ELASTIC BEHAVIOR OF A RUBBER LAYER BONDED BETWEEN TWO RIGID SPHERES

AKRON UNIV OH INST OF POLYMER

SCIENCE

A N GENT ET AL.

MAY 98 TR-13

UNCLASSIFIED
ELASTIC BEHAVIOR OF A RUBBER LAYER
BONDED BETWEEN TWO RIGID SPHERES

by

A. N. Gent and Y.-C. Hwang

Institute of Polymer Science
The University of Akron
Akron, Ohio 44325

May, 1988

Reproduction in whole or in part is permitted for
any purpose of the United States Government
Approved for public release; distribution unrestricted
Elastic Behavior of a Rubber Layer Bonded Between Two Rigid Spheres

A. N. Gent and Y.-C. Hwang

Institute of Polymer Science
The University of Akron
Akron, Ohio 44325

Office of Naval Research
Power Program
Arlington, VA 22217-5000

May 1988

According to attached distribution list.
Approved for public release; distribution unrestricted.

Submitted for publication in: Rubber Chemistry and Technology

Cracking, Composites, Compressibility, Deformation, Dilatancy, Elasticity, Elastomers, Failure, Fracture, Particles, Reinforcement, Rubber, Stress Analysis.

Finite element methods (FEM) have been employed to calculate the stresses set up in a thin rubber layer, bonded between two rigid spheres, when small tensile or compressive deflections are imposed. Values of stiffness have been calculated for various spacings of the spheres, i.e.,
for various thicknesses of the rubber layer. They are in good agreement
with earlier experimental measurements of compression stiffness and with the
predictions of an approximate theoretical treatment (%). However, they are
strongly affected by small departures of the rubber layer from complete
incompressibility. The highest dilatant stress (in tension) is found to be
set up on the central axis, near the bonded surfaces, where internal failure
has been observed to occur in similar bonded layers (%). For moderately
thick layers, the axial tensile stress in the center of the layer is
substantially higher than the lateral stresses. This feature suggests that
the initiation of failure in this location may not obey the same criterion
as for an isotropic stress field, and that a crack, once formed here, will
propagate as a tear across the axis of symmetry.
The elastic behavior of a rubber layer sandwiched between, and bonded to, two rigid spherical surfaces is of interest for at least two reasons. Structures of this type are used as flexible mounts and cushioning devices, and design engineers need to be able to estimate the stiffness and the stresses set up within them. And they constitute a model of particle-filled composites, in which spherical particles are dispersed in a softer elastic medium. In this case a knowledge of the stiffness and stress distribution may provide insights into the phenomenon of reinforcement.

Elastic behavior under small compressions (and, equivalently, under small tensile deformations) has been analyzed previously, using some rather drastic approximations (1). The rubber was assumed to be linearly-elastic and incompressible in bulk, and the compressive force was assumed to consist of two terms: one due to simple compression of the layer, and a second arising from a hydrostatic pressure P set up as a result of the restraints at the bonded surfaces, where P was a function only of the lateral distance of a point in the layer from the central axis of the system. We now present a more detailed and accurate study of the stresses and deformations set up by compression or extension of the layer, using finite element methods (FEM) and not invoking the condition of incompressibility. Instead, values of Poisson’s ratio lying between 0.45 and 0.5 have been employed, covering the widest range likely to be encountered with rubber formulations. A typical rubber vulcanizate has a value of Young’s
(tensile) modulus E between about 2 and about 10 MPa, and a much larger modulus K of bulk compression, of about 1.1 GPa (3). Thus, Poisson's ratio v, given by

$$v = \frac{1}{2} - \frac{E}{6K}$$

ranges from about 0.4985 for relatively stiff compounds to about 0.4997 for relatively soft ones.

In addition, the distribution of pressure throughout the thickness of the rubber layer has been calculated, whereas, before, the approximate theory only yielded a uniform value.

