce computer funds, a new

capability known as CONTROL was created. This capability is provided by an

additional subroutine in HULL, called CNTROL. Subroutine CNTROL looks for a

file named HULLCNTRL under the problem subdirectory every ICNTRL-th cycle. If

found, CNTROL gets it, and then deletes it from CFS to assure that it will not

be there next time. CNTROL reads the file and follows the instructions found.

HULLCNTRL can turn the autopriority option on or off, change the priority,

36

change the time limit, change the dump interval, turn on Switch 1 to terminate

the job, etc. CNTROL then writes a file called HULLSTATUS consisting of the

current priority, current time limit, status of autopriority, estimated whiz

factor, etc., and the current Z-BLOCK. This file is produced every ICNTRL-th

cycle, regardless of whether HULLCNTRL was found or not. HULLSTATUS is then

stored under the problem subdirectory. Any user can get HULLSTATUS, and

determine how the calculation is progressing. This procedure is similar to the

MONITOR capability available at AFATL.

The file format and instructions for creating HULLCNTRL are contained in

Appendix B.

The appendices at the end of this report are intended to be used as stand-

alone references, to answer most user questions. Additional information is

available in the reports listed under REFERENCES. t

37

I~ Mdatp -% r116P -W

VII. CONCLUSIONS AND RECOMMENDATIONS

This effort has produced an efficient, easy to read, vectorized version of

the Elastic/Plastic HULL hydrodynamics code that may be used on any machine.

On the AFWL CRAY, the vectorized version used less than 20 percent of the CPU

time on a multimaterial problem than did the original scalar version. The

Lagrangian options have not been modified. If these options are to be used by

AFW. on a frequent basis, a follow-on effort to vectorize the Lagrangian

options should be undertaken.

3.

'I,

REFERENCES

'U1. Schuster, S., Crale Users Manual, AFWL-TR-82-45, Air Force Weapons
Laboratory, Kirtland AFB, NM, September 198?.

2. CISS MINI-REFERESICE, Los Alamos National Laboratory, August 1984.

3. Bell, R. L., Cray Time Sharing System (CTSS) Version of the HULL File
Maintenance Progran -- BOW, AFWL-TR-84-58, Air Force Weapons Laboratory,
Kirtland AFB, N14, August 1984.

4. Bell, R. and Westmoreland, C., Elastic/Plastic HULL (EPHULL) Operation
on the CRAY Tim Sharing Systun (CTSS), AFW'L-TR-83-6, Air Force Weapons
Laboratory, Kirtland AFB, NM, April 1983.

5. Durrett, R. E. and Matuska, 0. The HULL Code Finite Difference
Solution to the Equations ofCotinuim Mechanics, AFATL-TR-78-125, Air
Force Armament Laboratory, Eglin AF8, FL, November 1978.

6. Matuska, 0. A., and Osborn, J., HULL Docmeentation, Orlando
Technology, Inc., 60 Second St., Bldg. 5, Shalimar, FL.

7. Vector HULL Report by Hasdal, unpublished, Air Force Weapons Laboratory.

8. Needham, C. E Havens, M. L., and Knauth, C. S., Nuclear Blast Standard
(I kt), AFi.-1I-73-55, Air Force Weapons Laboratory, Kirtland AFB, NM,
April 1975.

9. Durrett, R. E. , et al. , The WULL Hydrodyninics Computer Code, AFWL-TR-
76-183, Air Force Weapons Laboratory, Kirtland AFB. NM, September 1976.

10. SAIL Users Guide for Running the HULL and EPIC3 Codes, Orlando
Technology, Inc., 60 Second St., Bldg. 5, Shalimar, FL.

39/40

11 ,- WM-
- -1111

APPENDIX A

AFWL SAIL CODE SUMMARY

CONTENTS

Section Page

PREFACE 43

A-I SAIL LIBRARY FILE FORMAT 44

1. HEADER RECORD 44
2. OPTION DIRECTORY RECORD 45
3. DATA RECORDS 46

A-II SAIL DIRECTIVES 47

1. DIRECTIVE VERB FIELD 48
2. DIRECTIVE NOUN FIELD 48
3. DIRECTIVE OPERAND FIELD 49

A-Ill SAIL EXECUTIVE DIRECTIVES 50

1. *AUTO AND *MAN 50
2. *B and *E (PROGRAM DEFINITION) 50
3. *DEFL AND *DEFN (OPTION DEFINITION) 50
4. *PROC, *ENDPROC, AND *INCLUDE 50
5. *TXT AND *ETXT 52
6. *KEEPTO, *SKIPTO, and *LABEL 52

A-IV SAIL CHANGE DIRECTIVES 54

1. *A AND *1 54
2. *C and *D 54
3. *M 55

A-V SAIL MAINTENANCE DIRECTIVES 56

1. EXECUTIVE DIRECTIVES THAT ARE MAINTENANCE DIRECTIVES 56
2. CHANGE DIRECTIVES THAT ARE MAINTENANCE DIRECTIVES 56
3. *DIR, *EDIR, *P, AND SAIL COMMENTS 56

A-VI DYNAMIC VALUE SUBSTITUTION 57

1. VALUE SUBSTITUTION 57
2. CHARACTER SUBSTITUTION 58

41

- - - - - - - - - - - - - U

CONTENTS (Concluded)

Sect ion Page

A-VII SAIL INPUT/OUTPUT 59

1. MODE PARAMETERS 60

a. Executive 61
b. Update 63
C. List 65
d. Copy 66
e. Scan and Extract 67
f. Punch 68
g. Generate 68

2. FILE PARAMETERS 70

a. SYSTEM 70
b. VERSION 70
c. CONVERT 70

3. EXAMPLE INPUT FILES 70

'C a. Executive 70
b. Update 71

C. List 71
d. Copy 71
e. Scan 71
f. Punch 72
g. Generate 72

V

42

PREFACE

The information in this appendix was obtained primarily from a draft copy

of the SAIL User 6uide for Running the HULL and EPIC3 Codes, written by

Orlando Technology, Inc. (OTI) (Ref. Al). Information not applicable to the

AFWL CRAY (mostly CDC machine-dependent parameters) has been excluded. The

SAIL code used at AFWL is not supported by OTT, because it was not purchased
from that company. Any deficiencies in the AFWL SAIL code should be addressed

to the Atmospheric Phenomenology Section of the Air Force Weapons Laboratory

(AFWL/NTEDA) for corrective action.

I,

Al. Sail1 Users Guide for Rwrnnreg the HUL.L and EPIC3 Codes by Orlando
Technology, Inc., 60 Second Street, Bldg. 5, Shalimar, FL 32579 (draft of
report for BRL), no date.

43

p(

A-I. SAIL FILE LIBRARY FORMAT

The SAIL Code may be thought of as an automated editor. It operates on a

file which is in the format described below. That file, produced by SAIL in

the Generate, Copy, Convert, or Update mode, is referred to here as the SAIL

Library File (SLF). The SLF consists of a header, an option directory, and

Sdata.

1. HEADER RECORD

The first record on the SLF (the header record) contains the information

listed in Table Al. The header record cannot be longer than 250 words.

Because of this limitation, an SLF can have a maximum of 50 programs, and no

more than 46 default programs.

TABLE Al. SLF HEADER RECORD

Word Contents Type

1 Version number Integer

2 System name Character

3 Creation date Character

4 Number of default programs Integer

5 First default program name Character

6 Second default program name Character

01I Ia II

50 Forty-sixth default program name Character

51 Program name (first program on SLF) Character

52 Sequence number of first program start Integer

53 Program name (second program on SLF) Character

54 Sequence number of second program start Integer

La II a.

Ia II Ia

N-1 Program name (N-50)/2 program on SLF Character

N Sequence number of (N-50)/2 program start Integer

44

Orr. pr*

The system name and version are arbitrary identifiers. The version number

is automatically incremented by I during a SAIL update if no other action is

taken. The creation date is the date the current version was produced.

Default programs are the names of the programs to be assembled by SAIL in the

executive mode if no options are set to select some other set of programs.

The data of each SLF can be divided into separate programs. The start of each

program is assigned a sequence number which is an integral multiple of 10,000.

The first program thus starts at sequence number 10,000. If the first program

is less than 10,000 statements long, the second program starts at sequence

number 20,000. If the first program is more than 10,000 statements long, the

second program starts at the next whole multiple of 10,000 greater than the

length of the first program plus 10,000.

If an updated SLF is created without resequencing the line numbers, the

line numbers assigned to newly added lines consist of the line number

immediately preceding their location plus a decimal part (NNNNN.XXXX). The

decimal part is X for the first 9 additional lines, XX for additional lines

10 through 99, .XXX for additional lines 100 through 999, and .XXXX for

additional lines 1000 through 9999. If more than 10,000 lines are added, the

decimal part is indicated by a plus sign (NNNNN.+) when listed (either on a

source code listing or a SAIL list).

The first data section on an SLF (called the prologue) starts at sequence

number 1.0. The prologue (a collection of statements that may be used in more

than one program) is always processed by SAIL during the executive (normal)

mode.

2. OPTION DIRECTORY RECORD

The second record on an SLF (the option directory record) contains the

information listed in Table A2. The option names defined in this record are

used to control SAIL processinq during the executive mode. Option entries can

be changed, added, or deleted only in the generate, copy, or update mode. This

record can not exceed 502 words (maximum 250 default options).

45

..V LXV

TABLE A2. SLF OPTION DIRECTORY RECORD

Word Contents Type

1 Number of lines in data portion of this SLF Integer

2 Number of default options Integer

3 Option one name Character

4 Option one value Integer

5 Option two name Character

6 Option two value Integer

i!t

it iiit

N-1 Option (N-2)/2 name Character

N Option (N-2)/2 value Integer

* 3. DATA RECORDS

The remainder of the SLF consists of data used by SAIL in producing source

code files during the SAIL executive mode. These data are organized into

groups of individually sequenced statements so that an input/output buffer

operation can treat a large amount of data during each call. On the AFWL CRAY,

SAIL defaults to 1023 words per record. Each SLF line is 11 CRAY words long,

so there are 93 lines per record.

The first word on an SLF line is the sequence number. The next 9 words

contain 72 characters of data, and the last word consists of the eight-charac-

ter date of insertion (or last modification). Each statement can be thought of

as 72 column card images. These data are of three forms: (1) SAIL executive

directives; (2) SAIL maintenance directives or comments; and (3) source code

input data kernels. These data kernels are output directly (or in modified

form) to the source code file after being processed by SAIL executive

directives.

46

A-Il. SAIL DIRECTIVES

There are three categories of SAIL directives: (1) SAIL executive

directives; (2) SAIL change directives; and (3) SAIL maintenance directives.

These directives consist of up to three fields: (1) verb; (2) noun;

and (3) operand. These fields are separated by one or more blanks. Table A3

lists the SAIL directives in alphabetical order, along with their types

(E=Executive, C=Change, M=Maintenance).

TABLE A3. SAIL DIRECTIVES

Verb Noun Operand Type

*A Sequence number --- C/M

*AUTO --- --- E

*B Program name --- E/M

*C Sequence nuber(s) --- C/M

*C Sequence number, --- C/M

column numbers

*D Sequence number(s) --- C/M

*DEFL Option name Logical option E

string

*DEFN Option name Numeric option E
string

*DIR M
*E --- --- E/M

*EDIR ----- M

*ENDPROC --- --- E

*ETXT --- --- E

*I Sequence number --- C/M
*INCLUDE PROC name Logical option E

string

*KEEPTO Label name Logical option E
string

*LABEL Label name --- E

*M Sequence number(s) --- C/M

*MAN E

47

* p . ~v. p'S.. | l

TABLE A3. CONCLUDED.

Verb Noun Operand Type

*P Subroutine name M

*PROC PROC name Logical option E

string

*SKIPTO Label name Logical option E
string

*TXT -..-- E

- Indicates SAIL --- M
comment line

1. DIRECTIVE VERB FIELD

With the exception of the SAIL comment directive (=), all SAIL directives

start with an asterisk (*) in the first character position of the record,

followed immediately (no blanks) by a valid "verb." Every SAIL directive

except SAIL comments has a verb field. See Table A3 for valid verbs.

In general, SAIL directives are not copied to the source code files.

However, a text string not recognized as a SAIL directive (due to misspelling, ..

etc.) will show up on the source code file. Since there is an asterisk in the

first column, the line is mistakenly recognized as a comment by the CRAY

FORTRAN compiler.

2. DIRECTIVE NOUN FIELD

Most executive directives require a noun field. This field consists of

not more than eight nonblank characters separated from the verb field by at I

least one blank. For the *KEEPTO and *SKIPTO verbs, the special noun field *N,

can be used where N is an integer indicating the number of lines to be retained

(or skipped), instead of the usual eight-character (or less) label name.

Change directives require a sequence number in the noun field. This

sequence number indicates where (in the SLF) changes are to be made.

48

1* lifw-ry Y? AF 4r -J d.7 -JFW4 -W. iWN'N
R'J" . j''~* *~. ~ w ~ r ~ - . .

3. DIRECTIVE OPERAND FIELD

Operand fields are usually logical. Operands are numeric, for the *DEFN
verb. Numeric operands consist of option names and integer constants separated
by the arithmetic operators: +, -, * (multiplication), and / (division). The
resulting expression is evaluated strictly from left to right (1+2*3 = 9,

not 7).

Logical operands are either true or false. A logical operand consists of
one or more option names assembled in logical statements with logical relations
(LT, LE, EQ, GE, GT) and logical operators (AND, OR, NOT). Integer constants
can also be used, but must follow the logical relation without a delimiter
(blank, comma, or equal sign) between (GT2, not GT 2). A blank logical operand
field is always considered true.

Option names and operators must be separated by at least one blank. An
option with a value greater than zero has a logical value of true; an option
with a value of zero has a loqical value of false; and an option that has not
been defined will result in abnormal termination of the program. A special

operator "DEF" (quotes included) can be used to test an option that may or may
not be defined. The element "DEF" NAME has a value of true if the option NAME
has been defined (given some integer value, including zero), or false if NAME
has not been defined. Like arithmetic expressions, logical expressions are
evaluated strictly from left to right unless grouped by using parentheses.
Parenthetical groups are evaluated from left to right.

49

b-b h W .Wi" 7&1 %7 K* *X - -7 -, - " -_ '. % -W.W_. bP

A-Ill. SAIL EXECUTIVE DIRECTIVES

1. *AUTO AND *MAN

The *AUTO directive causes automatic value and character substitution to

occur until the *MAN directive is encountered. For further explanation, see

Section A-VI, Dynamic Value Substitution.

2. *B AND *E (PROGRAM DEFINITION)

The *B NAME directive indicates the beginning of program NAME. If

processing of NAME is requested, SAIL will process the PROLOGUE and skip to

program NAME, as indicated by *B NAME in the SLF. Processing will terminate

upon encountering *E or another *8. Also, a SAIL library listing will include

the program names specified by *B directives in the summary, and will force
these *B NAME lines to begin at the top of the page. Further, the program name

will appear in the banner at the top of each page for all following pages,
until another *B (or *E) directive is encountered.

3. *DEFL AND *DEFN (OPTION DEFINITION)

Options may be defined in three ways: (1) by the SAIL option directory

record; (2) by *DEFL or *DEFN executive directives; or (3) by the SAIL input

files. The SAIL option directory record is discussed in Section 12 and

Section A-VI, SAIL Maintenance Directives. The SAIL input files are described
in Section A-VII, SAIL Input/Output. An option value maybe changed (or

defined) during executive processing by using *DEFN NAME arithmetic operand.
NAME will be set equal to the arithmetic expression, evaluated strictly left to

right as described above in Section A-II. An option can also be defined using

the *DEFL NAME logical operand. Option NAME will have a value of zero if the

logical operand expression is false, or a value of one if the expression is

true.

