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SHEAR STRESS AT A FILM-SUBSTRATE INTERFACE

DUE TO A MISMATCH STRAIN

L. B. Freund and Y. Hu
Laboratory for Interface Science and Engineering
and
Division of Engineering
Brown University
Providence, RI 02912

ABSTRACT
l‘q l‘q,l't
The elastic stress distributions that develop when a thin film of one material is
bonded to a half space of a second material under conditions with a mismatch strain l'|‘l .'c.‘h
that results in a state of residual stress. The origin of the mismatch strain may be mt,“&:" '_":

temperature change, chemical reaction, remote applied loading on the substrate. or
some other source. The distribution of shear stress at the interface is determined for
the case when the film is thin enough to be idealized as a membrane. A semi-infinite film
is considered first to examine in detail the concentration of shear stress near the edge. , .;4.:' ‘,\;
Then, a periodic array of film segments is considered, and the dependence of the stress ‘.. c,
distribution and the stress concentration factor on spacing and material parameters " 5
is determined. The special case of an isolated film segment is studied by taking the
spacing distance to be very large compared to the segment width. All problems are
cast in the form of a singular integral equation for the distribution of shear stress at
the interface, and this integral equation is solved numerically for the cases of intcrest.
Representative results are also presented for the distribution of mean stress and resolved
shear stress in the substrate due to the mismatch strain. Finally, the limitations of the
film idealization of the substrate are discussed.
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1. INTRODUCTION

During fabrication of bi-material systems, mechanical strains that are incompatible
with a stress-free state are often introduced unintentionally. These strains may arise
from thermal processing, reaction swellihg or shrinking, alloying or other fabrication
procedure. The joining of the materials across a common interface enforces a kincmatic
compatibility that may result in a distribution of mechanical stress throughout the

materials. If conditions are not too severe, the stress is elastic over most of the region

of the bodies.

As the most elementary example of this phenomenon, consider a thin film bonded
to a relatively massive substrate. Any edge effects are ignored for the moment, so the
film 1s taken to be of unbounded extent in the plane of the common interface and the
substrate is assumed to be a half space. Suppose that the coefficients of linear thermal
expansion of the film and substrate are a and a,, respectively. If the entire system

then undergoes a temperature change AT, an isotropic membrane tensile stress

O, = -—f—;AT(a,—a) (1.1)

is induced in the film. It is tacitly assumed in writing (1.1) that, because of the bulk of
the substrate compared to the film, the substrate expands freely and it merely imposes
its extensional strain on the layer in all directions parallel to the comnmon interface

plane.

At this level of analysis, the interaction of the film and the substrate is completely
overlooked. Load is transferred from the layer to the substrate in an unspecified way
at remote points and, in the region where the film carries the stress (1), the interface
is traction free. This is at variance with the common belief that the differential strain
provides the mechanical driving force for film-substrate separation or other mechanical
failure mode. For such separation to occur, there must some traction acting on the
interface. This traction arises from the transfer of load from the substrate to the tilm

and it is typically concentrated near the edge of the film. In the next section. a simple
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analytical model is developed that leads to an estimate of interface stress near the edge

of a thin bonded layer in the presence of a differential strain.

The mechanical stress concentration near the edge of the film can lead to some
undesirable mechanical consequences. For example, the stress may be large enough

to produce a separation or fracture of the interface, or it may relax by forcing crystal -

'i.‘ «‘i,‘t‘."‘;.’
dislocations into the substrate material from the edge. Of equal interest in other related 'lt‘,‘f:::"s:i
oty
i
g

work underway, however, is the influence of this stress distribution on nonmechanical
phenomena that are of concern in fabrication and performance of microelectronic and
micro-optical devices. For example, the edge stress field may influence the electrical
properties of the configuration in the case when the substrate material is piezoelectric.
This issue is relevant to the case of a field effect transistor (FET), for instance, for

which the substrate material is gallium arsenide and the gate material is tungsten

silicide or some other suitable conducting material. The influence of the residual stress
distribution on the threshold voltage of a FET due to the piezoelectric effect has been
studied by Ramirez et al (1987). The presence of this edge stress field can also lead to
anomalous diffusion of a dopant or other second species, particularly in the presence of

material defects near the film edge.

