D-R193 612

UNCLASSIFIED

ADA (TRADE NAME) COMPILER VALIDATION SUMNARY nepoar 1/1

CONCURRENT COMPUTER

(U) TNFORMATION SYSTEMS Al

TECHNOLOGY CENTER W-P AFB OH ADA VALI a4 JUN 87

AVF-VSR-75 8887

F/G 12/5 NL

B
;
.

N

LTI AL LT Ao 2N "o N A A TR RN W AT A TR R ANEY TR UYL TRITPITIOY] TN EN TN EN T Yy

.‘.!

.

5

.ﬁ

i}

p

h

[}

B

t

)

l

.'

‘. .|

;

R 0 “me pz

y _——= il PX] ‘

; v ke

* | "" TR 2 ' \
R LI = . '1

; U= e i

=
: izs fis e
» = == =

“_'MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

i

S
L n G Sl

=gt |

o e,

“ - - - - - T - o "W - e - - . W w . - - »

o 0‘ 'l' I.l'l l:.:: n’ 0 'u"‘l'.‘ :"l‘ . "'n"'a". "'u:':i:" N l:;:l:"l‘;:t' ‘.i 'O‘. l‘ n"'o'Qu"‘o'.: " .‘ X : t'.'\'. :.:: "'o' WG XN
."‘lp' .l..l.l ..l l l o .

ﬁa‘l ." "‘ " .l

' 0 Wi 'b'
n') a‘ 'x' ; 'n' 'c’ "\ .'l‘.'u','o' 't"' ‘:' "' ".l‘. ':'A‘ l..‘l‘. W ‘t‘.

t' c‘ N
0 ‘t N R > ¢ L)) J
LR | '«‘ " :10 L) X ‘ ‘ ' . ‘ ‘.P" Q. . .‘. i ﬂ‘ .l I .0 ‘I.“!' et BOBOMIOAOALNO L 'n"‘h“-'«-“' |l .0 “,t.‘»‘..:"‘,i s
PO AR 1‘ o, .i e LU a KRARNN 2N e B Fe .t ‘i AR

¢« '

-

L

AL

e

rod fjﬁﬁb;

I

S
RS Ry

CAREEE

»_pn -
\

-

» -

- - 2
>, :’1‘ ‘:' 5 'v"';:";?,}‘

v, e
Sisx

2,

»
.-
»

5

PR

~

%
=
aa)
F
&
<

AD-A183 612

Ada® COMPILER
VALIDATION SUMMARY REPORT:
Concurrent Computer Corporation
c? Ada, Version R00-01.00
Concurrent Computer Corporation 3260 MPS

Completion of On-Site Testing:
4 June 1987

Prepared By:
Ada Validation Facility
ASD/SCOL
Wright-Patterson AFB OH H45433-6503

$=

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington, D.C.

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

DISTRIBUTION STA) 3 e
Approved for pubuc relocwe; i; i;
jo . ok *m ¥ { ‘ad'ud !

AVF Control Number: AVF-VSR-75.0887
87-03-17-CCC

DTIC

ELECTE
WWZB@%*'

0 ‘ 0% { QOO0 O/ O RO R OM W XY DO
"I:.Q.'l\ﬂe. 1.4 ! i N _) ¥ ’:' X ?" ‘._ i . . 2 .' N . 0‘ |.“C“?Q'.,\"‘.q.l! ..) ..\ I.:'l A..Ht..‘

S PG TS R R TR

» NP Pl o =

" - -

o

-
« X g o s &

J@rrslritd

s
L%

1
,s-

.

)‘. N 15'5 b, .C‘.‘l‘.‘*‘ A LN “'0?‘5 ‘n

UNCLASSIFIED «

SECURITY CLASSIFICATION OF THIS PAGE (WhenDataEntered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETEING FORM

1. REPORT NUMBER

l,‘ '/ e I \" [

- -
L~

{2. GOVT ACCESSION NO.

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)
Ada Compiler Validation Summary Report:

Concurrent Computer Corporation C3 Ada, Ver.R0O-
01.00 Concurrent Computer Corporation 3260 MPS

1 Jire

PR R8T APV

6. PERFORMING ORG. REPORT NUMBER

"Wright Patterson AFB OH 45433-6503

8. CONTRACT OR GRANT NUMBER(s)

9. PERFORMING ORGANIZATION AND ADDRESS
Wright-Patterson AFB OH 45433-6503

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS

12. REPORT DATE

Wright-Patterson AFB OH 45433-6503.

Ada nggt Program Office ¢ p 4 June 1987

Unite tates Department of Defense T NOMBE

Washington, DC 20301-3081ASD/SIOL FEER RS b

14. MONITORING AGENCY NAME & ADDRESS(Ifdifferent from Controlling Office) 15. SECURITY CLASS (of this report)
UNCLASSIFIED

15a. gsﬁkeaﬁé FICATION/DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

UNCLASSIFIED

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. if different from Report)

18. SUPPLEMENTARY NOTES

18. KEYWORDS (Continue on reverse side if necessary and identify by block number)

1815A, Ada Joint Program Office, AJPO

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

TORM
1 JAN 73

DD 1473 e0ITION OF 1 NOV 65 IS OBSOLETE

S/N 0102-LF-014-6601

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

l‘. l' I'o.'.u Qi

et ey ,o. I ',t X ',o WUARKR

2,80, 47y,

QOIS AR

Al

:,..‘

L et e
+ +
+ Place NTIS form here +
+ +
e S S R e

S

il >

‘,
LA
)
W
L)
J¢

€

PO I X \ O (PR DR DA TN LM
O, o,l':’!':«l‘:'.l‘:!f'o.l'h" RUMTRTN i Do U U U U R, 'n!"r."n’l'aaﬂ‘ifl':.' ettt St tahe e te e Tt e b e nalie,

S 2 am 3 B m 2o n-a e s aia g i arh as ars b o adh o ail ohRcad- it ot At el gad fow wol Sait Sadt Al B B R Al b al ko

“
I
\“ Ada® Compiler Validation Summary Report:
e
[~ : 3

i‘ Zompiler Name: C° Ada, Version R0O0-01.00
P>
;g: Host: Target:

N

}?, Concurrent Computer Corporation Concurrent Computer Corporation
3260 MPS under 0S/32, 3260 MPS under 0S/32,
‘? Version R08-02 Version R08-02
”w Testing Completed 4 .jurn. 1987 Using ACVC 1.8

L3 W%
%\j This report has been reviewed and is approved.
: >
0%
¥
//

N Ada Validation Fac%ilty
I Georgeanne Chitwood

o ASD/SCOL

Y, Wright-Patterson AFB OH U45433-6503

. - .

:S k.74if,1 ‘-”// (gl o~
- Ada Validation Organization :
) Dr. John F. Kramer ‘
vl Institute for Defense Analyses
K Alexandria VA

ot Accession For P
"'s

In NTIS GRA&I o
& DTIC TAB a
® C e . Unannounced 0
A y Justificattio

M Ada J&int Program Office

;“ Virginia L. Castor

B Director By

" Department of Defense FP}StribUti°n/ I
‘f Washington DC AvallabLlity Codes ‘
= Avail and/or
:gﬁ Dist l Speclal

0 /\ l I

0

A @ .

h Ada is a registered trademark of the United States Government

o (Ada Joint Program Office).

(™ 2 X M) ' Y 2) OO0 f DGO CAOQ0C O
AN e "l." W, .“‘l.“' t. ot ‘.v"".'.' ‘.l.‘.ﬂ“'! ity Wh '("i“ 4‘. o 'o' “ .' R ‘. '.' ¢ .."'.‘ "'u‘ ‘t"""’ LRGN KK L)

"

-
» -
¢
L

-

o~ \
-".\ |
b 1
:,-Z
{
"N EXECUTIVE SUMMARY

i“
s
5 This Validation Summary Report (VSR) summarizes the results and conclusions
¢) of vaiidation testing performed on the ¢’ ada® compiler, Version R00-01.00,

\ using Version 1.8 of the Ada Compiler Validation Capability (ACVC). The C°
e da compiler 1s hosted on a Concurrent Computer Corporation 3260 MPS
.f operating under 0S/32, Version R08-02. Programs processed by this compiler
QH may b» executed on a Concurrent Computer Corporation 3260 MPS operating
*a& under 0S/32, Version R08-02,

g In-site testing was perforrmed 29 May 1987 through 4 June 1987 at Concurrent
’;: Computer Corporation in Tinton Falls NJ, under the direction of the Ada
> Validation Facility (AVF), according to Ada Validation Organization (AVO)
‘.3 policies and procedures. The AVF identified 2210 of the 2399 tests in ACVC
" Version 1.8 to be processed during on-site testing of the compiler. The 19
® tests withdrawn at the time of validation testing, as well as the 170
- executable tests that make use of floating-point precision exceeding that
! ? supported by the implementation, were not processed. After the 2210 tests
;:{ were processed, results for Class A, C, D, and E tests were examined for
g:} correct execution. Compilation 1listings for Class B tests were analyz=d
.~ for correct diagnosis of syntax and semantic errors. Compilation and 1link
q results of Class L tests were analyzed for correct detection of errors.
;*z There were 35 of the processed tests determined to be . .ipplicable. The
= remaining 2175 tests were passed.

'y

g

, The results of validation are summarized in the following table:

>

) RESULT CHAPTER TOTAL
o 2 3 L 5 6 17 8 9 10 11 12 14

\-
o Passed 94 252 334 244 161 97 137 261 124 32 218 221 2175

\.I
AN Failed 0o 0o 0 0 0 0 O 0O 0O O O 0 O
v« Inapplicable 22 73 86 3 0 O 2 1 6 0O 0 12 205

'
b Withdrawn 0 5 5 0 0 1 1 2 4% o 1 0 19
ol TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

Q.
u;ﬁ The AVF concludes that these results demonstrate acceptable conformity to
7 ANSI/MIL-STD-1815A Ada.

.

0’.

"7

:: ®Apda is a registered trademark of the United States Government

:I (Ada Joint Prnpgram Office).

4

N

']

® i

24

™~

.