4. *PROC, *ENDPROC, AND *INCLUDE

The first executive syntactical element used in the HULL code was the

procedure definition *PROC. Its basic form is

50

*PROC NAME logical operand

sl
s2
I,

sN
*ENDPROC

Statements sl through sN (between the *PROC-*ENDPROC pair) are stored with the

descriptor NAME if the logical operand is true. Statements sl through sN may

contain any data including executive directives (except for another *PROC

directive). All directives contained in NAME are processed by SAIL. If the

logical operand field is blank, the PROC is always created. Blank logical

operand fields are always considered true.

The executive directive *INCLUDE NAME logical operand causes this block of

code to be inserted at the point in the SLF where it appears (if the logical

operand is true). If the procedure NAME has not been created, SAIL puts a

message to that effect on output, and calls abort. Procedures can be included

in the definition of other procedures using the *INCLUDE directive, up to a

nesting depth of eight.

If the *ENDPROC directive is not found before encountering another *PROC

(or the end of file), SAIL terminates abnormally.

Another form of the *PROC directive permits definition of a macro-like

feature. In this form, the noun field is extended with a series of arguments

enclosed in parentheses. For example

*PROC SSQRT(A,B,C)

"A"=SQRT("B"**2.4.0*4SA"*"C")

*ENDPROC

where the arguments enclosed in " " are to be replaced upon expansion. To

invoke the procedure defined above, the executive directive

51

S.%VI

*INCLUDE SSQRT("X" ,M Y", "Z")

results in

X=SQRT(Y**2-4.0*X*Z)

A third form of procedure definition is also possible, by using an option

table entry to define a character string for use in building a procedure naime.

In this usage, the noun field of the *INCLUDE directive is delimited by the

character $ in the form

*INCLUDE $ NAMEn AAA $ logical operand

where NAME is the name of a previously defined option, and n is the value of

some option following NAME. If NAME has a value of M, the M options following

NAME are considered to be in the "NAME option table" (see Section A-IlI). The

first option name in the NAME option table with the value n gets concatenated

with AAA (if present) to form the desired procedure name. If none of the M

options in the NAME option table have a value n, SAIL ignores the directive.

If the resulting procedure name has not been deffned, SAIL terminates

abnormally.

5. *TXT AND *ETXT

These directives instruct SAIL to ignore all directives on lines after the
*TXT directive until the *ETXT directive is encountered. All lines between

*TXT and *ETXT are copied to the output file as text.

6. *KEEPTO, *SKIPTO, AND *LABEL

These directives allow selective retention of blocks of code on the SLF.

For short blocks (less than five lines), the form

*KEEPTO *N logical operand

52

(where N is the number of lines to be retained) causes SAIL to copy the next N
lines to the source code file if the logical operand is true. The usual form

for longer blocks

*KEEPTO NAME logical operand

causes SAIL to process all lines following this directive until the line

*LABEL NAME

is encountered, if the logical operand is true. If false, all lines between
the *KEEPTO and *LABEL directive will be left out of the source code. The
*SKIPTO directive is equivalent to the function of a *KEEPTO directive with

the conlement of the logical operand.

When using the *KEEPTO *N construct, SAIL coments, *P, *DIR, *EDIR, and
*ETXT directives are not counted; N lines other than these will be retained or

skipped as determined by the logical operand.

53

- .9 - .

A-IV. SAIL CHANGE DIRECTIVES

1. *A AND *1

These change directives cause new lines to be inserted in the SLF after

the sequence numbers following these directives. The syntax

*A NI

cN

Nc2
#I

of

to

*1 N2
Is

if

If

causes all lines after *A NI (lines cl,c2,...,cN) to be inserted after sequence

number Ni. Lines on the SAIL input file following *1 N2 would be inserted

after sequence number N2 on the SLF.

2. *C AND *D

These directives cause changes or deletions to be made in the SLF.

Records are deleted by: *C N1,N2 or *D Nl,N2. All lines between NI and N2

(inclusive) are ignored, and replaced with any lines on the SAIL input file

following these directives, until SAIL finds the next change directive.

Individual columns on an SLF line may be altered by

,. *C N1(C1,C2,CI',C2')

which replaces columns C1 through C2 on line N1 with information from column

Ci' through C2' on the next SAIL input file line. Columns Cl' and C2' have
default values of C1'=1 and C2'=C1'+C2-C1 if missing.

54

3. *MD

This directive is used to copy lines from one part of the SLF to another.

Directive *M must be preceded by *A, *I, *C, or *D to define the insertion

sequence number. The following

*A N1

*M N2,N3

II -

would cause lines N2 through N3 of the SLF to be inserted after sequence number

NI. The *M directive can be mixed with other insertion data or with other *M

directives. Lines between sequence numbers N2 and N3 are not altered by this

directive, but are merely copied to the new location.

I

55

A-V. SAIL MAINTENANCE DIRECTIVES

Executive processing does not permanently change the SLF. Maintenance

directives are instrumental in producing permanently changed (updated) versions

of the SLF.

1. EXECUTIVE DIRECTIVES THAT ARE MAINTENANCE DIRECTIVES

The executive directives *B and *E are also maintenance directives. As

such, these would be used to define the extent of new programs being added to

the SLF.

2. CHANGE DIRECTIVES THAT ARE MAINTENANCE DIRECTIVES

The change directives *C, *D, *I, and *M are also maintenance directives.

These directives are used to delete, insert, and rearrange lines on the SLF to

form a new, permanently changed SLF.

5.

5. 3. *DIR, *EDIR, *P, AND SAIL COMMENTS
So.

The *DIR and *EDIR directives aid documentation. SLF lines following a
*DIR and preceding an *EDIR directive are listed during a directory list run by

SAIL. Collections of FORTRAN and SAIL comment lines can then be assembled in a

single listing for all or part of an SLF.

The directive *P NAME causes the SAIL listing to start on a new page, and

places the subroutine name (NAME) in the banner on that page and all subsequent

pages until another *P or *B (or *E) directive is encountered.

Comments which are to appear only in the SAIL listing are created by

placing an equal sign (=) in the first column of each line.

56

A-VI. DYNAMIC VALUE SUBSTITUTION

SAIL can modify the source code it produces by using the values of options

which have been defined by the option directory, the SAIL input file, and the

*DEFL and *DEFN directives. Segments of the SLF can be included, left out, or

repeated based on these option values. See Section A-Ill (SAIL Executive

Directives) for further explanation.

Individual SLF lines can be altered by value or character substitution.

Dynamic substitution is performed on SLF lines which begin with the

character $, or on lines between the *AUTO and *MAN directives.
P

1. VALUE SUBSTITUTION

Current values of previously defined options are substituted for the

option names on lines where dynamic substitution is to take place if they are

delimited by the characters (,), or /. For example, if

"1,
NH=16 IMAX=60 JMAX=100

options have been defined, executive processing of the lines

$ COMMON /EOS/ RCSQ(IMAX,JMAX)

$ DATA NH/NH/

results in the following lines on the source code file

COMMON /EOS/ RCSQ(60,100)

DATA NH/16/ .

with the $ character removed. If the option is not defined (EOS above for

example), the character string is copied intact.

Values can also be substituted for option names not delimited by the

characters mentioned above, by using the special delimiter character _ "

(underline). In this case, the option name and delimiters are replaced by the

option value.

57

=~ ~~ -- -V

2. CHARACTER SUBSTITUTION

Character substitution is based on option table values as described in

Section A-Il. If

NM=3 FE=4 AL=I AIR=6

options are defined, the SLF line

$ CALL _$NM6 (P,_NM_)
w%

would be expanded to

CALL AIR(P,3)

on the source code file, with all extraneous symbols ($ and_) removed.

58

i

A-VII. SAIL INPUT/OUTPUT

The SLF described in Section A-I serves as one element of input data to

SAIL during all modes of operation except an initial generate run. The SLF

must have the local file name OLD when used by SAIL. When a library file is

produced by a generate, copy, or update run, the new SLF will have the local

file name NEW. During an executive assembly or punch run, the resulting source

code will be on local file SAIL (or SAILI, SAIL2, etc., if several programs are

processed). The compiler must be instructed to use the appropriate source code

file. SAIL library list runs, and messages concerning the execution of SAIL,

will be put on local file OUTPUT.

Primary control of SAIL is through the local file named INPUT. This file

requires the word SAIL as its first nonblank character string. Data on this

file is used to determine the mode and provide change directives or other data

for SAIL to complete the desired run.

The third primary input file used by SAIL is the local file INPUT2, if

present. File INPUT2 is produced by program PLANK during executive assembly

runs. INPUT2 supplements and overrides data on the first two records of the

SLF and the INPUT file. This is the primary way for options to be defined

during HULL runs.

If the default names for files INPUT and OUTPUT are not satisfactory, they

may be changed at the time of execution by using

XSAIL I=FILE1 O=FILE2

where FILEI is the local name of the SAIL input file and FILE2 is the desired

name for the output file from this run.

Table A4 contains a summary of the files used or produced by program SAIL.

The executable file for program SAIL is known by the local file name XSAIL on

the AFWL CRAY to avoid confusion with the source code file SAIL.

V

59

C...

TABLE A4. SAIL INPUT/OUTPUT FILES

Local file name Purpose Type

OLD Old SLF Input

NEW New SLF Output

SAIL Source code file Output

(SAILI, SAIL2, etc.) Source code files Output

INPUT Control and changes Input

INPUT2 Alternate control Input

OUTPUT Lists and messages Output

The SAIL input file generally contains all changes required for a particu-

lar run. However, long change files may be implicitly included as part of the

SAIL input file by including *READ FILENAME in the input file. The asterisk

(*) must be in the first column, and the file FILENAME must be a local file

containing SAIL change directives. Several change files can be read using this

method. Each file must be local to the job, and the SAIL input file must

contain a *READ for each supplemental file.*
,p

1. MODE PARAMETERS

Essentially, SAIL is composed of seven different programs, whose sole

common feature is their use of the SLF as input, output, or both. Selection of

the different modes of operation is accomplished by including a mode parameter

in the SAIL input file. Table A5 shows the relationships between various files

and the operational modes of SAIL.

*If more than one change file is read, the priority for any overlapping sequences

in change directives goes to the earlier file read.

60

TABLE A5. SAIL MODE PARAMETERS AND FILE FUNCTIONS

Mode Input files Output files Function Result

EXECUTIVE INPUT INPUT2 SAIL OUTPUT Produce source Source code
(NORMAL) OLD code file(s)

UPDATE INPUT OLD NEW OUTPUT Produce new Updated SLF
SLF

LIST INPUT OLD OUTPUT Lists SLF Complete or
and attributes partial list i

COPY INPUT OLD NEW OUTPUT Prepare SLF SLF in
for transport different

form

GENERATE INPUT NEW OUTPUT Initiate New SLF
new system

SCAN INPUT OLD OUTPUT Locate text Sequence

(EXTRACT) in SLF number
and lines
with
desired text

PUNCH INPUT OLD SAIL Produce 80 Card image
column card copy of SLF
images of SLF (or portion

of SLF)

a. Executive--Absence of a mode parameter or the existence of a SAIL
input file will cause SAIL to begin executive processing (the default mode).

With no other instructions, SAIL will attempt to process the default programs
using the existing option definitions on the SLF. If a SAIL input file is

present, additional parameters can be used to modify the SAIL executive

functions and change the resulting source code. These parameters must be

located between the the initial keyword SAIL and the first input line which
begins with an asterisk (a change directive or *READ to read a change file).

Parameters which may be invoked during executive processing are listed in

Table A6.

61

* % ~ ~ S' - - -, I

TABLE A6. EXECUTIVE MODE INPUT PARAMETERS

Verb Noun(s) Function

LINENO --- Causes SAIL to append the SLF line
numbers on the source code file

DELOPTIONS Option name(s) Delete options for this run

OPTIONS Option name/ Add new option names and values
Value pairs or change values for this run

"AFTER" Option name Create an option table

ENDOPTIONS Terminates DELOPTIONS/OPTIONS
section of SAIL input

PROGRAM(S) Program name(s) Indicates programs to be processed
for this run

ENDPROGRAM --- Terminates program list

PROSNAME Program name Indicates program name for which
source code is to be produced

The verbs in Table A6 can be used in other SAIL modes, but with

pnssihly different results. Note the distinctions with care.

The LINENO parameter allows the user to establish a one-to-one

correspondence between a compiler listing and an SLF listing. This simplifies

program development, debug, and modification.

The DELOPTIONS/ENDOPTIONS and OPTIONS/ENDOPTIONS parameters are used

to remove, add, or change options in the option directory for this run. The

original option name/value pairs remain unchanged on the SLF. The SAIL input
file line

SAIL DELOPTIONS A ENDOPTIONS OPTIONS 8=2 C=4 ENDOPTIONS

changes

A=2 B=5 D=7

62

* -- ' V

default options to

B=2 0=7 C=4

The OPTIONS parameter can also be used to establish an option table.

The parameter "AFTER" (quotes included) is used in the option definition

parameter list. The option name immediately following "AFTER" is the option

table name. Option name/value pairs following the table name become members of

the table. Therefore,

SAIL OPTIONS TAB=2 "AFTER" TAB ENZONE=3 ENZTWO=2 ENDOPTIONS

will produce the option table sequence: TAB=2 ENZONE=3 ENZTWO=2. This table

exists only for this run.

The input parameters PROGRAM and PROSNAME are used to override the

SLF default program definitions. Program names following the input parameter

PROGRAM will be processed by SAIL. The PROSNAME parameter is used to designate

the single program for which source code is to be produced during this run.

Other programs (names listed after PROGRAM) are scanned for option and

procedure definitions only. Program PLANK defines PROGRAM, PROSNAME, and

OPTIONS on file INPUT2.

b. Update--The keyword UPDATE causes SAIL to produce a new SLF using an

existing SLF and modifications specified on the SAIL input file. Table A7

lists the input parameters which may be used during update runs.

6

63D

TABLE A7. UPDATE MODE INPUT PARAMETERS

Verb Noun(s) Function

EDIT Character strings Character string replacement
ENDEDIT

LINES Integer (le 85) Define number of lines
per page for SLF listing

SEQ Resequence file NEW

NOLIST --- Suppress listing of NEW

OPTIONS Option name/ Change option directory
value pairs on file NEW

DELOPTIONS Option name(s) Delete options from option directory

ENDOPTIONS Terminates OPTIONS/DELOPTIONS

PROGRAM(S) Program name(s) Change default programs on NEW

ENDPROGRAM --- Terminates program list

SEQPROGRAM Program name(s) Resequence listed programs

VERSION Integer Specifies version number for NEW

(or OLD)

SYSTEM Character String Specifies system name for NEW

(or OLD)

SAIL does not process executive directives during update runs. An

update run produces a modified default program list (specified by the PROGRAM

parameter), a modified option directory (defined by the OPTION/ENDOPTIONS and

DELOPTIONS/ENDOPTIONS parameters), and changes to the data portion of the SLF

as defined by the change and maintenance directives on the SAIL input file.

The EDIT/ENDEDIT parameters are used to change character strings in

the SLF. The following SAIL input lines

SAIL UPDATE EDIT

$DO 10$ $00 20$

$IF(J.EQ.1)$ $IF(K.EQ.1)$

ENDEDIT

64

would cause all occurrences of DO 10 to be replaced by DO 20, and all occur-

rences of IF(J.EQ.1) to be replaced by IF(K.EQ.1).

c. List--The list mode produces a list of all, or a selected portion

of, the SLF on the output file. Contents of the header record and the option

directory record are printed first. The last segment of information printed on

a list run is a summary index which lists the sequence number of each program

or subroutine start (as defined by *B or *P directives). A list is always

produced during an update run unless the NOLIST parameter is included.

During a list run, each program or subroutine unit starts at the top

of a page with a header line identifying both program and subroutine names.

Each line in the data portion consists of the sequence number, the card image,

and the date this line was last modified. An asterisk precedes sequence

numbers of lines modified during the last update run. The asterisk can be

eliminated by including the NOAST parameter in the SAIL input file. List mode

parameters are listed in Table A8.

