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! ABSTRACT ’ﬁ'

\~—f78y means of easy examples, such as the Korteweg-de Vries, the Harry Dym,

Willy Hereman'

the sine-Gordon equations, and the Hirota coupled system, it is showa how
nonlinear partial differential equations can be exactly solved by a direct
algebraic method.

The physical concept, on which the method relies, is one of generation
and mixing of the real exponential solutions of the underlying linear
equations.

This approach leads in a straightforward way to single solitary waves of
pulse, kink and cusp shape.

The extension of the method towards the construction of multi-soliton

solutions and the connections with other direct methods are outlined. 4
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THE CONSTRUCTION OF IMPLICIT AND EXPLICIT SOLITARY WAVE SOLUTICNS
OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

’ »
Willy Hereman

1. INTRODUCTION

In 1978, & new direct method for generating exact solutions of
nonlinear partial differential equations (PDEs) of evolution and wave
type'was independently established by Rosales(l) and Korpel(a).

The first investigator focused on the mathematical applicability
of a standard perturbation scheme to construct single and multi
solitary wave solutions of many famous evolution and wave equations.
Eorpel looked at solitary wave formation from an engineering point of
view. Applying physical concepts borrowed from e.g. nonlinear optics,
he came to the conclusion that a pulse shaped solitary wave (e.g.
sechz—type) can be decomposed into an obviously convergent 1nfinité
series with real exponential terms. These exponentials are nothing
else than the subsequent harmonics of the real exponential solution,
characteristlc of the linear dispersive medium.

Recently, Hereman et a1(3'%) aimed at unifying the mathematical
rigorous, but less transparent perturbation method and the heuristic
physics/engineering approach toward soliton comstruction. The
attentive reader will recognize tﬁé existing isomorphisms between
Rosales’ iterative scheme and our recursive system, between the
solution techniques and the summation procedures applied to the
resulting infinite series expansions.

In this paper we illustrate by means of rather easy examples how
the physical interpretation deepens the understanding of solitary wave
formation. Lack of space does not permit us to elaborate on the
complementary mathematical details, which can be learned from earlier

(1.4.5)

wor on the subject.

' .
Mathematics Department, University of Wisconsin-Madison, Madison, WI 53706.

Sponsored by the Air Force Office of Scientific Research under Grant No. 85-0263.
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Advocating a‘pedagogical approach, we first construct the ??
well-known hyperbolic secant squared solution of the Korteweg-de Vries $i
equation (KdV), working our way up to the derivation of the %!
multi-soliton solution of the sine-Gordon equation (sG) as a finale. -¥
In bétween, we solve the Harry Dym (HD), the coupled Korteweg-de Vries ﬁy
(cEdV) and the sine-Gordon equation, for which the coastruction of ,ﬁ
single solitary waves is of intermediate level of difficulty. %&

'y

¥herever appropriate we indicate connections with various other e
direct methods (Trace method(e), Hirota’'s bilinear formalism(7) and its i~
clones(e’g), Fredholm determinant method(lo'll). direct
linearizationclz). direct 1ntegration(13), etc.). In this manner we

outline the gemeral framework in which this contribution fits.

2. THE KORTEWEG-DE VRIES EQUATION

The celebratea EKdv(1%-16)

ut+auu + 1

x 3x = c, a €ER , )

vherein subscripts indicate partial derivatives (e.g. Uz, = asu/aax),

describes shallow water waves, ion-acoustic waves in plasmas, the

dynamics of a nonlinear lattice, etc.

0
Using (1) as a paradigm, we sketch our direct algedbraic method in ?$

ten steps, confining ourselves to a single solitary wave. id
(1) Searching for a stationary solution, we introduce a moving frame §$
of reference by assuming u(x,t) = ¢(f), where § = x - vt. ﬁ&

The constant v refers to the anticipated travelling wave *ﬁ
velocity. Doing so, PDE (1) can be replaced by the ODE o
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(11) PFor mathematical convenience, we next integrate (2), yielding N
X

Y

rh

—vo + (a/2)9° + bgg + CC =0, (3) i

)

3

vhere c¢C 4is some integration constant. 3%

|‘:‘

(111) We will allow travelling wave solutions to have a constant term K
- »

¢. Upon substitution of ¢ = o + ¢ 1into (3), we get XA

X

:"Q

..‘"'_

(ac-v)¢ + (a/2)¢° + $op * c(-v+(ac/2)+C) = O . (4) M

(4v) Adhering to the intuitively simple mode1(®) of solitary wave &
“

formation, we solve the linearized version of (4), (i.e. ignore )

