STRONG LAW FOR MIXING SEQUENCE

Xiru Chen and Yuehua Wu

Center for Multivariate Analysis
University of Pittsburgh

Technical Report No. 87-47

Center for Multivariate Analysis
University of Pittsburgh

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited
Report Title: Strong law for mixing sequence

Author(s): Xiiran Chen and Yuehua Wu

Performing Organization: Center for Multivariate Analysis
Fifth Floor Thackeray Hall
University of Pittsburgh, Pittsburgh, PA 15260

Monitoring Agency: Air Force Office of Scientific Research
Department of the Air Force
Bolling Air Force Base, DC 20332

Report Date: December 1987

Number of Pages: 13

Security Class.: Unclassified

Distribution Statement: Approved for public release; distribution unlimited.

Key Words:
- Mixing coefficient
- Stationary sequence
- Strong law of large numbers

Abstract:

In this note we present some theorems on the strong law for the mixing sequence which is not necessarily stationary, and the mixing coefficient involving only a pair of variables in the sequence.
STRONG LAW FOR MIXING SEQUENCE*

Xiru Chen and Yuehua Wu

Center for Multivariate Analysis
University of Pittsburgh

Technical Report No. 87-47

December 1987

Center for Multivariate Analysis
Fifth Floor Thackeray Hall
University of Pittsburgh
Pittsburgh, PA 15260

* Research sponsored by the Air Force Office of Scientific Research under Contract F49620-85-C-0008. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon.
STRONG LAW FOR MIXING SEQUENCE *

Xiru Chen and Yuehua Wu

ABSTRACT

In this note we present some theorems on the strong law for the mixing sequence which is not necessarily stationary, and the mixing coefficient involving only a pair of variables in the sequence.

AMS 1980 Subject Classifications: Primary 60F15.

Key words and phrases: mixing coefficient, stationary sequence, strong law of large numbers.

* Research sponsored by the Air Force Office of Scientific Research under Contract F49620-85-C-0008. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon.
1. INTRODUCTION

In this article we present some results concerning the strong law of a mixing sequence \(\{X_n, n \geq 1\} \). We do not assume that \(\{X_n\} \) is stationary, and we use mixing coefficients involving only a pair of variables \(X, Y \) (in that order): The Rosenblatt mixing coefficient

\[
\alpha(X,Y) = \sup \{ |P(X \in A, Y \in B) - P(X \in A)P(Y \in B)| : A \in B', B \in B' \}
\]

and the Ibragimov mixing coefficient

\[
\beta(X,Y) = \sup \{ |P(Y \in B|X \in A) - P(Y \in B)| : A \in B', B \in B', P(X \in A) > 0 \}
\]

where \(B' \) is the \(\sigma \)-field of all Borel sets in \(\mathbb{R}^\prime \).

THEOREM 1. Suppose that \(\{X_n, n \geq 1\} \) is a sequence of random variables, and for some \(p > 1 \) the following conditions are satisfied:

1. \(\sup_{n} E|X_n|^p < \infty. \) \hspace{1cm} (1)

2. There exists \(\varepsilon > 0 \) such that as \(|i-j| \to \infty, \)

\[
\alpha(X_i,X_j) \leq \rho(|i-j|) = \begin{cases} 0(|i-j|^{-p/(2p-2) \varepsilon}), & 1 < p < 2, \\ 0(|i-j|^{-2/p \varepsilon}), & p \geq 2. \end{cases} \hspace{1cm} (2)
\]

Then

\[
\lim_{n \to \infty} (S_n - ES_n)/n = 0, \text{ a.s.} \hspace{1cm} (3)
\]

Here and in the sequel \(S_n = \sum_{i=1}^{n} X_i \).