These results have implications for the mode of fracture both of bonded rubber layers and of filled rubber and other particulate composites. Failure of rubber is known to take place where, and when, a triaxial tension (negative hydrostatic pressure) is set up that exceeds a critical value, given by about $5E/6$, where E is Young's modulus (4-6). Under these circumstances, any small spherical cavity that is present within the rubber will expand indefinitely, i.e., until the rubber around it reaches its maximum extensibility. Then the rubber will tear open to create a large internal crack. Thus, a crucial question for elastomeric composites is: Under what circumstances and at what locations is this critical state likely to be reached?

A second question is: In what direction will the crack, once formed, tend to propagate? If it grows across the sample, then it will result in rupture. If, on the other hand, it grows parallel to the axis of the sample, then it will not necessarily lead to rupture.
Some preliminary conclusions on these points are reached here on the basis of the calculated stress distributions.
2. Finite Element Analysis

A sketch of the model structure is shown in Figure 1. Stress distributions within the rubber layer were calculated using the ADINA code (7), assuming that the structure was cylindrically symmetrical, and that the rubber was linearly-elastic, isotropic, and nearly incompressible in bulk, with values of Poisson's ratio, ν, between 0.45 and 0.4999. The two spheres were made effectively rigid by giving them a value of Young's modulus of 10^9 times that of the rubber.

Ten equal elements were employed vertically, between the surface bonded to one of the spheres and the center line of the rubber layer. Ten elements of gradually increasing width were employed laterally, between the cylindrical axis and the free surface, as shown schematically in Figure 1. Values of stress were calculated by taking an average over four integration points of the eight-node axi-symmetric elements.

When an axial force F was applied to the spheres to compress or stretch the layer bonded between them, Figure 1, the FEM computations yielded corresponding values for the displacement δ, axial stress σ_z, radial stress, σ_r, tangential stress σ_t, and hydrostatic tension, $-P$, where

$$-P = (\sigma_z + \sigma_r + \sigma_t)/3$$

(2)

These results are reported here for a wide range of layer thicknesses and for various values of Poisson's ratio, ν.

3. Results and discussion

(i) Stiffness of a bonded layer

Values of the computed compression or tensile stiffness for a bonded rubber layer are plotted in Figure 2 against the corresponding value of Poisson's ratio for the rubber. They are given in reduced form, as the dimensionless ratio, F/SDE, for selected values of the ratio h/D of the distance h between the spheres to the sphere diameter D.

As the results given in Figure 2 show, the stiffness of thin layers is extremely sensitive to the value of Poisson's ratio, even when it is quite close to 0.5, corresponding to complete incompressibility. For example, for a layer with a thickness ratio h/D of 0.01, the stiffness is reduced by nearly 70 percent in comparison with the result for an incompressible material, when $\nu = 0.45$. Even for a value of ν of 0.49, close to the incompressibility limit, the computed stiffness is still about 40 percent less than the value for a truly incompressible material. On the other hand, the stiffness of thicker layers is much less sensitive to small departures from complete incompressibility (Figure 2).

By extrapolation to $\nu = 0.5$, values of the stiffness of thin layers were obtained for comparison with those deduced previously from an approximate theoretical treatment for incompressible layers (1):

$$\frac{F}{SDE} = \frac{(\pi/8)}{A} \ln\left[\frac{A}{(A-1)}\right] - 1 + \left(\frac{1}{2A}\right) + \left[\frac{1}{(A-1)}\right]$$ (3)
where \(A = 1 + (h/D) \). This comparison is made in Table 1 and Figure 3. The extrapolated results are seen to be in close agreement with the approximate theory over the entire range of rubber layer thickness. The maximum difference is about 6\%, when the rubber layer thickness is relatively large, \(h/D = 0.2 \). Thus, the approximate theory is surprisingly successful in predicting the stiffness of thin incompressible rubber layers.

