
D-AIR93 612 ADA (TRADE NAME) COMPILER VALIDATION SUMMARY REPORT- 1~
CONCURRENT COMPUTER (U) INFORMATION SYSTEMS AND

U CR, TEC14NOLOGY CENTER W-P AFS ON ADA YRLI 84 JUN 87

NL EDAF-VR-5h887hhht2/hEE71hhhhhh'El..omos

1.0 ~ 1.8

111111.

-MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 963 A

- -~ ~ -~ - -w w qw -w - **.

AVF Control Number: AVF-VSR-75•0887(87-03-17-CCC

OD

Ada® COMPILER
VALIDATION SUMMARY REPORT:

Concurrent Computer Corporation
C3 Ada, Version ROO-01.00

Concurrent Computer Corporation 3260 MPS

Completion of On-Site Testing:
4 June 1987

Prepared By:
Ada Validation Facility

ASD/SCOL
Wright-Patterson AFB OH 45433-6503 D T ICS ELECTE

MAR 2819881

Prepared For:o
Ada Joint Program Office H

United States Department of Defense
Washington, D.C.

S®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

* L 'w-.., Q- SJL..'KN, A" 2 9* IApproved 4C)T pubtic yeleeq;

)0.)M%1r Lj 60Q66T I

UNCLASSIFIED .

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETEING FORM

1. REPORT NUMBER 12. GOVT A CCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubtitle) 1. JYPE REPORT &.PERIqg&OVERED
Ada Compiler Validation Summary Report: une87 une

Concurrent Computer Corporation C 3 Ada, Ver. ROO-
01.00 Concurrent Computer Corporation 3260 MPS 6. PERFORMING ORG. REPORT NUMBER

7 AUTHR(s) 8. CONTRACT OR GRANT NUMBER(s)
Wright-Patterson AFB OH 45433-6503

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Wright-Patterson AFB OH 45433-6503 AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 4 June 1987
United States Department of Defense 13. NUMBER OF PAGES
Washington, DC 20301-3081ASD/SIOL 43 p.

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)

Wright-Patterson AFB OH 45433-6503. UNCLASSIFIED
15a. RhbBFICATION/DOWNGRADING

I N/A

16. DISTRIBUTION STATEMENT (ofthisReport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABS T RAC T (Continue on reverse side if necessary and identify by block number)

See Attached.

9.

DO 'u1 1473 EDITION OF I NOV 65 IS OBSOLETE

I 1 JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

+ Plc TSfr ee+

e PlcZTI-om6ee

% Adaa Compiler Validation Summary Report:

Compiler Name: C3 Ada, Version RO0-01.0O

sHost: Target:

Concurrent Computer Corporation Concurrent Computer Corporation
3260 MPS under OS/32, 3260 MPS under OS/32,

Version R08-02 Version R08-02

Testing Completed L4 jn, 1987 Usitog AGVC 1.8

This report has been reviewed and is approved.

Ada Validation Faci,2ity
Georgeanne Chitwood
ASD/SCOL
Wrighit-Patterson AFB OH 45433-6503

Ada Validation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA____________

Acoession For
NTIS GRA&I
DTIC TAB 0

* ~..) e~' ? Ad*Unannounced 0l
Sjustification

Virginia L. CastorBy
Director
Department of Defense Distribution/
Washington DC Availembility Codes

Avail and/or
Dist Special

~Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the C3 Ada® compiler, Version RO0-01.00,
using Version 1.8 of the Ada Compiler Validation Capability (ACVC). The C3

..da compiler is hosted on a Concurrent Computer Corporation 3260 MPS
operating kinder OS/32, Version R08-02. Programs processed by this compiler
may b:, executed on a Concurrent Computer Corporation 3260 MPS operating
.jnder OS/32, Version R08-02.

On-site testing was perforr'.i- 29 May 1987 through 4 June 1987 at, Concurrent
Computer Corporation in Tinton Falls NJ, under the direction of the Ada
Validation Facility (AVF), according to Ada Validation Orwanization (AVO)

policies and procedures. The AVF identified 2210 of the 2399 tests in ACVC
Version 1.8 to be processed during on-site testing of the compiler. The 19

• tests withdrawn at the time of validation testing, as well as the 170
executable tests that make use of floating-point precision exceeding that

.4 supported by the implementation, were not processed. After the 2210 tests
were processed, results for Class A, C, D, and E tests were examined for
correct execution. Compilation listings for Class B tests were analyzsd
for correct diagnosis of syntax and semantic errors. Compilation and link
results of Class L tests were analyzed for correct dptection of errors.
There were 35 of the processed tests determined to be ..Applicable. The
remaining 2175 tests were passed.

.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 14

Passed 94 252 334 244 161 97 137 261 124 32 218 221 2175

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 22 73 86 3 0 0 2 1 6 0 0 12 205

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399
S.

' The AVF concludes that these results demonstrate acceptable conformity tn
ANSI/MIL-STD-1815A Ada.

O®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

-r W W r.

TABLE OF CONTENTS

CHATER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 SPLIT TESTS 3-3

3.7 ADDITIONAL TESTING INFORMATION 3-4
3.7.1 Prevalidation 3-4
3.7.2 Test Method3-4
3.7.3 Test Site 3-5

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

."€

V.

o

U.

CHAPTER 1

INTRODUCTION

Tnis ValiJation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from characteristics of
particular operating systems, hardware, or implementation strategies. All
of the dependencies observed during the process of testing this compiler
are given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. 7 The purpose of validating is to ensure conformity
of the compiler to the Ada-tandard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

#.M

A 1-1

'9 9

I,

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify ahy unsupported language constructsI. required by the Ada Staidard

To determine that the implementation-dependent behavio: is allowed
NN !oy the Ada Standard

Testing of this compiler was onducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). On-site testing was conducted from
29 May 1987 through 4 June 1987 at Concurrent Computer Corporation in
Tinton Falls NJ.

1 .2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,

this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

1-2

.1V

rwn

Ada alidtio OrgnizaionINTRODUCTIONQuestions regarding this report or the validation test results should be
directed to the AVF listed above or to:

r' Ada Validation Organization

Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 R. *.. "LCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983.

2. Ada Validation Organization: Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1984.

1.4 DEFINITION OF TERMS

" ACVC The Ada Compiler Validation Capability. A set of programs
that evaluates the conformity of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the context of thisreport, the AVO is responsible for setting procedures for

compiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

4 1-3

INTRODUCTION

inapplicable A test that uses features of the language that a compiler is
test not required to support or may legitimately support in a way

other than the one expected by the test.

Passed test A test for which a compiler generates the expected result.

farge_ the computer for which a compiler generates code.

Test, A program that checks a compiler's ounformity regarding~ a
particular feature or features to the Nda Standard. In the
context of this report, the term is uz,.d to designate -a
single test, which may comprise one or mcre files.

.41 ,.-.1 4 A test found to be tL,orrect and not used to check conformit.j
test to the Ada language specification. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the

language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
* conta'.ns both legal and illegal Ada programs structured into six test

classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L. tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see if
the test objective has been met. For example, a Class A test checks that

'S reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers

0 1-4

JV

INTRODUCTION

permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and stili be a conforming compiler.