O Ay I N SN T o i St n T I N m&mmmmmmm

%

o 2
e
w
™
. TABLE OF CONTENTS
\J
X<
" CHAPTER 1 INTRODUCTION
{ 1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT . . « . 1=2
& 1.2 USE OF THIS VALIDATION SUMMARY REPORT . &« « « & o 1=2
s. 1 L] 3 REFE:RENC ES . [] [] L] - . L] . L] L] . . L] L] L] L] * L . . 1-3
b 1.4 DEFINITION OF TERMS + & « o o o o o o o o & o o o 1=3
:.' 1.5 ACVC TEST CLASSES & o o o o o o o o o o o o o o o 1=U4
t
t"
fﬁ: SHAPTER 2 CONFLGURATION INFORMATION
)
ﬁ:‘ 2.1 CONFIGURATION TESTED ¢ o o o « o o « o o o o o o » 2=1
W 2.2 IMPLEMENTATION CHARACTERISTICS ¢ o o o « o « o o o 2=2
’f CHAPTER 3 TEST INFORMATION
‘W
)l 3.1 TEST RESULTS o @ - * ® LI) 3-1
:; 3.2 SUMMARY OF TEST RESULTS BY CLASS « « o « o &« « o o 3=1
it 3.3 SUMMARY OF TEST RESULTS BY CHAPTER « « « o« o o« o o 3=2
4 ‘ 3.“ WITHDRAWN TESTS [[3 . . [[L] 3 . L] . . 3-2
.{l 305 INAPPLICABLE TESTS . . .) 3 3-2
,; \: 3-6 SPLIT TESTS e 8 o @ & o 8 o ® e e ® ® ® & o e s 3-3
: 3.7 ADDITIONAL TESTING INFORMATION « v « « « o o o & o 3=4
e 3.7.1 Prevalidation . « =« ¢ ¢ ¢ o o o « » o o o o « o« 3=4
’ 7 3.702 TeSt MethOd 3 . 3-1‘
.. 3.703 Test Slte [. [[[] . . [. 3-5
‘i:
J\
) APPENDIX A DECLARATION OF CONFORMANCE
I
LA
i) APPENDIX B APPENDIX F OF THE Ada STANDARD
5o
W
o
X APPENDIX C TEST PARAMETERS
=
:{ APPENDIX D WITHDRAWN TESTS
o
b
L %
[]
b
7,
v,
L,
o

3 |
o

q:‘;“' FWITYE TV I TTIEITIET U TETTI NI TS T LTI "M i TIm M mMeTmTe MeTMmMe TMa Ve Te ME i FlhmnesEsRigTFesETsTswmy ™ wvth
’w..
oA
.{.“'.
B
o it
M)
o
::!l.n
f
AN
Wadl
%4
5
Y
R
')
e CHAPTER 1
b5
)
:%,: INTRODUCTION
DO
i’(f This Vaiidation Summary Report &(VSR) describes the extent to which a
ir:: specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
cﬁﬂf This report explains all technical terms used within it and thoroughly
'I:: reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
0, according to the Ada Standard, and any implementation-dependent features
3 must conform to the requirements of the Ada Standard. The Ada Standard
A must be implemented in its entirety, and nothing can be implemented that is
bl not in the Standard.
i Even though all validated Ada compilers conform to the Ada Standard, it
oy must be understood that some differences do exist between implementations.
AJ The Ada Standard permits some implementation dependencies--for example, the
' j}f maximum length of identifiers or the maximum values of integer types.
3$Q Other differences between compilers result from characteristics of
: . particular operating systems, hardware, or implementation strategies. All
i) of the dependencies observed during the process of testing this compiler
ey are given in this report.
¢
f'Eg The information in this report is derived from the test results produced
:Jﬁd during validation testing. The validation process includes submitting a
{ :? suite of standardized tests, the ACVC, as inputs to an Ada compiler and
"' evaluating the results.» The purpose of validating is to ensure conformity
d of the compiler to the Ada .Standard by testing that the compiler properly
ﬁ implements legal language constructs and that it identifies and rejects
:Q#, illegal language constructs. The testing also identifies behavior that is
l'r implementation dependent but permitted by the Ada Standard. Six classes of
:Qn tests are used. These tests are designed to perform checks at compile
¢ ; time, at link time, and during execution.
v,
.f,:.r
b
J'_'u
e
[
;l..’!
B
l“
0
" 1=1
04
0..
‘”
it

L 75 0 T T S T T S I I Ty o X N A C ") {
A A T e T R e S S PR e A R N R R RN

J W W T T W EW T NENENRITIAIT =S I AT TITYI{ T VI W AN R I TI WY P ITT TV U T AT el Ry TR RAR -RTRETEFEETY TV REE =T w2 mm e =
.o

|-
&

>

X
4O

INTRODUCTION

;v"v;_‘.; s
ST

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

=
’

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

PR
My
L |

'y

g g%

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

(AL

a

x

To attempt to identify any unsupported language constructs
required by the Ada Standard

To determine that the implementation-depend:nt behavio: is allowed
oy the Ada Standard

Testing of this compiler was <onducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). On-site testing was conducted from
29 May 1987 through 4 June 1987 at Concurrent Computer Corporation in
Tinton Falls NJ.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

QUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:
Ada Validation Facility

ASD/SCOL
Wright-Patterson AFB OH U45433-6503

. e T . L. v o5 - LN N e P) LN I PG I I I W S ey s .
A A e T A T T A A A A N N e ™ e .)m.l}. NS R P W :
/ f~';f\fg{si;is{m{sf:Hnﬁﬁi\imiﬂﬁmﬁ&{&ﬁhf;ﬁiﬁiﬁaﬁﬁii;hxhih;hihg)AhSk;iahilihihihiitxﬁgﬁgﬁﬁ

Al TN

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 Nortn Beauregard Street
Alexandria VA 22311

1.3 Ko +asNCES

. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983.

2. Ada Validation Organization: Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1984, .

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs
that evaluates the conformity of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF 1is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting procedures for
compiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including

cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

1-3

N Sy S R P S e e .

g N N AT NN iy
ﬁMA >

INTRODUCTION

Inapplicable A test that uses features of the language that a compiler is
test not required to support or may legitimately support in a way
other than the one expected by the test.

Passed test A test for which a compiler generates the expected result.
lTarge- The computer for which a compiler generates code.

Test A program that checks a compiler's :oaformity regarding a
particular feature or features to the Ada Standard. In the
context of this ceport, the term is wused to designate a
single test, which may comprise one or mcre files.

ditonirowu A test found to be iucorrect and not used to check conformity

test to the Ada language specification. A test may be incorrect
because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both 1legal and 1illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. (Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce link errors.

Cliass A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see if
the test objective has been met. For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage., Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Ciass D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers

1-4

Cd

S
{I J. ‘.I'. ... = 13

-,,,.p. ,------
ey @
LLUAPATY B 7 X

e x_x_1
xS L S

- - -
-5 KA XX 3

@
E8Y
\l
¥
l'c,b.y. " ~ "h

Www‘l’“w““h'm"I’W"X'P‘!I“("\"‘("‘“‘"“\“‘""'m“ﬂ-’l-"--‘l'-v’-‘--"---‘I—I<("I"-"IW---F-‘; .- e \T

..

INTRODUCTION

permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and stili be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is excezded, the test is classified as inappiicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class & test is self-checking and produces a NOT APPLICABLE, PAS3SED,
or FAILED messax? when it 1is compiled and executed. However, the Ada
Standard permits ai impi-mentation to reject programs containing some

features n».'-z33ed by Class E Lests during compilation. Tnerefore, a Class
< test ‘v ovs3ad vy a compiler if it Ls +ipiled successfully and executes
> pro.:~e a JASSED message, or if it is rejected by the ~ouwpiler for an

d.lowable eason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
~xecute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used

to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of these units is checked by
a set of executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A 1list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation.

1-5

O T T U W T a ¥y e T & wT A
¢\'.~.}~x- - .*.*.* *\‘,"\

= Y o
& \\\.‘\

-~.~-~---- .-.-'I.".."' w o n g w g W
R A T S M N A R I A N AT O o

INTRODUCTION

Any test that was determined to contain an illegal language construct or an
erronecus language construct is withdrawn from the ACVC and, therefore, is
not used in testing a compiler. The tests withdrawn at the time of
validation are given in Appendix D.

|
5

1-6

Ad LA S - - LIPS

A AT S Pl A e AT AN T LR TR at AT AT AT
G S S A e O SR G R oS

I"‘;

i

1_':|1

oYy
\$
1
bo oo
3 ::l

N
;A!

.
3

)
RO

o
3"‘l
R CHAPTER 2

.r?
' CONFIGURATION INFORMATION
o
;' 2.1 CONFIGURATION TESTED

¥
y) The candidate compilation system for this validation was tested under the
& following configuration:

bt

;‘,:' Compiler: C® Ada, Version R00-01.00
W

bt ACVC Version: 1.8

3

o Certificate Number: 870601W1.08061

L Host Computer:

;._.

{nt Machine: Concurrent Computer Corporation
o 3260 MPS
e

...) Operating System: 0S/32, Version R08-02
‘ Ly

§: Memory Size: 16 megabytes

v
. Target Computer:

’ Machine: Concurrent Computer Corporation
" 3260 MPS

’

)

:.'?: Operating System: 0S/32, Version R08-02
e, Memory Size: 16 megabytes

\

i

%

(NN \ c‘. N .*.'.0:'.!:‘ '.‘ '.c, .l P'.l,‘.n,i.o . a:f,.,_c:,.u'm,,.l, (el tg ettt ety BOOOOCE DN A 0"‘\, gl OO OO

MTETHRN I FEIUSEUVUE T FRFLUBLU @R TETE W WeiisT™es e Tm s s m— /=, = = = S T T R T D T

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler 1in those areas of the Ada Standard that permit implementations
to differ. <Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
impiementation. This compiler is characterized by the following
interpretations of the Ada Standard:

. apacities.

The zompiler correc..ys processes tests containing loop statements
nested t-~ &5 1levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55A03A..H (8
tests), D56001B, D640QSE..G (3 tests), and D29002K.)

. Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX_INT. This
implementation does not reject such calculations and processes
them correctly. (See tests D4AQQ2A, DTUACQ2B, DUAQQUA, and
DY4AOOUB.)