THEOREM 2. Suppose that \(\{X_n, n \geq 1\} \) is a sequence of random variables, and one of the following conditions are satisfied:

(1) \(\sum_{n=1}^{\infty} \text{var}(X_n)/n^2 < \infty, \sup_{n} E|X_n| < \infty, \) and

\[
\beta(X_i,X_j) \leq \nu(|i-j|), \hspace{1cm} \sum_{n=0}^{\infty} \frac{1}{n^{1/2}} < \infty; \hspace{1cm} (4)
\]
(II) \(\sup_n \text{var}(X_n) < \infty \) and there exists \(\varepsilon > 0 \) such that

\[
\sum_{i=1}^{n} \mu_{1/2}(i) = O(n/(\log n)^{1+\varepsilon});
\]

(III) (4) holds, \(X_1, X_2, \ldots \) are identically distributed and \(\mathbb{E}|X_1| < \infty \) (the existence of variance is not assumed). Then (3) is true.

Remarks:

1. Part (I) of Theorem 2 can be compared with a result of Blum et al [1], who assumes that \(\{X_n\} \) is a *-mixing sequence instead of (4). Note that this assumption does not follow from (4). We can easily construct a pairwise independent sequence which is not *-mixing.

2. Parts (I) and (II) of Theorem 2 can also be compared with some results (see Theorem 3.7.2 and Theorem 3.7.4 of Stout [5]) derived from Serfling [4]. The conditions of these results involve correlation coefficients between two variables in the sequence.

3. Part (III) of Theorem 2 extends Theorem 1 of Etemadi [2]. The assumption that \(\{X_i\} \) is identically distributed can be somewhat relaxed, for example, it can be replaced by the condition that there exists a random variable \(Y \) such that \(\mathbb{P}(|X_n| \geq x) < \mathbb{P}(|Y| \geq x) \) for all \(n \geq 1 \) and \(x > 0 \). We also mention a related result of Blum et al [1] Theorem 1. They assume that \(\{X_n\} \) is identically distributed, the distribution of \(X_1 \) has a moment generating function in the neighborhood of zero and that \(\{X_n\} \) is *-mixing. Under these more stronger conditions they prove that \(\mathbb{P}(|S_n - \mathbb{E}X_n|/n \geq \varepsilon) \) tends to zero exponentially.
2. PROOF OF THE THEOREMS

In deducing our results we shall borrow a trick from Etemadi [2].

The following well-known facts concerning \(a(X,Y) \) and \(\beta(X,Y) \) will be used:

\[
|\text{cov}(X,Y)| \leq 10(\alpha(X,Y))^{5/(2+\delta)}(E|X|^{2+\delta}E|Y|^{2+\delta})^{1/(2+\delta)}, \quad \delta > 0 \quad (6)
\]

\[
|\text{cov}(X,Y)| \leq 2(\beta(X,Y)\text{var}(X)\text{var}(Y))^{1/2}. \quad (7)
\]

For a proof, see Ibragimov and Linnik [3]. Also it is trivially true that

\[
\alpha\left(X|\mathcal{C}(X), Y|\mathcal{D}(Y)\right) \leq \alpha(X,Y), \quad \beta\left(X|\mathcal{C}(X), Y|\mathcal{D}(Y)\right) \leq \beta(X,Y) \quad (8)
\]

\[
\alpha(X-a, Y-b) = \alpha(X,Y), \quad \beta(X-a, Y-b) = \beta(X,Y), \quad (9)
\]

where \(\mathcal{C} \) and \(\mathcal{D} \) are Borel sets in \(\mathbb{R}' \) and \(a, b \) are constants.

Proof of Theorem 1. In view of (9), by defining \(X^+_n = X_n I(X_n > 0) \), \(X^-_n = -X_n I(X_n < 0) \), \(n \geq 1 \), we can assume without loss of generality that \(X_n > 0 \), \(n \geq 1 \). Define

\[
Y_n = (X_n - EX_n)I(|X_n - EX_n| < n^{1/p+\epsilon_1}), \quad n \geq 1,
\]

\[
S^*_n = \sum_{i=1}^n (Y_i - EY_i),
\]

where \(\epsilon_1 > 0 \) is a constant to be chosen later.

From condition (1) we have \(\sum_{n=1}^\infty P(X_n - EX_n \neq Y_n) < \infty \) and \(\lim_{n \to \infty} EY_n = 0 \).