Because the approximate theory gave results in good agreement with experimentally-measured compression stiffnesses for bonded rubber layers (1), we can conclude that the numerical calculations are also in good agreement with experiment. This comparison is included in Figure 3.
(ii) Stress distribution within the layer

Values of the hydrostatic pressure P for compressed layers, or triaxial tension (negative hydrostatic pressure) for layers subjected to tensile loads, were computed by FEM, using Equation 2. Maximum values were found to be developed on the central axis. Results for the layer center are plotted in Figure 4 against the value of Poisson's ratio, ν, of the rubber. They are seen to be quite sensitive to small departures from complete incompressibility, especially for thin layers, as found before for the layer stiffness, Figure 2. (Note that logarithmic scales are employed in Figure 4, in view of the wide range of pressures encountered.) And, again, the results for thicker rubber layers were less sensitive to the exact value of Poisson's ratio.

By extrapolating to a value for ν of 0.5, corresponding to a completely incompressible rubber layer, results were obtained for direct comparison with the predictions of the approximate theoretical analysis (1), where the total pressure is assumed to be made up of two components, the first given by simple compression of an (unbonded) incompressible layer

$$P_1 = \frac{E\delta}{3h} \quad (4)$$

and the second arising from restraints at the bonded interfaces

$$P_2 = \frac{E\delta}{4AD(A-1)^2} \quad (5)$$
where \(\delta \) is the displacement, calculated from the total stiffness, Equation 3.

This comparison is made in Figure 5. Good agreement is seen to hold between values of pressure at the layer center, calculated from FEM and from the approximate theory.

Thus, the approximate theory is apparently able to predict the pressures set up in thin incompressible layers with surprising accuracy.

Up to this point, pressure were evaluated by FEM at the center of the elastic layer, for comparison with predictions of the simple approximate theory. But the FEM calculations revealed that, although maximum pressures were, indeed, developed on the central axis, they were not generally constant through the layer thickness. When the layer was extremely thin, the pressure was approximately uniform between the two spheres, Figure 6. But when the layer was thicker; for example, when \(h/D = 0.1 \); then the hydrostatic tension near the bonded interfaces was significantly larger than in the center of the layer, Figure 6. Thus, for thin layers, failure due to the action of a hydrostatic tension could occur at any point along the axis between the two spheres, whereas for thicker layers it is more likely to take place near the bonded surfaces. Experimental studies have shown that the first cavity appears in relatively thick layers near the bonded interfaces (2).
(iii) Anisotropy of stresses

FEM computations also revealed that the principal stresses set up along the center line were not strictly equal. They approached pure triaxiality for thin layers but for moderately thick ones the axial stress at the center of the layer was considerably larger than the radial and tangential stresses (which were roughly equal), Figure 7. However, near the bonded surfaces the stresses remained substantially equal, even for thick layers.

We conclude that failure by growth of a pre-existing cavity at a critical level of triaxial tension will occur first near the bonded surfaces for moderately thick layers, $h/D \approx 0.1$, and somewhat later, i.e., at a higher applied load, in the central region of the rubber layer, as observed experimentally (2). But the nature of the second fracture, and in particular the direction of tear propagation, is likely to be somewhat different because the stress field is not isotropic.
Conclusions

Stiffnesses calculated by FEM for thin incompressible rubber layers sandwiched between, and bonded to, two rigid spheres are in good agreement with a previously-derived approximate theory and with experimental measurements of compression stiffness. However, the calculated stiffnesses of thin layers are extremely sensitive to the value chosen for Poisson’s ratio. Small departures from complete incompressibility bring about large reductions in stiffness.

The highest level of pressure in compression, or dilatant stress (triaxial tension) in tension, is developed at points near the bonded surfaces of the spheres for moderately thick rubber layers. This is the place at which an initial cavity appears when bonded rubber layers are subjected to tension (2).

Calculations of the radial and tangential stress show that the stresses in the center are strictly triaxial only for thin layers. For thicker layers, the axial tensile stress is substantially greater than the lateral stresses. This feature of the stress distribution has implications for the direction of tearing when an initial cavity forms at the center of the rubber layer. The tear will presumably run at right angles to the major tensile stress; that is, across the axis of symmetry; and this is the direction observed in practice (2). On the other hand, cavities formed near the bonded surfaces are in an isotropic stress field with no preferred direction. In practice, they propagate along the axis and thus do not lead directly to failure of the bonded structure.
Acknowledgements

This work was supported in part by the Office of Naval Research (Contract N00014-85-K-0222) and in part by a grant-in-aid from Lord Corporation. The authors are also indebted to Professor R.A. Schapery of Texas A and M University for helpful suggestions on the analysis of bonded layers.
References

Table 1: Stiffness, $F/\delta DE$ for an incompressible elastic layer bonded between two spheres of diameter D and initial separation h.