Therefore, if a Class D test fails to compile because the capacity of the
compiler is excedded, the test is classified as inappiicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED messagc dur-ng execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it iF compiled and executed. However, the Ada
Standard permits i, impl mentation to reject programs containing some
Veatires :,: .?s3ed by Class E tests during compilation. Tnerefore, a Class

tes- . ,y a compiler if i U - ipiled successfully and executes
to pr :'e a ,;ASSED message, or if it is rejected by the complier for an

a.Jowabiu eason.

Class L tests check that incomplete or illegal Ada programs involving

multiple, separately compiled units are detected and not allowed to
-txecute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt

*to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or

NOT APPLICABLE results. It also provides a set of identity functions used

to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECKFILE is used to
check the contents of text files written by some of the Class C tests for

chapter 14 of the Ada Standard. The operation of these units is checked by

a set of executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not

-< operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For

* example, the tests make use of only the basic set of 55 characters, contain

lines with a maximum length of 72 characters, use small numeric values, and

place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be

V customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

V A compiler must correctly process each of the tests in the suite and

demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is

inapplicable for one validation is not necessarily inapplicable for, a
subsequent validation.

1-5

'a . . q , a . . * .*% ,Q' .,. .4 a . * . s . . ~ a

INTRODUCTION

Any test that was determined to contain an illegal language construct or an
erroneous language construct is withdrawn from the ACVC and, therefore, is
not used in zesting a compiler. The tests withdrawn at the time of
validation are given in Appendix D.

I

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: C3 Ada, Version ROO-01.00

ACVC Version: 1.8

Certificate Number: 870601W1.08061

Host Computer:

Machine: Concurrent Computer Corporation

3260 MPS

Operating System: OS/32, Version R08-02

Memory Size: 16 megabytes

Target Computer:

Machine: Concurrent Computer Corporation
3260 MPS

Operating System: OS/32, Version R08-02

Memory Size: 16 megabytes

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation

r .differences. However, tesLs in other classes also characterize an

implementation. This compiler is characterized by the following
interpretations of the Ada Standard:

."apacities.

rhe 2ompiler corrt--Q-y processes tests containing loop statements
nested t- '3 levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723

:4 variables in the same declarative part. (See tests D55AO3A..H (8
tests), D56001B, D64005E..G (3 tests), and D29002K.)

-. . Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation does not reject such calculations and processes
them correctly. (See tests D4A0O2A, D4AOO2B, D4AOO4A, and
D4AOO4B.)

. Predefined types.

This implementation supports the additional predefined types
SHORT INTEGER, LONGFLOAT, and TINY INTEGER in the package
STANDARD. (See tests B86001C and B86001D.)

. Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERICERROR or CONSTRAINTERROR during execution. This
implementation raises NUMERIC_ERROR during execution. (See test
E24101A.)

Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINTERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT.

2-2

CONFIGURATION INFORMATION

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC ERROR when the array objects are declared. (See
test C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
Sc,:mronents raises raises NUMERICERROR when the array objects are
deciared. (See test C52104Y.)

A &rC- array with one dimension of length greater than
TNTEGER'LAST may raise NUMERICERROR or CONSTRAINTERROR either
4-n declared Ca- assigned. Alternatively, an implementation may
a(cept the Ienlaration. However, lengths must match in array
siioe assignmenus. This implementation raises NUMERJ1C_ERPOR .qnen
the array type I; declared. (See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,

*the expression does not appear to be evaluated in its entirety
before CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.

This implementation accepts such subtype indications. (See test

E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR is

W raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all

choices are evaluated before being checked for identical bounds.

Wh (See test E43212B.)

All choices are evaluated before CONSTRAINTERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to

an index subtype. (See test E43211B.)

2-3

CONFIGURATION INFORMATION

Functions.

An implementation may allow the declaration of a parameterless
function and an enumeration literal having the same profile in the

same immediate scope, or it may reject the function declaration.
If it accepts the function declaration, the use of the enumeration
literal's identifier denotes the function. This implementation
rejects the declaration. (See test E66001D.)

Representation clauses.

The Ada Standard does not require an implementation to support
representation clauses. If a representation clause is not
supported, then the implementation must reject it. While the
operation of representation clauses is not checked by Version 1.8
of the ACVC, they are used in testing other language features.
This implementation accepts 'SIZE, 'STORAGE SIZE for collections,
and 'SMALL clauses; it rejects 'STORAGE SIZE for tasks.

* Enumeration representation clauses, including those that specify
noncontiguous values, appear to be supported. (See tests C55B16A,
C87B62A, C87B62B, C87B62C, and BC1002A.)

. Pragmas.

The pragma INLINE is not supported for procedures or functions.
(See tests CA3004E and CA3004F.)

. Input/output.

The package SEQUENTIAL 10 cannot be instantiated with
unconstrained array types and record types with discriminants.

'1 The package DIRECT 10 cannot be instantiated with unconstrained
V array types and record types with discriminants without defaults.

(See tests AE2101C, AE2101H, CE2201D, CE2201E, and CE2401D.)
h

An existing text file can be opened in OUT_-FILE mode and can be
W created in both OUTFILE and INFILE modes. (See test EE31O2C.)

More than one internal file can be associated with each external
file for text I/O for both reading and writing. (See tests

3,. CE3111A..E (5 tests).)

More than one internal file can be associated with each external
file for sequential I/O for both reading and writing. (See tests
CE2107A..F (6 tests).)

More than one internal file can be associated with each external
file for direct I/O for both reading and writing. (See tests
CE2107A..F (6 tests).)

2-4

CONFIGURATION INFORMATION

An external file associated with more than one internal file can
be deleted. (See test CE2110B.)

Temporary sequential files and direct files are not given a name.
.0 (See tests CE2108A and CE2108C.)

Generics.

Generic suuprogram declarations and bodies can be compiled in

separate compilations. "See test CA2009F.)

Generi'c package declaratius and bodies can be compiled in

separate compilations. (See tests CA2009C and BC3205D.)

2-

i.

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing of

the C 3 Ada compiler was performed, 19 tests had been withdrawn. The

remaining 2380 tests were potentially applicable to this validation. The

AVF determined that 205 tests were inapplicable to this implementation, and

that the 2175 applicable tests were passed by the implementation.

" The AVF concludes that the testing results demonstrate acceptable

conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

_ _A B C D E L -

Passed 67 865 1171 17 11 44 2175

Failed 0 0 0 0 0 0 0

Inapplicable 2 2 197 0 2 2 205

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

43

3-1

STEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

___,._" 2 3 4 5 6 7 8 9 10 1! i2 14

Passed 94 252 334 244 161 97 137 261 124 32 218 221 2175

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 22 73 86 3 0 0 2 1 6 0 0 12 205

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

3.4 WITHDRAWN TESTS

The following 19 tests were withdrawn from ACVC Version 1.8 .at the time of
this validation:

C32114A C41404A B74101B BC3204C
B33203C B45116A C87B50A
C34018A C48008A C92005A

N C35904A B49006A C940ACA
B37401A B4AO10C CA3005A..D (4 tests)

See Appendix D for the reason that each of these tests was withdrawn.