Therefore, (3) is equivalent to

\[
\lim_{n \to \infty} S^*_n/n = 0, \quad \text{a.s.} \quad (11)
\]

Now fix \(\alpha > 1 \) and let \(k_n = [\alpha^n] \). For positive integer \(m \) sufficiently large, there exists \(n \) such that \(k_n < m < k_{n+1} \), and \(n \to \infty \) as \(m \to \infty \). From (1) we have
\[
\sup_n E|Y_n| \equiv C < \infty. \quad (12)
\]

Here and in the sequel C is an unimportant constant which is allowed to change. Since \(Y_n \geq 0 \), it follows that

\[
S_m^* - S_{k_n}^* \geq -(m - k_n)C, \quad \text{when } S_m^* < S_{k_n}^*,
\]

\[
S_m^* - S_{k_n}^* \leq S_{k_{n+1}}^* - S_{k_n}^* + (k_{n+1} - m)C, \quad \text{when } S_m^* \geq S_{k_n}^*.
\]

Hence

\[
|S_m^*/m - S_{k_n}^*/k_n| \leq \left| \frac{k_{n+1}}{k_n} S_{k_{n+1}}^*/k_{n+1} - \frac{k_n}{k_{n+1}} S_{k_n}^*/k_n \right| + \frac{k_{n+1} - k_n}{k_n} C. \quad (13)
\]

From (13) it follows that if we have shown that

\[
\lim_{n \to \infty} S_{k_n}^*/k_n = 0, \quad \text{a.s.} \quad (14)
\]

Then we would have

\[
\lim \sup_{m \to \infty} |S_m^*/m| \leq (\alpha - 1)C, \quad \text{a.s.}
\]

For any \(\alpha > 1 \), hence (11).

By Borel-Cantelli lemma, in order to prove (14), we have only to show that

\[
\sum_{n=1}^{\infty} \text{var}(S_{k_n}^*)/k_n^2 < \infty. \quad (15)
\]

By (6), (8) and (9), we have for any \(\delta > 0 \):

\[
\text{Var}(S_{k_n}^*) = \sum_{k,j=1}^{k_n} \text{cov}(Y_i, Y_j) \leq C \sum_{i,j=1}^{k_n} \left(\alpha(X_i, X_j) \right)^{\delta/(2+\delta)} (E|Y_i|^{2+\delta} E|Y_j|^{2+\delta})^{1/(2+\delta)}. \quad (16)
\]
From (1) it follows that

\[E|Y_i|^{2+\delta} \leq Cn^{(2+\delta-p)(1/p+\varepsilon_1)} \quad n = 1, 2, \ldots \quad (17) \]

First consider the case \(p > 2 \). From (2), (16) and (17) we obtain

\[
\begin{align*}
\text{var}(S_{k_n}^*) & \leq C \sum_{i,j=1}^{kn} (\alpha(X_i, X_j))^{\delta/(2+\delta)} (ij) \\
& \leq C \sum_{i,j=1}^{kn} (\alpha(X_i, X_j))^{\delta/(2+\delta)} 2^{(2+\delta-p)(1/p+\varepsilon_1)/(2+\delta)} \\
& \leq C \sum_{i,j=1}^{kn} i^{-(2/p+\varepsilon)\delta/(2+\delta)} k_n 2^{(2+\delta-p)(1/p+\varepsilon_1)/(2+\delta)} \\
& \leq C \sum_{i=1}^{kn} i^{-(2/p+\varepsilon)\delta/(2+\delta)} \sum_{i=1}^{kn} 2^{(2+\delta-p)(1/p+\varepsilon_1)/(2+\delta)}.
\end{align*}
\]

(18)

Noticing \(2/p < 1 \), we can assume that \(2/p + \varepsilon < 1 \). Hence from (18) we have

\[
\text{var}(S_{k_n}^*) \leq C k_n^{2-\eta}.
\]

(19)

This inequality holds for any \(\delta > 0 \). Now we choose \(\varepsilon_1 \in (0, \varepsilon/2) \), then

\[
\lim_{\delta \to \infty} \{ -(2/p+\varepsilon)\delta/(2+\delta) + 2^{(2+\delta-p)(1/p+\varepsilon_1)/(2+\delta)} \} = -\varepsilon + 2\varepsilon_1 = 0.
\]