<table>
<thead>
<tr>
<th>h/D</th>
<th>$F/\delta DE$ from FEM</th>
<th>$F/\delta DE$ from approximate theory (1)</th>
<th>Difference (per cent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>40.77</td>
<td>40.90</td>
<td>0.32</td>
</tr>
<tr>
<td>0.02</td>
<td>20.916</td>
<td>21.01</td>
<td>0.45</td>
</tr>
<tr>
<td>0.05</td>
<td>8.704</td>
<td>8.904</td>
<td>2.24</td>
</tr>
<tr>
<td>0.1</td>
<td>4.519</td>
<td>4.749</td>
<td>4.84</td>
</tr>
<tr>
<td>0.2</td>
<td>2.399</td>
<td>2.579</td>
<td>6.96</td>
</tr>
<tr>
<td>0.5</td>
<td>1.122</td>
<td>1.171</td>
<td>4.13</td>
</tr>
<tr>
<td>1</td>
<td>0.648</td>
<td>0.643</td>
<td>-0.86</td>
</tr>
<tr>
<td>2</td>
<td>0.358</td>
<td>0.347</td>
<td>-3.32</td>
</tr>
</tbody>
</table>
Figure Legends

Figure 1. Sketch of the model employed for FEM calculations.

Figure 2. Calculated stiffness F/S plotted against the value of Poisson's ratio ν, for various thicknesses h of the elastic layer relative to the sphere diameter D.

Figure 3. Stiffness F/S plotted against the layer thickness h, relative to the sphere diameter D. The open circles represent the results of FEM calculations for an incompressible material. The filled-in circles are experimentally-measured values for a silicone rubber layer, $E = 2$ MPa, (1). The full line represents the results of a previous approximate theory (1).

Figure 4. Pressure P, developed at the center of an elastic layer, plotted against the value of Poisson's ratio ν, for various values of the layer thickness h, relative to the sphere diameter D. P_o denotes the mean applied stress, given by $4F/\pi D^2$.

Figure 5. Pressure P_c, developed at the center of an incompressible elastic layer, plotted against the layer thickness h relative to the sphere diameter D. P_o denotes the mean applied stress, given by $4F/\pi D^2$. The full curve represents the predictions of a previous approximate theory (1). The points represent values calculated by FEM.

Figure 6. Pressure P developed along the central axis, plotted
against the distance z from the center of an incompressible elastic layer of thickness h. The point $z = h/2$ is at the bonded interface. P_c denotes the pressure set up at the center of the layer.

Figure 7. Ratio of the radial stress σ_r to the axial stress σ_z, plotted against the distance z from the center of an incompressible elastic layer of thickness h.
Figure 1
Figure 2
Figure 3
Figure 5
Figure 6
Figure 7

- h/D = 0.01
- h/D = 0.05
- h/D = 0.10

\(\sigma_r / \sigma_0 \) vs. \(Z / (h/2) \)
DISTRIBUTION LIST

Dr. R.S. Miller
Office of Naval Research
Code 432P
Arlington, VA 22217
(10 copies)

Dr. J. Pastine
Naval Sea Systems Command
Code 06R
Washington, DC 20362

Dr. Kenneth D. Hartman
Hercules Aerospace Division
Hercules Incorporated
Alleghany Ballistic Lab
P.O. Box 210
Cumberland, MD 20502

Mr. Otto K. Heiney
AFATL-DLJG
Elgin AFB, FL 32542

Dr. Merrill K. King
Atlantic Research Corp.
5390 Cherokee Avenue
Alexandria, VA 22312

Dr. R.L. Lou
Aerojet Strategic Propulsion Co.
Bldg. 05025 - Dept 5400 - MS 167
P.O. Box 15699C
Sacramento, CA 95813