*. 3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 205 tests were inapplicable for the
reasons indicated:

" C24113D..K (8 tests) have line lengths greater than MAX IN LEN.

" C34001E, B52004D, B55B09C, and C55BO7A use LONG INTEGER which is
not supported by this compiler.

" C34001F and C35702A use SHORTFLOAT which is not supported by this
compiler.

3-2

Mar r f NW %-

V TEST INFORMATION

C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT 10.

C87B62B .ses the lengtn c'iuse 'STORAGESIZE for task ty>, ihici
is not supported by tnis compiler. The length clause is rejected
during compilation.

* C9600=B checks ioplementations for which th.e smallest and largest
values in type DURATION are ,iffereii from the smallest and

largest v _.-3s n DURATIGN's hiq-' type. This is not the case for

this imp.:. ; ation.

* AP04E, EAjJ04C, and LA3004A use INLINE pragina for procedures
which is not supported by this compiler.

* CA3004F, EA3004D, and LA3004B use INLINE pragma for functions
which is not supported by this compiler.

* AE2101C, CE2201D, and CE2201E use an instantiation of package
SEQUENTIAL_10 with unconstrained array types which is not
supported by this compiler.

. AE2101H and CE2401D use an instantiation of package DIRECT 10 with
unconstrained array types which is not supported by this compiler.

CE2107C, CE2107D, CE2108A, CE2108C, and CE3112A are inapplicable
because temporary files do not have names.

CE3111B is inapplicable because the TEXT IO.PUT operation does not

output to the external file until a subsequent NEWLINE, RESET, or
CLOSE operation is executed.

CE3114B attempts to delete an external file that is associated
with multiple internal files. This implementation does not allow
the external file to be deleted for TEXTIO.

" The following 170 tests require a floating-point accuracy that
exceeds the maximum of 15 supported by the implementation:

C24113L..Y (14 tests) C35708L..Y (14 tests) C45421L..Y (14 tests)
C35705L..Y (14 tests) C35802L..Y (14 tests) C45424L..Y (14 tests)
C35706L..Y (14 tests) C45241L..Y (14 tests) C45521L..Z (15 tests)
C35707L..Y (14 tests) C45321L..Y (14 tests) C45621L..Z (15 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of

3-3

TEST INFORMATION

smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size i3 split into a set of smaller subtests that can be

* pro;d.

Splits were vequired for four *lass B tests:

B2304A 829UOlA BC3204B BC3205B

3.. AIirIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.8 produced by

the C 3 Ada compiler was submitted to the AVF by the applicant for review.
Analysis of these results demonstrated that the compiler successfully

0 passed all applicable tests, and that the compiler exhibited the expected
behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the C3 Ada compiler using ACVC Version 1.8 was conducted on site

by a validation team from the AVF. The configuration consisted of a
Concurrent Computer Corporation 3260 MPS operating under OS/32, Version

iR08-02.

A magnetic tape containing all tests except for withdrawn tests and tests

requiring unsupported floating-point precisions was taken on site by the
validation team for processing. Tests that make use of

implementation-specific values were customized before being written to the

magnetic tape. Tests BC3204B and BC3205B were included in their split form

on the magnetic tape. Tests B23004A and B29001A were edited into their
split form on site.

The contents of the magnetic tape were loaded to disk using a FORTRAN

program developed by Concurrent Computer Corporation. This utility was
used to truncate filenames to eight characters and to modify the files

whose line lengths exceed Concurrent's 80-character record length. After

the test files were loaded to disk, the full set of tests was compiled,

linked, and executed as appropriate on the Concurrent Computer Corporation
'N. 3260 MPS. Results were printed from the Concurrent Computer Corporation

V. 3260 MPS.

The compiler was tested using command scripts provided by Concurrent
Computer Corporation and reviewed by the validation team. The following

options were in effect for testing:

~3-4

Of

TEST INFORMATION

LIST The LIST option controls the generation of the source listing
from the compiler. A listing of all source lines is generated.

OPTIMIZE This option controls the action of performing simple
optimizations like constant folding, dead code elimination, and
peex.ole optimization.

PAGE-SIZE This option specifies the number of significant lines per page

on the listing file. The default is 60 lines per page.

EN T This option spe-;ifies that the code generated is to be s,.gmented

i.ri PURF and IMPURE code.

,- 4tj)t, .ompilation listings, and job logs were captured on ma netic
tape and archived at the AVF. The listings examined on site by the
validation team were also archived.

3.7.3 Test Site

The validation team arrived at Concurrent Computer Corporation in Tinton
Falls NJ on 29 May 1987, and departed after testing was completed on 4 June

*1987.

'°

i..

,53-5

%, %-%

APPENDIX A

DECLARATION "-F G.ONFORMANCE

Concurrent Computer Corporation has submitted the

following declaration of conformance concerning the
C 3

4Ada compiler.

b.

@ A-1

pAM

DECLARATION OF CONFORMANCE

ACompiler Implementor: Concurrent Computer CorporationAda Validation Facility: ASD/SCOL, Wright-Patterson AFB, OH
Ada Compiler Validation Capability (ACVC) Version: 1.8

Base Configuration

t'>;mpiler 'Tme: C3 Ada Version: RO0-01.00

S>..-~.~At 'hit =,ur'e ISA: Concurrent Computer Corporation 3260 MPS

J S&VER #: OS/32, Versi.on R08-02
- ",''.ecture ISA: Concurr(_ L (CoiGputer Corporation 3260 MPS

OS&VER #: OS/32, Version R08-02

Derived Compiler Registration

Derived Compiler Name: C3 Ada Version: R00-01.00

Host Architecture ISA: Concurrent Computer Corporation Series 3200
3200MPS, 3203, 3205, 3210, 3230, 3250,
3230XP, 3250XP, 3230MPS, 3260MPS, 3280MPS

• -.>OS&VER #: OS/32, Version R08-02
- *Target Architectare ISA: All Hosts, Self Targeted

OS&VER #: OS/32, Version RO8-02

Implementor' s Declaration
..

I, the undersigned, representing Concurrent Computer Corporation, have
-implemented no deliberate extensions to the Ada Language Standard
ANSI/MIL-STD-1815A in the compilers listed in this declaration. I declare
that Concurrent Computer Corporation is the owner of record of the Ada
language compilers listed above and, as such, is responsible for
maintaining said compilers in conformance to ANSI/MIL-STD-1815A. All
certificates and registrations for the Ada language compilers listed in

*this declaration shall be made only in the owner's corporate name.

.__-._ _ _ _Date:

Concurrent Computer Corporation

Seetharama Shastry
WI., Manager, System Software Development

(I®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

A-2

Owner's Declaration

I, the undersigned, representing Concurrent Computer Corporation, take full
responsibility for implementation and maintenance of the Ada compilers
listed above, and agree to the public disclosure of the final Validation
Summary Report. I further agree to continue to comply with the Ada
trademark policy, as defined by the Ada Joint Program Office. I declare
that all of the Ada language compilers listed, aid their host/target
performance at-,. in compliance with the Ada Language Standard
ANSI/MIL-STD- "315A.

