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L INTRODUCTION.

Over the past several years extensive efforts have been made in using adaptive

strategies to solve partial differential equations [2, 3]*. In this report, we consider a

local mesh refinement procedure for two-dimensional parabolic partial differential sys-

tems where fine meshes are introduced in regions where greater resolution is deemed

necessary. Our approach permits finer meshes to overlap elements of coarser ones

and is related to an earlier effort on h-refinement methods for one-dimensional para-

bolic problems [5, 7, 10].

We consider an initial-boundary value problem for an m-dimensional vector sys-

tem having the form

ut + f(x y,t,uu 1ZMy) = [D 1(x,y,tu)u ] + [D2(Xvy,t,u)uYlI (x,y)e , t > 0,

(1 a) p

u(xy,O) = Uo(X,y), (x,y)E QL) , (1b)

u(XIy~t) = gD(xIyt), (xIy)Ga"Dl, " >0, GO ~t,

DIjuT 1 + D2 ui 2 = g9(x,y,t), (x,y)eafN, t > 0. (Id)

The domain 92 is the rectangle [(xy) I a <x < b, c <y < d ) with boundary

M= M'D UIN and unit outer normal 1T := [111,T1 2]T. The system in Eq. (1) is

assumed to be well posed and parabolic, i.e., D, and D2 are positive definite. We do

not expect that our methods will be able to solve all problems having this generality,

but our one-dimensional procedure [10] has worked well on a wide range of linear and

nonlinear problems.

Rdcnm a t list ad of this d pws.
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2

Our approach begins with the solution of Eq. (1) on a uniform space-time grid

using finite elements in space and the backward Euler method in time. At the end of

each time step, an indication of the local discretization error is generated on each finite

element. In our initial investigation of one-dimensional problems [5, 71, we used an

h-refinement (Richardson's extrapolation) procedure to compute a local error indicator.

This has subsequently been abandoned in favor of a p-refinement approach [10], which

increases the order of the trial space instead of reducing the mesh spacing. The p-

refinement strategy employs nodal superconvergence to improve computational

efficiency and it can be used to generate an asymptotically correct estimate of the

discretization error [1, 10]. Elements having high error are grouped into rectangular

regions called megagrids using a nearest neighbor clustering algorithm (cf. Berger and

Oliger [4]). Overlapping fine uniform grids are generated within the megagrids and

Eq. (1) is solved again on these grids. This process is repeated until a prescribed local

error tolerance is satisfied. An illustration of a coarse spatial mesh with two

megagrids and three fine grids is shown in Figure 1.

A tree is a natural data structure to manage the information associated with all of

the grids. Nodes of the tree represent data at the megagrid level, with finer megagrids

regarded as offspring of coarser ones. Information associated with overlapping fine

grids within each megagrid is stored as records at the nodes of the tree.

A finite element problem is formulated and solved on each grid within a

megagrid. This necessitates the prescription of appropriate initial and boundary condi-

tions on each space-time grid. Since our temporal integration is implicit, prescribing

boundary conditions is particularly complex in regions where meshes overlap (Figure

1). An iterative procedure, analogous to Schwarz alternation (cf. Dihn et al. [6]), is

used to successively calculate solutions on fine grids within each megagrid. We I
V ? V *%q~V% P ~ LII
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*Figure 1. Coarse spatial background mesh with two offspring megagrids
(marked with diamonds and squares) and their local grids. igh-error ele-
ments of the coarse mesh are indicated by x's.



4

observe that this procedure converges for a variety of problems, but have no analysis

demonstrating either convergence or stability. Starius [11] obtained some stability

results on a similar method for hyperbolic equations.

A description of the data structures and the local refinement procedure is given in

Section H. In Section IM we present the finite element method and the local error esti-

mation technique. Section IV contains some preliminary computation results on three

linear parabolic problems. Our conclusions and plans for further improvements are

described in Section V. The examples indicate that the error estimation procedure

converges to the true discretization error as the mesh is refined, and the solution pro-

cedure based on the Schwarz alternating technique converges.

IL LOCAL REFINEMENT AND DATA STRUCTURES.

We outline our procedure for solving Eq. (1) on an arbitrary hexahedral megagrid

R(o3,p4,FSL). The domain co := {(xy) I c<x < 3,y<y < 8); p and q are the

times at the beginning and end of the time step, respectively; F and S point to the

parent and offspring megagrids, respectively; and L is the record of information for

the a local rectangular grids within R.