. Predefined types.

This implementation supports the additional predefined types
SHORT_INTEGER, LONG_FLOAT, and TINY_INTEGER in the package
STANDARD. (See tests B86001C and B86001D.)

. Based literals.

An implementation is allowed to reject a based 1literal with a
value exceeding SYSTEM.MAX_ INT during compilation, or it may raise
NUMERIC_ERROR or CONSTRAINT_ERROR during execution. This
implementation raises NUMERIC_ERROR during execution. (See test
E24101A.)

. Array types.

An implementation is allowed to raise NUMERIC_ERROR or
CONSTRAINT_ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX_INT.

2=2

M e T o™ aTa aa? 4 a" A a® A% AT AT a™u T’ "ot n g ar
) b) O W e % Y% WD %)
N N e el et e e O A o

e
gt
a:‘,"s'
,.g
AN .
L8] CONFIGURATION INFORMATION
».ﬁ
L)
o
f: 2 A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
{ raises NUMERIC_ERROR when the array objects are declared. (See
wa test €52103X.)
WO
é:: A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
o ccaponents raises raises NUMERIC_ERROR when the array objects are
:f: deciared. (See test C52104Y.)
\
i“) A nui. array with one dimension of length greater than
L INTEGER'LAST may raise NUMERIC_ERROR or CONSTRAINT_ERROR either
nj wn=n declared or assigned. Alternatively, an implementation may
o accept the eclaration. However, 1lengths must matcen in array
:g': slice assignmenis. This implementation raises NUMER.LC_FERROR wnen
the array type i:; declared. (See test E52103Y.)
‘l
tb& In assigning one-dimensional array types, the expression appears
oy to Dbe evaluated in its entirety before CONSTRAINT_ERROR is raised
}H when checking whether the expression's subtype is compatible with
"sj the target's subtype. In assigning two-dimensional array types,
.' the expression does not appear to be evaluated in its entirety
=~ before CONSTRAINT_ERROR is raised when checking whether the
S expression's subtype is compatible with the target's subtype.
o (See test C52013A.)
»"', .
Ve
-.'.'
SRS . Discriminated types.
vy
L8 During compilation, an implementation is allowed to either accept
- or reject an incomplete type with discriminants that is used in an
_{; access type definition with a compatible discriminant constraint.
‘“: This implementation accepts such subtype indications. (See test
) E381044.)
2ﬁ In assigning record types with discriminants, the expression
‘_:f appears to be evaluated in its entirety before CONSTRAINT_ERROR is
\: raised when checking whether the expression's subtype is
'33 compatible with the target's subtype. (See test C52013A.)
- . Aggregates.
i
¢
“~ In the evaluation of a multi-dimensional aggregate, all choices
N appear to be evaluated before checking against the index type.
®. (See tests CU43207A and CU43207B.)
Ld
ui In the evaluation of an aggregate containing subaggregates, all
S, choices are evaluated before being checked for identical bounds.
. (See test EW3212B.)
o
ey
: All choices are evaluated before CONSTRAINT ERROR is raised if a
v r' bound in a nonnull range of a nonnull aggregate does not belong to
:$| an index subtype. (See test E43211B.)
0"|
4
h
o','
L 2-3

T At A AT N NN S e 2N . LAY “n o N h 0 ' OO OO0
T T e T L RN B S N R W B R DX U

W% AV R

(e)

LI N3
s L&‘;-;‘\-.*

CONFIGURATION INFORMATION

Functions.

An implementation may allow the declaration of a parameterless
function and an enumeration literal having the same profile in the
same immediate scope, or it may reject the function declaration.
If it accepts the function declaration, the use of the enumeration
literal's identifier denotes the function. This implementation
rejects the declaration. (See test E66001D.)

Representation clauses.

The Ada Standard does not require an implementation to support
representation clauses. If a representation clause is not
supported, then the implementation must reject it. While the
operation of representation clauses is not checked by Version 1.8
of the ACVC, they are used in testing other language features.
This implementation accepts 'SIZE, 'STORAGE_SIZE for collections,
and 'SMALL clauses; it rejects 'STORAGE_SIZE ror tasks.
Enumeration representation clauses, including those that specify
noncontiguous values, appear to be supported. (See tests C55B16A4,
C87B62A, C87B62B, C8TB62C, and BC1002A.)

Pragmas.

The pragma INLINE is not supported for procedures or functions.
(See tests CA3004E and CA3004F.)

Input/output.

The package SEQUENTIAL_IO cannot be instantiated with
unconstrained array types and record types with discriminants.
The package DIRECT IO cannot be instantiated with wunconstrained
array types and record types with discriminants without defaults.
(See tests AE2101C, AE2101H, CE2201D, CE2201E, and CE2401D.)

An existing text file can be opened in OUT_FILE mode and can be
created in both OUT_FILE and IN FILE modes. (See test EE3102C.)

More than one internal file can be associated with each external
file for text 1I/0 for both reading and writing. (See tests
CE3111A..E (5 tests).)

More than one internal file can be associated with each external
file for sequential I/0 for both reading and writing. (See tests
CE2107A..F (6 tests).)

More than one internal file can be associated with each external
file for direct I/0 for both reading and writing. (See tests
CE2107A..F (6 tests).)

k) ’
;ﬁun CONFIGURATION INFORMATION
)

(4 An external file associated with more than one internal file c¢an
i be deleted. (See test CE2110B.)

T

Temporary sequential files and direct files are not given a name.
(See tests CE2108A and CE2108C.)

Lalhoh
N i B S B A 4

. aenerics.

F i] J'..“') ~’

Generic sucprogram declarations and bodies can be compiled in
separate compilations. {See test CA2009F.)

&

)
\ﬁﬂs

Generic package declarativias and bodies can be compiled in
separate compilations. (See tests CA2009C and BC3205D.)

ek ‘
B [
‘}J v‘"‘i:‘l' L4

S nl
'f'z‘} ¢

,ﬂ"‘

T

o

2-5

i®
-

‘m‘Ef

..5'\1

'.‘ ."' ." l i" .|"‘l|.‘l
N AR O i e e) .l‘. AL MY o'a"‘"‘“ '\'of"u AN TR T A AN RN RN ety 'Qq NSNS

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing of
the C® Ada compiler was performed, 19 tests had been withdrawn. The
remaining 2380 tests were potentially applicable to this validation. The
AVF determined that 205 tests were inapplicable to this implementation, and
~,~:‘_A that the 2175 applicable tests were passed by the implementation.

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

,,;-: 3.2 SUMMARY OF TEST RESULTS BY CLASS

:2
fl RESULT TEST CLASS TOTAL
%j A B o D E L

PP oA Passed 67 865 1171 17 11 W4 2175
® Failed 0 0 0 0 0 0 0
9 Inapplicable 2 2 197 o 2 2 205
A "y Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

'Y 3-1

() . " » -~y A
Ve lly Q g J 7 O ST I N M |)) f OO P t QOUOCOCHIN XA
"'l"!0“'..""?“’1.’I:..*!“.‘t“."l‘?!!‘?ﬁ:".'::‘::fqh "?‘Q th“.h“_h G 1‘%1‘..'-‘?...:'a.t'a..h.f‘e'..'l"':.?'\"'l‘.“l' "."0. W o W ‘!.»'0.~'llv‘!‘-.l.-'l ~"'~'0 ?‘C.A‘i.o.l.»ll.-'l LY

hatal ok Rall Bal) V'-I'WIT

1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

h
o i

» RESULT CHAPTER TOTAL
2 _3 4 5_6_17_ 8 _9 10 1 i2 14 __
Passed 94 252 334 244 161 97 137 261 124 32 218 221 2175
Failed 0 0 o0 o0 0O 0 0 o0 0 o 0 o0 0
inapplicable 22 73 86 3 0 0 2 1 6 0 0 12 205
Withdrawn 0 5 5 0 0 i 1 2 4 0 1 0 19
TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399
3.4 WITHDRAWN TESTS
13 The following 19 tests were withdrawn from ACVC Version 1.8 at the time of
4‘; this validation:
"\
: C321144A C41404A B74101B BC3204C
: B33203C BU5116A CBTB50A
e C340184A C48008A C920054A
N C35904A B490064A CY40ACA
§:: B374014A B4AO10C CA3005A..D (U4 tests)
=
::. See Appendix D for the reason that each of these tests was withdrawn.
..‘
Cﬁ 3.5 INAPPLICABLE TESTS
o’y
"
32 Some tests do not apply to all compilers because they make use of features
" that a compiler is not required by the Ada Standard to support. Others may
. depend on the result of another test that is either inapplicable or
{ withdrawn. The applicability of a test to an implementation is considered
?' each time a validation is attempted. A test that is inapplicable for one
\ validation attempt is not necessarily inapplicable for a subsequent
&: attempt. For this validation attempt, 205 tests were inapplicable for the
| reasons indicated:
'}
?. . C24113D..K (8 tests) have line lengths greater than MAX IN LEN.
v
'?: . C34001E, B52004D, B55B09C, and C55BOTA use LONG INTEGER which is
:3 not supported by this compiler.
. » C34001F and C35702A use SHORT_FLOAT which is not supported by this

I compiler.

e S ke Nl 1’

TEST INFORMATION

. CB86001F redefines pacxage SYSTEM, but TEXT_IO is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT I0.

Co7B62% ises the lengtn cliuse 'STORAGE_SIZE for task t, .- shich
is not supported by tnis compiler. The length clause is rejected
during compilation.

. C9600%B checks iwmplementations for which tiie smallest and largest
values in type DURATION are .iffereat from the smallest and
largest v u-3 .n DURATION'sS hase type. This is not the case for
this impic¢. -tation.

. CAZJ04E, EA3V04C, and LA3004A use INLINE pragma for procedures
whicn is not supported by this compiler.

. CA3004F, EA3004D, and LA30OO4UB wuse INLINE pragma for functions
which is not supported by this compiler.

. AE2101C, CE2201D, and CE2201E wuse an instantiation of package
SEQUENTIAL_IO with unconstrained array types which 1is not
supported by this compiler.

. AE2101H and CE2401D use an instantiation of package DIRECT_IO with
unconstrained array types which is not supported by this compiler.

