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ABSTRACT

1A mathfatical model for estimating concentrations and ground

deposi•ion"densities from a low level point source of particulates up

to 2•,_mi'n diameter has been developed. The model applies K theory to

account for vertical dispersion and Gaussian spread to account for la-

teral dispersion. Results for the limiting case of zero terminal velo-

city with negligible retention at the ground are compared directly to

field experimental data for a source near ground level to establish the

validity of using Gaussian lateral dispersion from an elevated source.

The vertical dispersion function and lower boundary condition for an

existing line source model were applied in the present point source

model. Previous comparison to ground deposition densities measured in

various field experiments indicate that estimates from the line source

model are reasonable, although further exoeriments would be useful.C.cy~c.AA •
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A constant to account for variations in eddy diffusivity due

to atmospheric stability
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C (x,z) total dosage for an instantaneous line source, g s m-3 , or

steady state concentration from a continuous line source, g

m-3

C(x,y,z) total doscge for an instantaneous point source g s m-3, or
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plane at z=O m s"=

Q source strength, g m-' for an instantaneous line source and

g m-1 s-' for a continuous iine source

Qp source strength g for an instantaneous point source and g

s"- lor a continuous point source

q terminal velocity of particles, m s"i

R(z) vertical diffusive resistance of the atmosphere at height

z,mnsI 5

S total surface area of the roughness element per unit hori-

zontal area
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and g m-2 s"I from a continuous line source
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INTRODUCTION

1. A mathematical model which includes the effect of atmospheric

diffusion on dispersion and settling was developed at the Defence

Research Establishment Suffield [1,2]. Calculation of airborne concen-

trations and mass deposition densities downwind of an elevated line

source of non-evaporating spray or solid particles can be calculated

from this model. Knowledge of aerial concentration and mass deposition

density from a low level point source is also useful in applications

related to chemical and biological defence. Therefore, the line source

model has been extended to calculate these quantities from a point

source. The purpose of this report is to describe this point source

model 3nd to provide some comparision to previously available data from

field experiments of other workers.
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OUTLINE OF THE LINE SOURCE MODEL

2. The differential equation, boundary conditions and functional

forms for the wind velocity profile, transport velocity to the rough

surface, and particle terminal velocity were stated previously [1,2],

but are provided for convenience. The details of the solutions are

shown elsewhere [1,2].

Differential Equation

3. The equation used to describe turbulent diffusion of monodisperse

particulate matter in the atmosphere from a uniform infinite crosswind

line source is:

u(z) 3C(x,z)/ax = a/az[K(z)aC(x,z)/az} + qaC(x,z)/az (1)

where C total dosage for an instantaneous source

steady state concentration from a continuous source
x =horizontal downwind distance

z vertical height above ground

K(z) =the coefficient of eddy diffusivity at z
u(z) =mean horizontal wind speed at z

q terminal velocity of the particles

This equation and its boundary conditions have been discussed by Calder

[3], who indicated the problems in stating the lower boundary condition

with regard to the transport of material through this boundary of the

turbulent atmosphere to the ground or substrate. Monaghan and McPherson

[4] have proposed an equation for the transport of vapour to rough nat-
ural surfaces based an wn-k by Chamberlain [5] which relates the trans-

A
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port of vapour to the substrate in terms of windspeed at 2 m above

ground, the roughness and specific area of the substrate, and an

absorption velocity, characteristic of the vapour, into the roughness

elements of the substrate. This equation has been modified to include

the terminal velocity of particulate matter and its retention by the

roughness elements. As for the case of vapour diffusion, it is assumed

that the turbulent airstream is bounded by the non-turbulent atmosphere

which acts as a lid to vertical diffusion.

Boundary Conditions

4. The vertical flux F(x,z) of diffusing material is given by:

F(x,z) = -{K(z)aC(x,z)/az + qC), (2)

where F is positive in the direction of increasing z,

and therefore,

u(z)aC(x,z)/ax = -aF(x,z)/az (3)

At the upper boundary z = H,

Lim F o (4)

z4H

At the lower botvndary,

Ltim [-F(x,z)= ES(Pa + q/S) rim C(x,z), (5a)

Z_+0 Z40
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= E(Ps + q) lim C(x,z), (5b)

Z4O

where E is the efficiency of retention (or capture), S is the total

surface area of the roughness elements per unit horizontal area, Pa is

the mean transport velocity of material between the turbulent

atmosphere and the rough surface. Ps is the apparent mean transport

velocity through the horizontal plane at z = o.