TABLE A8. LIST MODE PARAMETERS

Verb Noun(s) Function

NOAST --- Suppresses * before sequence numbers

of lines changed during last update

LINES Integer < 85 Number of lines per page on output
(default 60)

PROGRAM(S) Program Name(s) Causes list of only those
programs named

ENDPROGRAM --- Terminates program list

DIRECTORY --- Only lists lines between
*DIR/*EDIR pairs

"DIR" -Modifier to allow complete listings
of some programs and directory
listings of others

EDIT Character Character string replacement
Strings

ENDEDIT Terminates EDIT

65

111111111 1 1 1 l

The SAIL input line (SAIL LIST) would produce a complete listing of

the SLF. The SAIL input line (SAIL LIST PROGRAM P1 P2 P5) produces a complete

listing of the programs named P1, P2, and P5. The SAIL input line (SAIL LIST

DIRECTORY) produces all "directory' information (lines between *DIR and *EDIR

directives). The SAIL input line (SAIL LIST DIRECTORY PROGRAM P1 P2) produces

the "directory" information for programs named P1 and P2. The SAIL input line

(SAIL LIST PROGRAM P1 "DIR" P2) produces the "directory' information for

program P1 and a complete listing of program P2.

By including change directives after the SAIL LIST parameters, the

listing incorporates the changes. Instead of new sequence numbers, the word

NEW will precede all changed lines. This provides a convenient way to check

the effects of changes before doing an update. The same is true of the

EDIT/ENDEDIT parameters.

(d) Copy--Copy mode is similar to update except that change

directives are not processed. File OLD is copied to file NEW with possible

" changes to the default program list (indicated by the PROGRAM parameter) and

option directory (indicated by the OPTIONS, DELOPTIONS, and ENDOPTIONS

parameters). The copy parameters are listed in Table A9.

TABLE A9. COPY MODE INPUT PARAMETERS

Verb Noun(s) Function

OPTIONS Opition name/ Chang tion directory recordva ue pairs on fgme NEW

DELOPTIONS Option name(s) Delete options from option

directory

ENDOPTIONS --- Terminates OPTIONS/ENDOPTIONS

PROGRAM(S) Program name(s) Change default programs on
file NEW

ENDPROGRAM --- Terminates program list

CONVERT --- Change the file format of NEW
(or OLD)

VERSION Version number Specifies version nuber for NEW
(or OLD)

SYSTEM System name Specifies system name for NEW
(or OLD)

66

, S U S * S * ''- , ~ 5 ~ p S - S

The CONVERT parameter is order-dependent. The SAIL input line (SAIL

COPY CONVERT) converts a packed internal representation file OLD to an ASCII

NEW. The SAIL input line (SAIL CONVERT COPY) converts an ASCII OLD to a packed

internal representation NEW. This is especially useful for transporting an SLF

from one operating system to another.

e. Scan and extract--The scan mode is used to locate desired character

strings in an SLF. The scan (and extract) parameters are listed in Table AIO.

TABLE A1O. SCAN AND EXTRACT MODE INPUT PARAMETERS

Verb Noun(s) Function

FIELD Character string(s) (delimited Provides section of
by any character not in input file for desired
the character string) character string(s)

ENOFIELD Terminates FIELD

PROGRAM(S) Program name(s) Selects programs to

be scanned

ENOPROGRAM Terminates program list

The extract mode is virtually identical to the scan mode, except that

the resulting output file is set up as a change file. The sequence number is

printed on one line, preceded by a *D change directive. The line containing

the character string is printed on the next line. The user may next edit this

file and make any changes to the line, and then use this file as a change

file.

The SAIL input files for scan and extract

SAIL SCAN FIELD SAIL EXTRACT FIELD

$character stringl$ $character stringl$

$character string2$ $character string2$

ENDFIELD ENDFIELD

67

15 11 5 111 12 1

rsupjWjw_. pj" "AF.-% a -it NUIf -II -W~ Ir . .- W. r - l

would result in the listing of all lines containing character string1 and

character string2 on the output file. For scan mode, the sequence number

precedes the card image. For extract, the output file is formed as described

above.

f. Punch--The punch mode produces a file consisting of 80 column-card

images of the SLF without sequence numbers. The PROGRAM parameter may be used

in the punch mode to select specific programs to be "punched". The SAIL input

file

SAIL PUNCH PROGRAM MATLIB

would result in 80 column-card images of program MATLIB on file SAIL.

g. Generate--This is the mode used to establish a new SLF. The generate

mode parameters are listed in Table All. (Generate mode is not fully operational

in AFWL's version of XSAIL in use at this printing.)

TABLE All. GENERATE MODE INPUT PARAMETERS

Verb Noun(s) Function

OPTIONS Option name/ Establish option directory

value pairs

ENDOPTIONS --- Terminates OPTIONS

PROGRAM(S) Program name(s) Establish default program list

ENDPROGRAM --- Terminates program list
SYSTEM Name Defines system name for SLF

VERSION Version number Defines version number
(Default=l)

68

The SAIL input file

SAIL GENERATE

SAIL OPTIONS option1 valuel option2 value2 option3 value3

ENDOPTIONS PROGRAM P1 P2 ENDPROGRAM SYSTEM sysname

prologue lines

11

if

O

*B P1
IJ

program P0 lines
IS

IS

*8 P1

program P2 lines

Is
*8 P2

program P2 lines

'S

results in a new SLF on local file NEW, with the system name 'sysname."

The SLF is version one, and default programs are P1 and P2. The

default options are optionl with valuel, option2 with value2, and option3 I
with value3.

69

I

2. FILE PARAMETERS

The SYSTEM, VERSION, and CONVERT parameters are order-dependent file

parameters.

a. SYSTEM--The SYSTEM parameter can be used to check the system name of

the current SLF, or to specify the system name for the new SLF. If the

parameter and its value are positioned before the copy- or update-mode

parameters, SAIL checks that the system name on OLD matches the name specified;

if the system name is different, SAIL terminates abnormally. If the system

name matches, SAIL continues. If the SYSTEM parameter is positioned after the

copy or update parameter, the specified system name is given to the revised

SLF, NEW. If the SYSTEM parameter is absent, the system name on OLD is copied

to NEW.

b. VERSION--The VERSION parameter can also be used in the same two ways:

(1) to check the version number on OLD, or (2) to specify the version number to

be assigned to NEW. If VERSION is positioned before the copy- or update-mode

parameter, SAIL checks for a match between the specified number and the version

number on OLD. If the numbers match, SAIL continues; if not, SAIL terminates

abnormally. If VERSION is positioned after copy or update, the number

specified is given to the revised SLF, NEW.

c. CONVERT--The CONVERT parameter may be used in the copy mode to

convert an SLF to/from ASCII, or to/from binary. If CONVERT appears before

copy, an ASCII OLD is converted to binary and copied to NEW. If CONVERT

appears after copy, a binary OLD is converted to ASCII and copied to NEW.

3. EXAMPLE INPUT FILES

a. Executive--The usual SAIL input file for an executive (normal) run

is structured.

SAIL LINENO OPTIONS optionl valuel option2 value2 ENDOPTIONS
*READ CHANG

70

ZKVVQW&)- 6DQXZ<6X

where CHANG is the name of a local file containing SAIL change directives. The

only required parameter for the executive mode is the word SAIL.

b. Update--The usual SAIL input file for an update run looks like

-w

SAIL UPDATE OPTIONS optionl valuel option2 value2 ENDOPTIONS

*READ CHANG

where CHANG is the name of the local file containing the SAIL change directives

that modify the SLF.

c. List--A typical SAIL input file for a list run

SAIL LIST PROGRAM pl

causes program pl to be listed on the SAIL output file.

d. Copy--The SAIL input file

SAIL COPY CONVERT

causes SAIL to copy file OLD to file NEW. File NEW is an ASCII file.

The input file

SAIL CONVERT COPY

causes SAIL to copy an ASCII file OLD to file NEW. File NEW is a binary file.

e. Scan--The SAIL input file

SAIL SCAN FIELD

$do 100$

ENDFIELD
0.

71a

Liu

causes SAIL TO SCAN FILE OLD for all occurrences of do 100. All lines

containing this character string get listed on output along with their sequence

numbers.

f. Punch--The SAIL input file

SAIL PUNCH PROGRAM pl

causes SAIL to produce a list of program pl on file SAIL without sequence

numbers. Each line on file SAIL consists of 80 coltun-card images as they

exist on the SLF.

g. Generate--The SAIL input file

SAIL GENERATE SYSTEM sysone

sl
II

If

sn

*B p1

psl
ii

If

-z0

psn
*E

will produce the SLF for system sysone (version one) consisting of a prologue

(lines sl through sn) and one program (pl, consisting of lines psl through

psn). There will be no default program list and no option defaults.

All.

72

-a'

'I. F.#, ,'. ' 2,', g ". ."," ', " " ,'" .."e"2,' w.r. ,-m , , ''w[..Iw' , ," ,, " ,' .', . '_ , ,r , ,. , ' , .d ". - - -'u m t.m ,,

APPENDIX B

AFWL HULL CODE SUMMARY

CONTENTS

Section Page

B-I HULL SYSTEM GENERATION PROCEDURES 75

1. FILE DESCRIPTIONS 75
2. COSMOS FILES FOR SYSTEM GENERATION 88

a. Libgen 88
b. BOWDATABASE Initialization 90

B-Il HULL SYSTEM OPERATION PROCEDURES 91

1. PROGRAM BOW 91

a. KEEL 91
HULL 91

C. PULL and STATION 91
d. BOW 92

2. PROGRAM PLANK 94
3. PROGRAM SAIL 104
4. PROGRAM KEEL 104
5. PROGRAM HULL 104
6. PROGRAM PULL 104
7. PROGRAM STATION 105

B-Ill SUMMARY OF HULL SYSTEM OPTIONS 106

1. KEEL 106
2. HULL 114

a. Autopriority 116
b. Priority 116
c. STABF 116
d. Timelimit Runtime 116
e. Timelimit Stoptime 116
f. Control Cycle or icntrl 117
g. DMPINT 117
h. End 117

3. PULL 117

a. Example PULL Input Files 124

4. STATION 126

a. Example STATION Input Files 126

73

CONTENTS (CONCLUDED)

Sect ion Pg

B-IV GLOSSARY OF MAJOR HULL VARIABLES 129

1. PROC HULLCOM 129
2. HYDRO, FLUX, AND EOS COMMONS 138
3. VECTOR UNIQUE VARIABLES 141

i.

m1.

.5

L

"" "= •m • d ill - | |c l | |" • l l -N.

B-I. HULL SYSTEM GENERATION PROCEDURES

1. FILE DESCRIPTIONS

Files used by the AFWL HULL code are listed in Table B1. Backup copies of

the files stored under subdirectory /NTEPHULL/SOURCELIB are stored under

subdirectory /NTEPHULL/BACKUP. Files associated with program BOW (BOWDATABASE,

BUSYBIT, BOWDATA, BOWBUSY, and message files) are fully explained in

Reference Bi. File structures are shown in the tables that follow.

TABLE 81. AFWL HULL CODE FILES

File name Type CFS subdirectory location

BOWDATABASE ASCII /NTEPHULL/EPHULLPROBLIB

BUSYBIT ASCII /NTEPHULL/EPHULLPROBLIB

BOWDATA ASCII /NTEPHULL/RESTARTFILESC/PxxxxxPxxxx

BOWBUSY ASCII /NTEPHULL/RESTARTFILESC/PxxxxxPxxxx

HULLSTATUS ASCII /NTEPHULL/RESTARTFILESC/PxxxxxPxxxx

HULLCNTRL ASCII /NTEPHULL/RESTARTFILESC/PxxxxxPxxxx

T4CXXXYY Binary /NTEPHULL/RESTARTFILESC/PxxxxxPxxxx

T9COOOYY Binary /NTEPHULL/RESTARTFILESC/PxxxxxPxxxx

HLIBA Mixed /NTEPHULL/SOURCELIB

Change files ASCII /NTEPHULL/SOURCELIB

Message files ASCII -- Local files only --

Temporary disk files Binary -- Local files only --

Files listed as Type ASCII may be examined using any text editor on the

CRAY. Those listed as type binary are unformatted. To examine these files,

a program must be written to read the binary file and write a new file using

BI. Bell, R. L., Cray Time Sharing System (CTSS) Version of the HULL File
Maintenance Progrm -- Bow, A FWL-TR-84-58, Air Force Weapons Laboratory,
Kirtland AFB, NM, August 1984.

75
|I

L SIc . '., V., 17 77 . , V. 'qW- L r -

formatted writes. This new file may then be examined using a text editor. A

simple utility program exists under subdirectory /NTEPHULL/SOURCELIB (called
XTAC) that will read restart files and write out the information for requested

cells, rows, or columns as specified in its input file.

BOWDATABASE (Table B2) is an ASCII file consisting of a sequential listing

of problem numbers presently being used, and the storage status of the data
files (either on-line or archived). New problem numbers are inserted in

sequence. The word ARCHIVE is added, if program BOW is instructed to archive a

p rob 1 em.

TABLE B2. BOWDATABASE FILE STRUCTURE

Record Length Word Contents

1 4 1 bovidatab

2 ase

3 mm/dd/yy (date file was created)

4 hh:mm:ss (time file was created)

2 4 1 xxxxx.xxxx (problem number)

2 mm/dd/yy (date problem was added)

3 hh:mm:ss (time problem was added)

4 blank (or ARCHIVE)

3 4 1 xxxxx.xxxx

2 mm/dd/yy

3 hh:mm:ss

4 blank (or ARCHIVE)
II II I

Is II II

Is II II

N-I 4 1 xxxxx.xxxx

2 mm/dd/yy

3 hh:mm:ss

4 blank (or ARCHIVE)

N 4 1 0.0

2 LAST

3 blank

4 blank

76

BUSYBIT (Table B3) is a single-word ASCII file used to indicate that the

BOWDATABASE file is "busy." The contents are assumed unique, so that a program

may read the file to determine if it saved this BUSYBIT file.

TABLE B3. BUSYBIT FILE STRUCTURE

Record Word Contents

1 1 hh:mm:ss (current time)

The BOWDATA (Table 84) file contains a list of all restart files stored on

CFS for a particular problem. If the problem contains stations, the name of

the station file (T9CO0000) is recorded along with the family size (if greater

than one). Additional family members are stored on CFS with the names T9COOOYY

(where YY is the family member nuiber between 01 and 25'. The restart files

have the problem time and cycle recorded with each name. Additional family

members are stored on CFS with the names T4CXXXYY (where YY is the family

member number between 01 and 25).

The BOWBUSY (Table B5) file is used to indicate that this problem is

"busy'; that is, either a KEEL or HULL program is operating on the data files

under this problem subdirectory. The last operation performed by a successful

KEEL or HULL run is deletion of the BOWBUSY file.

HULLSTATUS (Table B6) is an ASCII file produced periodically by program

HULL and stored under the problem subdirectory. The information is then avail-

able to monitor the progress of a calculation every ICNTRL-th cycle. The

frequency of HULLSTATUS updates can be controlled by setting ICNTRL in either

the HULL input file or HULLCNTRL file (ICNTRL defaults to 10).

77

TABLE 84. BOWDATA FILE STRUCTURE

Record Length Word Contents

1 9 1 bowiata

2 for prob

3 xxxxx.xxxx (problem number)

4 blank (or ARCHIVE)

5 blank (or CYCLE or TIME)

6 T9CO0000 (or NULL)

7 mm/dd/yy (date of last run)

8 hh:mm:ss (time of last run)

9 blank (or station family size)

2 4 1 T4CO0000

2 problem time (initial, usually 0.0)

3 0.0 (problem cycle)
4 blank (or restart file family size)

3 4 1 T4C00100

2 problem time

3 problem cycle

4 blank (or restart file family size)
II II (8

II II IS

II 88 II

N-1 4 1 T4CXXXOO

2 problem time

3 problem cycle

4 blank (or restart file family size)

N 4 1 LAST
2 0.0

3 0

4 blank

78

TABLE B5. BOWBUSY FILE STRUCTURE

Record Length Word Contents

1 3 1 xxxxx.xxxx (problem number)

2 mm/dd/yy (date)

3 1 hh:mm:ss (time)

TABLE B6. HULLSTATUS FILE STRUCTURE

Record Contents

I HULL STATUS FILE for problem xxxxx.xxxx (problem number)

if (possible warnings if HULLCNTRL file is not understood)

2 file created mm/dd/yy hh:mm:ss (date and time)

3 run time remaining xxx seconds

4 current priority cpr load priority lpr

5 autopriority off (or on)

5' startday was sss today is ttt (if autopriority is on)

6 clock stop time month=mm day=dd hour=hh minute=mm

7 current value of icntrl xxx

7' current dump interval xxx seconds (if TIMES=3)

8 current whiz estimate = xxx sec/(cell*cycle)
9 (problem header from Z-BLOCK)

10 Z-BLOCK

11-110 Z-BLOCK names and values

The HULLCNTRL (Table 87) file is an optional file that may be created by a

user and stored under the problem subdirectory, to cause the running HULL

program to change various parameters. If the file is found, HULL gets it, then

deletes it from CFS. After reading HULLCNTRL and doing whatever is requested,

HULL writes the HULLSTATUS file, stores it on CFS, and then continues.