The present analysis is aimed at understanding the effect of certain geometrical
features on the interfacial stress distribution due to a differential strain between the
film and substrate. First, the traction distribution on the interface between a semi-
infinite thin film and a substrate is determined. This result gives a clear picture of the
asymptotic properties of the interfacial traction distribution, which arc also considered
on the basis of a conservation integral of elasticity. The problem of induced stress in a
substrate due to a semi-infinite film was studicd in a similar way by Hu (1979). Next,

the case of a periodic array of films is analyzed. The case of a single film of finite extent

)
-~
emerges as a special case when the periodic gap between films is very large, and other aty
. e
. . . 9. . Lt W\
special cases may be considered as well. Finally, the range of validity of this model '.-.::\::\5 )
A 1Y 1. £
is considered by examining the pertinent elasticity solutions for points very close to R
‘."E: .
. . . )
the edge and very far from the edge compared to the film thickness. With this stress ¥
. l.‘ 4
U0 )
3 ) )
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distribution in hand, the complete stress field within the substrate may be determined.
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2. THE INTERFACIAL SHEAR STRESS NEAR AN EDGE

The two dimensional geometry of the system used to examine the edge stress is
shown in Fig. la. In effect, the film and substrate are initially stress and deformation
free. Then, an extensional strain ¢,, isotr;)pic in the plane of the interface, is imposed
on the film and the film is bonded to the substrate. To enforce this strain, of course, a

stress

Ty = 1—1/60 (21)

must be imposed on the film edge. After the film is bonded to the substrate, the stress
on the edge is relaxed. The film now has a traction free edge at z = 0, and therefore it
cannot support the uniform all-around tensile stress (2.1). Instead, the tensile stress in
the z—direction in the film must vary from zero at z = 0 to the value given in (2.1) at
values of z many time greater than the film thickness h. This variation in tensile stress
in the film must be accompanied by a shear traction at the film-substrate interface
which also varies with z, and a main purpose in this section is to determine this shear
traction distribution. To this end, the extensional strains in the z-direction of both
the film and the substrate surface z = 0 are written in terms of the unknown interface
shear stress 7(z). Imposition of the physical requirement that these two extensional

strains are cqual leads to an integral equation for 7(z).

In the inset in Fig. 1b, the film and substrate are shown to be separated but to
be under action of equal but opposite internal shear traction. The film is considered
first. If the tensile stress acting on a cross scction at distance & from the free end is

o(z), then the overall equilibrium of the film requires that

ho(x) = /f r(z')dz'.
0

The stress-strain relation for the filim (modelled as a membrane) that properly accounts

for a mismatch strain of €, 1s

1 — 12
(f(.l') =

W I, r AT AT et At R AN NN Nt O R A N Bt N
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where €7(x) and ¢, are the relaxation strain in the r—direction and differential strain, D)
respectively, in the film. Note that if ¢, — 0 at points far from the edge, then according T8
to (2.3) the stress o approaches the tensile stress o, in (2.1), that is, equations (2.1) Bl
and (2.3) are consistent. The result of eliminating o(z) from between (2.2) and (2,3) is XN

1-—u2

ef(z) = /: (z')dz' —€,(1 +v). (2.4)

A result similar to (2.4) for the substrate is next derived. For plane strain, the A
relation between the extensional strain in the z—~direction €, (z) and the corresponding 4
stress component o.(z) is :::'ﬁc,:"