Therefore, choosing \(\delta \) sufficiently large, from (19) we obtain

\[
\text{var}(S_{k_n}^*) \leq C k_n^{2-\eta}. \quad \text{Hence (15) is true in view of } \sum_{n=1}^{\infty} k_n^{-\eta} < \infty.
\]

Next assume that \(p = 2 \). Again, choose \(\varepsilon_1 \in (0, \varepsilon/2) \). Choose \(\delta > 0 \) sufficiently small, such that \((1+\varepsilon)\delta/(2+\delta) < 1 \). We still have (19), with \(p = 2 \). Since

\[
-(1+\varepsilon)\delta/(2+\delta) + 2\delta(1/2+\varepsilon_1)/(2+\delta) = -(\varepsilon - 2\varepsilon_1)\delta/(2+\delta) < 0,
\]

(15) holds again.

Finally, consider the case \(1 < p < 2 \). In this case we have, instead of (18),
Write $\delta_0 = 2(p/(2p-2) - 1 + \epsilon)^{-1}$. Since $1 < p < 2$, we have $\delta_0 > 0$. Choose $\epsilon_1 > 0$ sufficiently small, such that

$$0 < \delta < \delta_0 \Rightarrow 2(2+\delta-p)(1/p+\epsilon_1)/(2+\delta) \leq 1 - n$$

where $n > 0$ does not depend on δ, as long as $0 < \delta < \delta_0$. Because $(p/(2p-2)+\epsilon)\delta/(2+\delta) < 1$ for $0 < \delta < \delta_0$ and $(p/(2p-2)+\epsilon)\delta_0/(2+\delta_0) = 1$, one can find $\delta \in (0, \delta_0)$, such that

$$1 - n/2 < (p/(2p-2)+\epsilon)\delta/(2+\delta) < 1.$$

For this δ we have, by (20),

$$\text{var}(S^*_{kn}) \leq Ck^{-n/2} + 1 + (1-n) + 1 \leq Ck^{-n/2}.$$

So we obtain (15) again. Theorem 1 is proved.

Proof of Theorem 2. Part (I): Again we can assume $X_n \geq 0$. Write $Y_n = X_n - EX_n$ and $S^*_n = \sum_{i=1}^{n} Y_i$. From $\sup E|X_n| < \infty$ we have $\sup E|Y_n| < \infty$. Using the same argument employed in proving Theorem 1, we reduce the proof of (11) to that of (15). From (4), (7) and (9),

$$\sum_{n=1}^{\infty} \text{var}(S^*_{kn})/k_n^2 = \sum_{n=1}^{\infty} k_n^{2-1} \sum_{i,j=1}^{k_n} \text{cov}(Y_i, Y_j)$$

$$\leq C \sum_{n=1}^{\infty} k_n^{2-1} \sum_{i,j=1}^{k_n} (\mu|i-j|) \text{var}(X_i) \text{var}(X_j))^{1/2}$$

$$\leq C \sum_{n=1}^{\infty} k_n^{2-1} \mu^{1/2} (\sum_{i=0}^{k_n} \text{var}(X_i))$$

$$\leq C \sum_{n=1}^{\infty} k_n^{2-1} \sum_{i=1}^{k_n} \text{var}(X_i)$$

$$\leq C \sum_{n=1}^{\infty} \text{var}(X_n)/n^2 < \infty.$$

(21)

(22)
Part (II) is proved in much the same way as Part (I), only that we replace \(C_k n \) for \(\sum_{i=1}^{k} \text{var}(X_i) \) and \(C_k n / (\log n)^{1+\epsilon} \) for \(\sum_{i=1}^{k} 1/2(i) \) in (21) to obtain (22). Part (III) is proved by truncating \(X_n \) at \(n \) and combining the reasoning above and that of Etemadi [2].

3. AN EXAMPLE

Consider the autoregression model
\[
X_n = a_1 X_{n-1} + \ldots + a_m X_{n-m} + e_n, \quad n = 0, \pm 1, \pm 2, \ldots.
\] (23)

We want to show that under certain conditions it is true that
\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i = 0, \quad \text{a.s.}
\] (24)
for any solution of (23). Suppose that the following conditions are satisfied:

1. \(\{e_n, n = 0, \pm 1, \ldots\} \) is a sequence of independent real random variables, and \(E e_n = 0, \quad n = 0, \pm 1, \ldots \)

\[
\sup_{-\infty < n < \infty} E|e_n|^p = C < \infty \quad \text{for some } p > 1.
\] (25)

where, as before, \(C \) is an unimportant constant which is allowed to change.