HULLSTATUS is created every ICNTRL-th cycle, whether or not file HULLCNTRL

exists.

79

Jul~w S~0 Lf

TABLE B7. HULLCNTRL FILE STRUCTURE

Record Contents

problem xxxxx.xxxx (problem number)

2-N Any of the following lines in any order

autopriority off

autopriority on startday ddd (mon, tue, etc)

switch1 on

priority pr (s, 1.0-2.0, x)

stabf sf (0.1,...,0.99)

timelimit runtime mm (mm in minutes)

timelimit stoptime off

timelimit stoptime on mon dd hh mm
(mon=month, dd=day, hh=hour, mmnminute)
control cycle xxx (new value for icntrl)

icntrl xxx (new value for icntrl)

dmpint xxx (sets TIMES=3 and DMPINT to xxx seconds)

N+1 end indicates last line on this file

Restart files (Table B8) are given the local file name TAPE4. Each

restart file c:ntains all the variables for a problem at a particular problem

time. On CFS, each file has a unique name T4XXXYY, where XXX is the sequential

number between 000 and 999, and YY is 00 (or the sequential number between 01

and 25 if the restart file is large enough to be familied). These files are

unformatted, and thus cannot be read using a text editor.

The data records on the station file (Table B9) depend on the dimension

and the stress option values. The header record and data record structures are

shown in Tables BIO and 811. The station file is an unformatted file, and thus

cannot be read using a text editor.

The initial header record (Table 810) is written by KEEL. All values

beyond word 6 are set to zero. Subsequent header records are written by HULL

whenever a restart file is produced. The data after word 6 are the latest

80

values recorded for each station. These data are used to determine if a

sufficient change has occurred at each station to warrant recording new values

in the active station data record (Table Bli).

TABLE B8. RESTART FILE STRUCTURE

Record Length Word Contents

1 555.0

2 xxxxx.xxxx (problem number)

3 ccc.0 (cycle number)

4 ttt.ttttt (problem time)

2 200 Z-BLOCK

3 IMAX+JMAX+2 Mesh Coordinates

4 100*NM Material property arrays

5 NROWPB*NVARPR Mesh variables for first NROWPB (number
of rows per block) rows. Information
for each cell is pressure
velocity components, total mass,
specific energy, and other variables
depending on the options

5+NBLKS NROWPB*NVARPR Mesh variables for the last NROWPB rows.
Each row has NVARPR (number of variables
per row) words

Particle vary Particle numbers and coordinates
(optional records)

Records

Terminal 4 1 666.0

Record 2 666.0

3 666.0

4 666.0

81

I .- - - n. , - t - ,I - -

TABLE B9. STATION FILE STRUCTURE

Record Length Word Contents

1 4 1 555.0

2 xxxxx.xxxx (problem number)

3 0

4 NSTN*NPP (number of stations *

number of particle parameters)

2 200 Z-BLOCK

3 1024 Initial station coordinates

3' 1024 Continuation record(s) if NSTN*NPP > 1024

4 1024 Initial header record

4' 1024 Continuation record(s)
if header data exceed 1024 words

5 1024 Active station data for a particular time

5' 1024 Continuation record(s) if data exceed
1024 words

II II II

6 1024 Restart header record (corresponding to
the first restart file)

, 6' 1024 Continuation record(s)
if header data exceed 1024 words

7 1024 Active station data for times after first

restart file creation

7' 1024 Continuation record(s) if data exceed
1024 words

It II

II II8

TABLE 810. STATION FILE HEADER RECORD STRUCTURE

Word Contents

1 999.0

2 xxxxx.XXXX (problem numnber)

3 ccc.O (cycle numiber)

4 ttt.ttttt (time)

5 NSTN (numiber of stations)

6 NVARST (numnber of variables per station)

station3i i=1,NSTN (last pressure recorded for each
7+NSTN UCLti) o ,SN (at neoddfr ahsain

7+2NSTN VCL(i) i=1,NSTN (Last V recorded for each station)
7+*SN VLi =,NT Ls eode o ahsain

E7+3*NSTN WCL(i) i+1,NSTN (Last W recorded for each station) 3D]

(If STRESS = 1, the last strain components are also

recorded.)

2-D 3-D

Word Contents Word Contents

7+3*NSTN ERRL(i) i=1,NSTN 7+4*NSTN EXXL(i) i=1,NSTN

7+4*NSTN EZZL(i) i=1,NSTN 7+5*NSTN EYYL(i) i=1,NSTN

lp7+5*NSTN EHOOP(i) i=1,NSTN 7+6*NSTN EXXL(i) i=1,NSTN

7+6*NSTN ERZL(i) i=1,NSTN 7+7*NSTN EXYL(i) i=1,NSTN

V.7+8*NSTN EXZL(i) i=1,NSTN
7+9*NSTN EYZL(i) i=1,NSTN

83

7x.P1b-P ,F -.t 'a * t t -F. 7..-r- -. a. w; Sr -

TABLE B11. STATION FILE ACTIVE STATION DATA RECORD STRUCTURE

Word Contents

1 THIST Time

2 SPERT Number of stations at this time

n=2

n+1 STANUM STANUM (station number)

n+2 Material code Material code

n+3 X coordinate X coordinate

n+4 Y coordinate Y coordinate

n+5 Pressure Z coordinate

n+6 U (X velocity) Pressure

n+7 V (Y velocity) U (X velocity)

n+8 UDOT (X acceleration) V (Y velocity)

n+9 VDOT (Y Acceleration) W (Z velocity)

n+1O Density UDOT (X acceleration)

n+11 Energy VDOT (Y acceleration)

n+12 WDOT (W acceleration)

n+13 Density

n+14 Energy

(If STRESS = 1, the stress deviator and strain
deviator components are also recorded.)

2-0 3-D

Word Contents Word Contents

n+12 SRR n+15 SXX

n+13 SZZ n+16 SYY

n+14 SHP n+17 SZZ

n+15 SRZ n+18 SXY

n+16 ERR n+19 SXZ

n+17 EZZ n+20 SYZ

n+18 EHP n+21 EXX

n+19 ERZ n+22 EYY

n+23 EZZ

[n is incremented by NVARST] n+24 EXY

n+25 EXZ

n+26 EYZ

84

I- X, U ?

The station number (STATNUM) also has the type of station coded in the

fractional part of the word. The FORTRAN line: ITYP=(STANUM-INT(STANUM))*64

produces a number between 8 and 15. An Eulerian station has a value of 8. If

a station is Lagrangian in the X-coordinate, the value increases by one. If a

station is Lagrangian in the Y-coordinate, the value increases by two. If the

station is Lagrangian in the Z-coordinate, the value increases by four.

Therefore, a station that is Lagrangian in all coordinates has ITYP=15. The

material code consists of a one in the bit position, for each material present

in the cell containing the station. Depending on how many stations are active

at a particular time, a 1024-word record may contain data for several times, or

several 1024-word records may be required to record all data for a particular

time. A station is considered active when at least one of the following

variables has changed by more than one percent of its last recorded value:

pressure, velocity component, density, or energy.

HLIBA (Table B12) is a collection of executable, source, and relocatable

code. HLIBA was created to eliminate the need to get multiple files from CFS.

O.ce HLIBA is local, the command line: LIB HLIBA<esc>X ALL.<esc>END<carriage

return> will extract the above files and leave them in the local file space,

where they can be used as required.

Change files (Table B13) are ASCII files, containing SAIL change

directives followed by revised source code. See Appendix A (AFWL SAIL Code

Summary) of this report (AFWL Vectorized EPHULL Code User Manual) for a

complete explanation.

85

TABLE 812. HLIBA FILE STRUCTURE

Record Contents

1 OLD (the current HULL SLF)

2 HULLIB (relocatable utility routines)

3 MATLIB (ASCII material property library)

4 XSAIL (executable program SAIL)

5 BOW (executable program BOW)

6 PLANK (executable program PLANK)

TABLE B13. CHANGE FILE STRUCTURE

Record Contents

1 SAIL change directive

2 Revised source code

3 SAIL change directive

4 Revised source code
II II

if If

Four message files (Table 814) are created by program BOW, and left in the

job file space for use by other programs. The KEELMSG file notifies KEEL that

BOW has added the appropriate CFS subdirectory for this problem. KEEL uses

KEELMSG as the initial BOWDATA file. The HULLMSG file is used by HULL to

determine the current restart file name, so that subsequent restart files will

have the appropriate names on CFS. The PULLMSG file for program STATION only

contains the station file name, and lets program STATION know that the station

file is available on CFS. For program PULL, PULLMSG contains the names of all

restart files for which plots have been requested.

86

..

TABLE B14. MESSAGE FILE STRUCTURE

Record Length Word Contents

1 1 9 1 bowdata

2 for prob

3 xxxxx.xxxx (problem number)

4 blank (or ARCHIVE)

5 NULL (or T9Co0000)

5 blank (or CYCLE or TIME)

6 NULL (or T9Co0000)

7 mm/dd/yy
8 hh:mm:ss

9 blank (or station family size)

2 4 1 T4CXXXYY

2 ttt.ttttt (problem time)

3 ccc (problem cycle)

4 blank (or restart file family size)

2' 4 Additional restart file names if
message is for PULL and more than one
restart file is being plotted.

3 4 1 LAST

2 0.0

3 0

4 hlank

All mesh variables need no be in core all the time. Depending on the

options for a particular calculation, as few as three rows may be required in

core to process the calculation. If running a calculation in-core, the files

listed in Table 815 are not created. If running in the disk mode, the mesh

variables for the entire mesh are transferred (one row per record) fr.. thp

appropriate restart file (local TAPE4) to the random disk file TAPE?3. A ,

are initially processed, they are read from Diskc (unit 23, TAPE23) 'n,

central memory, then written out to Diskb (unit 22, TAPE22). Afte- a' '

rows have been processed, the unit numbers for Diska (unit 21) ani "

22) are swapped. The last row written on Diskb is recorded in va' i -

During subsequent cycles, rows are read from Diska until the 'n.

87

f ~ tll A..~ .ff ~

(ELASTIC/PLASTIC NU..(U) NEWd MEXICO ENGIMEERIMG
RESEARCH INST ALBUQUERQUE R L BELL FEB 9S WMERI-WALL-2

UNCLSSIFIED RFL-TR-96-146 F2961-4-C-00S6 F/Oi/3 M.

Emhh 0mhmhhhhhlm
EhEEohhmhhEEEE
mEEohEEEmhEEEE

1.2 1.

111W IE6

MI(ROCOPY RtSOLUTI(N TEST CHART

ter'. % % r4 ,

If0

.m.

LIMB. Rows above LIMB are read from Diskc. Once LIMB equals JMAX (or KMAX, in

3-0), the entire mesh is on TAPE21 and TAPE22, so there is no need to keep

TAPE23. TAPE23 is thus destroyed, to reduce the number of files being charged

to the job.

TABLE 815. TEMPORARY DISK FILES

File Contents

TAPE21 Active mesh (one row per record)
TAPE22 Active mesh

TAPE23 Full mesh

2. COSMOS FILES FOR SYSTEM GENERATION

Copies of all files required for system generation are located under

subdirectory /NTEPHULL/SYSGEN.

a. Libgen--The COSMOS file LIBGEN (Table 816) consists of the

appropriate MASS commands, SAIL input files, CFT, and LOR instructions to

produce the files needed for Composite HULL.

TABLE 816. LIBGEN COSMOS FILE

*INTERRUPT ON SOFTWAREERROR TO EXIT

*MASS GET DIR-/NTEPHULL/SYSGEN OLD:EPHULL120 XSAIL AFW&CH VPROC

*FILE NAME=INPUT,DUPLICATE-DESTROY,END=EOR

SAIL LINENO OPTIONS OBJLIB-O ENDOPTIONS

PROGRAM PLOTTERS LIBRARY
*READ AFWLCH

*READ VPROC

EOR
*XSAIL I=INPUT O-LIBSAIL

*CFT I=SAIL,B-BLIB,ON-DINXZ,L-LIBLST
*CFT 1=SAILI,B-BPLOT,ON=DINXZ,L-PLTLST

*BUILD NL=HULLIB,B-(BLIB,BPLOT),LOZMXL-LIBMAP

*DESTROY ALWITH. SA

88

',

-,-ol~

TABLE 816. CONCLUDED.

*FILE NAME=INPUT,DUPLICATE-DESTROY,ENDsEOR

SAIL LINENO OPTIONS VECTOR=1 ENDOPTIONS

PROGRAM BOW PLANK EQS

*READ AFkLCH
*READ VPROC

E OR

*XSAIL I=INPUT O=BPSAIL

*CFT I=SAIL2,B=BPLNK,ON=DINXZ,L=PLNKLST
*CFT I=SAIL1,B:BBOW,OI4DINXZ,L:BOWLST

*LDR BIN=BBOW,LIBI(HULLIB,CFTMATH),MO=FULL,ML=BOWMAP
*LOR BIN=BPLNK,L IB=(HULLl8,CFTMATH) ,MO=FULL,Mt=PLNKMAP

*DESTROY ALWITH. SA
*FILE NAMwEINPUT,DUPLICATE=DESTROY,ENL--EOR

SAIL PUNCH PROGRAM MATLIB
*READ AFktLCH
*READ VPROC

EOR
*XSAIL l=INPLJT O=MATSAIL

*SWITCH SAIL MATLIB
*LIB HLIBA NEWFILE

ADD OLD HULLIB MATLIB XSAIL BOW PLANK

END
*MASS STORE /NTEPH(JLL/SOURCELIB/HLIBA

*EX IT:

*CONCAT SAILOUT/CC LIBSAIL/CC BPSAIL/CC MATSAIL/CC

*DISPOSE DN=SAILOUT,SF=CC,FID=filenamel I

*CONCAT LIBLIST LIBLST LIBMAP

*CONCAT PLNKLIST PLNKLST PLNKMAP

*CONCAT BOWL 1ST BOWLST BOWMAP

*DISPOSE DN=LIBLIST,FIDfilename2

*DISPOSE DN=PLNKLIST,FI-fif1ename3

*DISPOSE DN=BOWLIST,FID=filename4
*SELECT PRINTLOG=-LIBLOG

*DISPOSE DN=LIBLOG,FID=filename5

89

-Au,~ or vww I'a? aa a X ~UW

The LIBSEN file may be processed interactively by entering

COSMOS LIBGEN / time priority (carriage return>

or it may be submitted by entering

SUBMIT LIBGEN / time priority

b. BOWDATABASE Initialization--The COSMOS job streami shown in Table B17

can be run after LIBGEN. The executable programi BOW adds subdirectories
/NTEPHULL/RESTARTFILESC and INTEPHULLIEPHULLPROBLIB. A new blank BOWDATABASE
file is created and stored under INTEPHULL/EPHULLPROBLIB.

CAUTION: running this job stream on a system where a current
* BOWDATABASE exists will erase all information on that file.