B

the second term) for real exponential solutions in the form R

J‘

J

;(E) = exp(k(v)E). Obviously the dispersion law, byt
x%(v) = v - a0 = 2C -~ v, follows provided c = (2/a)(v-C). 3

Observe that both decaying and rising exponentials are possible. 'M

For the remainder we will work with the decaying solution, i
(]

denoted by w0
%

g(€) = exp(-kE), k = V2C-v . (5) 2

, R

»

(v) Appropriate scaling by ; - (2/a)(2C-v)¢ = (2k2/a)$. simplifies A
g%

(4) 4into by
_ W'
) ]

o
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(vi) According to Korpel’'s modelcz). the quadratic nonliunearity in

(6) will square the linear solution g. Subsequently, ¢ and

gz nov being present, in the next step the nonlinearity

- am sy
Xt 2

P

generates g3 and g4. Proceeding in this way, any integer

power of g will be created. In the optics terminology,

angn - anexp(nkx-nwt). with wave number k and angular

th harmonic wave with

frequency w = kv, represents the n
anplitude a,- For n =1, we refer to a, g es the
fundamental (wave). This heuristic principle gave impetus to
the search for an exact solution (to the nonlinear equation) in

the form

$ - ) a8 . <)
n=1

(vii) To determine the coefficients a,, we substitute (7) into (8)

(3,.4)

and apply Cauchy’s rule to recollect equal powers in ¢.

This results in an infinite hierarchy of equations:

n-1
(n“‘-l)an + 2 a,a,_, =0, D22, (8)
=1

starting with an arbitrary (positive) constant a,. To the

physicist, the recursion relation (8) for the amplitudes merely

describes the mechanism of energy transfer into successive

modes.
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(viii) Solving the system (8) recursively, we recognize that

8, - 6n(-1)"1a®, a - 2,/6 > 0, n € N . (9) »

b
In an earller paper(4) we discussed various techniques to solve )
systems similar to (8). how to recognize the general solution N
and how to verify it. "

(ix) The last but one step aims at the summation of the resulting <

infinite series W

$-6) (-1, IO 3
n=1 o
i

vhich converges only for sufficiently large §, into its closed 0

form ]
$ - Bag/(1+ag)® , (11) d

vhich is valid everywhere. o
(x)  Pinally, writing (11) in the original variables x and t, =

gives >
u(x,t) = (2/a)(v-C) + (3/a)(zc—v)sechz{%42c—v(x—vt) + 6} . Q2) o

The single solitary wave solution (12) depends on three arbitrary, 1

P

unrelated constants v,C and & = %Cn(lla). Observe that for the .
particular choices C =v >0 and C = v/4 ¢ 0, we obtain the

familiar pulse-type solution,

LAY AN TRl
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2{l¢5(x-vt) + &8} ,

u(x,t) = (3v/a)sech 5

and well-type solution
u(x,t) = (3v/2a)tanh®(ZVT72(x-vt) + 6} . (14)

Of course, finding the solitary wave form (12) is neither original nor
a great achievement; it has been obtained by half a dozen different
methods(1%717) | put this method clearly reveals the physical mechanism
behind solitary wave formation.

3. THE HARRY DYM RQUATION

The prototype of equation for so-called cusp (or spiky) solitary
wave solutions is the Harry Dym equation(la'zl),

3
u, + (1-u) Uz, = 0,

(19)

or any equivalent form , which occurs in connection with the

classical string problem.

The presence 0of a cubic nonlinearity in the coefficient of the

dispersive term Uar drastically changes the nature of the most

elementary particular solution(zo’zl) i.e.

S ke 2
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u(x.t) - sechz{%V$[x-vt+6(x.t)]} R (18)

where the time and space dependent phase & 1s governed by the
transcendental equation

AN

5(x,t) =~ ¢ + (Z/JV)tanh{%JV[x—vt+6(x.t)} : (17)

where ¢ is an arbitrary constant. This implicit solution was
obtained through the inverse scattering technique (IST).

Straightforward application of our method to (15), which
accidentally has the same linearized version as the K4V (1), does not
lead to any solution. Obviously, we must relax our approach by

introducing the new variable.
£(x,t) = k[x-vt+6(x,.t)] , (18)
and then search for solutions u(x,t) = F(£f), with ké6(x,t) = G(£),

where both F and G remain to be determined.