....._Date:

Concurrent Computer Corporation
See" , ama Shastry
Mar a. System Softwar.- Deve] r_:nt

.A

,.i

0

%.

Oi. 9

-a

-

APPENDIX B

APPENDIX F OF THE Ada STANDARD

.he only allowed implementation dependencies correspond to implementation-

dependent pragmas, to certain machine-dependent conventions as mentioned in

chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the C3 Ada compiler, Version ROO-01.00, are described in the following
sections which discuss topics in Appendix F of the Ada Language Reference
Manual (ANSI/MIL-STD-1815A). Implementation-specific portions of the
package STANDARD are also included in this appendix.

package STANDARD is

type INTEGER is range -2_147_483_648 .. 2147483_647;
type SHORTINTEGER is range -32 768 .. 32_767;
type TINYINTEGER is range -128 .. 127;

type FLOAT is digits 6 range -16#O.FFFF FF#E63 .. 16#O.FFFF FF#E63;
type LONG FLOAT is digits 15 range -16#FFFF FFFF FFFF FF#E63

16#FFFF FFFFFFFFFF#E63;

type DURATION is delta 0.00006103515625 range -131072.0
131071.99993896484375;

end STANDARD;

B-1

-4 , - -. .- :, .- . - .. ff r r T, , r -.. -,-..

APPENDIX F
IMPLEMENTATION-DEPENDENT CHARACTERISTICS

F.1 INTRODUCTION
The following sections provide all implementation-dependent characteristics of the C SAda
Compiler.

F.2 IMPLEMENTATION-DEPENDENT PRAGMAS
The following is the syntax representation of a pragma:

pragmm IDENTIFIER [(ARGUMENT (,ARGUMENT))];

Where.
IDENTIFIER is the name of the pragma.
ARGUfEN" defines a parameter of the pragma. For example, the LIST pragma

expects the arguments ON or OFF.

Table F-I summarizes all of the recognized pragmas and whether they are implemented or
not.

TABLE F-I. SUMMARY OF RECOGNIZED PRAGMAS

PRAGMA IMPLEMENTED COMMENTS
CONTROLLED No Automatic storage reclamation 3 f unreferenced access

objects is not applicable to the CqAda implementation.
I ELABORATE Yes Is handled as defined by the Ada language.

INLINE No Subprogram bodies are not expanded inline at each call.
INTERFACE Yes Is implemented for ASSEMBLER and FORTRAN.

* LIST Yes Is handled as defined by the Ada language.
IMEMORYSIZE No The user cannot specify the number of available storage,. units in the machine configuration which is defined in

', package SYSTEM.

OPTIMIZE No The user cannot specify either time or space as the
-7 primary, optimization criterion.

PACK Yes The elements of an array or record are packed down toIa minimal number of bytes.

PACE Yes I Is handled as defined by the Ada language.
'PRIORITY No The task or main-program cannot have priority.
SHARED No Not applicable because every read or update of thevariab e declared by an object declaration and whose

,, type is a scalar or access type is a synchronization
*,point for that variable.

STORAGE-UNIT No The user cannot specify the number of bits per storage
unit, which is defined in package SYSTEM.

B

Il

iD.,,B -2

%•

TABLE F-I. SUMMARY OF RECOGNIZED PRAGMAS (Continued)

PRAgMA , IMPLEMENTED COMMENTS
SUPPRES No All run-time checks, such as,..,.ACCESSCI-ECK, INDEX-CHECK. RANGE-CHECK, etc,

%. cannot be suppressed for any specific type. object,
-_ subprogram etc., See the description of SUPPRESS-ALL.

SYSTEM-NAME No The user cannot specify the target system name, whichis defined in oackase SYSTEM.
SUPPRESS-ALL Yes This pragma gives the compiler ermission to omit allof the following run-time checks for all types and

ON Pobjects in the designated compilation units:
ACCESS-CHECK, RANGE-CHECK. LENGTHCHECK,
INDEX.CHECK. DJSCRIMINANTCHECK and

• OVERFLOW-CHECK for all Integer and fixed point
calculations. The pragma must be placed before each
compi:ation nit.

._OS-TACK_CHECK Yes This ptagina indicates to the compiler that there is
a.1 d' enough space in the initial stack chunk for the

activation record of all subroutines that may be active
." at any time. Therefore, no code is generated to check

for providing addir,nal space for the run-time stack ,f
any task or of the main task. The pragma mus,, be
placed before the compilation, and applies tc all
compilation units.

F.3 LENGTH CLAUSES
A length clause specifies the amount of storage associated with a given type. The
following is a list of the implementation-dependent attributes.

ST'SIZE must be a multiple of eight. Must be 32 for a type derived from FLOAT,
and 64 for a type derived from LONG-FLOAT. For array and record
types, only the size chosen by the compiler may be specified.

* T'STORAGESIZE is fully supported for collection size specification.
T'STORAGESIZE is not supported for task activation. Task memory is limited by the

work space for the program.
T'SMALL must be a power of two for a fixed point type.

Size representation only applies to types - not to subtypes. In the following example, the
size of T is 32. but the size of TI is not necessarily 32.

type T is integer range 0..100;

Subtype T1 is T range 0._10;
for T'SIZE use 32;sutp T sT ag 0.0

In the following example, the size of the subtype is the same as the size of the type (size
of the type is applied to the subtype).

type T is integer range 0..100;
for T'SIZE use 32;
subtype T2 is T range 0 10;

F.4 REPRESENTATION ATTRIBUTES
The Representation attributes listed below are as described in the Reference Manual for
the Ada Programming Language, Section 13.7.2.

XADDRESS - Note: Attribute ADDRESS is not supported for labels.
X'SIZE
R.C'POSITION
R.C'FIRST_BIT
R.C'LASTBIT

B-3me.

T'STORAGESIZE for access types, returns the current amount of storage reserved for
the type. If a T'STORAGESIZE representation clause has been
specified, then the amount specified is returned. Otherwise the
current amount allocated is returned.

T'STORAGESIZE for task types or objects is not implemented. It returns 0.

F.4.1 Representation Attributes of Real Types
P'DIGITS yields the number of decimal digits for the subtype P. This value is

six for type FLOAT, and 15 for type LONG-FLOAT.
P'NIANTISSA yields the number of binary digits in the mantissa of P. The value is

21 for type FLOAT, and 51 for type LONG-FLOAT.

DIGITS MANTISSA DIGITS MANTISSA DIGITS MANTISSA
1 3 I 6 21 11 38
2 8 7 25 12 41
3 11 8 28 13 45
4 15 9 31 14 48
518 0 3S is 51

-'EMAX yields the largest exponent value of model numbers for the subtype
P. The %alue is 84 for type FLOAT, and 204 for type LONGFLOAT.

DIGITS EMAX 'DIGITS - EMAX, DIGITS EMAX
1 1 20 84 11 152

2 32 1 7 100 12 164
3 44 8 112 13 180
4 60 9 124 14 192
5 72 10 140 is 204

P'EPSILON yields the absolute value of the difference between the model
number 1.0 and the next model number above for the subtype P.
The value is 16 0.00001# for type FLOAT, and
16#0.0000-0000-0000-4# for type LONG-FLOAT.