A top level description of our local refinement algorithm is presented in Figure 2.

Solution and error indicators are generated on R using procedure solve (Figure 3).

Elements where the error indicator exceeds a prescribed tolerance rol are partitioned

into rectangular regions using the nearest neighbor clustering algorithm. As noted, we

call these regions megagrids. Berger and Oliger's [4] bisection and merging procedure

is used to generate local uniform fine grids for each megagrid. Local grids within a

megagrid can overlap, but the megagrids are independent of each other, hence, each

offspring megagrid may have different spatial and temporal refinement factors. This

I'I

t.1



5

also reduces communication between megagrids, and thus, simplifies the computation

of initial conditions on offspring megagrids. This representation may additionally be

suitable for execution on parallel computers. Temporal refinement factors are calcu-

lated and solutions are recursively generated for each megagrid.

procedure locref (R (coj ,q ,F S ,L ),toI);
begin

solve (R (o,p,q,FL));
if any error indicator > tol then

begin
Form offspring megagrids;
for j : I to number of offspring do

Create local rectangular grids;
for j := I to number of offspring do

Calculate the temporal refinement factor tref [j ];
for j := I to number of offspring do

for i := 1 to tref [j] do
begin

p[i] :=p+(i-l)*(q-p)/tref[j];
q~i] :p~i] +(q-p)/trefrj];

locref (R (oU ] p [i ],q [i ],
R (cop ,q ,FS.L),S [j],L j]),tol)

end
end

end ( locref};

Figure 2. Recursive local refinement algorithm for the solution of Eq. (1) on
R (op,q,F,S,L) with an error tolerance tol.

In order to solve the problem in Eq. (1), the procedure locref is invoked on the

coarse grids R (f1,tk,tk+l,O,S,L), k = 0, 1, '. Solutions satisfying the prescribed

accuracy requirements are generated at each time tk, k = 1, 2,

The solution on a megagrid R (o,p ,q ,F,S,L) is described by the procedure solve

of Figure 3. Initial conditions are generated for each local computation grid contained

in R. Following this, we compute an initial guess for the boundary conditions of the

.
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local grids using either the prescribed boundary data at physical boundaries or linear

interpolation in time from the parent megagrid of R. A finite element solution is gen-

erated for one of the local grids and its solution is used to update boundary conditions

on all other intersecting local grids. This solution process is repeated on each local

grid in turn until satisfactory convergence is attained. Our procedure is, thus, similar

to the Schwarz alternating principle for elliptic problems, which has been used recently

to develop domain decomposition methods for parallel computation [6, 8].

r

procedure solve (R (o,p ,q ,F ,S ,L)); 4

begin
for i := 1 to number of local grids do

begin
Compute initial conditions for local grid

T ((x,,)i ,(Ym)i,(dx )i,(t )i ,si);

Compute boundary conditions for
r((xm )j,(Ym)j ,(dx )i,(dy )j,si);

end
for j := 1 to number of iterations do

for i := 1 to number of local grids do
begin

Solve the finite element problem for Eq. (1) onr ((xm )j,(ym )j,(d, )i,(dy )j,si );"

if j = number of iterations then
Compute error on T ((xm)i ,(ym )i ,(dx )i ,(dY )j ,s )

Update appropriate boundary conditions
end

end (solve);

Figure 3. Solution algorithm on megagrid R (ci,p ,q ,F , ,L).

A local grid is denoted as T(x ,ym,d ,,s). Each local rectangular grid is

characterized by the coordinates of its center (xm,y , ) , the lengths of its sides d, and

dy, and the slope s of a side of the rectangle. In order to avoid ambiguity, we choose

s 2 0 and let d, correspond to this side (Figure 1). The number of elements mi x ni

[ , ,. e ," w' f"." e - .- .- .. - ., ,.t . .- €- #-, ., - .,, .-- e -.e t" "-. ." .- ,," ." -- d'''. - '" "'%I
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on local grid T = T ((xm)i ,(Yin)j ,(dx)j ,(dy )i,si) is determined by a single mesh spacing

parameter hR as mi = round (4 IhR) and ni = round (dx/hR ). Thus, each local grid in

R has approximately the same spatial resolution. Many details of this algorithm have

been omitted and additional information is presented in Moore [91. For example, a

strategy has been developed for storing the finite element solution at p and q without

unnecessary duplication or copying of information.