Through the operator relations

8.  “kvd. 9. _ K _d. (19)
gt =~ IG, af * 5z ~ 1-G, af
(15) is transformed into
—XVF, + X°(1-F)°(1-G,) {(F.G. +3F.,G..)(1-G,)
£ 2 £G3+3Fa5C00 £
+ P..(1-G.)% + 3F.G2.) = O (20)
s2{1Ge 262 .
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Clearly, G, = F 1is the right choice to simplify (20) to
(-v/k%)(1-F)F, + [4FF, (1-F)+F,,(1-F)2+3F5] = 0 (21)
b 4 £ 2f 3¢ b 4 '
After division throughout by (1—F)4, followed by a first integration

(introducing constant cl). a subsequent multiplication by F, and

another integration (constant 02). we arive at

2 2 2
Fp = (1-F)l(v/k —cz)+(oz—cl)F+olF ] (22)
Seeking for a solitary wave, we add the boundary conditions
2
F,F;,Foe > 0 as [£] » ». Therefore, set ¢, = ¢, = v/, and
readily integrate (22), yielding
F(£) - sech®{V¥/2K)(f+c,)} , (23)

wvhere Cy is the final integration constant. With the definition (18)
of £, we thus obtaln solution (16). Regarding the choice Gy = F,

G = k6; after integration of (23) we retrieve (17), wherein

c = (03+c4)/k and c¢; 1is absorbed in 5. Other relevant solutions of
(22), as listed e.g. by prazin??) are presently under

1nvestigation(19).

Although we decided in favor of direct integration of (21),
application of our direct method would effortless have led to
(18)-(17). Hence, in conclusion, a slight generalization of our method

broadens the class of retrievable solutions to implicit omnes.

gt

T
- -
Rl

T

St R

{"(

- .

-

o 7

LA B

I

PP LA,

- -4 -ts'."."-'- pLr

P AT E T

\ 8



4. THE COUPLED KORTEWEG-DE VRIES EQUATIONS

To extract further information about the applicability of our
technique let us investigate how it would fare on a famous coupled

systen(?5-29),

u, - a(6uux+u8x) - 2pww_ = 0 , (24)

W, + Suwx + Vg = 0, a,B €R . (285)

These equations describe the interaction of two long waves with
different dispersion laws. The coupled system is often referred(24’25)
to as the coupled K4V equations, as for w = O i1t reduces to the

EdV 1in u. Sometimes (24)-(25) is quoted(zs—za) as the Hirota-Satsuma

system after the two lnvestigators that first solved 1t using a gquite
ingenious bilinear formalism(7'24).

(29)

In a forthcoming paper we will prove that if u 1is of

travelling wave form, say u(x,t) = ¢(f), with § = x - vt, <then w

exhibits the same form, hence w(x,t) = ¥y(F). Thus we must solve
2 2
v + 3agp” + a¢2§ + By® = 0, (26)
- v"’f + 3¢4’E + ‘J’sf =0 ’ (27)

ignoring integration constants here. Substitution of g(f) = exp(-k§f)

into the linear parts of (26)-(27), leads to two dispersion lawvs,

vV - -akz and V = kz. According to our philosophy, the nonlinear

T NN N ST N e e e L

: '\
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solutions ¢ and ¢y can only be built up from the same real
(29)

exponential if a = -1. A profound study reveals that either one
of the dispersion laws leads to the same exact solutions. Hence, let
us proceed with k = Vv, v > O.

' Upon substitution of the scaled series representations,

[ -]

¢ = %) agi®), v - —2— )b g™, (28)
n=1 n=1

into (26)-(27), we arrive at

n-1

2
(l+an da, + 2 (aaean_e+ebebn_e) = 0, nz2, (29)
2=]

2
n(a®-1)b, + ) b _, =0 . n>2, (30)

together with (l+a)a.l = 0, bl arbitrary, and where e = +1 (e = -1)
it B >0 (p < 0).
Two interesting cases pop up:

(1) For a # -1, so a, =0, we straightforwardly obtain

8y, - 24(-1)%*1pA®, b, =0, 1n € n\{0} , (31)

] 2n

n n
0, by ,y = (-1D)"pA%, new, (32)

8on+l "
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requiring A = —ebﬁ

/24(4a+l1) > O, hence B and 4a + 1 must
have opposite signs. With (31)-(32) the solutions (28) then

become

| 2
¢ = 8v ) (-1)%In(ag?)® - BvAE__ (33)
=1 (1+A8%)
- ) (-1)"p,aRg?™ o 1 __g — (34)
Vslﬁl n=0 VslBI (1+Ag )

Returning to the original variables, we obtain

u(x,t) = 2v seohz[VV(x—vt)+6] , (35)
w(x,t) = tvw-2(4a+1)7p sech(vv(x-vt)+5] , (38)