2. \(e_n \) has a density \(f_n \) satisfying the Lipschitz condition over \(\mathbb{R}^t \):
\[
|f_n(x) - f_n(y)| \leq C|x - y|, \quad n = 0, \pm 1, \pm 2, \ldots
\] (26)

where \(C \) does not depend on \(n \).

3. \(a_1, a_2, \ldots, a_m \) are real constants, and the equation \(1 - a_1 z - \ldots - a_m z^m = 0 \) has all its root outside the unit circle.

Under the condition 1 and 3, the general real solution of (23) has
the form

$$X_n = \sum_{t=0}^{\infty} b_t e_{n-t} + \sum_{j=0}^{J} \sum_{n^j}^{m^j-1} n^j_{s} (\epsilon_j \cos \omega_j + \eta_j \sin \omega_j) \equiv X_n^*$$

(27)

where \(b_0 = 1, b_2, b_3, \ldots \) are real constants such that

$$|b_t| \leq C H^t, \quad t = 0, 1, 2, \ldots \quad \text{for some } H \in (0, 1).$$

(28)

\(\rho_j \) and \(\omega_j, j = 1, \ldots, J, \) are real constants, \(0 < \rho_j < 1, j = 1, \ldots, J, \)

\(m_1 + \ldots + m_j = m, \) and \(\epsilon_j, \eta_j, \xi_j, \kappa_j = 1, \ldots, m_j, j = 1, \ldots, J, \) are arbitrary random variables. From (25), (27) and (28) it follows that

$$E X_n = 0, \quad n = 0, 1, 2, \ldots, \quad \sup_{-\infty < n < \infty} E|X_n|^P = C < \infty.$$

(29)

Let \(n, N \) be positive integers, \(n < N. \) Define

$$Y_{nN} = \sum_{t=0}^{N-n-1} b_t e_{N-t}, \quad Z_{nN} = \sum_{t=N-n}^{\infty} b_t e_{N-t}.$$

Since \(b_0 = 1, \) from (26) it follows that the density \(g_{nN} \) of \(Y_{nN} \) obeys Lipschitz's condition with the same constant \(C \) as in (26). Also

$$\sup(E|Y_{nN}|^P: 1 \leq n < N < \infty) = C < \infty.$$

(30)

Now let \(q_1 \) be a positive constant, \(q_2 = 2q_1. \) Define the event

$$D_{nN} = \{|Z_{nN}| \geq (N-n)^{-q_2}\}.$$

(31)

(25) entails \(\sup_{-\infty < n < \infty} E|e_n| = C < \infty. \) Hence

$$P(D_{nN}) \leq C(N-n)^{q_2} \sum_{t=N-n}^{\infty} H^t \leq C(N-n)^{q_2} H^{N-n}.$$

(32)

Let \(G \) be a Borel set in \(\mathbb{R}', h \) be a constant. \(G - h \) is defined as the
set \{ g - h : g \in H \}. Write $$G = G \cap \{ u : |u| \leq (N-n)^{q_1} \}, \ G^* = G \setminus G. \ \text{If} \ |h| < 1, \ \text{we have}
$$

$$|P(Y_{nN} \in G) - P(Y_{nN} \in G - h)| \leq |P(Y_{nN} \in G) - P(Y_{nN} \in G - h)| + P(Y_{nN} \in G^*) + P(Y_{nN} \in G^* - h)$$

$$\leq \int_{G} |g_n(u) - g_n(u - h)|\, du + P(|Y_{nN}| > (N-n)^{q_1}) + P(|Y_{nN}| > (N-n)^{q_1} - 1)$$