. CE2107C, CE2107D, CE2108A, CE21G8C, and CE3112A are inapplicable
because temporary files do not have names.

. CE3111B is inapplicable because the TEXT IQ.PUT operation does not
output to the external file until a subsequent NEW_LINE, RESET, or
CLOSE operation is executed.

. CE3114B attempts to delete an external file that is associated
with multiple internal files. This implementation does not allow
the external file to be deleted for TEXT_IO.

. The following 170 tests require a floating-point accuracy that
exceeds the maximum of 15 supported by the implementation:

C24113L..Y (14 tests) C35708L..Y (14 tests) CH45421L..Y (14 tests)
C35705L..Y (14 tests) C35802L..Y (14 tests) CHUBU24L..Y (14 tests)
C35706L..Y (14 tests) Cu45241L..Y (14 tests) CU5521L..Z (15 tests)
C35707L..Y (14 tests) Cu45321L..Y (14 tests) CU5621L..Z (15 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of

TEST INFORMATION

smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Ciass C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smailer subtests that can be
pro~ssaed,

Splits were required for four 2lass B tests:

B230nU4A B29U01A BC3204B BC3205R

3.7 ApDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.8 produced by
the C° Ada compiler was submitted to the AVF by the applicant for review.
Analysis of these results demonstrated that the compiler successfully
passed all applicable tests, and that the compiler exhibited the expected
behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the c® Ada compiler using ACVC Version 1.8 was conducted on site
by a validation team from the AVF. The configuration consisted of a
Concurrent Computer Corporation 3260 MPS operating under 0S/32, Version
R08"02 .

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests BC3204B and BC3205B were included in their split form
on the magnetic tape. Tests B23004A and B29001A were edited into their
split form on site.

The contents of the magnetic tape were loaded to disk wusing a FORTRAN
program developed by Concurrent Computer Corporation. This utility was
used to truncate filenames to eight characters and to modify the files
whose line lengths exceed Concurrent's 80-character record length. After
the test files were loaded to disk, the full set of tests was compiled,
linked, and executed as appropriate on the Concurrent Computer Corporation
3260 MPS. Results were printed from the Concurrent Computer Corporation
3260 MPS.

The compiler was tested using command scripts provided by Concurrent

Computer Corporation and reviewed by the validation team. The following
options were in effect for testing:

..... R R W v,
*

LS . AT YN e - .
W', %5-'${\{\¢ R e J‘\‘J'.- L4 f\-f‘,\-

IR

e

TEST INFORMATION

LIST The LIST option controls the generation of the source listing
from the compiler. A listing of all source lines is generated.

OPTIMIZE This option controls the action of performing simple
optimizations 1like constant folding, dead code elimination, and
peepuole optimication.

PAGE SIZE This option specifies the number of significant lines per page
on the listing file. The default is 60 lines per page.

SEaMENT -2 This option specifies that the code generated is to be s.gmented
in PUR¥ and IMPURE code,

frsL ouuabtpat, compilation listings, and job iogs were captured on magaetic
tape and archived at the AVF. The 1listings examined on site by the
validation team were also archived.

3.7.3 Test Site

The validation team arrived at Concurrent Computer Corporation in Tinton
Falls NJ on 29 May 1987, and departed after testing was completed on U4 June
1987.

- P

T

- -
L e e
-

-
-

-

SR

5 S

APPENDIX A

it
55 Y

DECLARATION ¥ CONFORMANCE

TP
5

5
«
s

[

Concurrent Computer Corporation has submitted the
following declaration of conformance concerning the c?
Ada compiler.

P
" {‘/‘.‘

-
4

5

s
v

Ea
i, Gy
MRS S

5 4
4 «

>

Sl

oL

A-1
B \

-'..l‘. W,

ARt CL AL P L R T L Ch R Ll R s PG «’{
A8 *"($\ \ o alo o

AT A" R WL RN, R‘V\v‘d’r*(‘,‘. o "\- ?ﬂ.f U, " ™ -(..
e AR AR £ A

OO OO s e R X

AT R T T BT BT FPT T =T - e = - ¥ = = =7 & 7
o A’ e aze At BAL- AL an an S okt ok Bad Sad B A S A s B A s e ek abd sad skl all Al abio s d-ahieal ar.Lw TN T T ET RTRTTASTRETLEE T

P

Y DECLARATION OF CONFORMANCE
N
NN
g
N Compiler Implementor: Concurrent Computer Corporation

» Ada” Validation Facility: ASD/SCOL, Wright-Patterson AFB, OH

(Ada Compiler Validation Capability (ACVC) Version: 1.8
et
b
g Base Configuration
v

I‘:-
|._) Ty ccmpiler Mame: C° Ada Version: R00-01.00
o
o »o3 Arohir salure ISAt Concurrent Computer Corporation 3260 MPS
-';;:; JS&VER #: 0S/32, Version R08-02

o Jacen ol tecture ISA: Concurre. . Conputer Corporation 3260 MPS
Kl OS&VER #: 0S/32, Version R08-02
(™ u.',

",;& Derived Compiler Registration
b
oo

>
b Derived Compiler Name: C’ Ada Version: R00-01.00
;ﬂ- Host Architecture ISA: Concurrent Computer Corporation Series 3200
.:".: 3200MPS, 3203, 3205, 3210, 3230, 3250,
oy 3230XP, 3250XP, 3230MPS, 3260MPS, 3280MPS
l_.e?_.: OS&VER #: 0S/32, Version R08-02

N Target Architecture ISA: All Hosts, Self Targeted
| OS&VER #: 0S/32, Version R08-02
,I

A
§ '.: Implementor's Declaration
[} n.l
L I, the undersigned, representing Concurrent Computer Corporation, have
) ~implemented no deliberate extensions to the Ada Language Standard
o ANSI/MIL-STD-1815A in the compilers listed in this declaration. I declare
:., oy that Concurrent Computer Corporation is the owner of record of the Ada
‘}f language compilers listed above and, as such, is responsible for
',g maintaining said compilers in conformance to ANSI/MIL-STD-1815A. All
Ny certificates and registrations for the Ada language compilers listed in
(] this declaration shall be made only in the owner's corporate name.
A ‘.

S :

A CK) /

oy o - ' ' Date:

}:.-:j Concurrent Computer Corporation

e, Seetharama Shastry
.v Manager, System Software Development
.
¢
:"0

)
.‘.‘

U
v

L)
,,'.) mAda is a registered trademark of the United States Government

,',-:', (Ada Joint Program Office).

R

A-2

t.‘
Clum .

~,
o,

hd

;gv Owner's Declaration

hg:a

<7 .

g I, the undersigned, representing Concurrent Computer Corporation, taxke full
':} responsibility for implementation and maintenance of the Ada compilers

listed above, and agree to the public disclosure of the final Validation
Summary Report. 1 further agree to continue to comply with the Ada
trademark policy, as defined by the Ada Joint Program Office. I declare
that all of the Ada language compilers listed, and their host/target

performance ar- in compliance with the Ada Language Standard
ANSI/MIL-STD-'3154.

R — Date:
Concurrent Comruter Corporation
See*~ i»ama Shastry
Mana» - . System Softwar. Devel.. rnent
A-3

R e D AL Ea RO

(

8 ah o-w 8 d 8- 8 ias Saf Sok B al Cal i Rla Al Rte Ste SN 4 Al A B A Bl Ba? et Ser Anc Saals S o R At S 8 Sk Eak b Ak Ale Al RN AR A |

APPENDIX B

At APPENDIX F OF THE Ada STANDARD

A fhe only allowed implementation dependencies correspond to implementation-
" dependent pragmas, to certain machine-dependent conventions as mentioned in
o chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation clauses, The implementation-dependent characteristics of
the C* Ada compiler, Version R00-01.00, are described in the following
v sections which discuss topics in Appendix F of the Ada Language Reference
z: Manual (ANSI/MIL-STD-1815A). Implementation-specific portions of the
%: package STANDARD are also included in this appendix.
o

package STANDARD is

[RENEY
PP

[
s

type INTEGER is range -2_147_U483_648 .. 2_147_UB3_6UuT;
type SHORT_INTEGER is range =32 768 .. 32_767;
type TINY_INTEGER is range -128 .. 127;

N
e

.“) type FLOAT is digits 6 range -16#0.FFFF_FF#E63 .. 16#0.FFFF_FF#E63;
type LONG_FLOAT is digits 15 range -16#FFFF_FFFF_FFFF_FF#E63 ..
164#FFFF_FFFF_FFFF_FF#E63;

.l '.i ." "’ .

type DURATION is delta 0.00006103515625 range -131072.0 ..
131071.99993896484375;

@<y,

S
)
J

',54 end STANDARD;

O A TN N NS A

0
:'" APPENDIX F

\ IMPLEMENTATION-DEPENDENT CHARACTERISTICS
:0:
3 F.1 INTRODUCTION
".l The following sections provide all implementation-dependent characteristics of the C *Ada

Compiler.

[) -
\; F.2 IMPLEMENTATION-DEPENDENT PRAGMAS

¥ The following is the syntax representation of a pragma:

\
% pragma IDENTIFL{ER [(ARGUMENT (,ARGUMENT})};
"
-;- Where

f_\ I[DENTIFIER is the name of the pragma.

ARGUMENT defines a parameter of the pragma. For example, the LIST pragma

expects the arguments ON or OFF.

, Table F-1 summarizes all of the recognized pragmas and whether they are implemented or
,f: not.

¥y

b

y TABLE F-1. SUMMARY OF RECOGNIZED PRAGMAS

-t PRAGMA ___ IMPLEMENTED COMMENTS

N CONTROLLED No Automatic storage reclamation qf unreferenced access
v objects is not applicable to the C’Ada implementation.
:f ELABORATE Yes Is handled as defined by the Ada language,
'™ t INLINE No Subprogram bodies are not expanded inline at each call.
‘ - INTERFACE Yes Is implemented for ASSEMBLER and FOQRTRAN.

. ULIST Yes Is handled as defined by the Ada language.

- . MEMORY_SIZE No The user cannot specify the number of available storage
- units in the machine configuration which is defined in
- package SYSTEM.

- OPTIMIZE No The user cannot specify either time or space as the
o primary oplimization criterion.