Initial conditions for each local grid are either determined from Eq. (lb) when

p = 0 or by bilinear interpolation using the finest grids available in the tree structure at

time p > 0. Isolating local grids within megagrids greatly simplifies the search for

data needed for this bilinear interpolation. Thus, the search for a solution value at an

arbitrary point is performed at the megagrid level until the finest megagrid containing

the point has been identified. The local grids of this finest megagrid provide the

necessary interpolation data. Scanning the points of a grid in a predetermined order

can be used to further reduce the complexity of the search procedure.

Similar considerations are required to determine boundary conditions on grid

edges that are not subsets of M. Our one-dimensional techniques [10] and the expli-

cit finite difference procedures of Berger and Oliger [4] used the notion of a "buffer"

to apply boundary conditions. The idea is to enlarge a local rectangular grid by

increasing d, and dy by two or four elements so that "artificial boundary conditions"

may be obtained from data in low-error regions. However, in regions where local

grids overlap, accurate boundary conditions cannot be obtained from parent grid data

even with a buffer. Buffers do provide accurate boundary conditions in regions where

grids do not overlap and, for this reason, we continue to use them.
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4.

Dirichlet boundary conditions are obtained on the edges of buffered local grids by

piecewise bilinear interpolation in time using solution values from the parent megagrid.

In non-overlapping buffered regions, the interpolated boundary conditions satisfy the

prescribed error tolerance, and are thus expected to produce acceptable accuracy. As

noted, accurate boundary conditions are obtained in regions where local grids overlap

by means of the Schwarz alternating principle. Hence, we initially solve a finite ele-

ment problem on local grid T, of R, realizing that the interpolated boundary data may

be inaccurate in regions where T, intersects other local grids. In solving the problem

on T 2 we use boundary data from T, with bilinear interpolation in regions where T,

and T 2 intersect. This sequential updating procedure can be continued iteratively until

satisfactory convergence is obtained. In practice, we halt the iteration after a few

cycles and compute an error estimate for each local grid in R. The grids of R are

refined if the error tolerance is not satisfied. Thus, we do not distinguish between

failure of the Schwarz iteration to converge and failure to satisfy prescribed accuracy

conditions.

Treatment of situations where local grids overlap aL2 are considerably more com-

plex. A second complication arises when a local grid crosses the boundary of

ai
Uj (TF )i, where the subscript F denotes the parent megagrid of R. These issues are
i=I

handled by regridding as described in Moore [9].

MII. SPATIAL AND TEMPORAL DISCRETIZATION.

As noted, the partial differential system in Eq. (1) is discretized on a local grid T

of R using a finite element Galerkin procedure in space and the backward Euler

method in time. For each time t e [p,q], we assume that u : HE' and select a test

W.'

---------- i ~ % ~ . % ~ -
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function v e H0I, where H1 denotes the usual Sobolev space. Functions that further

satisfy Dirichlet conditions on d1T are said to belong to HE, while functions satisfying

trivial Dirichlet conditions belong to H0.

The Galerkin form of Eq. (1) on T is

(v,u) + (v,f(.,.,t,u,u x ,uy )) + A (v,u) = J vTgNds, for all ve Hd, (2a)

where

(v,u) J udx4y, (2b)

A (v,u) - [vrDi(x,y,t,u)u + vfD2  ,:,u)u, ,. (2c)

Initial conditions are required at p = 0 and these can be obtained, e.g., by L 2 or H1

projection. Initial conditions for p > 0 trivially follow from the solution at the end of

the previous time step.

. A finite element solution of Eq. (2) is obtained by approximating H 1 by a finite

dimensional subspace K of piecewise bilinear polynomials on T. The finite element

solution U satisfies

(V,Ut) + (V,f(.,.,t,U,U,,Uy)) + A (V,U)= f VTgNds,

for all Ve K0 . (3a)

P(uo), p = 0
U(X,y,p) =3b)

UP(U(.,.,p-)), p > 0. (3b)

The projection P at p = 0 is obtained by constructing a piecewise bilinear approxima-

tion of u0. For p > 0, we proceed in a similar manner except that we construct inter- ,f

1.0

polants using the finest grid solution available at t = p-.

...................
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Temporal discretization of Eq. (3) is performed by the backward Euler method;

thus, we determine Uq (x y) as discrete approximation of U(x y,q) by solving

(V,Uq) + At [(V,(., ,U" ,Uq,Uq,,)) + A (V,U")] = (VU) +

At f VTg, (x,y,q)ds, forallVrK0 , (4)

Initial conditions for the discrete system in Eq. (4) follow the lines of Eq. (3b) for the

semi-discrete system.