I VALUES ; EMAX VALUES EMAX , VALUES EMAX I
1 20 6 84 11 152

*'-, 2 32 7 100 12 164
3 44 8 112 13 180
4 60 9 124 14 192
5 72 10 140 15 204

P'SNIALL yields the smallest positive model number of the subtype P. The
value is 16#0.8#E-21 for type FLOAT, and 16#0.8#E-51 for type
LONG-FLOAT.

VALUES SMALL 'VALUES' SMALL VALUES SMALL I
----- 16;O.8#E-5 6 16-0-8 #E-21 11 16#0.8#E-38

2 16#0.8#E-8 7 16#0.8#E-25 12 16#0.8#E-41
3 160.8#E-1 8 16#0.8#E-28 13 16#0.8#E-45
4 16*0.8#E-15 9 16#0.8#E-31 14 16#0.8#E-48
5 Mt0.8#E-18 10 16#0.8#E-35 15 16#0.8#E-51

P'LARGE yields the largest positive model number of the subtype P. The
value is 16#-O.FFFFFF8#E21 for type FLOAT. and

*., 16#0.FFFFFFFF-FFFFE#E5 I for type LONG-FLOAT.

:...5

ie

' B -4

O,

VALUESt LARGE
4= 1 6#0.FS#E

2 16#0.FF#E8
3 16#0.FFE#E I
4 16#0.FFFE#E 15
5 16#0.FFFF-.C#E18

*6 6 16#0.FFFF..F8#E21
7 16#0.FFFF...FF8#E25
8 16#O.FFFF...FFF#E28
9 16#00.FFF-FFFE#E31I

10 16#10.FFFF-.FFFF...E#35
11 16# 0. FFF F..FFFLFC# E 38
12 16#0.FFFF-.FFFF...FF8#E4 I
13 lC:O.FFFLFFFFLFF8#E45
14 l6At0.FFFF...FFFF_.FFF#E48
15 I 6*0.FFFFFFFF-.FFFFLE#E5 1

P'SAFE..XN' %X yields the largest expontnt value of safe numbers of type P.
Whe value is 252 for types FLOAT and LONG-FLOAT.

F S A'FE.SMALL yields the smallest positive safe number of type P. The value
is 16#0. 1#E-64 for types FLOAT and LONG-FLOAT.

;IARGE yields the largest positive safe number of the type P. The
value is I6*0-rFFF_FF* E63 for type FLOAT, and
1 6#).FFFF...FFFF-.FFF...FF#E63 for type LON G-.FLOAT.

PNIACHINE-ROUNDS is true.
P'NIACHINE-OVERFLOWS is true.
P'NIACHINE-RADIX is 16.
PMNACHINE-MANTISSA is six for types derived from FLOAT: else 14.
P'NACHINE-EMAX is 63.
PMNACHINE-EMIN is -64.

F.4.2 Representation Attributes of Fixed Point Types
For any fixed point type T. the representation attributes are:

T'MACHINE-.ROL'NDS true
TN1ACHINE-.OVERFLOWS true

F.4.3 Enumeration Representation Clauses
The maximum number of elements in an enumeration type is limited by the maximum size
of the enumeration image table which cannot be greater than 6~33 bytes. The
enumeration table size is determined by the following function:

generic
type ENUMERATIONTYPE IS (< >);

function E.*::U:ERAT-I07._TABLE SIZE retur'n NATURAL is
Result :NATURAL :-0;

* begin
for I in EINUMERATIO' TYPE 'FIRST. . ENUMMRATION-TYPE' LAST loop

RESi .L V-LUI 2 IWIDT4;
End loop;
return RESULT;

END E.::YERATION_TABLE SIZE;

RESTRICTIONS - None.

F.4.4 Record Representation Clauses
*The Reference Manual for the Ada Programming Languiage states that an implementation

may generate names that depiote implementation-dependent components. This is not
present in this release of the C Ada Compiler.

RESTRICTIONS - Components must be placed at a storage position that is a multiple of
.4eight. Floating point types must be fullword-aligried. that is. placed at a storage position

B -5

that is a multiple of 32.

Record components of a private type cannot be included in a record representation
specification.

Record clause alignment can only be 1, 2 or 4.

Component representations for access types must allow for at least 24 bits.

Component representations for scalar types other than for types derived from
LONG-FLOAT must not specify more than 32 bits.

F.4.5 Type Duration
Duration'small equals 61.03515625 microseconds or 2 .' seconds. This number is the

V', smallest po%%er of two which can still represent the number of seconds in a day in a
fullword hxed point number.

System-tick equals lOins. The actual computer clock-tick is 1.0/120.0 seconds (or about
8.3333 '3ins) in 60HZ areas and 1.0/100.0 seconds (or lOrns) in 50HZ areas. System.tick
; -r ps -- s the greater of the actual clock-tick from both areas.

iu -at -2 ?l is significantly smaller tha:i the actual computer clock-tick Therefore, the
least .. :.ount of deh., possible is limited by the actual clock-tick. The delay of
durat,,. ;mall follows this formula:

<actual-clock-tick> = <actual-clock-tick> + 4.45ms

The 4.45ms represents the overhead or the minimum delay possible on a Model 3250 or
3200NIPS Family of Processors. For 60HZ areas, the range of delay is approximately from
4.43ms to 21.11666ms. For 50HZ areas, the range of delay is approximately from 4.45ms
to 24.45ms. However. on the average, the delay is slightly greater than the actual clock-
tick.

In general, the formula for finding the range of a delay value, x. is:

nearestmultiple(x.<actual-clock-tick>) ± <actual-clock-tick> + 4.4" r-.

where nearest-multiple rounds x up to the nearest multiple of the actual clock-tick.

TABLE F-2. TYPE DURATION

DURATION'DELTA 1*] '-14 61
DJLx., AOC\ SM-\LL 20 s.OE- 14 6 hs
DLRATION FIRST -131072.00 3 - r-- DURATION'LAST 13 1071.99993896484375 _ 36 hirs

-DURATION'SIZE 32

F.5 ADDRESS CLAUSES
Address clauses are implemented for objects. No storage is allocated for objects with
address clauses by the compiler. The user must guarantee the storage for these by some
other means e.g.. through the use of the absolute instruction found in the Common
Assembly Lanauaae132 ..AL'32) Reference Manual). The exception PROGRANLERROR is
raised upon reference to the object it the specified address is not in the program's address
space or is not properly aligned.

RESTRICTIONS - Address clauses are not implemented for subprograms, packages or task
* units. In addition, address clauses are not available for use with task entries (i.e.,

interrupts).

Initialization of an object that has an address clause specified is not supported. Ob ects
with address clauses maN also be used to map objects into global task common (TCOM)
areas. See Chapter .1 for more information regarding task common.