The upper and lower boundary conditions are given by:

Lim [K(z) aC(x,z)/az + qC(x,z)) = o (6)
z4H

and

Lim {K(z) aC(x,z)/az + qC(x,z)J = ES(Pa + q/S) lim C(x,z) (7a)

Z40 Z40

= E(Ps + q) lim C(x,z) (7b)

z4o

Boundary Condition for a Material Source

5. Assuming a line source, then from mass balance considerations in

equation (1)

Lim C(x,z) Q6(x-h)/u(h) (8)

X4O
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where Q is source strength (mass per unit length for an instantaneous

line source), h is release height and 6 is the Dirac delta function.

Functional Forms of u(z), Ps, q

6. a. A number of functional forms for u(z) have been proposed. In

this model a power-law form is used:

u(z) = u(2) {(z + At)/(2 + AA)jp (9)

where z is in metres, p is a function of atmospheric

stability and Al is a length of the same order as the

roughness length zo0.

K(z) is given by:

K(z) = A(z +AJ)u(2) (10)

where A is a constant dependent upon atmospheric stability.

Monaghan and McPherson [4] have published values of A, At

and p for stable to slightly unstable conditions by fitting

their vapour diffusion model to field data and Pasquill's

data on vapour cloud height. Pa is related to the

reciprocal of the sublayer Stanton number B by the

approximate equation:

Pa = u,/B'IS (11)

Since u. is approximately a factor of 10 less than u(2)
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Pa a O.lu(2)/B-'S (12)

Chamberlain (1966) suggests values of B-1 between 5 and 8 for

grass with S equal to approximately 2. Hence the equation:

Pa = 0.01 u(2) (13)

is used for all stability categories.

b. Thoom [6] quotes values of B"1 for a variety of rough

surfaces which range from 5 for grassland to 2 for a pine

forest. Thus, if Pa is z•ssumed to be the same for all these

surfaces, S varies from 2 for grassland to 5 for the forest.

Suggested values of A, at, p, u(2) and H are given in Table

I for various Pasquill atmospheric stability categories.

c. Assuming the particulate is a liquid of approximately unit

specific gravity and diameter D, Best's equation [7] for

terminal velocity can be used:

q = A[1 - exp(--BDc)1; (14)
q = 9.43 {1-exp[-(D/1.77) 1 ' 1 47 ]}
for 0.3 5 0: 6.0

q is in m .-I for D in mm.

Below 0 = 0.3 mm equations for fluid drag on spheres are used.
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SOLUTIONS OF EQUATIONS

Numerical Methods

7. The diffusion equations are solved by finite difference methods

using a Crank-Nicolson formulation to reduce the difference scheme to a

tridiagonal matrix which is inverted by the Gauss elimination method

using a digital computer. Errors in discretization are reduced by

subdividing the atmosphere vertically intu equal increments of

diffusive resistance R rather than height, using the relationship

R(z) = fzdz/K(z) or dR(z)/dz = 1/K(z). (15)

8. This procedure also economizes on computer storage. The equations
are solved for C(x,z) and deposition of partiLilate in the substrate.

In the latter case, equation (7) will give rate of deposition for a
continuous source or deposition density (mass/unit horizontal area = w)

for an instantaneous source. As stated previously, the details are

described elsewhere [1,2].

TABLE I

VALUE S•--U- STANTS

CONSTANTS

STABILITY A p u(2) H
CATEGORY m TS

C 0.08 0.025 0.2 2-4 1000
D 0.04 0.025 0.23 ?3 500
E 0.03 0.025 0.3 1.5-3 200
F 0.02 0.025 0.5 1.5-2 100

AU is given for grassland
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POINT SOURCE MODEL

Description and Justification of the Method

10. The extension of the line source model was accomplished by

applying Gaussian lateral distribution to the solution calculated from

the K theory lini source model. The Justification for this is that in

practical applications the lateral distribution over simple terrain

without major obstacles is Gaussian [8]. This applies only to gaseous

clouds or particles small enough so that they follow the air movement

with negligible slip. Since particle dispersici as well as gas

dispersion is considered, sensitivity tests for the effect of particle

size on airborne concentrations and mass deposition densities were

performed by comparing results for various sizes of particles up to 20

pm diameter. In this way the assumption that particles closely

follow the air flow can be verified.