PACK Yes The elements of an array or record are packed down to

- a minimal number of bytes.

‘ PAGE Yes Is handlied as defined by the Ada language.

' ' PRIORITY No The task or main_program cannot have priority.

- SHARED No Not applicable because every read or update of the
A variable declared by an object declaration and whose
e type is a scalar or access type is a synchronization
. point for that variable.

v LSTORAGE_UNIT No The user cannot specify the number of bits per storage
; unit, which is defined in package SYSTEM.

%

o

[

9

1

[]

L

i B-2

[

-

)
\
) PN M ¥ S e e
)"u‘.ﬁn ‘-"!!“l..‘h “Xr,)

0 M A MR P T T R By R RN T M M P S g P S P P T AN s AN
L ot e et L O T Y R T T D S SRS IS AR SO A SN O

T 1 T T T e T T U T e © T T T T T T T T

A SK
R
:f TABLE F-1. SUMMARY OF RECOGNIZED PRAGMAS (Continued)
"N - s
AYAS PRA’QMA IMPLEMENTED COMMENTS)|
\:_ E) All run-time checks, such as
e ACCESS_CFECK, INDEX_CHECK, RANGE_CHECK, etc.,
AR cannot be suppressed for any specific type, object,
“s, subprogram etc., See the description of SUPPRESS_Ai_L.
SYSTEM_NAME No The user cannot specify the target system name, which
, is defined in package SYSTEM.
oo SUPPRESS_ALL Yes This pragma gives the compiler permission to omit all
AN of the following run-time checks for all types and
AN objects in the designated compilation units:
N ACCESS_CHECK, =~ RANGE_CHECK, LENGTH_CHECK,
A INDEX_CHECK, DISCRIMINANT_CHECK and
’ OVERFLOW_CHECK for all integer and fixed point
v X calculations. The pragma must be placed before each
. I . . compi.ation unit.
‘_-.'_’: TNO-STACLCHECK Yes This pragina indicates to the compiler that there is
h . enough space in the initial stack chunk for the
o i activation record of all subroutines that may be active
o ' at any time. Therefore, no code is generated to check
oo | for providing add.t.;nal space for the run-time stack of
L | any task or of the main task. The pragma mus’ be
placed before the compilation, and applies tc all
il \ compilation units.
vout
*'-\"'
,’\4
e F.3 LENGTH CLAUSES
e A length clause s?eciﬁes the amount of storage associated with a given type. The
23 following is a list of the implementation-dependent attributes.
N
,‘\.': T'SIZE must be a multiple of eight. Must be 32 for a t¥pe derived from FLOAT,
N and 64 for a type derived from LONG_FLOAT. For array and record
o types, only the size chosen by the compiler may be specified.
, T'STORAGE_SIZE is fully supported for collection size specification.
- T'STORAGE_SIZE is not supported for task activation. Task memory is limited by the
p work space for the program.
::' 2 T'SMALL must be a power of two for a fixed point type.
Size representation only applies to types - not to subtypes. In the following example, the
o size of T is 32, but the size of T1 is not necessarily 32.
J
ot type T is integer range 0..100;
:’;- subtype T1 is T range 0..10;
oA for T'SIZE use 32;
K
;J In the following example, the size of the subtype is the same as the size of the type (size
-.-'~ of the type is applied to the subtype).
el
":: type T is integer range 0..100;
AN for T'SIZE use 32;
_ :\‘ subtype T2 is T range 0..10;
a8
) "N
ohi! F.4 REPRESENTATION ATTRIBUTES
. 4 The Representation attributes listed below are as described in the Reference Manual for
) ~; the Ada Programming Language, Section 13.7.2.
1.0
:'. ” 7;:2318%55 - Note: Attribute ADDRESS is not supported for labels.
"
t R.C'POSITION
¥ R.CFIRST_BIT
7 R.C'LAST_BIT
a7
~/‘ B-3
&
i

»

" ”
O OO OOV O K e R

. o (LN N Py 2o PPl o e L O o o O L R O UG AR N 2 N
s R A R TN e AT I i D o 2 T S TSR AN G e T

)

XA
A CRRNCN R

22 ’
)'!'. (i)

L]
.'.
AARRR

o

oL T e O Lo o o L O En L il O D D ol i

il W T T WO TEEMAERTE e T

T'STORAGE_SIZE for access twaes. returns the current amount of storage reserved for
the type. a T'STORAGE_SIZE representation clause has been
specified, then the amount specified is returned. Otherwise the
current amount allocated is returned.

T'STORAGE_SIZE for task types or objects is not impiemented. It returns 0.

F.4.1 Representation Attributes of Real Types

P'DIGITS yields the number of decimal digits for the subtype P. This value is
six for type FLOAT, and 15 for type LONG_FLOAT.

P'MANTISSA zields the number of binary digits in the mantissa of P. The value is
1 for type FLOAT, and 51 for type LONG_FLOAT.

—
[0 -1V}

!

[

(V11 -N ¥V ¥

FEMAX vields the largest exponent value of model numbers for the subtype
P. The value is 84 for type FLOAT, and 204 for type LONG_FLOAT.

DIGITS . EMAX DIGITS - EMAX . DIGITS | EMAX
1 0 | 84 P11 152
2 32 Il 7 100 {| 12 164
3 4 ! 8 112 13 180
4 60 9 124 14 192
5 72 10 140 15 204
P'EPSILON yields the absolute value of the difference between the model

number 1.0 and the next model number above for the subtype P,
The value is 16#0.00001# for ty:lpe FLOAT, and
16#0.0000_.0000_0000_4# for type LONG_FLOAT.

VALUES | EMAX VALUES EMAX . VALUES | EMAX
1 20 | 6 84 11 15
2 32 7 100 12 164
3 44 8 112 13 180
4 60 9 124 14 192
5 72 10 140 15 204
P'SMALL yields the smallest positive mode! number of the suthpe P. The
value is 16#0.8#E-2]1 for type FLOAT, and 16#0.8#E-5] for type
LONG_FLOAT.
"VALUES SMALL ' VALUES __ SMALL VALUES SMALL
1 i 16%0.8#L-3 6 | |6%0.8#E-21 11 16#0.8#E-
2 | 16#0.8#E-8 7 | 16#0.8#E-25 12 16#0.8#E-41
3 LE#0.8#E-11 8 | 16#0.8#E-28 13 16#0.8#E-45
4 16#0.8#E-15 9 | 16#0.8#E-31 14 16#0.8#E-48
\ 5 16#0.8#E-18 10 | 16#0.8#E-35 15 16#0.8#E-51
P’LARGE yields the largest (gsositive model number of the subtype P. The
value is 16#0.FFFFFF8#E21 for t FLOAT. and

ype
16#0.FFFF_FFFF_FEFF_E#ES1 for type LONGJR.OAT.

N

A A A M S e

{ VALUES LARGE
1 #0.FB#ES
2 16#0.FF#E8
3 16#0.FFE#E]]
4 16#0.FFFE#EI]S
] 16#0.FFFF_C#E18
6 16#0.FFFF_F8#E21
7 16#0.FFFF_FF8#E25
8 16#0.FFFF_FFF#E28
9 16#0.FFFF_FFFE#E31
. 10 16#0.FFFF_FFFF_E#E35
' 11 16#0.FFFF_FFFF_FC#E38
’ 12 16#0.FFFF_FFFF_FF8#E4]
1 13 1€=0.FFFF_FFFF_FEFB#EAS
! 14 16#0.FFFF_FFFF_FFFF#E48
5 \ 16#0.FFFF_FFFF_FFFF_E#ES]
P'SAFE_EMAX sields the laréest exponent value of safe numbers of type P.
he value is 252 for types FLOAT and LONG_FLOAT.
FSAFE_SMALL yvields the smallest positive safe number of type P. The value
15 16#0.1#E-64 for types FLOAT and LONG_FLOAT.
"<+ TARGE vields the largest positive safe number of the type P. The
value is 1620 fFFF_FF#E63 for tyge FLOAT, and
16#0 FFFE_FFFF_FFFF_FF#E63 for type LONG_FLOAT.
PMACHINE_ROUNDS is true.
P'MACHINE_OVERFLOWS is true.
P'MACHINE_RADIX is 16.
P'MACHINE_MANTISSA is six for types derived from FLOAT,; else 14.
P'MACHINE_EMAX is 63.
P'MACHINE_EMIN is -64.

F.4.2 Representation Attributes of Fixed Point Types
For any fixed point type T. the representation attributes are:

TMACHINE_ROUNDS true
TMACHINE_OVERFLOWS true

F.4.3 Enumeration Representation Clauses

The maximum number of elements in an enumeration type is limited by the maximum size
of the enumeration image table which cannot be greater than 65535 bytes. The
enumeration table size is determined by the following function:

generic
type ENUMERATION_TYPE IS (< »);
function EIUMERATION_TABLE_SIZE return NATURAL is
Result : NATURAL :=0;
begin
for I in ENUMERATION_TYPE ’'FIRST. ENUMERATION_TYPE’ LAST loop
RESULT :=RESULT + 2 + I'WIDTH;
End loop.
return RESULT;
EXD EUCMERATION_TABLE_SIZE:

RESTRICTIONS - None.

F.4.4 Record Representation Clauses

The Reference Manual for the Ada Programming Language states that an implementation
may generate names that depote implementation-dependent components. This is not
present in this release of the C°'Ada Compiler.

RESTRICTIONS - Components must be placed at a storage position that is a multiple of
eight. Floating point types must be fullword-aligned, that is, placed at a storage position

B-5

D) M Aop M A N ad Wo¥ 9. 99, WY W B0 W, W Yo WeT Wa

s m aa i AR e Ba s Ba s Aas £oa ace Aua San Abu-abe i Raa Sie dla ki dhe ke hhe e Al

that is a multiple of 32.

, " Record components of a private type cannot be included in a record representation
specification.
)
::.: Record clause alignment can only be 1, 2 or 4.
;'E: Component representations for access types must allow for at least 24 bits.
‘

Component representations for scalar types other than for types derived from
LONG_FLOAT must not specify more than 32 bits.