TABLE B17. BOWGEN COSMOS FILE

*FILE NAME=BOWIN,END=EOR

BOW CREATE

EOR
* *BOW I=BOWIN O=BOWOUT

*SELECT PRINTLOG=BOWLOG

09

90A'

m -i A - I . * IA

I

B-Il. HULL SYSTEM OPERATION PROCEDURES

The following programs are generally executed as part of a COSMOS run

stream. Occasionally they may be executed interactively, to track down a

coding error or to accomplish some special purpose. Options are listed in the

next section. The following is a summary description of each program .

1. PROGRAM BOW

Program BOW is used to keep track of the problem numbers and files

associated with each problem.

a. KEEL--For a mesh initialization run, BOW compares the problem number

with the numbers recorded on BOWDATABASE. If the number is not found there, it

is inserted in sequence on BOWDATABASE, and BOW adds the appropriate

subdirectory /NTEPHULL/RESTARTFILESC/PxxxxxPxxxx. If the problem number

already exists on BOWDATABASE and the RERUN parameter is not included in the

KEEL input file, BOW aborts. For a new problem number (or an old one with

RERUN specified), BOW attempts to save the BOWBUSY file under the problem

subdirectory. If the save fails, BOW calls abort. After a successful save for

a problem being rerun, BOW gets file BOWDATA and deletes all files listed.

b. HULL--For a HULL run, BOW attempts to save BOWBUSY under the problem

subdirectory. If the save fails, BOW calls abort. If the save is successful,

BOW gets BOWDATA and compares the cycles (and times) for each listed restart

file with the restart instructions on the HULL input file. BOW gets the

appropriate restart file (and station file if required) and deletes all

subsequent restart files.

For KEEL and HULL runs, BOW leaves the BOWBUSY file under the problem

subdirectory, to assure that no other job has modify access to the data files

until the KEEL or HULL job finishes. The last action taken by KEEL and HULL is

to delete BOWBUSY.

c. PULL and STATION--For a PULL or STATION run, BOW does not attempt to

save BOWBUSY, since no files under the problem subdirectory are to be modified.

For PULL, BOW gets BOWDATA and compares plot request times (or cycles) on the

PULL input file with restart times (cycles) on BOWDATA. BOW creates a file

91I

*0 -' .. ' .' S ~S

(PULLMSG) containing the names of the restart files for which plots are

required. For STATION, BOW gets BOWDATA to determine if a station file exists

for this problem, and creates a file (also known as PULLMSG) containing the

station file name. BOW gets the first restart file (or the station file) from

CFS with local file name TAPE4, writes a summary message on its output file,

and then terminates.

d. BOW--Program BOW may also be executed independently, to accomplish a

multitude of file maintenance actions (Ref. 81). The most usual actions are:

(1) archive problems; (2) retrieve problems; (3) remove problems; (4) list

problems; and (5) edit. Table B18 lists BOW parameters.

.1.i

92

-. * ~~/ ~ loop - V P4W s * * * - 'a -

TABLE B18. BOW PARAMETERS

Parameter Function

BOW Indicates file maintenance actions are required.

CREATE Adds root nodes and major subdirectories on CFS;
writes and stores a blank BOWDATABASE file under
subdirectory /NTEPHULL/EPHULLPrOBLIB.

ADD Adds problem number to BOWDATABASE.

REMOVE Deletes all files associated with the listed problem
numbers from CFS. Removes problem information from
BOWDATABASE. Removes problem subdirectories from CFS.

MODIFY Changes CFS file information on BOWDATA file.

ADD Adds restart (or station) files to BOWDATA.

DELETE Deletes listed restart (or station) files from BOWDATA
and CFS.

CHANGE Changes information about particular restart file
(time or cycle).

ARCHIVE Changes the CFS USE parameter for all files for all problems
listed to USE=A (archive). Adds word ARCHIVE to records in
BOWDATA and BOWDATABASE.

RETRIEVE Changes the CFS USE paramieter for all files for all problems
listed to USE=X (weekly). Deletes word ARCHIVE from records
in BOWDATA and BOWDATABASE

EDIT Lists BOWDATABASE on output.

LIST Lists BOWDATA for requested problem numbers on output.

ALL Lists BOWDATA for all problem numbers (on BOWDATABASE)
on output.

KEEL Indicates that a problem is being initialized.

RERUN Indicates that this problem number may already be listed on
BOWDATABASE. If found, all files under the subdirectory
will be deleted.

PROB or Indicates that the next word on the input file
PROBLEM will be the problem number.

HULL Indicates that a problem is being continued.

PROB or Same as for KEEL.
PROBLEM

T or If found before the word INPUT, indicates requested restart
TIME time (consecutive TIME restarts not allowed).

C or If found before the word INPUT, indicates requested restart
CYCLE cycle (consecutive CYCLE restarts not allowed).

(If both TIME and CYCLE are specified, BOW does not
object to consecutive TIME or CYCLE restarts).

93

TABLE 818. CONCLUDED.

Parameter Function

INPUT Terminates restart field. TIME or CYCLE following this
word changes the ZBLOCK values of T and CYCLE.

PULL Indicates that a problem is being plotted.

STATION Indicates that station data are to be plotted.

PROB or Same as for KEEL.
PROBLEM

FTIME First time to be plotted (default, time on T4CO0000).

LTIME Last time to be plotted (default, time on last restart file).

CTIME Plot only for times listed after this word.

CCYCLE Plot only for cycles listed after this word.

a,

The input file BOW ARCHIVE PROB 1.1 causes all files listed on BOWDATA for

problem 1.1 to be modified to "USE=A" on CFS, and the word ARCHIVE to be added

to the problem 1.1 record on BOWDATABASE and to BOWDATA for problem 1.1. The

input file BOW RETRIEVE PROB 2.2 causes all files listed on BOWDATA for problem

2.2 to be modified to "USE=X" on CFS, and the word ARCHIVE to be removed from

BOWDATA and the problem 2.2 record on the BOWDATABASE file. The input file
BOW REMOVE PROB 1.2 causes BOW to delete all files listed on BOWDATA for

problem 1.2 from CFS, and to remove the problem 1.2 subdirectory. The data

record for problem 1.2 also is deleted from the BOWDATABASE file. The input

file BOW LIST PROB 1.3 causes BOW to copy the BOWDATA file for problem 1.3 to

output. The input file BOW EDIT causes BOW to copy the BOWDATABASE file to

output.

2. PROGRAM PLANK

This program is seldom used independently. Its primary function is to

provide the alternate input file (INPUT2) for program SAIL. For a KEEL run,

program PLANK reads the options set in the KEEL input file and writes them out

to file INPUT2. For a HULL, PULL, or STATION run, program PLANK reads the

options set in the appropriate TAPE4 Z-BLOCK (and any additions or chanqes from

94

'U. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ W ra .%%.., '
4

~. -. . ~ ~ - . .~ *,

the appropriate input file), and then writes them out to file INPUT2. The Z-

BLOCK options are listed in Table B19. Additional options which have meaning

to program PLANK are listed in Tables 820 through B23.

TABLE 819. Z-BLOCK OPTIONS

Option Function Program

PROB Problem number K
AREF Aft reflective (3-D) K, H

ATMOS Type of ambient atmosphere (default, 2) K

1. Tropical

2. Temperate
3. Arctic
4. Exponential
5. Constant

BREF Bottom reflective (default, true) K, H

BURN HE detonation (default, 0, no detonation) K, H

1. Physical burn
2. Programmed burn

CYCLE Number of computation cycles completed K, H

DIMEN Number of dimensions in problem (default, 2) K

1. One dimension (not checked out)
2. Two dimensions (default)
3. Three dimensions

DT Current time increment in seconds K, H

DVISC Deviatoric viscosity option (default, 0) K, H

1. Option 1

2. Option 2

HELC Energy last cycle (ergs)

ETH Theoretical energy in mesh (ergs)

EXPAND Fraction of old mesh to be added to new upon rezone K, H

FAIL Material failure model (default, 0, no failure) K, H*

1. Ultimate stress or strain

2. Accumulated strain

FBLOS Nuclear fireball cooling (default, 0) K, H

1. Code included

95

TABLE B19. CONTINUED.

Option Function Program

FLUXER Euler advection method K

1. Single material--no stress
2. Not supported
3. Multimaterial (diffusion limited)

FREF Front reflective (3-D) K, H

GEOM Geometry K, H

' 1. Cartesian default for 3-D)
2. Cylindrical (default for 2-D)
3. Spherical (not checked out)

HOB Height of burst above sea level (km) K

IMAX Number of cells in the X-direction K

IQ First quiet column in the X-direction K, H
(calculations only accomplished for 1=1 to IQ)

ISLAND Reflective cell option (default, 0) K, H
1. Infinite mass
2. Finite mass

JMAX Number of cells in the Y-direction K

JQ First quiet row in the Y-direction K, H
(calculations only accomplished for J=1 to JQ)

KMAX Number of cells in the Z-direction K

KQ First quiet plane in the Z-direction K, H
(calculations only accomplished for K=1 to KQ)

LAGRAN Lagrangian grid option (default, 0) K

1. Interactive Lagrange module
2. Pure Lagrange module

LREF Left reflective (2-D default, true) K, H

MAGFLD Geomagnetic field option (default, 0) K

1. Code included

METHOD Differencing scheme option (default, 2) K, H

1. SHELL I
2. SHELL II

MLC Mass last cycle (g)

MTH Theoretical mass (g)

NH Number of variables per cell

* 96

.4

TABLE B19. CONTINUED.
4,'

Option Function Program

NHIC Number of mesh variables in core

NHIST Number of hysteretic variables advected with mass

NM Number of materials in the problem K

NOP Number of particles in the problem K

NPLPB Number of planes per block (3-D)

NPP Number of particle parameters

NROWPB Number of rows per block (2-D)

NSTN Number of stations (in Eulerian mesh) K

NVARST Number of variables per station

PTSTOP Problem time stop (s) K, H a.

RAD Radiation option (default, 0) K, H*

1. Equilibrium (not checked out) _
2. Nonequilibrium (not checked out)

RADLOS Theoretical energy radiated

REZONE Rezone option (default, 0, no rezone) K, H

1. Standard shock
2. Fireball follower

3. Horizontal shock follower

4. Vertical shock follower
5. Particle follower
6. Particle follower, shocks ignored
7. Continous rezone
8. Vertical shock follower (same as 4)

RIGMAS Rigid body mass for ISLAND-2

RIGVEL Rigid body velocity for ISLAND=2

RREF Right reflective (2-D default, false) K, H

SPIN Spinning axisynmetric coordinate system K

STABF Stability factor for Courant condition time step K, H

STRAIN Strain option (default, 0) K, H*

1. Keep strain deviators

STRESS Stress option (default, 0) K, H*

1. Keep stress deviators

SUME Cumulative radiation energy loss

T Problem time in (s) K, H

TERAD Cumulative energy radiated

97

TABLE B19. CONCLUDED.

Option Function Program

TLC Time last cycle
TREF Top reflective (default, false) K, H

TTIME Total computer time (s)

TTSTOP Total allowable computation time (h) K, H

UREZ X-direction rezone velocity (cm/s) K, H

VISC Artificial viscosity option (default, 0) K, H

,I 1. Code included

VOIDS Explicit void option (default, 0) K, H*

1. Code included

VREZ Y-direction rezone velocity K, H

WORK Plastic work hardening option (default, 0) K, H*

1. Code included

WREZ Z-direction rezone velocity K, H

XOB X-coordinate of burst (km) K

YGND Altitude of ground above sea level (cm) K

YOB Y-coordinate of burst (km) (3-D) K

YIELD Yield of burst (kt) K

Note: Under program heading: K = May be set in KEEL
H = May be set in HULL
H* = May be reset in HULL

if originally set in KEEL

98

,€

Nd.
. .

U' -2

TABLE 820. PLANK PROGRAM PARAMETERS

Parameter Function

KEEL, HULL, Idcates program to be produced
PULL ~ fd

TABLE B21. PLANK PARAMETERS FOR KEEL .

Parameter Function

KEEL Program to be produced

PROB or Next word will be

PROBLEM Problem numiber

HEADER Next input line contains problem title 0

MESH Indicates end of option section on input file /

FIREIN Option to initialize mesh, using information -

from previous calculation

ENOFIRE Terminates FIREIN sequence

END Indicates end of input file

LAGRANGE Indicates Lagrangian mesh

994

TABLE 822. PLANK PARAMETERS FOR HULL

Parameter Function

HULL Program to be produced
PROB or Next word will be
PROBLEM the problem number

CYCLE Restart cycle (if before INPUT) or specify CYCLE

T Restart time (if before INPUT) or specify T

TTIME Specify TTIME

TTSTOP Specify TTSTOP

PTSTOP Specify PTSTOP

CSTOP Specify CSTOP

INPUT Terminate restart section of input file

END Terminate input file

VECTOR Indicates that VECTOR code is to be produced

NOVECT Indicates that scalar code is to be produced (default)

SWITCH5

ON Sets option BUFFER=2 for double buffering

OFF Sets option BUFFER=1 for single buffering (default)

DOUBLE Sets option BUFFER=2 for double buffering

TEKCOLOR Sets option COLOUR (default, 0)

1. Half plane
2. Mirrored
3. Split

100

&: - ,. *. * a, -. . . . -

TABLE B23. PLANK PARAMETERS FOR PULL

Parameter Function

PULL Program to be produced

STATION Indicates that program STATION is to be produced

PROB or Next word will be the problem number
PROBLEM

HEADER Indicates that the next line on the input file
contains a new problem title

END Terminates the input file

TEKCOLOR Sets option COLOUR (default, 0)

1. Half plane
2. Mirrored
3. Split

Tables B24-B26 pertain to the recently implemented Lagrangian capability.
These tables are provided for information, but should not be considered either

reliable or complete. Users of the Lagrangian capability should refer to HULL
Documentation, Volumes I and i (Ref. 82).

82. Matuska, 0. A., and Osborn, J., HULL Documentation, Orlando
Technology, Inc.

101

O,a.. f "t -.", " - .,, . rg ,,id~i . ,j W ' - - - ; ,,, <,,, *, --t ; ' ," "" , :" "

TABLE B24. LAGRANGIAN OPTIONS

Option Function/value

NHIL Max array size for element variables

NHIN Max array size for node variables

NOMAT Number of materials

NMMAX Max material number

NLREG Number of Lagrangian regions

LINKH Link option (default, 0, no link)

1. Interlinked
2. Velocity link
3. Stress link

LTIME Number of Lagrangian stations (in Lagrangian mesh)

LSTRAN GT 0 indicates that strains are to be recorded

NGRID

NTTYPE Max number of node-type definition lines (50)

NMATC Max number of material definition lines (50)

NSTYPE Max number of shape lines (50)

NDROP

NSTNH

NINT

NLBOUND Max number of elements on a boundary (slide or linked)

INMEML Flag to indicate if all elements are in memory

0. LECM elements in memory
1. All elements in memory

INSAV

LRIGID Max value for RIGIOL for all regions

LSLIDE Slide line option

0. No slide lines
1. Slide lines in problem

NLNODE Max number of slave nodes for any region

LAIRB Lagrangian air option for explosive problems

V. NPRES GT 0 indicates pressure nodes

IRZCON

NHILR

102

u~w,~ S *~ IV

7I'.