Vith & = %2n|2¢(4a+1)/b2|. Note that the KAV indeed remairs
invariant for reversing the sign of w. For a = -1/4, clearly

bn =0, Yn € N; so0o w =0 and the cKdV reduces to the Kd4AV (1)

with a = 6. Replacing t Dby t/4, v by 4v, from (13) we get

(35). We should remark that (38) is a special case of a solution

(27). Furthermore, for

a = 1/2 the ©EKAV are known to be completely integrable?®), it
(26) (24)

obtalned by the dressing operator technique

has the Painleve property- and a N-soliton solution

-11-
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(11) Por a = -1, apparently a, 1is arbitrary and so is b,.
ﬁecursively. one can calculate all a, and bn in the hope to
obtain the general closed form, which we do not know yet.
However, for bi - ai/z and B >0 (so e = 1) we obtained

‘&, = 120(-1)"*1a®, 2 - a2/2, with a - a,/12. Substitution

into (28), leads to

u(x,t) = v sech2[%45(x—vt)+6] (37)
w(z,t) = (3/VBIBT) u(x.t) = (3v/VBIF]) sechz[%VV(x—vt)+5], (38)

with 6 = % en(12/al). Observe that for w = 3uvBf both
equations (24)-(25) become identical to the KAV (1) with a = 3,
(13) then being the same as (37).

8. THE SINE-GORDON EQUATION

The 8G equation, in light cone coordinates,
u,, = sin u, (39)

describes the propagation of crystal dislocation, superconductivity in

a Josephson Junction, ultrashort optical pulse propagation in a

(15,16,22)

resonant medium, etc. For the mathematician, (39) is long

known in the differential geometry of surfaces of constant negative

ourvature(ls'le).

-12-
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. At the cost of dealing with one equation with a transcendental (!)
S nonlinearity, we rather transform the sG 1into & nonlinear coupled

e system with strictly polynomial terms:

-¢-¢v -0, (40)

o 2% + V2 4+ 92

K] )
-0, (41)

it wvhere ¢ = u v = (cos u) -1

«% To construct a single solitary wave, we proceed as in section 4,
nh focusing on steady solutions ¢(f) = o(x,t), () = ¥(x,t) with

A §f = x-vt. Expanding the scaled functions as

$ = V) ) aghE), v - ) b g™E) . (42)
ga n=1 n=1
h

S with g(f) = exp(-kf), we obtain

n-1
Ml 2
N (n°-1)a, - 2 ab, _,=~0, n22, (43)
=1

% n-1

1}

ab_ + ) (b,b _,+e(n-)a
e=1

ean_e) -0 ’ n 2 e ’ (44)

s 2

KR vhere we used the dispersion law k“ = -1/v, v > 0, to simplify.

M Iterative calculation suggests

Vs -13-
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8y, = 0, b, = 8(-1)"na®®, n e m{o0}, (45) W

A
8oy = 4(-1)%%*Y, b, -0, nenw, (46) 2

vhere a = a;/4 > 0. TUpon substitution into (42), we find )

h
. o

b= (@) Y ((1)(ag)?RY L Y 8E (47) 2
n=0 1+(ag) o)

© 3
v = -8 ) (1) n(ag)?®" - -29&2&22-5 : (48) e
a=1 [(1+(ag)”] R

In the variables x and t, we thus ge% !
(cos u(x,t)) - 1 = 1 - 2 sech®[(1/V=)(x-vt)+5] , (e9)

u(x,t) = % -2 I sech[(1/V=v)(x-vt)+6]dx ol
v-v

= 14 arctan{expl(1/v=v)(x-vt)+51} , (50) ;5

with &6 = en(4/a1). This is the well-known kink-type solution of the ﬁ‘

Y
sine-Gordon equation(11'15’16). He

6. N-SOLITON SOLUTIONS e

The most effective techniques to construct N-soliton solutions bg

(18-18,22)

are inverse scattering and Hirota's method(v‘ls'le), the o

latter being olosely linked(1:26:30) 4o 417 other (often iterative)

: e A . D A A
Al e W q!;'\ 20 ~.A urlnﬁ‘-‘f \U}u,‘ &‘I v'.’-(b n’l' .-‘.. " '.i l"‘.. ‘.',o.ﬁ‘g'i..l‘ . l‘-‘!‘a.‘ Wy V o'!'b
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procedures listed in the introduction. Neither of these methods 1is
very transparent in explaining why N-solitons are the way they are.

(4), vhere we showed how the

In the spirit of an earlier paper
N-soliton solution to the KAV could be built up from N real

expohentials, we construct the N-soliton solution of the sG (39),
using (40) and (41). Emphasis is again on physical relevance, more

than on mathematical rigor.