B-6

F.6 THE PACKAGE SYSTEM
The package SYSTEM. provided with C3Ada permits access to machine-dependent features.
The specification of the package SYSTEM declares constant values dependent on the Series
3200 Processors. The following is a listing of the visible section of the package SYSTEM
specification.

package SYSTEM is

type ADDRESS is private;

type NAME iS (CCUR_3200);

SYSTEM NA.ME constant NAME :- CCUR 3200,
STORAGE UNIT constant : 8;
•M:#4ORYSIZE constant : 2 "* 24;
MININT constant : - 2 147 483648;
MAAXINT constant : 2 147 483 647;
MX_DIG:TS constant :.1;

MAX _ .TISSA constant :- 31;
FINE DELTA constant :- 2#1.0#E-30;
TICK const4nt : 0.01;

yp i UNSIGNEDSHORTTTEGER is range 0 65535;
Stype UNSIGNEDTINYINTEGER is range 0 .. 255;

,for UNSIGNEDSHORTINTEGER'SIZE use 16;

i.for UNSIGNEDTIN'_INTEGER'SIZE use 8;

subtype PRIORITY is INTEGER range 0 .. 255;

subtype BYTE is UINSIGNEDTINY INTEGER;

subtype ADDRESSRANGE is INTEGER range 0 .. 2 "" 24 - 1;

ADDRESSNULL : constant ADDRESS;

--These functions efficiently copy aligned elements of the specified size.
--You can declare them locally using any scalar types with
--PRG:oZ interface(assembler,<Routine));
--WAR::NG: these routines work for scalar types only!!!!!!

function COPYDOUBLEWORD (FROM : LONG FLOAT) return LONGFLOAT;
pragma INTERFACE (ASSEXBLER, COPYDOUBLEWORD);

function COPY FULLWORD (FROM INTEGER) return ADDRESS;
. function COPYFULLWORD (FROM ADDRESS) return INTEGER;

pragma INTERFACE (ASSEMBLER, COPY FULLWORD);

function COPY HALFWORD (FROM : SHORTINTEGER) return SHORTINTEGER;
pragma IN;TERFACE (ASSEMBLER, COPYHALFWORD);

*function COPY BYTE (FROM : TINY INTEGER) return TINY-INTEGER;

pragma INTERFACE (ASSEMBLER, COPY_BYTE);

--Address conversion routines

function INTEGER TOADDRESS (ADDR ADDRESSRANGE) return ADDRESS
renames COPY FULLWORD;

function ADDRESS TOINTEGER (ADDR ADDRESS) return ADDRESS-RANGE
renames COPYFULLWORD;

function " (ADDR ADDRESS;
OFFSET INTEGER) return ADDRESS;

function -" (ADDR ADDRESS;
OFFSET INTEGER) return ADDRESS;

B-7

•~~~~xl . -,. A - .y

WIN ~ - - - . rlr ~ ll 'r m fll ~ w l f f

--This is a 32-bit type which is passed by value

type EXCEPTION-.ID is private;

function LAST EXCEPTION ID return EXCEPTIONID;

private

--Implemuentation defined

and SYSTEM.;

F.7 INTERFACE TO OTHER LANGUAGES
Pragma INTERFACE is implemented for two languages, assembler and FORTRAN. The
pragma can take one of three forms:

1. For aniI v~sembly language procedure or function:

ig :oR*I*RAN functions with only in pai' .et1 crs or procedures.

prama NTEFAC (FP'rkNROUTINE_NAME);

-V 3. For FORTRAN functions that have in out or out parameters:

pragma INTERFACE (FORTRAN, ROUTINE NAME, IS-FUNCTION);

in C3Ada functions cannot have in out or out parameters so the Ada specification for the
function is written as a procedure with the first argument being the function return result.
Then, the parameter "is-function" is specified to inform the compiler that it is, in reality, a
FORTRAN function. Interface routine-..names are truncated to an 8 character maximum
length.

F.8 INPUT/OUTPUT (1/0) PACKAGES
The following two system-dependlent parameters are used for the control of external files:

9 NAME parameter
* FORM parameter

The NAME parameter must be an 05/32 file name string. 05/32 filenames are specified as
m-* follows:

'i"..

B-8

-pIT-- r IT w- - -. rr - WWW~ -'rw-rr

~424-3

voin filename . ext / acct

1- to 5-digit decimal account
or class P, G or S

slash

- to 3-alphanumeric character
Vextension

* .p. th ' period

1- to 8-alphanumeric character filenamefirst character must be alphabetic

to s-charcter alphanumeric volume name, firstcharacter must be alphabetic

The implementation-dependent values used for keywords in the FORM parameter are
discussed belov. The FORM parameter is a string that contains further system-dependent
characteristics and attributes of an external file. The FORM parameter is able to convey to
the file system information on the intended use of the associated external file. This
parameter is used as one of the specifications for the CREATE procedure and the OPEN
procedure. It specifies a number of system-dependent characteristics such as lu, file
format. etc. It is returned by the FORM function.

The syntax of the FORM string, in our implementation, uses Ada syntax conventions and is
-i : -as follows.

B-9

e **- y -l. ~ -

h formparam ::(form_spec f, form Spec)]
formspec - lu-spec fospec T

rsspec dbf spec
ibfspec I al-spec
pr spec 1 eys spec I
padspec dc spec
daspec ds spec I

ps_spec chspec
lu spec :- LU > lU
fo spec : FILE ORGANIZATION > fo
rs spec :- REORD SIZE -) rs
dbf spec DATABLOCKING FACTOR = dbf
ibf-_spec • INDEX BLOCKING FACTOR) ibf
aliSpec ALL TT~)a

prspec PR:*2ILEGE ->pr
keys_stec = KEYS -> kevs
padspec PAD -> pad
dc spec - DE '.I:E CODE -> dc
da spec = DE'.':C "TTRTBLIE -> da
ds spec = DE'.'ICE-STAT$s :> ds
psospec . PR2.PI1.GSTRING -> pS

_sFec = CHARACTER-IO

i ht txk.Lniun USERROR is raised il d given FORM parameter string does riot have the
correct syntax or if certain conditions concerning the OPEN or CREATE stater:;ents are not
fuifilled. Keywords that are listed above in upper-case letters are also recognized by the
compiler in loader-case.

lu an integer in the range 0..254 specifying the logical unit (lu) number.
fo specifies legal OS/32 file formats (file organization). They are:

INDEX I IN
CONTIGUOUS I CO
NON-BUFFERED I NB
EXTENDABLECONTIGUOUS I EXTENDABLE-CONTIGUOUS I EC
LONG-RECORD I LR
ITAM
DEVICE

rs an integer in the range 1..65535 specifying the physical record size.
1. For INDEX. ITANf (inter telecommunications access method) and

NONBU-FERE.) files, this specifies the physical record size.
2. The physical record size for CONTIGUOUS and

EXTENDABLE-CONTIGUOUS files is determined by rounding the
element size up to the nearest 256-byte boundary. For such files, rs is
ignored.

3. The physical record size for LONG-RECORD files is specified by the
data blocking factor multiplied by 256 and rs is ignored.