Dr. R. Olsen
Aerojet Strategic Propulsion Co.
Bldg. 05025 - Dept 5400 - MS 167
P.O. Box 15699C
Sacramento, CA 95813

Dr. Randy Peters
Aerojet Strategic Propulsion Co.
Bldg. 05025 - Dept 5400 - MS 167
P.O. Box 15699C
Sacramento, CA 95813

Dr. D. Mann
U.S. Army Research Office
Engineering Division
Box 12211
Research Triangle Park, NC 27709-2211

Dr. L.V. Schmidt
Office of Naval Technology
Code 07CT
Arlington, VA 22217

JHU Applied Physics Laboratory
ATTN: CPIA (Mr. T.W. Christian)
Johns Hopkins Rd.
Laurel, MD 20707

Dr. R. McGuire
Lawrence Livermore Laboratory
University of California
Code L-324
Livermore, CA 94550

P.A. Miller
736 Leavenworth Street, #6
San Francisco, CA 94109

Dr. W. Moniz
Naval Research Lab.
Code 6120
Washington, DC 20375

Dr. K.F. Mueller
Naval Surface Weapons Center
Code R11
White Oak
Silver Spring, MD 20910

Prof. M. Nicol
Dept. of Chemistry & Biochemistry
University of California
Los Angeles, CA 90024

Mr. L. Roslund
Naval Surface Weapons Center
Code R1OC
White Oak, Silver Spring, MD 20910

Dr. David C. Sayles
Ballistic Missile Defense
Advanced Technology Center
P.O. Box 1500
Huntsville, AL 35807
DISTRIBUTION LIST

Mr. R. Geisler
ATTN: DY/MS-24
AFRPL
Edwards AFB, CA 93523

Naval Air Systems Command
ATTN: Mr. Bertram P. Sobers
NAVAIR-320G
Jefferson Plaza 1, RM 472
Washington, DC 20361

R.B. Steele
Aerojet Strategic Propulsion Co.
P.O. Box 15699C
Sacramento, CA 95813

Mr. M. Stosz
Naval Surface Weapons Center
Code R103
White Oak
Silver Spring, MD 20910

Mr. E.S. Sutton
Thiokol Corporation
Elkton Division
P.O. Box 241
Elkton, MD 21921

Dr. Grant Thompson
Morton Thiokol, Inc.
Wasatch Division
MS 240 P.O. Box 524
Brigham City, UT 84302

Dr. R.S. Valentini
United Technologies Chemical Systems
P.O. Box 50015
San Jose, CA 95150-0015

Dr. R.F. Walker
Chief, Energetic Materials Division
DRSMC-LCE (D), B-3022
USA ARDC
Dover, NJ 07801

Dr. Janet Wall
Code 012
Director, Research Administration
Naval Postgraduate School
Monterey, CA 93943

Director
US Army Ballistic Research Lab.
ATTN: DRXBR-TBD
Aberdeen Proving Ground, MD 21005

Commander
US Army Missile Command
ATTN: DRSMI-RKL
Walter W. Wharton
Redstone Arsenal, AL 35898

Dr. Ingo W. May
Army Ballistic Research Lab.
ARRADCOM
Code DRXBR - 1BD
Aberdeen Proving Ground, MD 21005

Dr. E. Zimet
Office of Naval Technology
Code 071
Arlington, VA 22217

Dr. Ronald L. Derr
Naval Weapons Center
Code 389
China Lake, CA 93555

T. Boggs
Naval Weapons Center
Code 389
China Lake, CA 93555

Lee C. Estabrook, P.E.
Morton Thiokol, Inc.
P.O. Box 30058
Shreveport, Louisiana 71130