A posteriori estimates of the discretization error of the solution of Eq. (4) are

obtained by means of a p-refinement technique. To begin, we calculate a second solu-

tion U&(xy) of Eq. (2) using piecewise quadratic polynomials in space and tra-

pezoidal rule integration in time. This solution is higher order in both space and time

than the solution of Eq. (4); thus, the difference IlUq - U611 furnishes an estimate of

the discretization error of Uq. The computational efficiency of this procedure can be

substantially improved by using the nodal superconvergence property of finite element

methods for parabolic problems [1, 10]. Nodal superconvergence implies that bilinear

finite element solutions converge at a faster rate in space at nodes than elsewhere.

These considerations imply that U6 can be calculated as

U6(Xy) = j6(xY) = fq(X ') + Eq(Xy), (5)

where Uq(x ,y ) is a piecewise bilinear function and Eq (x ,y) is a piecewise serendipity
function (a biquadratic polynomial less a quartic term) that vanishes at the nodes of T.

Specifically, we find that Uq (x,y) satisfies

(V, At ) + [(V,f(',,qU ,jq'Uq)) + (V,f(',',p,U,Uyp))] +At ,pU,~,~)
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W[A(V,(Jq) + A(V, P)- 1h f VTgV(xy,q)d s + , f vTg(x,y,p)ds

for all Ve K0 . (6)

Thus, a trapezoidal rule integration step is performed using the backward Euler solu-

tion UP (x ,y) as an initial condition. Both Eqs. (4) and (6) are a nonlinear algebraic

system which we solve by Newton's method. In order to reduce the computational

effort associated with assembling and solving Eq. (6), the Jacobian of Eq. (4) is used

for both Newton iterations. The solution of Eq. (4) is obtained first and the result

U" (x ,y ) is used as an initial guess for U (x,y).

The piecewise quadratic correction Eq (x ,y) satisfies

(V,[(fq +Eq ) - (UP+Erp)]/At) + 1A[(V,f(j,,q,Eqf+Eq E q, +  q)

+ (V,f('p ,IU+EP ,UP+Ex,U '+E))] + 1/2[A (v,uq+Eq) + A (V,UP +EP)]

A..

=h f VTgNV(xgy,q)ds + h f VTgN(xyp)ds for all Ve KF" (7)
a~r apm aTr(.a

As noted, the space KF consists of piecewise serendipity functions that vanish at

the vertices of the elements. Trivial initial conditions are used in the solution of Eq.

(7) for p > 0. Interpolated values of the initial error u°(x ,y) - U(x ,y ,0) onto KF are

used at p = 0.

Linear systems associated with the application of Newton's iteration to Eqs. (4),

(6), and (7) are solved by the Lanczos acceleration of the Jacobi iterative method as

implemented in the iterative solution package ITPACK of Young and Mai [12].

I6*
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IV. EXAMPLES. 7

We consider a sequence of three linear problems that are designed to illustrate the

performance of our error estimation and local refinement procedures and convergence

of the Schwarz iteration. Our results are very preliminary, and additional computa-

tional work and analysis will be necessary before firm conclusions can be drawn.

Performance of our error estimation technique is measured by the effectivity ratio

0 - lU¢ -06 H1i (8)
Ilu(x,y,q) - Uq Ill

which is a ratio of the estimated to the actual error in the H 1 norm. Ideally, the

effectivity ratio should approach unity as the mesh is refined and should not differ sub-

stantially from unity over a large range of mesh spacings. The convergence of our

error estimate to the true discretization error has been established for one-dimensional

linear problems [10].

Example 1. Consider the linear constant coefficient heat conduction problem on

fl :={(x,y)I 0 <x,y < X)

Ut = 1A(u= + u1Y), (x,y)e fl, t > 0, (9a)
,.

u(xY,O) = sinxsiny, (x,y)e ( a.Q, (9b)

The exact solution of this problem is

u(xy,t) = e'u(x,y,O). (10)

We solved Eq. (9) for a single time step on uniform grids having equal temporal

,,p
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and spatial mesh spacings of V/J, J = 10, 20, 40. The exact error and effectivity ratio

are presented in Table 1. The results indicate that the finite element solution is con-

verging at a linear rate and that the effectivity ratio is converging to unity.

J.

J llU(X ,Y At) - U"t 11 0
10 0.1578 1.050
20 0.0882 1.012
40 0.0469 1.003

Table 1. Error and effectivity ratio for one time step and uniform spatial
meshes of spacing r/J for Example 1.