F.4.5 Type Duration

Duration'small equals 61.03515625 microseconds or 2''* seconds. This number is the
smallest go\ser of two which can still represent the number of seconds in a day in a
fullword hxed point number,

System tick ¢quals 10ms. The actual computer clock-tick is 1.0/120.0 seconds (or about
8.33333ms) in 60HZ areas and 1.0/100.0 seconds (or 10ms) in 50HZ areas. System.tick
i -rras-ats the greater of the actual clock-tick from both areas.

Durac .o ownall is significantly smaller tha:: the actual computer clock-tick Therefore, the

least ...ount of del., possible is limited by the actual clock-tick. The delay of
duration small follows this formula:

<actual-clock-tick> = <actual-clock-tick> + 4.45ms

The 4.45ms represents the overhead or the minimum delay possible on a Model 3250 or

3200MPS Fami ‘f of Processors. For 60HZ areas, the ranﬁe of delay is approximately from

445ms to 21.11666ms. For 50HZ areas, the range of delay is approximately from 4.45ms

to k2~1.4Sms. However, on the average, the delay is slightly greater than the actual clock-

tick.

In general, the formula for finding the range of a delay value, x, is:
nearest_multiple(x.<actual-clock-tick>) = <actual-clock-tick> + 4.4 ..

where nearest_multiple rounds x up to the nearest multiple of the actual clock-tick.

YABLE F-2. TYPE DURATION

“DURATIONDELTA " #17¢c-14 T = 6lus
DURALONSMALL T2#10%E-14 "= 6las
DURATION FIRST ___-131072.00 "~ 36 hrs

DLURATIONLAST 131071.99993896484375 ' ~ 36 hrs
DURATION'SIZE 32 l

F.5 ADDRESS CLAUSES

Address clauses are implemented for objects. No storage is allocated for objects with
address clauses bty the compiler. The user must guarantee the storage for these by some
other means (eg. throu&h the use of the absolute instruction found in the Common
Assembly Lanquage’32 1CAL/32) Reference Manual). The exception PROGRAM_ERROR is
raised upcn reterence to the object if the specified address is not in the program’s address
space or is not properly aligned.

RESTRICTIONS - Address clauses are not implemented for subprograms, packages or task
units. In addition, address clauses are not available for use with task entries (i.e.,
interrupts).

Initialization of an object that has an address clause specified is not supported. Objects
with address clauses may also be used 10 map objects into global task common (TCOM)
areas. See Chapter 4 for more 1nformation regarding task common.

;

A
AL

Y

£ X

[4
“

L 2 »
e
CPLRUN

=)
L

)

S

P
D

CatBla L R NN afo aac-ar. ar. Saa-Bas e Svedtbe tlhe bde SMieASe Sdad

YUY YT W T UVTTUEIYT UFUTUORTCYFTFFRFEFR I e "eeEesmwy > =& ==~ &7 7
..

F.6 THE PACKAGE SYSTEM

The package SYSTEM, provided with C'Ada permits access to machine-dependent features.
The s%ecnﬁcauon of the package SYSTEM declares constant values dependent on the Series

3200 Processors. The following is a listing of the visible section of the package SYSTEM
specification.

package SYSTEM is
type ~DLDRESS is private;
type NAME is (CCUR_2200);

SYSTEM_NAME : constant NAME := CCUR_3200,
STCRAGE_UNIT : constant := 8;

MEMORY_SIZE = constant := 2 = 24,

MIN_INT : constant := - 2 147 483_648,
MAX_INT . constant := 2 147 483_647;

MAX DIGITS : constant := .5,

M2X MANIISSA : constant := 3];

FINE_DELTA . constant := 241 0#F-30;

TICK . constant := 0.01;

'yp» UNSIGNED_SHORT_INTEGER is range 0 55_535;

type UNSIGNED_TINY_INTEGER is range 0 .. 255;

for UNSIGNED_SHORT_INTEGER’SIZE use 16;

for UNSIGNED_TINY_INTEGER’SIZE use 8;

subtype PRIORITY is INTEGER range 0 .. 255;

subtype BYTE is UNSIGNED_TINY_INTEGER;

subtype ADDRESS_RANGE is INTEGER range 0 .. 2 =*+ 24 - 1.,
ADDRESS_NULL : constant ADDRESS;

~--These functions efficiently copy aligned elements of the specified size.
~-You can declare them locally using any scalar types with

function COPY_DOUBLEWORD (FROM : LONG_FLOAT) return LONG_FLOAT;
pragma INTERFACE (ASSEMBLER, COPY_DOUBLEWORD):

function COPY_FULLWORD (FROM : INTEGER) return ADDRESS;
function COPY_FULLWORD (FROM : ADDRESS) return INTEGER;
pragma INTERFACE (ASSEMBLER, COPY_FULLWORD);

function COPY_HALFWORD (FROM : SHORT_INTEGER) return SHORT_INTEGER;
pragma INTERFACE (ASSEMBLER, COPY_HALFWORD):

function COPY_BYTE (FROM : TINY_INTEGER) return TINY_INTEGER;
pragma INTERFACE (ASSEMBLER, COPY_BYTE);

-~-Address conversion routines

function INTEGER_TO_ADDRESS (ADDR : ADDRESS_RANGE) return ADDRESS
renames COPY_FULLWORD;

function ADDRESS_TO_INTEGER (ADDR : ADDRESS) return ADDRESS_RANGE
renames COPY_FULLWORD;

function "+" (ADDR : ADDRESS.;
OFFSET : INTEGER) return ADDRESS;

function "-" (ADDR : ADDRESS;
OFFSET : INTEGER) return ADDRESS;

~-This is a 32-bit type which is passed by value

type EXCEPTION_ID is private;

function LAST_EXCEPTION_ID return EXCEPTION_ID;
private

--Implementation defined

end SYSTEM,

F.7 INTERFACE TO OTHER LANGUAGES

Pragma INTERFACE is implemented for two languages, assembler and FORTRAN. The
pragma can take one of three forms:

1. For any issembly language procedure or function:

pragma INTERFACE - SSEMBLER, ROUTINE_NAMF);

* .1 JORTRAN functions with only in paiac.cters or procedures:

pragma I[NTERFACE (FCRTRAN, ROUTINE_NAME),

3. For FORTRAN functions that have in out or out parameters:

pragma INTERFACE (FORTRAXN, ROUTINE_NAME, IS_FUNCTION);

In C’Ada functions cannot have in out or out parameters so the Ada specification for the
function is written as a procedure with the first argument being the function return result.
Then, the parameter "is_function” is specified to inform the compiler that it is, in reality, a

lFORTl’l,lAN function. Interface routine_names are truncated to an 8 character maximum
ength.

F.8 INPUT/OUTPUT (I/0) PACKAGES
The following two system-dependent parameters are used for the control of external files:

o NAME parameter
e FORM parameter

X0

ANARA

't[hlcla NAME parameter must be an 0S/32 file name string. 0S/32 filenames are specified as
ollows:

Pl
3

[\~

2

2

et
R

»

.
el

S .r

0 (AN RN

Ll
))
‘..',‘\“ '

A

Al P W (
RSGUOLUOLD () LGOI P I T P e P i IR M)
E "N‘:"ll'wfl‘n’!'n?l’ntl':‘l‘l:l‘l’l.,u.\"-‘l‘\?"s."’ .\‘F"n‘i-) "'."‘;Q’.l-"i

(M TR Sa gt 85y oW OB OROAAOESONONIGON0ASONDS
J'l?"!i"!“‘lt" "=t"r.\"!:"!:"h'?';.“v."g..';"'n‘?*»“.‘\..h’ IO M R MO

5439
o 826-3
=
sﬁ:jf voln : filename . ext / acct
" . .
:;;:Z: SP S S SP = = o
q
- 1- to 5-digit decimal account
o b or class P, Gor S
o o> slash
I

> - to 3-alphanumeric character
extension

=> period

:J>1- to 8-alphanumeric character filename
first character must be alphabetic

Vv

colon

\V/

1- to 4-charcter alphanumeric volume name, first
character must be alphabetic

. The implementation-dependent values used for keywords in the FORM parameter are
Da N discussed below. The FORM parameter is a string that contains further system-dependent
ot characteristics and attributes of an external file. The FORM parameter is able to convey to
0 the file system information on the intended use of the associated external file. This
‘ parameter is used as one of the specifications for the CREATE procedure and the QPEN
' rocedure. [t specifies a number of system-dependent characteristics such as lu, file
ormat, etc. It is returned by the FORM function.

Th? sl}'ntax of the FORM string, in our implementation, uses Ada syntax conventions and is
o as foliows:

5
M)

N
5
@y
o
)
S
it T . A A . " . Ny ~ T N O)
‘u'::‘\‘t'c‘. RN h .':'.‘n it :‘| |\l :‘0.‘.\ !’q ? ?““";‘, AN ‘\’.' Q.""!?‘?::‘.:’"h“l.‘."\f' "I."\t“:‘. . ‘\,l.n. LA DT LN, .n.“:!' i.'.h .t.'.l"o"'m"o."e'

»

B-9

4 TSV AR TR T W T NWEWLREELEELW W R

form_param ::= [form_spec (, form_ spec}]

form_spec -:= lu_spec fo_spec
rs_spec dbf_spec
ibf_spec | al _spec
pr_spec keys_spec
pad_spec | dc_spec !
da_spec | ds_spec |
ps_spec ch_spec

A “RSULELME PN

lu_spec = LU => lu
fo_spec :#= FILE_ORGANIZATION => fo
rs_spec .= RECORD_SIZE => rS§
wt dbf_spec = DATA_BLOCKING_FACTOR => dbf
. ibf_spec ;= INDEX_BLOCKING_FACTOR => ibf
I al_spec = ALLOCETIN => al
- pr_spec = PRIVILEGE => pr
e keys_syec ‘= KEYS => hkeys
\ pad_srpec = PA2 => pad
- dc_spec = DEVIZE CODE => dc
e da_spec := DEVICF _aTTRIBLIE => da
. is_spec ;= DEVICE_STAT.S > ds
. ps _spec ;= PROMPIING_STRING =) ps§
' sgec .= CHARACTER_IOC

The excepuon USE_ERROR is raised 1 a given FORM parameter string does not have the
correct syntax or If certain conditions concerning the OPEN or CREATE stater:ients are not

- fuinlled. Keywards that are listed above in upper-case letters are also recognized by the
M. compiler in lower-case.

lu an integer in the range 0..254 specifying the logical unit (lu) number.
fo specifies legal 0S/32 file formats (file organization). They are:
INDEX | IN

CONTIGUOUS 1 CO
/ NON_BUFFERED | NB
i EXTENDABLE_CONTIGUOUS | EXTENDABLE_CONTIGUOUS | EC

- LONG_RECORD | LR
d ITAM
. DEVICE
‘ rs an integer in the range 1..65535 specifying the physical record size.