11. Vertical distributions are approximately Gaussian only for some
elevated sources, yet it is common practice to assume the distribution

from pollutants emitted near the surface is also Gaussian [8]. The

"Gaussian vertical distribution assumes that the coefficient, K, is

independent of height which is not generally realistic. The vertical

diffusion coefficient as given by equation (10), with constants A and At

given in Table I, is realistic for open prairie terrain without major

obstacles [1,2,4].

12. The condition of conservation of mass, called the continuity

condition, must be satisfied. As for the line source model, the x

direction is downwind, and z vertical. The direction designated by y is

horizontal and 900 to the left of the x direction. A different meaning
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was used for y in the line source model, but since it does not appear

explicitly in this report, it can be used in the conventional manner.

The continuity conditions which assume no turning of wind with height

are given as follows. For a single continuous line source at right

angles to the mean wind direction the continuity condition is (steady

conditions)

Q = f C(x,z) u(z) dz (16)
p

where Q is the source strength in mass per unit length per unit time,

C(x,z) is the concentration.

For a single continuous point source the continuity condition is (steady

conditions)

Q = Jf C(x,y,z) u(z)dy dz (17)

where Qp is the source strength in units of mass per unit time and

C(x,y,z' is the concentration. Equations (16) and (17) must be

satisfied for all distances x downwind.

13. Almost all the solutions to equations (16) and (17) are based on

the same general forms [8]. Three independent dispersion functions,

G(x), H(y) and l(z) that are independent of each other, are assumed.

The continuity conditions, equations (16) And (17) can be satisfied by

the solutions for the following equations. For the continuous line

source

Q 1(z) (18)SC(x,y) = uz

and for the point source
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C(x'y'z) = Q H(y) Ihz)
u(z)y(19)

where H and I also depend upon x [8].

14. Solutlons (16) and (17) require that thL dispersion functions act

independently. This is usually the case, to a good approximation [8].

The most serious exception occurs when the wind direction changes with
height. In that case H(y) varies with height and therefore also depends

on z. Most observations of vapour dispersion indicate that K(z)
increases with distance from the source [8]. T;,e reason is that in the

atmosphere there are eddies of all sizes. As the plume grows, larger

eddies become relatively more important, so K(z) must be allowed to
increase with travel time or distance. If the source is at or near the

surface, the centra of gravity of the plume will rise with downwind

distance. Therefore, since K(z) varies directly with height as shown in

equations (10), the effective value K(z) will increase with distance,

even if it is assumed to vary with height only, and the solutions of (1)

for q = 0, which represent dispersion of a gaseous cloud, are quite

realistic [8]. For particulate dispersion, the terminal velocity is
greater than zero, which corresponds to q > 0 in equation 1. Therefore

the height of the centre of gravity of the plume rises less with

* downwind distance. In the atmosphere, the characteristic vertical

dimension of eddies is of the same order as the distance above the
ground [9]. Therefore the effective value of K(z) can be expected to

increase less with down wind distance for particulates with considerable

terminal velocity than for gases. Again the physics is compatible with
equation (10) in which K(z) is proportional to height.

15. Assuming then that I(z) is given by K theory and H(y) is a
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Gaussian distribution, the line source solution outlined in paragraphs 3

to 8 with q = 0 in equation (10) can be applied to calculate

concentrations downwind of a point source as follows. Substituting

equation (18) into equation (19) gives

C(x,y,z) = P C(x,z) H(y) (20)
Q

"where H(y) is given by the basic form of the Gaussian lateral distribu-

tion as follows

H(y) = 1 exp-Y2) (21)
VTW-yC (21)

Say

The term a is the standard deviation of y. Actual values of are

given by the numerical expressions developed by Briggs [8,10,11] who

revised the Pasquill-Gifford diagrams developed from observations over

smooth terrain. These are shown in Table IH. The plume width is

approximately 4 ay as 95% of the dispersed material is located within

the 2 ay to each side of the centre of the distribution.
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TABLE II

FORMULAS FOR aYWAND a z (X) (102 < X< 104 M)

Pasqu ill

Type a Qm z (m)