TABLE B25. LAGRANGIAN REGIONAL PARAMETERS

Parameter Function

LAGRANGE Indicates Lagrangian portion of input
PROB Next word will be the problem number

HEADER Next input line will be the problem title
STRAINL Nonzero indicates that element strains are to be saved

GEOM Sets option LGEOM (default, 0)

1. Cartesian
2. Axisymmetric (about Y-axis)

LECM Number of elements in memory at any time (default, all)
NM Sets options NOMAT and NMMAX

REGION Indicates region number

NXI Number of nodes in X-direction

NYJ Number of nodes in Y-direction

NT Node type

INT Interlinked (sets option LINKH=I)

* STRESS Stress link (sets option LINKH=3)
SLAVE Slave (sets option LSIDE=I)

SLAVE1 Slave (sets option LSLIDE=1)
SLAVE2 Slave (sets option LSLIDE=1)

SLAVE3 Slave (sets option LSLIDE=I)
LOCKED Slave (sets option LSLIDE=1)

PRES Pressure (sets option NPRES=I)

AND, FOR Skipped

MASTREG Master region number

NX Node numbers along boundary set Options

NY Node numbers along boundary NLBOUND and NLNODE

RIGIDL Sets option LRIGID to max value

103

4

TABLE B26. LAGRANGIAN MESH STATION PARAMETERS

Parameter Function

STATIONS Indicates that stations will be generated

XL X-coordinate of station

YL Y-coordinate of station

Existence of (XL,YL) pair causes number of
stations (LTIME) to be incremented

3. PROGRAM SAIL

The executable code for program SAIL is called XSAIL. See Appendix A

(AFWL SAIL Code Summary) of this report (AFWL Vectorized EPHULL Code User

Manual) for the XSAIL modes of operation. The primary purpose for SAIL in the

HULL system is to maintain and manipulate the SAIL library file for the

Composite HULL code.

4. PROGRAM KEEL

This program sets up the initial restart file (and station file, if

required). The KEEL input file contains the options desired for a particular

problem, the size and physical extent of the mesh, the geometries for various

materials in the problem, and the initial locations of stations (if included).

5. PROGRAM HULL

This program integrates a problem through time. The values of various

parameters in the HULL input file determine when restart files are produced and

when the problem is considered finished.

6. PROGRAM PULL

This program provides graphic presentation of the values recorded in each

restart file. Various options are available to provide split and overlaid

plots. PULL plots data for the whole mesh as a function of location, for a

particular time.

104

a

4
7. PROGRAM STATION

Like PULL, STATION produces graphic output. STATION provides data as a

function of time for a particular location (station) in space.

-'S

-'S

'Sm

"S

5,

d
'S'S

S

S

"S.

'4.

'S.

SI.-.

a'.

.4'S
-p

I'

i

1%

105
A

"S

B-Ill. SUMMARY OF HULL SYSTEM OPTIONS

1. KEEL

The Z-BLOCK options listed in Table B19 (with K under the program heading)

may appear in a KEEL input file before the keyword MESH. The complete input

line following the line containing the keyword HEADER is used as the problem

title. All information on the line after the word HEADER will be ignored. A

KEEL input file should conform to the format
.5

KEEL (RERUN) PROB xxxxx.xxxx S,

ZBLOCK option list

HEADER

Problem title card

MESH

Mesh generation instructions

GENERATE

Material packaging instructions

(ISLAND packaging instructions)

(STATION creation instructions)

END

where items in parentheses are optional. Additional parameters recognized by

program KEEL are listed in Tables B27 through B35.

TABLE B27. BASIC KEEL PARAMETERS

Parameter Function

KEEL Identifies KEEL input file

RERUN Used by program BOW

PROB or Next word is problem number
PROBLEM

HEADER Next input line is problem title

MESH Terminates ZBLOCK option section of input file

GENERATE Terminates mesh section of input file

END Terminates KEEL input file

106

N- I.- V lw- iw- ...- W . -.

TABLE B28. KEEL STANDARD MESH PARAMETERS

Parameter Function

MESH Identifies mesh construction section of input

XO Minimum X-coordinate of mesh

XMAX Maximum X-coordinate of mesh

YO Minimum Y-coordinate of mesh

YMAX Maximum Y-coordinate of mesh

ZO Minimum Z-coordinate of mesh (3-0)

ZMAX Maximum Z-coordinate of mesh (3-D)

DX, DY, (DZ) Size of cells in each coordinate

NX, NY, (NZ) Number of cells of size given above
Defaults: NX=IMAX, DX=(XMAX-XO)/IMAX, etc.

CONSTANT SUBGRID Notifies KEEL that a constant subgrid is desired

TABLE 829. KEEL SUBGRID MESH PARAMETERS

Parameter Function

CONSTANT SUBGRID Notifies KEEL that a constant subgrid is desired

XO, YO, (ZO) Minimum subgrid coordinates

XMAX, YMAX, Maximum subgrid coordinates
(ZMAX)

NX, NY, (NZ) Number of cells in subgrid (for each coordinate)

XOLIMIT YOLIMIT, Minimum mesh coordinates
(ZOL IMIt)

XMAXLIMIT, YMAXLIMIT, Maximum '.sh coordinates
(ZMAXLIMIT)

RXNEG, RYNEG, Maximum expansion rates
(RZNEG) in negative coordinate directions

RXPOS, RYPOS, Maximum expansion rates
(RZPOS) in positive coordinate directions

NXL, NYB, (NZB) Number of cells "below" subgrid

NXR, NYT, (NZT) Number of cells "above" subgrid

107

S'..

TABLE 830. KEEL GENERATE PARAMETERS

Parameter Function

GENERATE Identifies the geometry section of input

ISOENERGY Identifies default qeometry for hot sphere
of specified (kt) yield

Name Identifies name of material to be placed
in the mesh

RHO Density (default=ambient density in g/cm 3)

I Specific internal energy (default=ambient
energy in ergs/g)

U X-velocity (default, 0.0 cm/s)

V Y-velocity (default, 0.0 cm/s)
W Z-velocity (default, 0.0 cm/s) (3-D)

FIREIN Material properties determined by previous
calculation

HULL HULL calculation

FILE File name for previous calculation restart file

SPUTTER SPUTTER calculation

FB N Fireball number

SAP SAP calculation
FILE File name containing SAP results

SCALE Scale input data to new yield

YIELDIN Yield of input data (kt)
Geometry See Tables B31 and B32

IENDFIRE Terminates FIREIN sequence

PARTICLES Indicates tracer particles are to be placed
in the mesh

PRAD Radius of sphere centered at HOB to contain
particles

Geometry Geometry to contain particles (default, sphere)
, PACKAGE Very flexible mesh filling syntax

Geometry See Tables B31 and 832

DELETE Exception to PACKAGE

Geometry Geometry where material is not to be packaged

ISLAND Geometry Geometry of reflective cells

STATIONS Indicates that stations are to be generated
XL, YL, (ZL, 3-0) Lagrangian station coordinates

XS, YS, (ZS, 3-D) Eulerian station coordinates (a station may have
some Lagrangian and some Eulerian coordinates)

108

TABLE B31. TWO-DIMENSIONAL GEOMETRIES FOR KEEL

Geometry Parameters

XL, YL, (ZL, 3-D) Lagrangian station coordinates

XS, YS, (ZS, 3-D) Eulerian station coordinates (a station may have
some Lagrangian and some Eulerian coordinates)

RECTANGLE or XL, XR, YB, YT (extent of rectangle)
RECTAROT

TRIANGLE or Xl,Yl, X2,Y2, X3,Y3 (coordinates of vertices)
TRIROT
CIRCLE XC, YC, RAD (coordinates of center, radius)

ELLIPSE A B, C, D (where (Y-A)**2/B**2+(X-C)**2ID**2=l.O), or
XA, YR
(where XR and YR are intercepts on the X- and Y-axis)

PARABOLA or A, B, C (where Y-A=B*(X-C)**2), or
PARABLROT YR, XR

(where YR and XR are intercepts on the Y- and X-axis)

HYPERBOLA or A, B, C, 0 (where (Y-A)**2IB**2-(X-C)**2ID**2=1.O)
HYPEROT

GNRLFIT A, B, C, D, E, F (where Y=AX**5+BX**4+CX**34DX**2+EX+F)

CURVE TABLE

CURVE TABLE
NPT NN (X1,Yl),(X2,Y2),(X3,Y3),...,(XNN,YNN) NN < 101

*6

J109

S, , W . '. -. I _ ! _ .--- - - w . , , +L , -. .Vs

TABLE B32. THREE-DIMENSIONAL GEOMETRIES FOR KEEL

Geometry Parameters

BOX XL, XR, YB, YF, ZB, ZT (extent of box)
WEDGE X1,Y1, X2,Y2, X3,Y3, ZB,ZT (extent of wedge)
PYRAMID X1,Y1,Z1, X2,Y2,Z2, X3,Y3,Z3, X4,Y4,Z4 (tetrahedron)

CYLINDER XC, YC, ZB, ZT, RADIUS

ELLIPCYL A, B, C, D, ZB, ZT (where A, B, C, D are
coefficients for an ellipse), or XR, YF, ZB, ZT (where
XR and YF are intercepts on X- and Y-axis)

PARACYL A, B, C, ZB, ZT (where A, B, C are coefficients for
a parabola), or XR, YF, ZB, ZT (where XR and YF are
intercepts on X- and Y-axis)

HYPERCYL A, B, C, D, ZB, ZT (where A, B, C, D are
coefficients for a hyperbola)

SPHERE XC, YC, ZC, RADIUS

ELLIPSOID AY, BY, CY DY AZ BZ, CZ, DZ (where these are
coefficients for el1ipses in the XY and XZ planes)
(note: AY=AZ=O and CY+DY=CZ+DZ), or
XR, YF, ZT (where these are axis intercepts)

PARABALOID A, B, C, Y1, ZI (where A, B C are coefficients
for the parabola and (Y1,ZII is max point of
the intercept with the plane Y=Y1), or
XR, YB, ZT (where these are axis intercepts)

HYPERLOID AY, BY, CY, DY, AZ, BZ, CZ, DZ (where these are
coefficients for a hyperbola in the XY and XZ planes)

HYPERPARA AY, BY, CY, DY, AZ, BZ, CZ, DZ (where these are
coefficients for a parabola in one plane
and a hyperbola in the other)

RECTAROT XL, XR, ZB, ZT (rectangle rotated about the Z-axis)
TRIROT X1,Z1, X2,Z2, X3,Z3 (triangle rotated about the Z-axis)

CIRCLEROT XC, ZC, RAD (circle rotated about the Z-axis)
ELLIPSROT AZ, BZ, CZ, DZ (ellipse rotated about the Z-axis), or

XR, ZT (where these are axis intercepts)
PARABLROT AZ, BZ, CZ (parabola rotated about the Z-axis), or

XR, ZT (where these are axis intercepts)
HYPEROT AZ, BZ, CZ, DZ (hyperbola rotated about the Z-axis)
GNRLFIT A, B, C, D, E, F (general fit rotated about the Z-axis)

CURVE TABLE (X1,Zl), (X2,Z2), ..., (XNN,ZNN) (curve table
NPT NN rotated about the Z-axis)

110

TABLE 833. GEOMETRY PARAMETER NAMES AND DEFAULTS

Equivalent parameter names Default value (cm) C array element

XO, Xl, XL, XLEFT -I.OE20 C(1) .

XC, XCNTR, XCENT, XCENTER 0.0 C(I)

X2, XR, XRIGHT I.OE20 C(4) !

X3 -1.OE20 C(7)

X4 1.0E20 C(10)

YO, YI, YL, YB, YBOT, YBOTTOM -I.OE20 C(2)

YC, YCNTR, YCENT, YCENTER 0.0 C(2) I

Y2, YR, YF, YT, YTOP I.OE20 C(5)

Y3 I.OE20 C(8)

Y4 -I.OE20 C(11)

ZO, ZI, ZL, ZB, ZBOT, ZBOTTOM -1.OE20 C(3)

ZC, ZCNTR, ZCENT, ZCENTER 0.0 C(3)

Z2, ZR, ZT, ZTOP 1.OE20 C(6)

Z3 -I.OE20 C(9)

Z4 1.0E20 C(12) ,

AY, A 0.0 C(10)

BY, B 1.0 C(11)

CY, C 0.0 C(12) I
DY, D 1.0 C(13)

E 0.0 C(14)

F 0.0 C(15)

AZ 0.0 C(14)

BZ 1.0 C(15)

CZ 0.0 C(16)

DZ 1.0 C(17)

R, RAD, RADIUS HOB*I.O C(18) .

%%

*, iii

N ".51

TABLE B34. BURN? PARAMETERS

Parameter Function/default value f-

VDET Detonation velocity 8.5E8 cm/s p

TDET Detonation time TO (start time for the problem)

XDET X-coordinate of the detonation point

Note: If only XDET (or YDET) is specified, the

detonation is assumed to be a line detonation from

X=XDET (or Y=YDET). If neither is specified,

both default to 0.0p

TABLE B35. PARAMETERS TO SPECIFY LOCATION OF GFOR

Parameter Function Default value

XCC Specify coordinates of GFOR 0.0 cm
YCC Origin with respect to 0.0 cm
ZCC the MFOR origin 0.0 cm

ANGLA Rotation about the Z-axis 0.0 deg .

DANA Incremental angle 0.0 deg

NDA Number of increments 0

ANGLB Rotation about the Y-axis 0.0 deg a

of the GFOR (3-0)

DANB Incremental angle 0.0 deg

NOB Number of incrEments 0

ANGLC Rotation about the X-axis 0.0 deg

of the GFOR (3-D)

DANG Incremental angle 0.0 deg

NDC Number of increments 0

112,

When using the PACKAGE option for filling the mesh, up to nine delete

geometries may be specified. The following:

PACKAGE AIR RHO=1.2E-3 I=1.0E9 RECTANGLE

DELETE CIRCLE XC=O.O YC=1.0E6 RAD=5.0E5

PACKAGE AIR RHO=1.2E-3 I=1.OE11 CIRCLE XC=O.O YC=I.OE6 RAD=5.OE5

causes a sphere of hot air with a radius of 5.0e5 cm to be inserted at X=O.O,

Y=1.0e6 cm. The word DELETE is optional: a geometry name not preceded by

PACKAGE material is assumed to be a delete geometry.

The material can be specified to be packaged INSIDE (default) or OUTSIDE

the geometry. For open geometries, INSIDE refers to above the curve (or

surface) in the geometry frame of reference.

Many geometry parameter names are equivalent and all have default values

as listed in Table B33. Values read from the KEEL input file are stored in the

element of the coefficient array (C) corresponding to the parameter name

preceding the value.

For the option BURN=2, the parameters listed in Table B34 are available

to define toe high explosive detonation properties.

Each package geometry is defined with respect to the geometry frame of

reference (GFOR). The GFOR defaults to the mesh frame of reference (MFOR).

For more flexibility, the GFOR may be relocated with respect to the MFOR, using

the parameters listed in Table B35.

A typical package set is structured

PACKAGE MATI GEOM1 A=a B=b ...

XCC=x YCC=y ZCC=z ANGLA=aa ANGLB=bb ANGLC=cc

DANA=da DANB=db DANC=dc NDA=na NDB=nb NDC=nc

DELETE GEOM2 A=a B=b ...

XCC=x YCC=y ZCC=z ANGLA=aa ANGLB=bb ANGLC=cc

DANA=da DANB=db DANC=dc NDA=na NDB=nb NDC=nc

113

where the parameters listed after the geometry name can be in any order, but

the parameters relating the location of the GFOR to that of the MFOR must occur

after the geometry parameters. Parameters specifying the location of the GFOR

with respect to the MFOR refer only to that particular geometry, and do not

carry through to subsequent PACKAGE or DELETE geometries.

Subroutine INIT determines if a particular subcell contains the material

being packaged, by calculating the coordinates of the center point of the sub-

cell (given with respect to the MFOR) with respect to the GFOR. If the coordi-

nates specify an interior point for the PACKAGE geometry and an exterior point

for all DELETE geometries, the volume of this subcell is "filled" with the

specified material density and energy. The momenta associated with the mass

added will also be accumulated for this cell (if the packaged material has

velocity components specified). Velocity components are always stated with

respect to the MFOR.

Stations are generated by specifying the coordinates of each station, or

group of stations. These coordinates may be Eulerian, Lagrangian, or mixed. A

station with one Lagrangian coordinate is free to move in that direction.

The KEEL input file is terminated by the word END. If END is omitted, the

file is read until an end-of-file is encountered.

2. HULL

The ZBLOCK options listed in Table B4 (with H or H* under the program

heading) may appear in a HULL input file, after the keyword INPUT. Although

the parameters with H* under the program heading may be changed in HULL input,

the user is cautioned that unless the option was originally specified in the

KEEL run, it cannot be "turned on" in HULL. Doing so implies that more

variables per cell are available than what KEEL established. Such an option,

however, may be set to zero in a HULL run and then reset to its original value

on a subsequent run.