1-— v O

s 9 = OAG
—g, oe=(2) (2:5) A

€xz(T) =

This equation applies at any point of the substrate but, in particular, on the surface | ]
z = 0. From the theory of elasticity (Timoshenko and Goodier, 1970), the stress |:‘:l’|'l:
da

o:: along z = 0 due to a concentrated force acting at ¢ = z' of magnitude P(z’') is .k! W
—2P(z')/n(z — 2'). Thus, replacing P(z') by r(z')dz' and summing over the entire JACA]
range of 7(z'), oo

M1 _ 4,2 oo ' ' o
f;:(iU) — _ “(ITEVJ) / T(-T ) d:l: - (26) ':‘:!‘-g‘l",
L} K] 0

z—-2x

Because the film and substrate are bonded together as the strains €5 and e, & i

develop, these two strains must be equal. Thus, ’::;

— 2 z 21 - 12 oo ' ' gy
——(IEI:/ : / r(z')dz' + (IWEV’) / M)A e, =0 (@29) R
0 s 0 I — T :

for 0 < z < oo. This is a linear integral equation for the unknown shecar traction
7(z). The shear traction is proportional to €,, which may be positive or negative. The

solution of (2.7) is considered next.

The integro-differential equation (2.7) has the form of Prandtl’s equation for the

acrodynamic load distribution over a wing of finite span in a steady air flow (Muskhe-
lishvili, 1953). The same equation has been studied by Koiter (1953) in the context

of structural mechanics, where he was concerned with load transfer characteristies in "".1:0"'
Wit
-6 - , ‘.c",ah
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stiffened elastic sheets. Koiter obtained a formal solution of this equation in the form
of an infinite series by means of integral transform methods and analytic function the-
ory. Explicit limiting results that are useful for dealing with the problem at hand
:. may be extracted from Koiter’s work, and the details of his solution procedure are not

reproduced.

Nondimensional coordinates are introduced as £ = kz/h and ¢' = sz'/h in terms

Tem ms e

o of a dimensionless material parameter x = E,(1 — v?)/E(1 — v?). The equation (2.7)
B'
‘ governing the normalized shear stress f(£) = 7(z)/ko, becomes
) £ o o) '
i ' ' < f(é ) '
d¢' — = =22 df'—-1=0 2.8
; | rerae == 7 S a (28)
1:
' for 0 < £ < 00. An auxiliary condition on the solution of (2.8) concerning the behavior
;‘. of f(€) as £ — oo is obtained from (2.2). If it is recalled that €;(z) — 0 as 2 — oo,
L
: then the dimensionless form of the limiting equation is
[
| rerag =1. (2.9)
) 0
i Thus, a solution of (2.8) subject to (2.9) is required.
K The Mellin transform defined by
L]
¢ o _
: Fo)= [ )6 ae (2.10)
0
&
h is applied to (2.8) and (2.9), and the determination of f(£) is thereby reduced to the
i solution of the difference equation
F(s+1) = -2scot(ns) F(s) (2.11)
y
‘l
. subject to the auxiliary condition F(1) = 1. Koiter (1955) presented the solution of
(2.11) in the form
; 27V G(s + DG(5/2 — )
¥ F B = 2.12
: (s) VT G(s = 1/2)G(2 - <) ( )
: -7 -
\
¥
L
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where the function G( ) is defined as g

) . »
G(s +1) = (2m)* 272 40=37" T {(1+s/n)e“’+’ /2"} (2.13) '

n=1 )
and v = 0.57722 is Euler’s constant. The dimensionless shear stress itself is then given ’ “ng".'.
by the Mellin transform inversion integral
b+ico {
1O=o [ Feas (214) %
~
where 1/2 < b < 1. For £ > 0, the integration path in (2.14) may be closed by a 1
semicircle of very large radius in the left half of the complex s—plane without affecting shattet
the value of the integral. The function F(s) has discrete n-tuple poles at s = 3/2 — n, oo
n =1,2,3,...in the left half plane and no other singularities there, so that application ﬂ"-
of Cauchy’s integral formula yields the result that the value of f({) is the sum of the ;‘r';'_:‘_':‘
residues of these poles, that is, o

(
0o t by

f&) = Z[ residue of F(s)€7° at s =3/2 — n]. (2.15) @
= it

Some details are given by Koiter (1955).