Open-Country Conditions

A. O.22X(1+O.OO0lx) 1f 0.20X

B 0.16x(1+O.OO0lx) tf 0.12x

C O.11x(1+0.0OO1x)-l O.08x(1+0.00O2x)-f

0 O.08x(1+0. OO0lx)*i 0.06x(1+0.0015x)-f

E 0.O6x(1+O.0001x)-f O.03x(1+O.0003x)'i

F O.04x(1+O.0004x)*f O.016x(1+O.0003x)-

Urban Conditions

A-B 0.32x(1+0.0004x) O.24x(1+O.O0lx)*

C O.22x(1+0.0004x) 1f 0.20x

0 0. 16x(1+0.0004x)*f 0. 14x(1+O. 0003x)*f

E-F 0. llx(1+O.0004x) 1i O.08x(1+0.00015x)-i
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Gaussian lateral spread is a good approximation for gaseous clouds, but

there is no evidence that it is suitable for particulate clouds with

considerable terminal velocity. However, the concentrations calculated

for a gaseous cloud can be shown to be close to those for particles with

diameters up to 20 pm, which is a size range of interest in practical

applications. This is accomplished by comparing concentrations and mass

deposition densities calculated for various particle sizes with the line

source model. Calculated results, provided later, will show that the

differences are small enough so that practical estimates can also be

made from the point source model. The mass desposition density for a

particle is not necessarily the same as for a gas' but this can be ac-

counted for independently of lateral spread by providing the appropriate

retention factor, E, in bhe lower boundary condition given by equations

(7a) and (7b). A non-reactive gas such as argon or helium is not ab-

sorbed at all by dry deposition, but once a particle encounters a

surface it is considered to have been absorbed [12]. Here E=O for the

non-reactive gaz and E=1 for the particle,

CALCULATED RESULTS AND COMPARISON TO EXPERIMENT

16. In this section calculated results are shown from the K theory

line source model and the point source model using K theory for the

vertical dispersion function and Gaussian distribution for the lateral

spread. The results for both types of sources are compared, to a set of

values based on carefully constructed diffusion experiments at Pr-ton,

England in the 1930's under O.G. Sutton. [8,13]. Also the ground level

concentration along the wind direction from a gaseous point source with

no retention is compared to the results calculated using Gaussian

distributions both horizontally and vertically.
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17. The line source model "DIFF", was applied using a Fortran

computer prugram [1) on the DRES Honeywell CP-6 system. The point

source model "DIFFP" was applied in a similar way. The program, which

was developed by modifying the one for the line source, is described in

Appendix A. The ground level concentrations using only Gaussian

dispersion was calculated from the following equation [8,11]

C(x,oo) P exp -h2
7,7-yUU (h) •z22.

y z z

Equation (22) is used with the dispersion functions, 7y and cz, given in

Table II. These dispersion functions were originally intended for use

in estimating ground level concentrations from elevated stack sources

[11] and have been developed over many years with industrial

applications in r,mind.

18. The set of values, based on the Porton experiments [13], are

repeated for convenience as follows:

a. Experimental Data for Adiabatic Gradient Conditions

The following data are the mean results of many trials with

both smoke and gas clouds over level grass land. No diffe-

rence could be detected between the rates of diffusion of

gases and smokes.

(1) The concentration at any point in a continuously gene-

rated cloud is directly proportional to the strength of

the source, provided that the source itself does not

materially interfere with the natural air flow (e.g. by

producing intense local convection currents).

UNCLASSIFIED



UNCLASSIFIED /15

(2) For a given strength of source the mean concentration

at any point in a continuously generated cloud is

approximately inversely proportional to the mean wind

speed measured at a fixed height.

(3) The time-mean width of the cloud from a continuous

point source measured at ground level, is about 35 m at

100 m downwind of the source and shows only very small

variations with the mean wind speed.

(4) The time-mean height of the cloud from an infinite

crosswind continuous line source is about 10 m at 100 m

downwind of the source and showns only very small

variations with wind speed.

(5) The central (peak) mean concentration from a continuous

point source decreases with distance downwind, x,

according to the law

concentration a x"1-76

(6) The peak (i.e. 9round level) mean concentration from an

infinite crosswind continuous line source decreases

with distance downwind, x, according to the law

concentration a x-649

(7) The absolute values of the peak mean concentrations at

100 m downwind are as follows:

UNCLASS IFIED
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Mean Wind Peak