4. For a DEVICE the physical record size always equals the element size
and rs is ignored.

dbf Data.blocking-factor. An integer in the range 0.255 (as set up at OS/32
system generation (sysgen) time) that specifies the number of contiguous
disk sectors (256 bytes) in a data block. It applies only to INDEX,
NON-BUFFERED. EXTENDABLECONTIGUOUS and LONGRECORD files. For
other file organizations (see fileorganization above), it is ignored. A value
of 0 causes the data blocking factor to be set to the current OS/32 default.

ibf Index.bockingfactor. An integer in the range 0.255 las set up at OS/32
sysgen time) specifying the number of contiguous disk sectors (236 bytes)
in an index block of an INDEX. NON-BUFFERED.
EXTENDABLECONTIGUOUS or LONG_.,[CO,D file. For other file
organizations (see ple-oirganization above), it is ignored.

at Allocation. An integer in the range 1..2,147.483,647. For CONTIGUOUS
files. it specifies the number of 256 b .e sectors. For ITALY files, it
specifies the physical block size in bytes associated with the buffered
terminal. For other file organizations, (see file-organization above), it is

B-10

ignored.
pr Privileges. Specifies OS/32 access privileges. e.g., shared read-only (SRO,,

exclusive read-only (ERO). shared write-only (SWO), exclusive write-only
(EWO), shared read/write (SRW). shared read/exclusive write (SREW,
exclusive read/shared write (ERSW) and exclusive read/write (ERW).

keys READ/WRITE ke's. A decimal or hexadecimal integer specifying the OS/32
READ/WRITE keys, which range from 16#0000# to 16#FFFF#(0..635335.
The left two hexadecimal digis signify the write protection key and the
right two hexadecimal digits signi the read protection key. For more
information on protection keys, see the 05/32 Multi-Terminal Monitor
(ITM) Primer.

pad Pad chara,-ter. Specifies the padding character used for READ and WRITE
operat, ns, the pad character is either NONE, BLANK or NUL. The default is
NONE.

TABLE F-3. PAD CHARACTER OPTIONS

PAD CHARACTER ACTION ,
,,,._O\F Records are not iode Deaut

NUL Records arepadded with ASCII.NUL.
BLANK Records aie padded with blanks and

OS/32 ASCII I/O operations are used.

dc Device code. An integer in the range 0.255 specifying the OS/32 device
A,. code of the externar file. See the System Generation/32 (SYSGEN/32)

Reference Manual for a list of all devices and their respective codes.
da Device attributes. An integer in the range 0..65535 specifying the OS/32

device attributes of the external file. See the 05/32 Supervisor Call (SVC)
Reference Manual (Chapter 7. the table entitled Description and Mask
Values of the Device Attributes Field) for all devices and their respective

-. - -- attributes.

ds Device status. An integer in the range 0..65535 specifying the status ofthe external file. A status of 0 means that the access to the fil' "m.nated
with no errors. otherwise a device error has occurred. For errors occurring
during READ and WRITE operations, the status values and their meanings
are found in Chapter 2 (The tables on Device-Independent and Device-
Dependent Status Codes) of the 05/32 Supervisor Call (SVC) Reference
Manual.

ps Prompting string. This quoted string is output on the terminal before the
GET operation only if the file is associated with a terminal, otherwise this
FORM parameter is ignored. The default is the null string, in which case
no string is output to the terminal.

character..o If character-io is specified in the FORM string, the only other allowable
FORMI parameters are LU -> lu, FILE-ORGA NIZATION -> DEVICE andA Pki ILEGE-> SRW. Furthermore, the NAME string must denote a terminalor interactive device. In order for character-io to work properly, the user
must specify ENABLE TYPEAHEAD to NITM. to turn on B1OC's type ahead*feature.

F.8.1 Text Input/Ouput (1/0)
There are two implementation-d-pendent types for TEXTIO: COUNT and FIELD. Their
declarations irnplemented for the C ,Ada Compiler are as follows:

0 type COL7:T is range 0 ..INTEGER'LAST;
subtype FIELD is INTEGER range 0 ..255;

F.8.1.1 End of File Markers
When working with text files, the following representations are used for-end of file
markers. A line terminator followed by a page terminator is represented by:

IB-II

ASCII.FF ASCII.CR

A line terminator followed by a page terminator, which is then followed by a file
terminator is represented by:

* 4m

ASCII.FF ASCII EOT ASCII CR

End of file may also be represented as the physical end of file. For input from a terminal,

the combination above is represented by the control characters:

. ASCII.FF ASCII.EOT ASCII.CR

or with BlOC:

ASCII.DC4 ASCII EOT ASCII.CR, i.e., T -D <cr>

F.8.2 Restrictions on ELEMENT-TYPE
The fol' ,' nq ;re the restrictions rncerning ELEMENT-TYPE:

IiO ul access types is undefined, although allowable: i.e., the fundamental association
be:ween the access variable and its accessed type is ignored.

2. The maximum size of a variant data type is always used.
- .:-. 3. If the size of the element type is exceeded by the physical record length, then during

a READ operation the extra data on the physical record is lost. The exception
DATA-ERROR is not raised.

. 4. If the size of the element type exceeds the physical record length during a WRITE
operation, the extra data in the element is not transferred to the external file and
DATA-ERROR is not raised.

5. SEQUENTIAL-1O and DIRECT-1O cannot be instantiated with unconstrained types. An
attempt will lead to a semantic error.

6. /O operations or composite types containing dynamic array components will not
transfer these components because they are not physically contained within the
record itself.

F.8.3 TEXT Input/Output (1/O) on a Terminal
A line terminator is detected when either an ASCII.CR is input or output, or when the
operating system detects a full buffer. No spanned records with ASCIL.NUL are output.

A line terminator foiloved by a page terminator may be represented as:

-I. ASCII.CR
ASCII.FF ASCII.CR

if they are issued separately by the user, e.g., NEW-LINE followed by a NEWPAGE. The
same reasoning applies for a line terminator followed by a page terminator, which is then
follo%%ed by a ile terminator.

All text I/O operations are buffered, unless for CHARACTERIO is specified. This means
that physical I/O operations are performed on a line by line basis, as opposed to a
character by character basis. For example:

put ("Enter Data") ;
r getline (data, len):

will not output the string "Enter Data" until the next put-line or new-line operation is
performed.

F.9 UNCHECKED PROGRAMMING
Unchecked programming gives the pro grammer the ability to circumvent some of the
strong typing and elaboration rules of the Ada language. As such, it is the programmer's

B-12

responsibility to ensure that the guidelines provided in the following sections are
foIlowed.

SF.9.1 Unchecked Storage Deallocation
The unchecked storage deallocation generic procedure explicitly deallocates the space for
a dynamically acquired object.

Restrictions

This procedure frees storage only if:
1. The object being deallocated was the last one allocated of all objects in a given"-" declarative part.

* 2. All objects in a single rhunk of the collection belonging to all access types declared in
the same declarative part ar deallocated.

F.9.2 Unchecked Type Conversions
The unchecked type conversion generic function permits the user to convert, without type
checking. from one type to another. It is the user's responsibility to guarantee that such a
conversi, preserves the prope'ries of the target type.

Restric t ons

, , The object used as the parameter in the function may not have components which contain
dynamic or unconstrained array types.

If the target'size is greater than the source'size, the resulting conversion is unpredictable.
If the target'size is less than the source'size. the result is that the left-most bits of the
source are placed in the target.

Since unchecked-conversion is implemented as an arbitrary block move, no alignment
constraints are necessary on the source or the target operands.