For small values of £, that is, for points close to the free end of the film, the k 2
behavior of f(£) is dominated by the first few terms in (2.15). Evaluation of the first

two terms yields o'::l‘ t
f(€) =~ (2n€)71/? —0.21938€1/2 +0.12698 €'/ In¢ (2.16) s

which is a good approximation for 0 < £ < 2. For large values of £ the convergence e
of the series (2.15) is slow. However, an approximation to f(£) for large € can be
obtained by closing the path of integration in (2.14) in the remote right half plane %‘,\.
and evaluating the dominant residues of the enclosed poles. The first two terms of the ."
resulting asymptotic approximation are -

4 _ Yy
2 (1.2319 — 2.0In¢) (2.17) 0,'::!‘:52
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which is a good approximation for £ > 5. The transition between the asymptotic ..."':::;
‘,o ‘ t,

solutions (2.16) and (2.17) is expected to be smooth. "
3

X

The dependence of shear stress 7(z) at the film-substrate interface on position z :"‘::n"

: ":f;

along the interface is shown in the dimensionless form 7(z)/ko, versus kz/h in Fig. 2, ..::ﬁ.”i-.
) s

where k = (1 -v?)E,/(1—v?)E and o, is related to the mismatch strain through (2.1).

S

The asymptotic approximations for small and large values of xz/h given in (2.16) and ‘.:::é‘:
. fatel

(2.17) are shown as dashed lines in Fig. 2. The solid curve is the result of solving the 'q‘.',gtg
MR

L JEM

integral equation (2.8) numerically by means of the numerical methods introduced by ""
Erdogan, Gupta and Cook (1973), based on Chebyshev polynomial representation of the :;:5::}.:'
L'y,
unknown function and Gaussian integration. The numerical results are similar to those ::::::‘::‘
Q{‘ @61.,
of Hu (1979) who obtained a solution by a direct finite difference method. It is clear that __.;:g:::'gf
the numerical solution is consistent with the asymptotic approximations at either end \‘4,"
of the range of kz/h, and that it provides a smooth transition between the asymptotic “‘_
Ay
approximations. Representative values of x for several material systems in the form ‘ﬁ,‘!
9.8 Y

#(film material/substrate material) are given by x(Ni/Glass) = 2, K(Al/GaAs) =~ 4/5,
k(Au/GaAs) =~ 1/2 and x(Au/S?) = 1/3.

4 ]

’_‘.'""'(-;:'7'-;
S

Some general oLservations can be made concerning the stress distribution. The :“ik:ﬁ
shear stress near the end z = 0 is of main interest, and the first term of the asymptotic ’ ‘ ?
approximation (2.16) may be written in dimensional form as ES:_‘

R

(z) = (16"_EV) 2’;—'; . (2.18) f}‘..

P

First, it is noted that the shear stress varies linearly with the mismatch strain €, which '.:,:1‘.\5.
is an obvious consequence of linearity of the system. It is also evident from (2.18) :EE
that 7(z) is proportional to VE,E. Thus, a rcducfion of stiffness of either material . .
component results in a reduction of the stress concentration, other things being fixed. \‘\
Also, for fixed elastic moduli and mismatch strain, 7(z) 1s proportional to VI for any ‘ \

x. Thus, the thickness sets the rate of decay of shear stress from the edge.