Type of S..urce Strength at 2 mn Height Concentration

Continuous Point 1 g sec'- 5 m sec" 1  2 mg m-3

Continuous infinite

line (across wind) 1 g sec, 1 m-1 5 m sec' 1  35 mg m-3

The above data constitutes a standard set of values to which

any theory of atmospheric diffusion must conform. It is

unfortunate that as yet no corresponding set has been

published for non-adiabatic temperature gradients, but it

- - should be emphasized that the general unsteadiness and

erratic behaviour of the light winds which are associated

with both large lapse rates and large inversions make the

experimental study of atmospheric diffusion in there

conditions a matter of considerahle difficulty.

b. Width and Height of Clouds

The width of a cloud from a continuous point source is the

distance between points on the skirts of the crosswind

'p concentration curve at which the concentrations is a fixed

fraction, normally one-tenth, of the peak value. Similarly,
the height of the cloud is defined as the vertical distance

from the ground to the point at which the concentration has

fallen to one-tenth of the value on the ground.
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19. Downwind concentrations from a line source at 1 m height calcula-

ted from the DRES K theory model and from Sutton's mean field trial data

are shown in Figure 1. The wind speed at 2 m height is 5 m s"' in neu-

tral atmospheric stability. The terminal velocity, q, was set to zero

in equations (1) to simulate a gaseous cloud in the mathematical model.

The field trial results were obtained from the peak mean concentration

at 100 m and the law for decrease of concentration with downwind dis-

tance. Similar results for a point source are shown in Figure 2. Cal-

culated results are also shown for various point source release heights

in Figure 3 from the present K theory model with Gaussian lateral

spread, and in Figure 4 from Gaussian dispersion given by equation (22).

Concentrations 100 m downwind of a line source at 1 m height are shown

as functions of height for various retention efficiencies in Figures 5

and 6, for comparison to Sutton's cloud height data. Similar results

are shown for a point source for use in practical applications in

Figures 7 and 8.

20. The effect of particle size on concentration and ground deposi-

"tion density from a line source is shown in Figures 9, 10 and 11. Con-

centrations shown start at 30 m downwind, but one should note that less

reliability is expected at short distances than at distances greater

than 100 m from the source. The effect of fluctuations have not yet

smoothed out, and concentrations vary rapidly with distance at short

distances. Figures 9, 10 and 11 compare calculated results for 20 pm

diameter particles to particles of less than 1 pm diameter. The ter-

minal velocity of the the 20 pm particle was calculated using equations

for fluid drag on spheres [14]. The velocity which was obtained assu-

ming unit specific gravity was 0.01216 m s-1. The terminal velocity of

particles less than 1 p diameter was assumed to be zero. The downwind

concentrations are shown in Figure 9 for two atmospheric stability

categories, D and F and the guund deposition densities are shown in

Figure 10 for stability D and Figure 11 for stability F.

UNCLASSIFIED

J,/



UNCLASSIFIED /18

21. As mentioned previously, particles small enough so that their

terminal velocity is negligible and which therefore follow the air flow

will still not produce the sawe downwind concentrations as nonreacting

gaseous clouds. The reason is that they are affected by the ground sur-

face in different ways. Particles are assumed to have a retention

efficiency, E, of 1 and nonreacti'e gaseous clouds have a retention ef-
ficiency of 0. The effect of various retention efficiencies on downwind

concentration from a point source is shown in Figure 12. Peak downwind

concentrations from a low level point source of particles which follow

the air flow are shown in Figure 13 for four atmospheric stability cate-

gories. Similarily, peak ground contamination densities are shown in

Figure 14.

22.- Downwind concentrations from a low level point source of 5 pm and

20 pm diameter particles are shown for four atmospheric stability cate-

gories in Figures 15 and 16, respectively. Ground deposition densities
for these two particle sizes are shown in Figures 17 to 20. The calcu-

lations were performed for particles of unit specific gravity using the
point source K theory model with Gaussian lateral spread.
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K THEORY WITH GAUSSIAN LATERAL SPREAD
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10 K THEORY WITH GAUSSIAN LArERAL SPREAD
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DOWNWIND CONCENTRATIONS FROM A POINT SOURCE
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10-1
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Figure 17

GROUND DEPOSITION OF MONODISPERSE PARTICULATE
FROM A POINT SOURCE AT 3m HEIGHT IN STABILITY
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UNCLASSIFIED



UNCLASSIFIED /36

K THEORY WITH GAUSSIAN LATERAL
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K THEORY WITH GAUSSIAN LATERAL
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GROUND DEPOSITION OF MONODISPERSE PARTICULATE
FROM A POINT SOURCE AT 3 m HEIGHT IN STABILITY
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DISCUSSION OF RESULTS

23. The results for the K theory line source model agree favorably

with Sutton's mean field trial data. As shown in Figure 1, the peak

concentration at 100 m downwind is 35 mg m-3 for both. At longer

downwind distances the calculated results are lower than those given by

"mean field trial data. The difference gradually increases until at 1000

m the calculated value is 9C% of that computed from Sutton's criteria

and 70% at 10000 m downwind. The calculated cloud height at 100 m

downwind of a line source is 11 m as compared to 10 m from the mean

field trial data. The calculated height is obtained from Figure 5, with

retention efficiency E = 0, where the concentration has fallen to

one-tenth of the value on the ground.