114

A HULL input file should conform to the format

HULL PROB xxxxx.xxxx

(C or CYCLE=cycle)

(T or TIME=time)

(INPUT parameters and parameter/value pairs)

where items in parentheses are optional. The parameters and parameter/value

pairs may be ZBLOCK options or parameters listed in Table B36.

TABLE B36. BASIC HULL PARAMETERS

Parameter Function/value

HULL Identifies HULL input file

PROB or Next word is the problem number
PROBLEM

C or CYCLE Before INPUT, identifies desired restart cycle for BOW

T or TIME Before INPUT, identifies desired restart time for BOW

INPUT Terminates BOW section of input

TIMES Option to determine when restart files will be created

1. Standard times (default)

2. Given times (from array GTIME)

3. At specified time intervals (DMPINT)

OMPINT Time (s) between restart files

OCYCST Delta cycle stop (number of cycles allowed for
this run)

CSTOP Total number of cycles allowed for this problem

MRELER Max relative error allowed (mass or energy)

RTSTOP Max run time for this run (h)

VECTOR If found by PLANK, causes vector code to be produced

NOVECT If found by PLANK causes scalar code to be
produced (default

115

As explained in Section B-II, HULL periodically (every ICNTRL-th cycle)

produces an ASCII file called HULLSTATUS which contains the information listed

in Table B6. Program HULL stores HULLSTATUS under the problem subdirectory, so

that a user can get a copy of it to monitor the problem's progress.

Also as previously explained, HULL looks for file HULLCNTRL before creat-

ing HULLSTATUS, to allow a user to change various operating parameters. The

lines listed in Table B7 may also be included in the HULL input file after the

keyword INPUT, if the user wishes to set these parameters at the beginning of

the run. The functions of these adjustable parameters are explained below.

a. Autopriority--This parameter, if set, causes the problem priority to

automatically be reduced to standby during prime shift (0600 hours through 1800

hours on weekdays), to take advantage of reduced computer rates. During all

other shifts, the priority is raised to the load priority (default 1.0). To

accomplish the automatic priority changes, subroutine CNTROL, if given the

start day of the week (Mon, Tue, etc.), prevents the priority from being

reduced on weekends.

b. Priority--This parameter sets the load priority to whatever valid

value is desired. If AUTOPRIORITY is off, the priority is set to the load

priority value. If AUTOPRIORITY is on, the action taken depends on the day of

the week and time, as explained above.

c. STABF--This parameter is also a ZBLOCK variable. Valid values are

between 0.1 and 0.9. STABF is the stability factor which determines the time

step from the Courant condition.

d. Timelimit runtime--This parameter changes the job run time, either

by reducing the originally requested run time, or by increasing a previously

reduced time back to the original remaining time.

e. Timelimit stoptime--This parameter can be used to establish or cancel

a desired date/time when the problem must be stopped. When turning STOPTIME

on, the user specifies the month, day, hour, and minute when the problem is to

be terminated.

116

V.%

f. Control cycle or icntrl-- These two parameters establish a new value

for ICNTRL (default 10), which is the number of cycles between creation of new

HULLSTATUS files.

g. DMPINT--This parameter sets the TIMES option to three (Table B36) and

sets the time interval between restart files to the value (in seconds)

specified.

h. End--Terminates the input file.

3. PULL

A PULL input file (Table 837) should conform to the format

PULL PROB xxxxx.xxxx

Control commands

Global plot commands

(OVERLAY)

Plot commands

(ENDOVERLAY)

Plot commands

where values in parentheses are optional. Example PULL input files appear at

the end of this section.

.

117

AF *r4SF 4 F ~

TABLE B37. PULL CONTROL COMMANDS

Parameter Function

PULL Identifies PULL input file

PROB or Next word is the problem number

PROBLEM

FTIME First time to be plotted (default, first restart file)

LTIME Last time to be plotted (default, last restart file)

OTIME Time increment between files to be plotted

THETA Rotation angle for plots (default, 0.0 deg)

FACTPL Plot factor used in subroutine UPLOTI (default, 1.0)

BD Defines size of the border (default, 1.2 in)

XL Defines width of plots (default, 10.0 in)

YL Defines height of plots (default, 10.0 in)

MOVIE Not implemented 0

SIZE=LL.HH Instructs PULL to put LL plots across the defined
plotting area and HH plots down, making an LL by HH
array of plots on one plot frame (default, 1.1)

CTIME Selects specific restart times to be plotted 6"

CCYCLE Selects specific restart cycles to be plotted

DEVICE Selects a device for multiple device plot packages

STIME Requests plots for standard times

SLIDES Inserts blank frame between plots

NORMAL Instructs PULL to draw plots in order specified

118

!

a,,

The PULL plot commands are of the form a'

DDDCCCCPPPP (parameters)

where DDD is a HULL data name (always required), CCCC is an optional

calculation quantity, and PPPP is the type of plot requested. The parameters

enclosed in parentheses define individual plot commands that may differ from

the previously defined global plot commands (Table B38). Each parenthesis must

be isolated by one or more blanks. Examples of plot commands are

DCONT -- Density contours

PVHST -- Pressure vertical histogram

S21CONT -- Second stress invariant contours

a.

TABLE 838. PULL GLOBAL PLOT COMMANDS

Parameter Funct ion
Mn

XMIN Min X-coordinate to be plotted

YMIN Max Y-coordinate to be plotted

XMAX Max X-coordinate to be plotted
'VMAX Max V-coordinate to be plotted

DX X-Plot scale increment (default, scale from XMIN to
XMAX)

DY Y-Plot scale increment (default, scale from YMIN to
YMAX)

CFACTOR Scales plot label from 0.5 to 2.0 (default, 1.0)

ZMIN I Define range of data to be plotted
ZMAX in 3-D plots (default, entire range of data)

CONTV Defines contour values for contour plots (default,
calculate contours from the data)

COLORMAP Indicates color map for Tektronix 4100 terminals;
g to 16 colors can be specified:
C1,C21,C31,... Color indices

C12,C22,C32,... Hues .,

C1 3, C2 3,C33 ,... Saturations a,

C14,C24,C34,... Brightnesses ,"
(default is terminal default color map)

119

- -a -. - a a .~ J . a . - .-. . '. 6

,* TABLE B38. CONTINUED.

Parameter Function

HIST=Hl,H2,H3 Selects rows (or columns) for histogram plots
*(first coordinate, last coordinate, increment)

XPLANES Specifies planes to be plotted on 2-0 plots
YPLANES from a 3-D problem. XPLANES=X1,X2,X3 indicates
ZPLANES planes X=X1 through X=X2 incremented by X3.

EYE=EX,EY,EZ Selects eye position for 3-D plots
(default, appropriate position determined by PULL)

ICTRS Number of contours to be calculated

MAT List of material numbers (or names) for
which plots are desired

COORD Print Max and Min values on the plot

NOCOORD Do not print Max and Min values on the plot (default)

CURV Nonlinear interpolation contour plots (default)

NOCURV Linear interpolation on contour plots

XLOG Plot logarithmic data in the X
YLOG (or Y) direction for histograms

NOXLOG Plot linear data in the X
NOYLOG (or Y) direction for histograms (default)

REF Instructs PULL to reflect the contour and vector
plots at the axis (or plane) of synmetry

NOREF No reflection of data (default)

CGS Centimeter/gram/second system of units (default)

ENGLISH English system of units

GRID Draw grid lines on plots

NOGRID Do not draw grid lines on plots (default)

LOGD Contour values incremented logarithmically

NOLOGO Contour values incremented linearly (default)

LOGV Vector plots use logarithmic scale

NOLOGV Vector plots use linear scale (default)

CELLS Put cell numbers on the plot (default)

NOCELLS Do not put cell numbers on the plot

LEGEND Include plot legend (default)

120

SI

d'/4 / / //'

TABLE 838. CONCLUDED.

Parameter Function

NOLEGEND Suppresses the legend

NLMCONT Put contour numbers on the plot (default)

NOCONTN Suppress the numbers (default for color plots)

COLOR Selects color plotting

DEFINECOLOR Color parameters--color name, number, and intensity

ENDCOLOR

NOCOLOR Suppresses color plotting (default)

ADJCOORD Adjusts scaling increments to 1.5 and 2.5 (default)

NOADJUST Suppresses the adjustment

ARATIO Insures aspect ratio (DX/DY) is one (default)

NORATIO Allows each axis to be scaled independently

Available data names are listed in Table 839. The various plot types are

listed in Table B40. The user must define workable combinations of these

parameters. The two calculation quantities which exist are

GRAD -- Calculate gradient of a scalar

CURL -- Calculate curl of a vector

412

121

Il l

TABLE B39. PULL DATA NAMES

Name Quantity

D Material density

RD Relative density

OD Over density
P Hydrostatic pressure

RP Relative pressure

OP Over pressure

E Specific internal energy

RE Relative internal energy

OE Over energy

U X-component of velocity

V Y-component of velocity

W Z-component of velocity

K Specific kinetic energy

TE Specific total energy

SRR Radial stress component (2-D)

SZZ Axial stress component (2-D) (or Z-component 3-D)

SHH Hoop stress component (2-D)

SXX X-stress component (3-D)

SYY Y-stress component (3-D)

SRZ Shear stress (2-D)

SXY Shear stress (3-D)

SXZ Shear stress (3-D)

SYZ Shear stress (3-D)

S21 Second stress invariant

SPi Max principal stress

SP2 Min principal stress

ERR Radial strain component (2-D)

EZZ Axial strain component (2-0) (or Z-component 3-D)

EXX X-strain component (3-0)

EYY Y-strain component (3-D)

ERZ Shear strain (2-D)

EXY Shear strain (3-D)

EXZ Shear strain (3-0)

122

~ ~ V- 5' *U' r,

7 7.

TABLE B39. CONCLUDED.

Name Quantity

EYZ Shear strain (3-D)

E21 Second strain invariant

EPI Max principal strain

EP2 Min principal strain

TEMP Material temperature

ERAD Radiation energy density

VEL Velocity vector

SV Stress vector

HV Strain vector

TABLE 840. PULL PLOT-TYPE NAMES

Name Plot type

HHST Horizontal histogram

VHST Vertical histogram

CONT 2-D contour

RAST Raster scan color plot of 2-0 data
(not fully implemented)

SURF 3-D contour plot of 2-D data

PERS I 3-D perspective plot

VECT Vector plot

FILL Fill plot (not fully implemented) ,

PARTICLE Special request (no other parts to it)
to plot particles

PULL allows users to construct overlay plots (plots in which two or more

data, or plot, types are drawn on the same frame). Different types may be

superimposed, or they may be drawn on separate halves of the frame. An example

of a superimposed overlay is velocity vectors, plotted over pressure contours.

A split representation example is a plot of pressure contours on the left, with

a pressure vertical histogram on the right half of the frame. Table B41

contains individual plot parameters.

123

*. ,~. * .'-~'aI

4-.

IV.P

TABLE 841. INDIVIDUAL PLOT PARAMETERS

Parameter Function/value

OVERLAY Indicates the start of a set of plots to be
.placed on one frame

Plot parameters for this particular set of plots
that differ from the global parameters must be
enclosed in parentheses (Table B38)

SPLIT Designates that overlaid plots will be split

LEFT Puts plot on left half of split frame

RIGHT Puts plot on right half of split frame (default)

LABEL Defines top label as $string$ (default, data name)

XLAB Defines replacement X-axis label as $string$

YLAB Oefines replacement Y-axis label as $string$
T1 may be any character not in the string)

ENDOVERLAY Terminates this overlay plot set

a. Example PULL input files--The following example PULL input files and

descriptions provide examples for user reference.

The following input file

PULL PROB 10.66 COORD DCONT PCONT

VVHST CTIME 1.OE-6 2.OE-5 5.OE-5

causes density contours and axial-velocity vertical histograms to be produced

for problem 10.66 at times 1.0, 20.0, and 50.0 vs. Coordinates for the minimum

and maximum values in the contour plots are printed on the Plots produced.

The following input file

PULL PROB 19.84

OVERLAY (REF) PCONT PARTICLES

ENDOVERLAY

4

124

4.
4,'

' t I % 'U > \.j p ' Vx '- ? _. ... ' %"4,, .~ • ,' • , y .• - " "-,-_. J .~* 4U #-

- . a-* p . .. -

produces plots of pressure contours with particle positions plotted on the same

frame, for all times found for problem number 19.84. The resultant plot (the

left half of which is a mirrr image of right half) is reflected about the axis

of symmetry.

The following input file

PULL PROB 20.01

OVERLAY (SPLIT

DCONT 1.0 2.0 5.0 7.0 10.0 (LEFT

PCONT (RIGHT)

PARTICLES (RIGHT

ENDOVERLAY

S21CONT

specifies a composite overlay plot. The left half of that plot consists of
density contours (contour values supplied); the right half is made up of

pressure contours, with particle positions plotted over these contours. A

separate frame containing the plot of second stress invariant contours, is also

produced.

The following input file

PULL PROB 4.0

COLOR TEKCOLOR=1

S21RAST

OVERLAY (SPLIT)
DRAST (LEFT)

PRAST (RIGHT)

ENDOVERLAY

specifies color (raster scan) contour plots for the second stress invariant,

and composite overlay plots with density on the left and pressure on the right.

Scaling may be reduced, if the plot does not fit the screen (Tektronix 4100

series terminal).

-12

- , 125

a.

S . % £e b %.' .''S.'- .£. a .'.a 2'J .'j,#'2" #"Z ". .. -.S. '. ¢Z "% V ',.' .' ." ' " '

.7%.

4. STATION.

A typical STATION input file is structured

I

PULL STATION PROB xxxxx.xxxx (TMIN=tl TMAX=t2)

STATION (or STATIONS) (TMIN=tl TMAX=t2)

Station numbers (or ALL)

Plot names (or ALL) (see Table B42) I
END

STATION (or STATIONS)

Station numbers (or ALL)

Different plot names (or ALL)

END

where station numbers may be specified by "1,2,3,4,5" or "I to 5" or "ALL".

Different plots can be requested for different stations, Example STATION input

files appear at the end of this section. Plot names are listed in Table B42.

TMIN and TMAX specified before the first STATION/END set will apply to

all sets. If TMIN and TMAX are specified after the word STATION, they will

apply only to that set. TMIN and TMAX default to all times available on the

station file.

a. Example STATION input files--The following example STATION input

files and descriptions provide examples for user reference. .1

The input file I

PULL STATION PROB 10.6 TMIN=15.OE-6 TMAX=30.OE-6

STATION 10,11,12

PRESS DENS INTENGY END S

STATION 1 TO 9

OPRESS

END

126

-- - • -- -'%-" .,,a, ,u, au% n',';U,,I 'ln. mnll i " . . .ni .. .n u*n' . . . " - n n I

TABLE B42. STATION PLOT NAMES

Name Plot produced

TXX X-stress component

TYY Y-stress component

TZZ Hoop stress (2-D) (Z-stress component 3-D)

PRESS Pressure

OPRESS Over pressure

YIELD Equivalent flow stress

TXY Shear stress

TXZ Shear stress

TYZ Shear stress

EXX X-strain

EYY Y-strain

EZZ Hoop strain (2-0) (Z-strain 3-D)

EMAX Max principal strain

EXY Shear strain
EXZ Shear strain (3-0)
EYZ Shear strain (3-D)

U X-velocity

V Y-velocity

W Z-velocity (3-0)

TOTVEL Vector sun of velocity components

DENS Density

IMP Pressure impulse

INTENGY Internal energy

STRESS All components of stress on one frame

STRAIN All components of strain on one frame

AX X-acceleration

AY Y-acceleration

AZ Z-acceleration

127

produces plots of pressure, density, and internal energy, versus time, for

stations 10, 11, and 12 (from 15 vs to 30 us), and plots of overpressure versus

time for stations 1, 2, 3, 4, 5, 6, 7, 8, and 9 (from 15 vs to 30 vs).