Dr. J.R. West
Morton Thiokol, Inc.
P.O. Box 30058
Shreveport, Louisiana 71130

Dr. D.D. Dillehay
Morton Thiokol, Inc.
Longhorn Division
Marshall, TX 75670

G.T. Bowman
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065
<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>R.E. Shenton</td>
<td>Atlantic Research Corp.</td>
<td>7511 Wellington Road, Gainesville, VA 22065</td>
</tr>
<tr>
<td>Mike Barnes</td>
<td>Atlantic Research Corp.</td>
<td>7511 Wellington Road, Gainesville, VA 22065</td>
</tr>
<tr>
<td>Dr. Lionel Dickinson</td>
<td>Naval Explosive Ordnance Disposal Tech. Center</td>
<td>Code D, Indian Head, MD 20340</td>
</tr>
<tr>
<td>Prof. J.T. Dickinson</td>
<td>Washington State University</td>
<td>Dept. of Physics 4, Pullman, WA 99164-2814</td>
</tr>
<tr>
<td>M.H. Miles</td>
<td>Washington State University</td>
<td>Dept. of Physics, Pullman, WA 99164-2814</td>
</tr>
<tr>
<td>Dr. T.F. Davidson</td>
<td>Morton Thiokol, Inc. Aerospace Group</td>
<td>3340 Airport Rd., Ogden, UT 84405</td>
</tr>
<tr>
<td>Mr. J. Consaga</td>
<td>Naval Surface Weapons Center</td>
<td>Code R-16, Indian Head, MD 20640</td>
</tr>
<tr>
<td>Dr. T.F. Davidson</td>
<td>Morton Thiokol, Inc. Aerospace Group</td>
<td>3340 Airport Rd., Ogden, UT 84405</td>
</tr>
<tr>
<td>Mr. R. Beauregard</td>
<td>Naval Sea Systems Command</td>
<td>SEA 64E, Washington, DC 20362</td>
</tr>
<tr>
<td>Brian Wheatley</td>
<td>Atlantic Research Corp.</td>
<td>7511 Wellington Road, Gainesville, VA 22065</td>
</tr>
<tr>
<td>C. Dickinson</td>
<td>Naval Surface Weapons Center</td>
<td>White Oak, Code R-13, Silver Spring, MD 20910</td>
</tr>
<tr>
<td>Prof. John Deutch</td>
<td>MIT</td>
<td>Department of Chemistry, Cambridge, MA 02139</td>
</tr>
<tr>
<td>Dr. E.H. deButts</td>
<td>Hercules Aerospace Co.</td>
<td>P.O. Box 27408, Salt Lake City, UT 84127</td>
</tr>
<tr>
<td>David A. Flanigan</td>
<td>Advanced Technology, Morton Thiokol, Inc. Aerospace Group</td>
<td>3340 Airport Rd., Ogden, UT 84405</td>
</tr>
<tr>
<td>W.G. Roger</td>
<td>Naval Ordnance Station</td>
<td>Indian Head, MD 20640</td>
</tr>
<tr>
<td>Dr. Donald L. Ball</td>
<td>Air Force Office of Scientific Research</td>
<td>Directorate of Chemical & Atmospheric Sciences, Bolling Air Force Base, Washington, DC 20332</td>
</tr>
</tbody>
</table>
(DYN)

DISTRIBUTION LIST

Dr. Anthony J. Matuszko
Air Force Office of Scientific Research
Directorate of Chemical & Atmospheric Sciences
Bolling Air Force Base
Washington, DC 20332

Dr. Michael Chaykovsky
Naval Surface Weapons Center
Code R11
White Oak
Silver Spring, MD 20910

J.J. Rocchio
USA Ballistic Research Lab.
Aberdeen Proving Ground, MD 21005-5066

B. Swanson
INC-4 MS C-346
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Dr. James T. Bryant
Naval Weapons Center
Code 3205B
China Lake, CA 93555

Dr. L. Rothstein
Assistant Director
Naval Explosives Dev. Engineering Dept.
Naval Weapons Station
Yorktown, VA 23691

Dr. M.J. Kamlet
Naval Surface Weapons Center
Code R11
White Oak, Silver Spring, MD 20910

Dr. Henry Webster, III
Manager, Chemical Sciences Branch
ATTN: Code 5063
Crane, IN 47522

Dr. A.L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
Code RD-1
Washington, DC 20380

Dr. H.G. Adolph
Naval Surface Weapons Center
Code R11
White Oak
Silver Spring, MD 20910