24. Tne results for the point source model using K the;.ry for

vertical dispersion and Gaussian lateral spread agree favorably with the

mean field trial data, althrugh less so than for the line sourc%. The

calculated peak concentration at 100 m downwind was 1.76 g (1-3 as

compared to 2 g m-3 from Sutton's mean field trial data. This

corresponds to a calculated value which is 88% of the measured vilue.

The difference gradually increases until the calculated value is 75% of

that computed from Sutton's criteria at 1000 m and 50% at 10000 m. The

calculated cloud width 100 m downwind of the point source using equation

(21) with ay from Table II is 34 m, as compared to 35 m from the mean

field trial data. The criteria used for the cloud width was that

specified by Sutton as the distance between points on the crosswind

concentration curve at which the concentration has fallen to one tenth

of the peak value. Using the criteria that the cloud width is 4 •y, as

previously described, the calculated value is 32 m. The cloud height

for a point source was not specified for the mean field trial data, but
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the calculated value as shown in Figure 7 for retention efficiency, E=O,

is the same as for the line source. This is to be expected since the

same K theory is used for vertical dispersion.

25. Comparison of Figures 3 and 4 indicate that the downwind location

of the maximum ground level concentration for the two methods of

calculation is in good agreement for all release heights. The

difference in the values of the concentration is greatest for a release

height of 20 m whe-e K theory nodel with Gaussian spread gives results

about 75% of that by Gaussian dispersion. The former model tends to

give higher concentrations upwind of the peak and lower concentrations

downwind of the peak. There is no general agreement on the best method

to model elevated sources [8]. A review of various models is described

by Gifford [15].

26. The agreement between theory and experiment is favorable for the

line source. The calculated results in Figures 5 and 6 also show the

. behavior of concentration as a function of height Iz'r various retention

efficiencies. As retention efficiency increases, the height at which

the maximum concentration occurs increases, but the maximum

concentration, itself decreases. This is also true for a point source

as shown in Figures 7 and 8, which uses the same K theory for vertical

dispersion.

- 27. The concentrations at the source height downwind of a low level

line source is not affected appreciably by particle size less than 20 pm

in neutral atmospheric stability. Figure 9 indicates that the

concentrations of 20 pm particles are not less than 90% of the

concentrations for particles less than 1 pm in size over the whole

downwind distance range considered. For atmospheric stability F, which

UNCLASSIFIED
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is the "worst case", the differences are considerably greater. The

reason is that the plume travels close to the ground at all distances,

so that even small differences in terminal velocity affect the number of

particles which come into contact with the ground and thu:. are removed

by retention. Figure 9 indicates that the difference between

concentrations of 20 pm particles and particles less than 1 pm in

diameter, gradually increases with do•,nwind distance. The

concentrations of 20 pm particles are 85% at 100 m, 65% at 1000 m and

50% at 10000 m of the concentration of particles less than 1 pm in

diameter. The ground deposition Oensities of 20 pm particles are not

less than 75% of those of the smallest particles over the whole distance

range in atmospheric stability D, but vary gradually from 50% at 100 m

'o 90% at 10000 m. For the wind speeds considered, which are realistic

in practical applications, the ground deposition densities are nearly

equal at 10000 m for the two atmospheric stability categories.