The input file

PULL STATION PROB 11.777

STATION ALL ALL END

produces plots for all variables versus time, for all stations. The produced

plots cover the entire problem time.

The input file

PULL STATION PROB 12.11

STATION TMIN 0.0 TMAX 15.0e-6

1,2,4 ALL END

STATION TMIN 15.0e-6 TMAX 100.0e-6

5,6 ALL END

produces plots for all variables versus time for stations 1, 2, and 4 from 0 us

to 15 vs, and plots for all variables versus time for stations 5 and 6 from

15 vs to 100 us.

1.

* =

128 '

-. a .~ g | . a - a

B-IV. GLOSSARY OF MAJOR HULL VARIABLES

The following variable names used in the HULL code are not listed in

alphabetical order. Instead, they are listed in the order they exist as

elements of common blocks, or in order of relative importance as arbitrarily

determined by the author.

1. PROC HULLCOM

This PROC is used by most subroutines in HULL, to assure that the common

blocks are identical. Common blocks in this PROC contain the coordinate

arrays, the mesh array, the ZBLOCK, and several other very important variables.

Table B43 lists the variables unique to the two-dimensional code; Table B44

lists the variable for the three-dimensional code; and Table B45 lists the

variables common to both.

129

'a1

TABLE 843. VARIABLES IN PROC HULLCOM (2-D)

Common block Variable Function

COORD X(1) X-coordinate for column I
Y(J) Y-coordinate for row J

DX(1) X(1) - X(I-1)
DY(J) Y(J) - Y(J-1)

TAU(I) Area of column I
RC(1) Distance from axis to center of

column I

REZVU UREZV(I) Rezone velocity for column I
VREZV(J) Rezone velocity for row J

GRAVY GA(J) Gravitational potential for row J
(center)

GP(J) Gravitational potential for row J (top)

INDEX J Current row

TSTEP DTMAX Max inverse time for whole mesh

CSMAX Max sound speed in mesh

VMAX Max velocity in mesh

ICS,JCS Coordinates of CSMAX

- IVMAX,JVMAX Coordinates of VMAX

IDT,JDT Coordinates of DTMAX
TMAX Max temperature in mesh

ITM,JTM Coordinates of TMAX

CUTOT
%" DTRAD Radiation time step

IRT,JRT Coordinates of cell determining DTRAD

DTHYD

.13

'U

U..

.

~130

TABLE B44. VARIABLES IN PROC HULLCOM (3-D)

Common block Variable Function

COORD X(I) X-coordinate of column I

Y(J) Y-coordinate of row J

Z(K) Z-coordinate of plane K

Dx(I) X(I) - x(I-1)

* DY(J) Y(J) - Y(J-1)

DZ(K) Z(K) - Z(K-1)

REZVUZ UREZV(I) Rezone velocity for column I

VREZV(J) Rezone velocity for row J

WREZV(K) Rezone velocity for plane K

GRAVY GI(K) Gravitational potential for plane K
?center)

G2(K) Gravitational potential for plane K

(top)

INDEX K Current plane

TSTEP OTMAX Max inverse time

CSMAX Max sound speed

VMAX Max velocity

ICS,JCS,KCS Indices of cell containing CSMAX

I WAX,JVMAX,KVMAX Indices of cell containing VMAX

IDT,JDT,KDT Indices of cell containing DTMAX

TMAX Max temperature
ITM,JTM,KTM Indices of cell containing TMAX

1,

or

131

1

TABLE 845. VARIABLES IN PROC HULLCOM (FOR 2-D AND 3-D)

Common block Variable Function

ZBLOCK See Table 84

ZBLK ZBLK Same as ZBLOCK

CONST P1 3.14159.... (or 0.5 for DIMEN2 GEOM1)

GAMMA Gamma for air

(Blank common) CSTOP Cycle stop

CTAPE

DCYCST Delta cycle stop

DEBUG Debug prints

DMPINT Dump interval for TIMES=3

DRADLOS

DTLD Time step last dump

DUMPN Flag to indicate dump request

FCYC

FPTIME

FT I
1CM Column containing center of mass

IMAXM1 IMAX-1 "

IMAXM2 IMAX-2

IPD

IPMX

IRES

ISTAPE

JCM Row containing center of mass

JMAXM1 JMAX-1

JPMX

KMAXM1 KMAX-1

MRELER Max relative error (for mass or energy)

NA Index for row (or plane) above

NB Index for row (or plane) below

NBLKS Number of data blocks containing mesh on
TAPE4

NDUMP12I

132

TABLE B45. CONTINUED.

Common block Variable Function

NHEC Number of hydro variables in whole mesh

NLTAPE

NN

NPIC Number of particles in core

NPLR Number of particles in last record

NPPR Number of particles per plane

NPPR Number of particles per record

NPREC Number of particle records

NPLIC Number of planes in core

NROWIC Number of rows in core

NSTAPE

NSLVPC Number of slice variables per cell

NSLVPP Number of slice variables per plane

NSLVPR Number of slice variables per row

NTAPE

NVARPB Number of variables per block

NVARPP Number of variables per plane

NVARPR Number of variables per row

PCHAN

PMAX Max pressure in mesh

PRINTL

PRINTW Characters per line

RADRAT Radiation rate

RELERR Relative energy error

REZONA Flag for rezone, aft

REZONB Flag for rezone, below (or bottom)

REZONF Flag for rezone, fore

REZONL Flag for rezone, left

REZONR Flag for rezone, right

REZONT Flag for rezone, top

RTSTOP Run time stop

SREAD Flag to indicate successful read
!TBD

133

TABLE B45. CONCLUDED.

Common block Variable Function

TERMIN Flag to indicate termination

TIMES Dump option

TIMINC

TLD Time last dump

TMAGE

VMIN Min significant velocity

" WHIZ Efficiency measure (CPU time/[cell*cycle])

MSG Message array for terminal remarks

RES
SRES

HIC H(N) Hydro array

"a To simplify addressing hydro variables in the H array, the following

system of equivalenced names is used in the HYDRO and FLUX routines. All

variables for a particular cell are in sequence. The same variable for two

adjacent cells in the same row are NH words apart.

Refer to Table B45 and assume the number of materials (NM) is two, and

all possible options are desired.

a'

N

-13

,

5I 134

,' , S ? . . .*I**J 5' ", I I . .. ' SJI S - .I I I

TABLE B46. HYDRO ARRAY EQUIVALENCES FOR 2-D

H array Equivalenced arrays Value for first cell 1 Option

1(1) P(O) Pressure

H(2) U(O) X-velocity

H(3) V(O) Y-velocity

H(4) XI(O) Internal specific
energy

H(5) XM(O) Total mass

H(6) XM(1) Mass of material I

H(7) XM(2) Mass of material ?

H(8) XV(1) Volume of material I

H(9) XV(2) Volume of material 2

H(1O) XII(1) Total internal energy
for material I

H(1I) XII(2) Total internal energy
for material 2

H(12) HIST(1) SRR(O) Radial stress deviator STRESS

H(13) HIST(2) SZZ(O) Axial stress deviator STRESS

H(14) HIST(3) STT(O) Hoop stress deviator ANISTRP

H(15) HIST(4) SRZ(O) Shear stress deviator STRESS

H(16) HIST(5) SRT(O) Shear stress deviator SPIN/STRESS
(3-D)

H(17) HIST(6) SZT(O) Shear stress deviator SPIN/STRESS
(3-D)

H(18) HIST(7) ANGMOM(O) Angular momentum SPIN

H(19) HIST(8) ERRH(O) Radial strain STRAIN

H(20) HIST(9) EZZH(O) Axial strain STRAIN

H(21) HIST(1O) ERZH(O) Shear strain STRAIN

H(22) HIST(11) ERTH(O) Shear strain SPIN/STRAIN

H(23) HIST(12) EZTH(O) Shear strain SPIN/STRAIN

H(24) HIST(13) EPLASH(O) Plastic strain WORK

H(25) HIST(14) UMAXH(O) Max compression CRUSH

H(26) HIST(15) FMK (O) Magnetic field MAGFLD
X-component

135

- ~ ~ ~ ~ ~ A- . A~ All%\~Vf~..Pa~ ' ~.

*TABLE 846. CONCLUDED.

* H$ array IEquivalenced-arrays Value for first cell Oton

H(27) HIST(16) FMY1(O) Manetic field MAGFLO
Y-component

H(28) HIST(17) ERAD(O) Radiation energy RAO

H(29) GETIME(O) Detonation time BURN2

H(30) CV(O) Radiation specific heat P RAD

H(31) DLTA(O) Change in energy PAD

H(32) TK(O) Radiation temperature RAO

H(33) FYJ(O) Back substitution PAD
coefficientJ

For the situation in Table B46, the niumber of hydro variables per cell

K (NH) is 33, so pressures for cells 1, 2, and 3 are in P(Q), P(NH), and P(2*NH)

or H(I), H(34), and H(67). Table B47 shows the equivalences for the 3-0 code

with NM 2.

.13

S/vSN

TAL B47 HYDR ARA QIAENE O -

-~ ~ Ara Eqialne aray Vau for~ fir - V st cel Option, -v . s.

H() () rssr

H()1**X-eoct

H(6) PM(O) Pres s

H(?) XM(0) Maselofmtera

H(9) XV(O) YVueofteray
H(1) WV() ZVoue oitera

H(1) IXII() Spteific egyfo
internal enrg

H(1) XMI(O) Inteal m negsso
H(7 XM1) Mas o material

H(138l) XM(2) Matss dmaerialo 2TES
H(149T2)XVY(1) Volwies dfvmatra 1 TES

H(15)0T3)XVZ(?) Vohines of vatra 2 NSR
H(16)1T4) X(l) Inter stenerg fTREr

H(17) HIST(1) SXX(O) XZ-srstdeito STRESS
H(18) HIST(6) SYY(O) YZ-sterestdeito STRESS

NH(19) HIST(3) SZZH(O) Z-stress dvaoASTRI
'VH(20) HIST(4) SY(O) Y-shar tes STRESS

H(1) HIST(9) SXZH(O) XY-shear stress STRESS

H(22) HIST(6) SZH(O) YZ-shear stress STRESS
IH(23) HIST(11) EXXH(O) XZ-srstrain STRAIN

H(24) HIST(8) EYYAH(Q) Plststrain WORAI

H(25) HIST(13) UMAXH(O) jMax compression CRUSH
H(26) DETIME(O) Detonation time BURN?

'U.' All variables showing equivalences to the HIST array are advected with
the mass during the fluxing phase of the calculation. Those variables not

showing HIST on the sarne line are not fluxed (the variable DETIME, and those
following in 2-D).

137

0 1

5

2. HYDRO, FLUX, AND EOS COMMONS

The variables listed in Tables 848 and B49 are required only for the rows

actually being processed.

,,

TABLE B48. 2-D COMMON BLOCKS

I

Common block Variable Function Option

SEOSET RCSJ(I) Column I Rho*C**2 (RCS)

CSJ(I) Column I sound speed (CS) P

AMUJ(1) Column I bulk modulus STRESS

YLDJ(I) Column I flow stress STRESS

SHYDRO PJ(I) Column I boundary pressure

VJ(i) Column I boundary velocity

PK(I) Column I top boundary
pressure

VK(I) Column I top boundary
velocity P

SSTRESS USJ(I) Column I boundary stress STRESS

velocity ..-

VSJ(I) Column I boundary stress STRESS
velocity

SRZJ(I) Column I boundary shear STRESS

stress

SRZZ(I) Colinn I boundary axial STRESS

stress 0*

SFLUX FMJ(I) Column I mass flux NM1 p

FEJ(I) Column I energy flux NM1 '

UMOMJ(I) Column I U momentum flux NM1

VMOMJ(I) Coluin I V momentum flux NM1

HISTJ(N,I) Column I HIST(N) flux NHIST/NM1

HISTL(N) Left cell boundary NHIST/NMI '.

HIST(N) flux

HISTR(N) Right cell boundary NHIST/NM11
HIST(N) flux

138

,-' " -'-'- m ,_- . V. ", m . \,i -" . -" -'-' -"-'d.ll-- - - --- ' 1' ; .' J, -

Table 848. CONCLUDED.

Common block Variable Funtion Option

HISTB(N) Bottom cell boundary NHIST/NM1
HIST(N) flux

FVB(I) Column I volume flux FLUXER3
(or velocity)

HOLDS HS(NS) Fractions of materials FLUXER3
to be fluxed

MFLUX FMB(M,I) Column I material M FLUXER3
mass flux

FVB(M,I) Column I material M FLUXER3
volume flux

FIB(M,I) Column I material M FLUXER3
energy flux

FTIB(I) Column I total FLUXER3

energy flux

FUMOMB(I) Column I U momentum flux FLUXER3

FVMOMB(I) Column I V momentum flux FLUXER3

FHISTB(N,I) Column I HIST(N) flux FLUXER3

.

.,

-p

139

!L " r ~

'p

TABLE B49. 3-D COMMON BLOCKS

Common block Variable Function Option

SEOSET RCSK(I) Column I Rho*C**2(RCS)

CSK(I) Column I sound speed (CS)

AMUK(I) Column I bulk modulus STRESS

YLDK(I) Column I flow stress STRESS

SHYDRO PJ(I) Column I front boundary
Pressure

VJ(I) Column I front boundary

Velocity
PK(l) Column I top boundary

Pressure

WK(I) Column I top boundary
Velocity

SSTRESS USJ(I) Column I STRESS

VSJ(I) Front boundary STRESS

WSJ(I) Stress velocities STRESS

Si USK(I) Column I STRESS

VSK(I) Top boundary STRESS

* WSK(I) Stress velocities STRESS

SYYJ(I) Column I STRESS

SXYJ(I) Front boundary Y-stress STRESS
* SYZJ(I) and shear stress STRESS

deviators

SZZK(I) Column I STRESS

SXZK(I) Top boundary Z-stress STRESS

SYZK(I) Shear stress deviators STRESS

SFLUX FVB(I,J) Flux volume from Plane
below

HOLDS HS(NS) Fraction of materials to
be fluxed FLUXER3

MFLUX FMB(M,I,J) Mass, Volume, and internal
FVB(M,I,J) energy being fluxed from plane
FIB(M,I,J) below for each material FLUXER3

140

! . -. -1-

TABLE B49. 3-D COMMON BLOCKS. CONCLUDED.

Common block Variable Function Option

FTIB(I J) Total energy and
FUMOMBI,J) Momenta being fluxed
FVMOMB(I,J) from plane below
FWMOMB(I,J)

3. VECTOR UNIQUE VARIABLES

The variables listed in Table B50 are used in the vectorized version

of HULL.

TABLE B50. VECTOR VARIABLES

Block Variable Function Option -

ICDPTR ICD(1) Cell descriptor for cell I

= -1 island cell

= 0 fluid cell

= 2**im fluid cell containing im

= 99000 + E 2**im
if material im is within .

the cell (multimaterial cell)

ISLND(J) = 1 indicates some island
cells within row J ISLAND

= 0 indicates no island
cells within row J

TSTEP BURNTOT(J) = 1.0 no unburned material
within row J BURN

- 0.0 some unburned material
within row J

NESOUT Logical flag used to indicate
how many cells are to be processed
by subroutine eosset.

= true process only 1,...,iq+1 is

= false process 1,...,imax

141

TABLE B50. CONCLUDED.

Block Variable Function Option

VTMPxx VTMPxx(1) Vector temporaries
(xx=1,64))
In general, local arrays are

equivalenced to these vector
temporaries, to conserve memory.
Occasionally, they are used to
pass values from one subroutine
to another (calls from eossett
or hydro to state).

VECNMx VECNMx(IM,I) Two-dimensional vector temporaries
(x=l,B)
Used same way as VTMPxx, where
local array requires
two subscripts.

EOSTMPx EOSTMPx(I) Vector temporaries
Used only within EOS routines.
Never used to pass values
from one subroutine to another.

I

142

Pk " % 0

.3 oft

% lp

b 0

Or

oil

AILFowoso%
p.

-t

M.*p*

oo* .

p. * p

r / CM0000

w w w w w w w w w w w

ol %wN

%* ~ I