Example 2. Consider the forced heat conduction equation on

f :=(xy)I 0 <x,y < 1

ur +f(x,.y,t) = u= + uY, (xy)e fl, t > to, (11)

with f (xy,t) and the initial and Dirichlet boundary conditions specified so that the

exact solution is

u (x ,y ,t) = sinicte t-[(X-1/,)2+(Y1A l. (12)

With to = 0.5, we solve Eq. (11) for one time step on uniform grids having equal tem-

poral and spatial meshes of 1/1, J = 10, 20, 40. Results similar to those of Example 1

are displayed in Table 2. Thus, once again, the error is converging to zero at a linear

rate and the effectivity ratio is tending to unity and is close to unity for all meshes. In

this example, as opposed to Example 1, the effectivity ratio appears to be converging

to unity from below. In practice, an upper bound is more suited to an adaptive local

refinement procedure.
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J Ilu (xy,At) - U tlh 11

10 0.6796 0.996
20 0.3383 0.998
40 0.1668 0.999

Table 2. Error and effectivity ratio for one time step and uniform spatial
meshes of spacing x1J for Example 2.

We also solve Eq. (11) for 0 = to < t < 1 using the adaptive local refinement

strategy of Section II with a tolerance of 0.05 and an initial 10 x 10 mesh having a

time step of 0.1. Surface renditions and contour plots of the solution at t = 0.3, 0.5,

and 0.8 are shown in Figures 4 and 5, respectively.

Example 3. Consider the forced heat conduction equation (11) on

Q :={ (x,y) 10 < xy < 1 ) with f (x,y,t) and the initial and Dirichlet boundary con-

ditions specified so that the exact solution is

u(x~y,t) = 1.0- tanh[l0(x+y-t-0.45)]. (13)

This example is used to verify convergence of the Schwarz alternating principle. The

problem is solved for a single time step with to = 0.5 on an initial uniform coarse

lOx 10 mesh having a time step of 0.1 and a tolerance of 0.05. Refinement was

needed at the initial time and 10 local grids, as shown in Figure 6, were introduced.

The initial coarse mesh is also shown as a reference. Schwarz iterations were per-

formed on these grids and we measure the difference in successive solutions on alter-

nating grids on the portions of the boundaries of each local grid in regions where they

overlap. The maximum such difference after each Schwarz iteration is shown in Table
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1

Figure 4. Surface renditions of the solution of Example 2 atr = 0.3 (upper
left), 0.5 (upper right), and 0.8 (lower center).
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Figure 5. Contour plots of the solution of Example 2 at t =0.3 (upper left),
0.5 (upper right), and 0.8 (lower center).
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3. It appears that the iteration is converging at nearly a quadratic rate.

Iteration Maximum Difference
1 0.1506
2 0.0114
3 0.0016
4 0.0004

Table 3. Maximum difference between solutions on the boundaries of over-
lapping grids after each Schwarz iteration.

V. CONCLUSIONS.

We developed an adaptive local mesh refinement procedure for nonlinear para-

bolic systems on rectangular regions. A complex tree data structure is used to manage

a nest of local overlapping grids. An implicit finite element solution strategy using

piecewise linear approximations and the backward Euler method is formulated. We

obtain an estimate of the local discretization error of these finite element solutions

using a p-hierarchical approach with piecewise serendipity approximations and tra-

pezoidal rule integration. The Schwarz alternating principle is used to calculate boun-

dary conditions on portions of local grids that overlap.

Our results indicate that the error estimation procedure converges to the exact

local error as the mesh is refined. As noted, a proof of this convergence has been

established for certain linear one-dimensional problems (cf. Moore and Flaherty [10]).

It should be possible to construct a proof of convergence of the two-dimensional error

estimate using the ideas developed in the one-dimensional case. The use of the

s. 'iw% s )u N
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Schwarz alternating principle also appears to be a very efficient method of calculating

boundary conditions in overlapping-grid regions.

We are encouraged by the performance of our methods on these preliminary

problems; however, several aspects of our approach need improvement. The Lanczos

-* iteration used to solve the linear system appeared to be far less than optimal. The

stopping criteria used in the 1TPACK [12] implementation was too conservative for

our applications. Creation of local solution grids is difficult and complex near domain

boundaries. At present we know of no way of improving this defect. We have plans

of extending our methods to non-rectangular domains using an overlapping-grid mesh

generation procedure.
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