28. Figure 12 indicates that concentrations of particles which follow

the flow are lower than those of non reacting vapors downwind from a

' -, point source. The difference increases gradually as is shown by

comparing the results for E=O and E=1. The concentration for E=0.2 is

about midway, on the logarithmic scale, between those for the other two

retention efficiencies. Figures 13 and 14 give concentrations and

ground deposition densities downwind of a point source using zero

terminal velocity. They can be used as a good approximation for

"particles smaller than 5 pm in diameter. The concentrations for

particles between 5 and 20 pm in Oiameter can be estimated by comparing

Figures 15 and 16. A feel for the difference in ground deposition

densities downwind of a point source for various small particle sizes is

given in Figures 17 to 20, where the calculated results for 5 and 20 pm

particles are shown for four atmospheric stability categories.
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S29. Some comparisons of calculated ground contamination densities for

the line source model to field data for particles 30 pm and larger

[1,2,16,17] indicate that this model can be used with reasonable confi-

dence. The predicted location of the downwind peak agrees with experi-

ment but the calculated peak ground deposit densities are lower. The

point source model which uses the same vertical dispersion function and

lower boundary condition is supported by these results to a certain

extent, although further experiments would be useful.

CONCLUSIONS

30. A mathematical model has been developed from ',h'ch concentrations

and ground contamination densities from a low level point source of

particles less than 20 pm in diameter can be calculated. Confidence in

the model to predict concentrations accurately is supported by

experimental data for gaseous clouds, for which the model can be applied

using the limiting case of zero terminal velocity. Calculations for

particles within the specified size rarge show that the effect of

particle size is small enough so that predictions of concentrations can

be made with sufficient accuracy for many practical applications.

Ground contamination densities can also be calculated for the same range

of particle sizes. Reasonable confidence in their accuracy is supported

by comparisons with experiments reported previuusly [1,2,16,17].
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Al. The computer program for calculating concentrations and ground
contamination densities downwind of a point source using K theory for
vertical dispersion and Gaussian lateral dispersion was developed from
the line source program. The program called DIFFP is therefore very
similar to the program DIFF, from which it was developed. The data
input required to execute the program is shown in Table Al, with
required atmospheric constants in Table A2. Sample output and a
listing of the program immediately follow the table. The proqram for
the line source, which contains several subroutines, is difficult to
urderstand for the uninitiated because it is not thoroughly annotated.
The modification to account for lateral spread from a point source was
handled as simply and straightforwardly as possible with minimal
modifications.

A2. The modifications required to calculate concentrations and
ground deposition densities downwind of a point source were all made in
the subroutine PPOUT, the last subroutine in the program. A short
algorithm was inserted to calculate the standard deviation: ay, and the
associated Gaussian lateral dispersion function at any distance
downwind. The concentrations and ground deposition densities were then
obtained by multiplying the concentrations and ground deposition
densities for the line source calnulated earlier in the program by the
lateral dispersion function. The program was set up to calculate
results for any one lateral crosswind position, y, at each downwind
distance. The peak values are given by setting y = 0. Off axis values
which are symmetric about the axis are less according to the Gaussian
lateral distribution.

A3. The algorithm for calculating the Gaussian lateral dispersion
function is shown in lines 506 to 526 in the program listing. The
modified dosages are calculated in lines 532 to 534 and the modified
ground contamination densities are calculated in lines 541 to 543.
Line 545 was inserted to include values of the lateral dispersion
functions in the u~tput results. Also line 499 was modified to include
the new functions in DIMENSION statements and a few FORMAT statements
were added.

UNCLASSIFIED



UNCLASSIFIED

A-2

TABLE Al

DATA INPUT FOR DIFFUSION PROGRAM, DIFFP

RECORD VARIABLES FORMAT NOTES

1 PA,M,S,A,DL, 8F10.0 PA=O.01 U(2). U(2) is 2 m
Q,E, SOURC windspeed (m s- 1 ).

S=2.0 for open ground; 5.0
for forest.
Q is terminal velocity of
droplets or oarticles(m s'-).
E is retention factor of
substrate; the value is 1
for complete retention
SOURC is line source
strength, mass per unit
length (g m'-).
M=p,A, DL=A1 are given in
Table A2).

2 (1) XO,DYH, HH, U2M, 8F10.0 XO is the maximum downwind
distance considered.
DY = 0.01 (2)
H is the height of the
atmospheric lid (see Table
I). HH is the effective
release height (m). U2M is 2
m windspeed (m s-1) (see
Table A2.

3 THETA,NZ(IC,ICI) F10.0,313 THETA = 0.5
NZ is the size of the
vertical array (usually 48
but % 100). IC and ICI were
used to "debug" the program
and to provide auxiliary
information: no entry
required. Their use is
described in foot note (3)
below.
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TABLE Al

DATA INPUT FOR DIFFUSION PROGRAM, DIFF

continued

RECORD VARIABLES FORMAT NOTES

5 NUMOX,NOVES, 412 NUMOX is the number of down
(ICZXIK) wind distances for output

(maximum 20)
NOVES is the number of
height intervals in print
out. This is further
described in the notes with
record 7. ICZX, IK are used
only to provide auxiliary
information. No entry is
required. Their use is
described in foot note (3)
below.