Motivated by the fact(4) that multi-soliton solutions evolve from
the mixing of real exponential solutions of the underlying linear

equation, we substitute

N N ,
¢(1) - E oigi(x.t) - 2 Cy8y exp(kix-wit) , (81)
i=1 1=1 ’

into the linear part of (40), implying o, = -1/k, 1=~-1,2,---,N).

The constants ci(ki) will be fixed later. Observe that the starting

term in the expansion of ¥, say w(z). must be of the form

N XN
*(2) - 2 2 diJ 248y (52)
i=1 j=1

80 that —2w(2) balances the ferm

(1)?
L2

N N
- 2 2 oichingigJ (53)
11 =1

: ik

-
- -

.
- e o e -

-
=
-
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PO

jodess

%
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Note that any term in the expansion of ¢ (¥, respectively) will only
have an odd (even, respectively) number of g‘'s, which is in agreement

with (47) and (48).

The analogue of the f£irst term im (43), i.e. (n®-1)a_, will
result from the action of the linear operator

8%

Le = 333% -

on the (2n+l1)th +term in the expansion of ¢, namely

N N N

o(20+1) _ 2 E cee 2 Oyj...q €185 *°* g » B € M\{O}.
i1=1 =] S=1

2n+1 summations

The analogue to the second term in (43) will, in its most symmetric
form, look like

Sl LA

x

n-1
1 (2e+1) . (2n-28)
7 2 O kg k) VEES Gy k)

2¢+1 arguments 2(n~- ¢) arguments

PRI B

‘A

+ ¢(20-28) 2(38+1) (kp Xy, e k)

(kg Xy, 0 0K,) :
SN

2(n-¢) arguments ‘ 2¢+1 arguments

-16-
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. N N
::2 'I'(zn) - 2 2 cee 2 diJ"'r gigjooogr
: =1 =1

e 2n summations

o -1
K :

! 1 (28) cee (2n-2¢) .

"}l - _'2' 2 v (kilk ’ vkn) v (kookp» 'kr)

o 2=1 N

22 arguments 2(n-¢) arguments

e 2 ¢(2e+1) Ky ky,oen ko) 0 BB D x ok 2. B2l (58)

X 22+1 arguments 2(n-¢)-1 arguments

o allows to subsequently determine the coefficients diJo'-r .
Y
3“ To make this less obscure, let us give an example. o1 and
R

" W(z) being computed, we equate

§3 N 1 XN
:§ | o3 z } 2 [-(oy+0 toy) (K +Ry+Ey)-110, 4y 84848y
1=1 J=1 k=1

&*» N N N
bq - 12 ) SR IPTCNE BICNE DICHNG R 1 DTN 4 (59)
o -1 J=1 k=1

38 tO
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10,(1) 2) (2) (1)
oM 6@y k) + v By xpde M xp))

2 } } (x,+k ) (ky+k, ) (K, +k, ) (0 040, /k K Kk Vg g8y . (60)
1-1 =1 x=1

i1k i
lengthy calculations, partly carried out with MACSYMA (i.e. a large

therefore ¢ - —1/[4(k J)(kJ+kk)] if we set ¢, = 1. After some

scale computer program that performs algebraic manipulations), we

obtain
C4ge..g = (‘1)n4_n[(k1+k3)(kj+kk)---(kr+ks)]—1. n €N,

Qygeeeg = CDPTI2TR000 b0 e e r0 TR 4R, ) (R oy ) e (k017

n € N\{0}. (61)

The final obJjective is then to write

S ,(2041) £1848x ..

2 ¢ - 2 2 2 2 (- 4 (k, +E, (&, +E,) oo
n=0 1=1 1-1 j=1 k=1

N
gig e ee g
Y Y eee ) (DRPD ce. . (82)
(k,+k )(k + )---(k +k )
1=1 j=1 s=1 1 *x

and a similar expression for ¥, in their closed forms. Various

authors(l's's’ll‘SI) have shown that this can be done by introducing

the N x N matrices I (unity) and B, with elements

-18~
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L5 0 ah Yl #ad bag Vag iad el Gl al AR Gl Sud Nl el bd’ &a® TR AT LT, ‘e’ ) g avh o = - v

. B e 10k, +X,)x-(0, +0,)t] (63)
K - 13 7 3 TE X, exp gtiEytkgIx-lo ro)tl.

ﬁ. The N-soliton solution to the sine-Gordon equations (40)-(41) is then

N found to be

N ¢(x,t) = 4(Tr(arctan B)]z , (64)

R ¥(x,t) - -2[2n(det(1+B°))1_, . (65)
w while, regarding ¢ = u, .
_ u(x,t) = 4 Tr(arctan B) = i% Tr[en[%é%g]] (66)

Py satisfies (39).

3)
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