, F.10 IMPLEMENTATION-DEPENDENT RESTRICTIONS
1. The main procedure must be parameterless.
2. The source line length must be less than or equal to 80 characters.
3. Due to the source line length. the largest identifier is 80 characters.
4. No more than 9998 lines in a single compilation unit.

5. The maximum number of library units is 9999.
6. The maximum number of bits in an object is 231 -1.
7. The maximum static nesting level is 63.
8. The maximum number of directly imported units of a single compilation unit must

not exceed 255.
9. Recompilation of SYSTEM or CALENDAR specification is prohibited.

10. ENTRY'ADDRESS, PACKAGEADDRESS and LABEL'ADDRESS are not supported.

F.11 UNCONSTRAINED RECORD REPRESENTATIONS
Objects of an unonstrained record type with array components based on the discriminant
are allocated with maximal size. based on discriminant LAST. If this size is greater than
2GB, then the array is allocated with 1024 elements. For example:

type DYNAICSTRING(LENGTH : NATURAL
is record
STIR STRING(1 .. LENGTH);
end record;

For this record, the compiler attempts to allocate NATURALLAST bytes for the record.
Because this is greater than 2GB, the array is instead allocated with 1024 bytes, and a
%arning message is produced.

B-13

N %"

p.

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that

A' . makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIGIDi (1..79 => 'A', 80 => '1')
Identifier the size of the
maximum input line length with
varying last character.

SIGID2 (1..79 => 'A', 80 => '2')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID3 (..40 I 42..80 => 'A', 41 => '3')
Identifier the size of the
maximum input line length with
varying middle character.

$BIGID4 (1..40 I 42..80 => 'A', 41 => '4')
Identifier the size of the
maximum input line length with
varying middle character.

$BIG INT LIT (1..77 => '0', 78..80 => "'98")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-I

0-

TEST PARAMETERS

Name and Meaning Value

$BIGREALLIT (1..74 => '0', 75..80 => '69.0E1")

A real literal that can be
either of floating- or fixed-

point type, has value 690.0, and
has enough leading zeroes to be
the size of the maximum line

. , ,K (I..60 :> ' '

I .equence of blanks twenty
,h.,-iacters fewer than t s. size
:'..-.he maximum line lenqt

$COUN'T LAST 2_147_483_647
A universal integer literal
whose value is TEXT IO.COUNT'LAST.

$EXTENDED ASCII CHARS "abcdefghijklmnopqrstuvwxyz" &
A string literal containing all "$%?@[\{}"
the ASCII characters with

printable graphics that are not
in the basic 55 Ada character
set.

$FIELD LAST 255

-- A universal integer literal

whose value is TEXTIO.FIELD'LAST.

$FILENAMEWITH _BAD _CHARS "F_#$.BAD"
An illegal external file name
that either contains invalid

characters, or is too long if no
invalid characters exist.

$FILENAMEWITH WILD CARDCHAR "FILENAME2.BAD"
An external file name that

0 either contains a wild card
character, or is too long if no
wild card character exists.

$GREATERTHANDURATION 100_000.0

A universal real value that lies
between DURATION'BASE'LAST and

DURATION'LAST if any, otherwise
any value in the range of
DURATION.

$GREATERTHANDURATION BASELAST 4_294_967_295.0
The universal real value that is
greater than DURATION'BASE'LAST,
if such a value exists.

C-2
*'

TEST PARAMETERS

Name and Meaning Value

$ILLEGAL EXTERNAL FILE NAMEI "ILLEGAL_.FIL"
An iflegal external file name.

$ILLEGALEXTERNAL FILE NAME2 "ILLEGALFILE.NAM"
An illegal external file name
that is different from
$IiiEGALEXTERNALFILENAMEI.

$ T:TEGER FIRST -2_147_483648
The universal integer literal
.xpejsion whose ialue is
,,TEGER'FIRST.

$INTEGERLAST 2_147483_647
The universal integer literal

expression whose value is
INTEGER'LAST.

$LESS THAN DURATION -100_000.0
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST if any, otherwise
any value in the range of
DURATION.

$'LESSTHAN DURATION BASE FIRST -4_294_967_296.0

The universal real value that is

p. ~less than DURATION'BASE FIRST,
if such a value exists.

$MAXDIGITS 15
The universal integer literal
whose value is the maximum
digits supported for floating-
point types.

$MAX INLEN 80
The universal integer literal
whose value is the maximum

" s input line length permitted by
the implementation.

$MAXINT 2_147_483_647
5The universal integer literal

whose value is SYSTEM.MAXINT.

C- 3

TEST PARAMETERS

Name and Meaning Value

$NAME TINYINTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT-FLOAT, SHORTINTEGER,
LONGFLOAT, or LONG INTEGER
if one exists, otherwise any
undefined name.

$NEGBASED INT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
4'als in the sign bit
posit.ion of the representation
for SYSTEM.MAXINT.

$NON _ASCII _CHAR _TYPE (NON _NULL)
An enumerated type definition
for a character type whose
literals are the identifier
NONNULL and all non-ASCII
characters with printable
graphics.

9c-4

... r ,rr , .. n .n.n .-. .. r -
,

-,- -.. . . U- u- - ,, u- .I f - u3 S , S- V I5 rw j ,~ r . -. a = . . r

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

" C32114A: An unterminated string literal occurs at line 62.

• B33203C: The reserved word "IS" is misspelled at line 45.

• C34018A: The call of function G at line 114 is ambiguous in the
presence of implicit conversions.

• C35904A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMERICERROR instead of CONSTRAINTERROR as expected in
the test.

• B37401A: The object declarations at lines 126 through 135 follow
subprogram bodies declared in the same declarative part.

• C41404A: The values of 'LAST and 'LENGTH are incorrect in the if
statements from line 74 to the end of the test.

• B45116A: ARRPRIBL1 and ARRPRIBL2 are initialized with a value of
the wrong type--PRIBOOLTYPE instead of ARRPRIBOOLTYPE--at line
41.

• C48008A: The assumption that evaluation of default initial values
occurs when an exception is raised by an allocator is incorrect
according to AI-00397.

. B49006A: Object declarations at lines 41 and 50 are terminated
incorrectly with colons, and end case; is missing from line 42.

" B4AO10C: The object declaration in line 18 follows a subprogram
body of the same declarative part.

D-1

WITHDRAWN TESTS

B74101B: The begin at line 9 causes a declarative part to be
treated as a sequence of statements.

i=., C87B50A: The call of "/=" at line 31 requires a use clause for
package A.

- C92005A: The "/=" for type PACK.BIG INT at line 40 is not visible
without a use clause for the package PACK.

* C940ACA: The assumption that allocated task TT will run prior to
the main program, and thus assign SPYNUMB the value checked for by
the main program, is erroneous.

. CA3005A..D (4 tests): No valid elaboration order exists for these
tests.

r BC3204C: The body of BC3204C0 is missing.
~ %-D-

[0

S+.w

[V

D-2
0'

I
S.

N a

0

6

N- P
A ~T2/
q I

pi*
i

et SS S S S S S S S S S S S S
~ * WY

WY