U.S. Army Research Office
Chemical & Biological Sciences Division
P.O. Box 12211
Research Triangle Park, NC 27709

Dr. John S. Wilkes, Jr.
FJSRL/NC
USAF Academy, CO 80840

Dr. H. Rosenwasser
AIR-32OR
Naval Air Systems Command
Washington, DC 20361

Dr. Joyce J. Kaufman
The Johns Hopkins University
Department of Chemistry
Baltimore, MD 21218

Dr. A. Nielsen
Naval Weapons Center
Code 385
China Lake, CA 93555
DISTRIBUTION LIST

K.D. Pae
High Pressure Materials Research Lab.
Rutgers University
P.O. Box 909
Piscataway, NJ 08854

Prof. Edward Price
Georgia Institute of Tech.
School of Aerospace Engineering
Atlanta, GA 30332

Dr. John K. Dienes
T-3, B216
Los Alamos National Lab.
P.O. Box 1663
Los Alamos, NM 87544

J.A. Birkett
Naval Ordnance Station
Code 5253K
Indian Head, MD 20640

A.N. Gent
Institute Polymer Science
University of Akron
Akron, OH 44325

Prof. R.W. Armstrong
University of Maryland
Dept. of Mechanical Engineering
College Park, MD 20742

Dr. D.A. Shockey
SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

Herb Richter
Code 385
Naval Weapons Center
China Lake, CA 93555

Dr. R.B. Kruse
Morton Thiokol, Inc.
Huntsville Division
Huntsville, AL 35807-7501

J.T. Rosenberg
SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

G. Butcher
Hercules, Inc.
P.O. Box 98
Magna, UT 84044

G.A. Zimmerman
Aerojet Tactical Systems
P.O. Box 13400
Sacramento, CA 95813

W. Waesche
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065

Prof. Kenneth Kuo
Pennsylvania State University
Dept. of Mechanical Engineering
University Park, PA 16802

Dr. R. Bernecker
Naval Surface Weapons Center
Code R13
White Oak
Silver Spring, MD 20910

T.L. Boggs
Naval Weapons Center
Code 3891
China Lake, CA 93555
DISTRIBUTION LIST

Dr. C.S. Coffey
Naval Surface Weapons Center
Code R13
White Oak
Silver Spring, MD 20910

J.M. Culver
Strategic Systems Projects Office
SSPO/SP-2731
Crystal Mall #3, RM 1048
Washington, DC 20376

Prof. G.D. Duvall
Washington State University
Department of Physics
Pullman, WA 99163

Dr. E. Martin
Naval Weapons Center
Code 3858
China Lake, CA 93555

Dr. M. Farber
135 W. Maple Avenue
Monnovia, CA 91016

W.L. Elban
Naval Surface Weapons Center
White Oak, Bldg. 343
Silver Spring, MD 20910

Dr. Robert Polvani
National Bureau of Standards
Metallurgy Division
Washington, D.C. 20234

C. Gotzmer
Naval Surface Weapons Center
Code R-11
White Oak
Silver Spring, MD 20910

R. A. Schapery
Civil Engineering Department
Texas A&M University
College Station, TX 77843

G. A. Lo
3251 Hanover Street
B204 Lockheed Palo Alto Research Lab
Palo Alto, CA 94304

Dr. Y. Gupta
Washington State University
Department of Physics
Pullman, WA 99163

D. Curran
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

E.L. Throckmorton
Code SP-2731
Strategic Systems Program Office
Crystal Mall #3, RM 1048
Washington, DC 23076

R.G. Rosemeier
Brimrose Corporation
7720 Belair Road
Baltimore, MD 20742

C. Gotzmer
Naval Surface Weapons Center
Code R-11
White Oak
Silver Spring, MD 20910

G. A. Lo
3251 Hanover Street
B204 Lockheed Palo Alto Research Lab
Palo Alto, CA 94304

R. A. Schapery
Civil Engineering Department
Texas A&M University
College Station, TX 77843

Dr. Y. Gupta
Washington State University
Department of Physics
Pullman, WA 99163
END
DATE
FILMED
7-88
Dtic