1. For INDEX, ITAM (inter telecommunications access method) and
NON_BUEFERLD files, this specifies the physical record size.

The physical record size for CONTIGUOUS and
EXTENDABLE_CONTIGUOUS files is determined by rounding the
glemer&t size up to the nearest 256-byte boundary. For such files, rsis
ignored.

3. The %hysicai record size for LONG_RECORD files is specified by the
- data blocking factor multiplied by 256 and rs is ignored.

N
- 2.
i

o 4. For a DEVICE the physical record size always equals the element size
. and rs is ignored.

q dbf Data_blocking_factor. An integer in the range 0.255 (as set up at 0S/32
L system generation (sysgen) time) that specifies the number of contiguous
e, disk sectors (236 bytes) in a data block. It agﬁlles only to INDEX,
48 NON_BUFFERED. EXTENDABLE_CONTIGUOUS and LONG_RECORD files. For
W other file organizations (see file_organization above), it is ignored. A value
,‘. of O causes the data biocking factor to be set to the current 0S/32 default.
ha ibf Index_blocking_factor. An integer in the range 0.255 fas set up at 05/32
1 sysgen time) specifying the number of contiguous disk sectors (256 bytes)
. in an index block o an INDEX. NON_BUFFERED.
‘,: EXTENDABLE_CONTIGUOUS or LONG_RECORD hle. For other file
'y organizations tsee f1le_organization above), it is ignored. .

' al Allocation. An integer in the range 1.2,147483.647. For CONTIGUOUS
L) files. it specifies the number of 236 byte sectors. For ITAM files, it
. specifies the phgsncal block size in bytes associated with the buffered
L‘ terminal. For other file organizations, (see file_organization above), 1t is

<
™ .
g ignored.

. pr Privileges. Specifies OS/32 access privileges, e.g., shared read-only (SRO,,
I exclusive read-only (ERO), shared write-only (SWO), exclusive write-only
(EWO), shared read/write }SRW), shared read/exclusive write (SREW),
S exclusive read/shared write (ERSW) and exclusive read/write (ERW).

»

::-.' keys READ/WRITE keys. A decimal or hexadecimal integer specifying the 0$/32
Y READ/WRITE keys, which range from 16#0000# to 16#FFFF#(0..65533).
-t The left two hexadecimal digits signify the write protection key and the
(n%ht two hexadecimal digits signify the read protection key. For more
P information on protection keys, see the 0S/32 Multi-Terminal Monitor
-2 (MTM) Primer.
. pad Pad chararter. Specifies the padding character used for READ and WRITE
: operat..ns, the pad character i1s either NONE, BLANK or NUL. The default is
-".: .\ONE
)
.\:. TABLE F-3. PAD CHARACTER OPTIONS
N PAD CHARACTER ACTION ﬁ
NS “NONE Records are not paaded. (Default.
. ' JNUL _._Records are padded with ASCILNUL. .
) BLANK ; Records are padded with blanks and
- 0S8/32 ASCII I/0 operations are used. !

4
o
o)

b dc Device code. An inteFer in the range 0.255 specifying the 0S$/32 device
~ code of the external file. See the System Generation/32 (SYSGEN/32)
‘I Reference Manual for a list of all devices and their respective codes.

da Device attributes. An integer in the range 0..65535 specifying the 0S/32

. device attributes of the external file. See the 0S5/32 Supervisor Call (SVC)
e Reference Manual (Chapter 7, the table entitled Description and Mask
oA Values of the Device Attributes Field) for all devices and their respective
[attributes.

o ds Device status. An integer in the range 0.65535 specifying the status of
~ the external file. A status of 0 means that the access to the file "= -m:nated
! with no errors. otherwise a device error has occurred. For errors occurring
3 during READ and WRITE operations, the status values and their meanings
.7 are found in Chapter 2 (The tables on Device-Independent and Device-
o Dependent Status Codes) of the 0S/32 Supervisor Call (SVC) Reference
D Manual.
K. - ps Prompting string. This quoted string is output on the terminal before the
ot GET operation only if the file is associated with a terminal; otherwise this
J FORM parameter is ignored. The default is the null string, in which case

. no string is output to the terminal.

"ol character_io If character_io is specified in the FORM string, the only other allowable

, FORM parameters are LU => Ju, FILE_ORGANIZATION => DEVICE and

A PRiVILEGE=> SRW. Furthermore, the NAME string must denote a termina!l

" or interactive device. In order for character_io to work é:ro erly, the user
RIS must specify ENABLE TYPEAHEAD to MTM, to turn on BIOC's type ahead
feature,

v'.

:: F.8.1 Text Input/Ouput (1/0)

NN There are two implementation-dependent types for TEXT_IO: COUNT and FIELD. Their
A declarations impiemented for the C*Ada Compiler are as follows:

oy

,-

9. type COLMT is range O .. INTEGER'LAST,

:‘,’; subtype FIELD is INTEGER range 0 ..255;

w
o F.8.1.1 End of File Markers

<

‘h When working with text files, the following representations are used for-end of file
markers. A line terminator followed by a page terminator is represented by:

- P ,
[)) ())
) P.“.:‘-‘ I:.‘.i.."C) "’.':‘»'Z‘f ‘c'..’a".'u'."‘.‘q q‘llv'l.g.l.,‘

- e et Yy oy ™ - ha¥ .
0 0 ¥ OALOHECANND -, A O OADADAN W .
Y RN N K RN A NI et ¢ O R SULIORCRC A s TSNS

" -
Y Uy
s

[

l..‘ ¢ ~
220007,

‘

LN
l:'-{"j.{.\ 0

R

X rad
S NN

LIy

5 4 LA

ph Rl h

e

‘f'&?;

ASCII.FF ASCII.CR

A line terminator followed by a page terminator, which is then followed by a file
terminator is represented by:

ASCII.FF ASCII EOT ASCII CR

End of file may also be represented as the physical end of file. For input from a terminai,
the combination above is represented by the control characters:

ASCII FF ASCII EOT ASCII.CR

or with BIOC:

ASCII.DC4 ASCII EOT ASCII.CR, i.e., T D <cr»

F.8.2 Restrictions on ELEMENT_TYPE
The fo!'* ing are the restrictions cnncerning ELEMENT _TYPE:

1 170 of access types is undefined, although allowable; i.e., the fundamental association
beiween the access variable and its accessed type is ignored.

2. The maximum size of a variant data type is always used.

3. If the size of the element type is exceeded by the physical record length, then during
a READ operation the extra data on the physical record is lost. The exception
DATA_ERROR is not raised.

4. If the size of the element type exceeds the physical record length during a WRITE
operation, the extra data in the element is not transferred to the external file and
DATA_ERROR is not raised.

5. SEQUENTIAL_IO and DIRECT_IO cannot be instantiated with unconstrained types. An
attempt will lead to a semantic error.

6. 1/0 operations or composite types containing dynamic array components will not
transder thl?se components because they are not physically contained within the
record itself.

F.8.3 TEXT input/Output (I/0) on a Terminal

A line terminator is detected when either an ASCILCR is input or output, or when the
operating system detects a full buffer. No spanned records with ASCII.NUL are output.

A line terminator foliowed by a page terminator may be represented as:

ASCII.CR
ASCII.FF ASCII.CR

if they are issued separately by the user. e.;.. NEW_LINE followed by a NEW_PAGE. The
same reasoninﬁ applies for a line terminator followed by a page terminator, which is then
followed by a file terminator.

All text 170 operations are buffered, unless for CHARACTER_IO is specified. This means
that physical 1/0 operations are performed on a line by line basis, as opposed to a
character by character basis. For example:

put ("Enter Data");
get_line (data, len):

will not output the string "Enter Data” until the next put_line or new_line operation is
performed.
F.9 UNCHECKED PROGRAMMING

Unchecked programming gives the programmer the ability to circumvent some of the
strong typing and elaboration rules of the Ada language. As such, it is the programmer’s

B-12

[on o g% 4 2
Sarh SN .F?
'?.i. nfn.{qu ' »

4

sﬁ s???

m“ﬂmmw!"\“w“u-u-w----—ﬁ—- - e = e o T o7
..

responsibility to ensure that the guidelines provided in the following sections are
followed.

F.9.1 Unchecked Storage Deallocation

The unchecked storage deallocation generic procedure explicitly deallocates the space for
a dynamically acquired object.

Restrictions.

This procedure frees storage only if:

1. The object being deallocated was the last one allocated of all objects in a given
declarative part.

2. All objects in a single chunk of the collection belonging to all access types declared in
the same declarative part ar - deallocated.

F.9.2 Unchecked Type Conversions

The unchecked type conversion generic function permits the user to convert, without type
checking. from one type to another. It is the user's responsibility to guarantee that such a
conversion preserves the properiies of the target type.

Restrictions:

The object used as the parameter in the function may not have components which contain
dynamic or unconstrained array types.

If the target'size is greater than the source'size, the resulting conversion is unpredictable.
If the target'size is less than the source’size, the result is that the left-most bits of the
source are placed in the target.

Since unchecked_conversion is implemented as an arbitrary block move, no alignment
constraints are necessary on the source or the target operands.

F.10 IMPLEMENTATION-DEPENDENT RESTRICTIONS

The main procedure must be parameterless.

The source line length must be less than or equal to 80 characters.
Due to the source line length, the largest identifier is 80 characters.
No more than 9998 lines in a single compilation unit.

The maximum number of library units is 9999.

The maximum number of bits in an object is 23! -1.

The maximum static nesting level is 63.

The maximum number of directly imported units of a single compilation unit must
not exceed 255.

9. Recompilation of SYSTEM or CALENDAR specification is prohibited.
10. ENTRY'ADDRESS, PACKAGE'ADDRESS and LABEL'ADDRESS are not supported.