6 XOUT(I), 8F10.0 Downwind distance from spray
I=1,NUMJX line (m). Maximum number of

positions is twenty.

7a,b,c .... STATZ(I), 8F10.0 STATZ and ENDZ are bottom
ENDZ(I), and top of chosen interval
ZOUIN(I) of height, NOVES. ZOUIN is

height increment. Thus 0.0,
10.0, 2.0 will give values
of dosage at Z = 0.0, 2.0,
4.0 .... 10.0 m. This
permits height increments to
be varied from one interval
to the next. One recird is
needed for each interval.
Total number is NOVES
records (not to exceed 25).

8 Not used unless ICZX?1( 3 )
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TABLE A-i

DATA INPUT FOR DIFFUSION PROGRAM., DIFF

continued

RECORD VARIABLES FORMAT NOTES

9 YC IPSC F1O.O, 13 YC is crosswind coordi-
nate (m). IPSC is 1,2,3,4
for stability categories
CDEF.

9 YC IPSC F1O.O, 13 YC is crosswind coordi-
nate (m). IPSC is 1,2,3,4
for stability categories
CDEF.

UNCLASSIFIED



S.-UNCLASSIFIED

A-5

FOOTNOTES

(1) X0 must exceed XOUT(NUMOX) card 6.
(27) The calculated output position may vary slightly from the chosen

"XOUT(I) in card 6, because DY is a logarithmic increment of downwind
distance.

(3) IC = 0, ICI = 0, ICZX = 0, IK = 0
No auxiliary information in output.
IC = 1, ICI = 0, ICZX = 0, IK = 0
Run parameters output
DR NZ DY NY THETA
H HR RH
HH HHR RHH IHH
Matrix constants output
ALPHA BETA GAM:A LAMBA Al D1
IC = 2, IC1 = 0, ICZX = 0, IK = 0
As for IC = 1 plus:
Output controls
Vertical intervals
START END INCREMENT for each i;tterval
Vertical array
Z RZ ID THETA (portion of full increment for Bessel's interpolation
"formula)
Horizontal output positions
X X-OUT IY

IC = 3, IC1 ; 0, ICZX = 0, IK = 0
As for IC = 2 with the other three variables equal to zero.

IC = 4, IC1 a 0, ICZX a 0, IK > 0
As for IC = 2 and 3 in the two preceding modes, except that no main
results are printed out. Moreover, no downwind concentrations and
ground contaminations are calculated in the program.

IC = 3, IC1 2 0, ICZX = 0, IK = 0
As for IC = 3 ICI = 0 except that vertical profile and matrix inter-
rogation is printed out for iteration intervals separated by the value
of ICI. For example, if ICI = 10, iterations 10, 20, 30 ..... are prin-
ted out until the specified maximum value of downwind distance has been
reached. This mode results in a large array of numbers printed out at
each iteration determined by ICI and could result in a great deal of
output paper from the printer.
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IC = 2, IC1 = 0, ICZX 0 0, IK Ž 0

ICZX = 1: Peak concentrations and vertical locations of peaks in the
transformed plane for downwind positions IK.DY starting at Y = DY are
printed out. For example, if DY = 0.01, IK = 3, values are printed out
at DY 0.01, 0.04, 0.07 .....

ICZX = 2: As for ICZX = 1 except that concentrations are also given at
one user specified height, Z, at the same downwind positions. An extra
data record is needed if ICZX a 1, which specifies heights Z, as
follows. XZ(I), FORMAT 2F10.0. Only one value of ZX(I) is required if
ICZX = 2.

ICZX = 3: As for ICZX 2 except that concentrations are printed out at
two user specified heights, Z. Peak concentrations are not given.

U'SS
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TABLE A2

VALUES OF CONSTANTS

CONSTANTS

STABILITY A ___ u(2) H

CATEGORY m m s"1 m

C 0.08 0.025 0.2 2-4 1000

D 0.04 0.025 0.23 k3 500

E 0.03 0.025 0.3 1.5-3 200

F 0.02 0.025 0.5 1.5-2 100

At is given for grassland
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