$$\leq C(N-n)^{q_1} h + C(N-n)^{-q_1} + C[(N-n)^{q_1} - 1]^{-1}$$

$$\leq C(N-n)^{q_1} h + C(N-n)^{-q_1}. \quad (33)$$

Now let A and B be two Borel sets in \(R' \). We proceed to estimate

$$|P(\tilde{X}_n \in A, \tilde{X}_n \in B) - P(\tilde{X}_n \in A)P(\tilde{X}_n \in B)|. \ \text{From} \ (32), \ (33) \ \text{and the independence of} \ e_1, e_2, ..., \ \text{we have}$$

$$|P(\tilde{X}_n \in B|e_n, e_{n-1}, ..., e_{n-2}) - P(Y_{nN} \in B)| = |P(Y_{nN} \in B - Z_{nN}|Z_{nN}) - P(Y_{nN} \in B)|$$

$$\leq C(N-n)^{-q_2} + C(N-n)^{-q_1}$$

$$\leq C(N-n)^{-q_1}, \quad (34)$$

when \(D_{nN} \) does not occur. But

$$|P(\tilde{X}_n \in B) - P(Y_{nN} \in B)| = |P(Y_{nN} \in B - Z_{nN}) - P(Y_{nN} \in B)|$$

$$= |P(D^C_{nN})P(Y_{nN} \in B - Z_{nN}) + P(D_{nN})P(Y_{nN} \in B - Z_{nN}|D_{nN}) - P(Y_{nN} \in B)|$$

$$\leq P(D_{nN}) + |P(Y_{nN} \in B - Z_{nN}|D_{nN}^C) - P(Y_{nN} \in B)| + P(D_{nN})$$

$$\leq 2P(D_{nN}) + C(N-n)^{-q_1} \leq C(N-n)^{q_2} h^{N-n} + C(N-n)^{-q_1}$$

$$\leq C(N-n)^{-q_1}. \quad (35)$$
From (34) and (35) we get
\[|P(\tilde{X}_N \in B | e_n^e_{n-1}, \ldots) - P(\tilde{X}_N \in B) | \leq C(N-n)^{-q_1} \]
when \(D_{nn}\) does not occur. If \(P(\tilde{X}_n \in B) \geq C(N-n)^{-q_1}\), then from (33) and (35) we obtain
\[P(\tilde{X}_n \in A, \tilde{X}_N \in B) \geq [P(\tilde{X}_n \in B) - C(N-n)^{-q_1}][P(\tilde{X}_n \in A) - C(N-n)^2 H N-n]. \tag{36} \]
Also
\[P(\tilde{X}_n \in A, \tilde{X}_N \in B) \leq [P(\tilde{X}_n \in B) + C(N-n)^{-q_1}][P(\tilde{X}_n \in A) + C(N-n)^2 H N-n]. \tag{37} \]
From (36) and (37) we have
\[|P(\tilde{X}_n \in A, \tilde{X}_N \in B) - P(\tilde{X}_n \in A)P(\tilde{X}_N \in B) | \leq C(N-n)^{-q_1} + C(N-n)^2 H N-n + C(N-n)^{q_1} H N-n \leq C(N-n)^{-q_1}, \tag{38} \]
where \(C\) does not depend on \(A, B\). (38) is proved when \(P(\tilde{X}_n \in B) \geq C(N-n)^{-q_1}\). If \(P(\tilde{X}_n \in B) < C(N-n)^{-q_1}\), (38) is trivially true. Therefore we get
\[\alpha(\tilde{X}_n, \tilde{X}_N) \leq C(N-n)^{-q_1}. \tag{39} \]
Now choose \(q_1 = p/(2p-2) + 2\). From (39) we see that the condition (2) is satisfied. This, together with (29), gives, by Theorem 1,
\[\lim_{n \to \infty} \sum_{i=1}^{n} \tilde{X}_i/n = 0, \ a.s. \tag{40} \]
From the expression of \(X_n^*\), it is readily seen that
\[\lim_{n \to \infty} \sum_{i=1}^{n} X_i^*/n = 0, \ a.s. \tag{41} \]
From (27), (40) and (41), we obtain (24).
The conclusion (40) does not follow from the ergodic theorem of stationary process, since \(\{e_n\} \) is not assumed to be identically distributed, so \(\{X_n\} \) may not be a strictly stationary process.

REFERENCES

END DATE FILMED 7-88 DtIC