DNV A WN

F.11 UNCONSTRAINED RECORD REPRESENTATIONS

Objects of an un<onstrained record type with array components based on the discriminant
are allocated with maximal size. based on discriminant’LAST. If this size is greater than
2GB, then the array is allocated with 1024 elements. For example:

type DYNAMIC_STRING(LENGTH : NATURAL)
is recorxd
STR : STRING(1 .. LENGTH).
end recorxd;

For this record, the compiler attempts to allocate NATURAL'LAST bytes for the record.
Because this is greater than 2GB, the array is instead allocated with 1024 bytes, and a
warning message is produced.

Al Al TEPYTEW TR TR e W e W wwLLELTWEE' §ITTTE YT TW TR TS RS R T R T e T
A ant Bt Sl o d-a B as h-p Ate Bl RAa AR RS YAR Toll Ball Eak Sl oA S LA ach ol At

N0 e
o5 e JORSCE

4
AR

<

%

P
* J&J.J s

)__ APPENDIX C

BN
K> 50 TEST PARAMETERS
'-“\"
)I‘ {
$ Certain tests in the ACVC make use of implementation-dependent values, such
5 ‘-: as the maximum length of an input line and invalid file names. A test that
.,.'{., makes use of such values is identified by the extension .TST in its file
A name. Actual values to be substituted are represented by names that begin
® with a dollar sign. A value must be substituted for each of these names
=5 before the test is run, The values used for this validation are given
Tl below.
b
«‘\-

:;_‘ Name and Meaning Value
f
P $BIG_IDM (1..79 => *A', 80 => *1')
P Identifier the size of the
maximum input line length with

-‘_:;- varying last character.

;.r_‘

o $BIG_ID2 (1..79 => 'A', 80 => '27)
Identifier the size of the
‘,,'.: maximum input line length with
-5.,, varying last character.

pX
e $BIG_ID3 (1..40 | 42..80 => 'A', 41 => '31)
a Identifier the size of the

o maximum input line 1length with

_': varying middle character.

10 $BIG_IDY (1..40 | 42..80 => 'A', 41 => '4r)
i Identifier the size of the

9. maximum input line length with

h ,«: varying middle character.

) $BIG_INT_LIT (1..77 => '0', 78..80 => ">98")

: ‘; An integer 1literal of value 298

N with enough leading 2zeroes so

L that it is the size of the
.1.. maximum line length.

OSSR
PN,

i q'.-’.c, .‘ :,
Y

T

".} L
.',;.. .“t’ ¥

2

A
R
"

‘.w‘.
f(?;

14 : iy 'Y
.l("{.'{-l .l .

K ..
pi \- £

e
: R ML

QL
s I v D RS 4

.

TEST PARAMETERS

Name and Meaning

Value

$BIG_REAL_LIT
A real literal that can be
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be
the size of the maximum line

Teruzth,

B KD
1 3equence of blanks twenty
‘haracters fewer than tio: size

' ~“he maximum line lenszth,

$COUNT_LAST
A universal integer literal
whose value is TEXT_IO.COUNT'LAST.

$EXTENDED_ASCII CHARS
A string literal containing all
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELD_LAST
A universal integer literal
whose value is TEXT_IO.FIELD'LAST.

$FILE_NAME WITH_BAD_CHARS
An illegal external file name
that either contains invalid
characters, or is too long if no
invalid characters exist.

$FILE NAME WITH WILD_CARD_CHAR
An external file name that
either contains a wild card
character, or is too long if no
wild card character exists.

$GREATER_THAN_DURATION
A universal real value that lies
between DURATION'BASE'LAST and
DURATION'LAST if any, otherwise
any value in the range of
DURATION.

$GREATER_THAN_DURATION_BASE_LAST
The universal real value that is
greater than DURATION'BASE'LAST,
if such a value exists.

(1..74 => '0', 75..80 => '69.0E1")

(1..60 > ")

2_147_483_647

"abedefghijklmnopgrstuvwxyz" &
v$%2e(\]"{}""

255

"F_#$.BAD"

"FILENAME2.BAD"

100_000.0

4_294_967_295.0

raRl

o 'x_"-' '

e
‘:t))

-
x

5 C

)
ot

R

o piy
P
Y49

2002
PSRN

"

&

Wt
".‘llt'l

1! ,l,!fo',' W)

O N0 AAGA]
RO K Mo Mt AT

Name and Meaning

TEST PARAMETERS

Value

$ILLEGAL_EXTERNAL_FILE_NAME1
An illegal external file name.

$ILLEGAL_EXTERNAL_FILE NAME2
An illegal external file name
that is different from
$ILLEGAL_EXTERNAL FILE_NAME1.

$7: TEGER_FIRST
The universal
sXpression whose
‘JTKGER'FIRST.

integer literal
value is

$ INTEGER_LAST
The universal
expression
INTEGER'LAST.

integer literal
whose value is

$LESS_THAN_DURATION
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST if any, otherwise
any value in the range of
DURATION.

$LESS_THAN_DURATION_BASE_FIRST
The universal real value that is
less than DURATION'BASE'FIRST,
if such a value exists.

$MAX DIGITS
The universal integer literal
whose value is the maximum
digits supported for floating-
point types.

$MAX_IN_LEN
The wuniversal integer literal
whose value is the maximum

input 1line length permitted by
the implementation.

$MAX_INT

The wuniversal integer 1literal
whose value is SYSTEM.MAX_INT.

I

c-3

"ILLEGAL_.FIL"

"ILLEGALFILE.NAM"

-2_147_483_648

2_147_U83_647

-100_000.0

-4_294_967_296.0

15

80

2_147_U83_6U4T

] SR * ¢ g \
0 OO0 O SEEXOAOAOADANN N AT A N AN MM IO
T A M OO S KA O RN L IS RS R X RN UM KR KM

[.l Il

SO R Wb
pr 22 e

|b‘

-

Y
s

-

Ly

R

S)
A

-

e
o P Yo BN

TEST PARAMETERS

Name and Meaning

Value

$NAME
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER
if one exists, otherwise any
undefined name.

$NEG_BASED_INT
A based integer literal whose
highest order nonzero bit
fal’s in the sign bit
position of the representation
for SYSTEM.MAX_INT.

$NON_ASCII_CHAR_TYPE
An enumerated type definition
for a character type whose
literals are the identifier
NON_NULL and all non-ASCII
characters with printable
graphics.

OO0 y S S O 2 RTINS0 RO DN D
‘r".‘-ﬁ..'l'fﬂ'y\’!‘l'h‘a W, l‘;‘!"ﬁ'o‘lﬁ'l'x N Lttt e ce ity

[YCRRIPL) 5,47

TINY_INTEGER

16#FFFF_FFFE#

(NON_NULL)

! UBOAR) DOOOUS BOOQOOONCOR I RN
“l.'lh"'c“.'.'?h"'u"‘a".‘c'.'n'.'<‘ PRI N R AN

) APPENDIX D

P WITHDRAWN TESTS

. Some tests are withdrawn from the ACVC because they do not conform to the
N Ada Standard. The following 19 tests had been withdrawn at the time of
. validation testing for the reasons indicated. A reference of the form
s "AI-ddddd" is to an Ada Commentary.

. C32114A: An unterminated string literal occurs at line 62.

. B33203C: The reserved word "IS" is misspelled at line 45.

. C34018A: The call of function G at line 114 is ambiguous in the
presence of implicit conversions.

! . C35904A: The elaboration of subtype declarations SFX3 and SFX4

' may raise NUMERIC_ERROR instead of CONSTRAINT_ ERROR as expected in
i the test.

. B37401A: The object declarations at lines 126 through 135 follow
subprogram bodies declared in the same declarative part.

X . CU1404A: The values of 'LAST and 'LENGTH are incorrect in the if
statements from line 74 to the end of the test.

. BU5116A: ARRPRIBL1 and ARRPRIBL2 are initialized with a value of
the wrong type--PRIBOOL_TYPE instead of ARRPRIBOOL_TYPE--at line
41,

. Cu8008A: The assumption that evaluation of default initial values
occurs when an exception is raised by an allocator is incorrect
according to AI-00397.

[WAL LA LA

. BUYO06A: Object declarations at lines 41 and 50 are terminated
A incorrectly with colons, and end case; is missing from line 42.

. BUAOIOC: The object declaration in line 18 follows a subprogram
body of the same declarative part.

W AT (P Wy ” g -~

0 800 Ca¥u v w Wy O W o MOSR o $~-‘ Y A .'. A 1% L my o
B ot Ko Moge Ml M Nogf R Mo N ,‘l"?.!' OO .'l’.-.d. W »0?"‘ SOOI T i oy I..'l"‘l.-.l'»‘i'..A‘n."l‘."o‘l'-%‘e\h’"n"‘i.“‘.."s!":. ‘0‘,“:"'\."1'-‘".

TN EETTWTREOTTROT LT MY TR TR R RTTETAETRTEFT R R E T RSOOSR R MR OOATE R 2R x"‘—-*-rw

WITHDRAWN TESTS

. B74101B: The begin at line 9 causes a declarative part to be
treated as a sequence of statements.

. C87B50A: The call of "/=" at line 31 requires a use c¢lause for
package A.

. C92005A: The "/=" for type PACK.BIG_INT at line 40 is not visible
without a use clause for the package PACK.

. CQUOACA: The assumption that allocated task TT1 will run prior to
the main program, and thus assign SPYNUMB the value checked for by
the main program, is erroneous.

. CA3005A..D (4 tests): No valid elaboration order exists for these
tests.

N . BC3204C: The body of BC3204CO is missing.
>

L9855

2: l /l/ 'O
B [d
N
"l
s
n "
(]
y &

P4
l;)'."\k'.

-~

AR
~—
S~
N
N

‘Q
ad
>

)
"‘ |‘l‘
0.‘ ‘.l‘
it o
N !
0«1 v @ L ® ® L) [J

."N ‘ '. .‘ ' .\ », ‘ .
':::':.0 ﬁ' " v %@
\ .’t' W ‘,0':5‘:‘0:'\. .':' c:"t' cl."‘. < ’u'.‘o""