The infinite singularity in stress 7(x) as ¢ — 0 is unrealistic, of course. i the -}‘{
L}
N
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sense that no real material can support such a stress. The stress singularity is a
consequence of the tacit assumption that the material remains elastic at all stress
levels. In reality, the potentially large stress would be relieved locally by some nonlinear
relaxation mechanism, but the shear stress would still be concentrated near the edge of
the layer. From dimensional considerations, the size of the region over which vielding
is expected will scale with the parameter hx(o,/0y)? where o, is the tensile yield stress
of the material. Finally, it is noted that the asymptotic result (2.18) can be derived
directly, without the need to solve the integral equation (2.8), by means of energ -
methods developed in fracture mechanics. In particular, application of Rice’s path
independent J-integral (Rice, 1968) leads to the result immediately. When evaluated
for any closed path in a body under plane strain conditions that does not enclose body

forces or holes, the value of this integral is zero, that is,

J(C) = / (Wn, —oijnjui,; ] dC =0 (2.19)
c

where W is the elastic strain energy density, n; is the unit vector normal to C, g,; arc
the rectangular components of the stress tensor, and u; are the rectangular components
of the displacement vector. Consider the integral in (2.19) for the path C shown in Fig.
3. The radii of the small and large circular arcs in C are assumed to be indefinitely
small and large, respectively. The integrand of (2.19) vanishes on all parts of C except
on the circular arc AB in the substrate and on the line segment DE in the film. Along
the latter segment, it is readily shown that

(14 v)Ehe?

JDE) = —=33

(2.20)

The only way for the value of J(AB) to balance this contribution is for the stress to

e square root si ar in the substrate near the film edee, say
be square root singular in tl bstrat the film edg N

0 forr <0 291
lx) = {k/\/'l:.r for & > 0 =

1 V]
1BV}

where kis the so-called elastic stress intensity factor of linear elastic fracture mechanies.
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If this is the case, then

1
J(AB) = Y

From the condition that J(C) = J(AB)+J(DE) = 0, it follows that k = o,V hx which

reproduces (2.18). The complete stress distribution shown in Fig. 2 can be determined,

however, only by solution of the integral equation (2.8).
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3. INTERFACIAL SHEAR STRESS FOR A PERIODIC ARRAY OF FILMS

The integral equation (2.8) for interfacial shear stress 7(z) was generated for the
case of a semi-infinite film on a substrate. While this situation provides useful results
on the edge effect for very wide films, it provides no basis for assessing the influence of
lateral dimension of the film on the stress distribution. The integral equation is readily
generalized for the case of films of finite lateral extent or multiple films for this purpose,
as illustrated by Yang and Freund (1984). The particular case of a periodic array of

films is considered here.

The two dimensional configuration is shown in Fig. 4. Each film has width 2b and
the separation distance between adjacent films is 2a. By following the development in
section 2, it can be shown that the interfacial shear stress for the film occupying the

interval —b < z < b on the substrate surface must satisfy

1— 2 z 21 — 2 00 b+2m(a+b) !
( EU )/br(z’)dx’-{- (wEV ) Z /b+2 (a+b) l'T(—:rx)' dz' — (1 +v)e, =0 (3.1)
—- s m=—oov~ m(a+

for —b < £ < b. The complete elastic field must be periodic in the in z—dircction with

period 2(a + b). Consequently,

(z) = 7[t = 2m(a +b)], m=...-2,-1,0,1,2.... (3.2)

In view of this periodicity, the infinite sum in the integral equation may be rewritten
as

e o]

/h+2'"(“+h) r[r' ~ 2m(a + b)] Iy 3.3)
ar . 19o-

]
~b+2m(a+b) Ir—-xr

m=—-—o00

With a change of variable of integration in cach integral from 2’ to £ according to

£ = 1" — 2m(a+ b), the limits of integration become independent of mand the order

12 -

USRIy

» - 1 - - ' n » - A\ » - L] - - - - - - h Y - LA A% T ) ‘ ~o
DAOM 6 O U XN O OO Al T N 150, , W Ui, O, %8, %0, 00,5 AR WA LN S\l Ty 4 WSS N

e

(]
-

RIS



[ EET SR ET R A TRV RAVATE UVAN R N UR AN LUW LW K LW LA LN LS LW USTUST TN

of summation and integration may be reversed, that is,

= [ 7(£) AR )
2 /.,,x—s—zm(a+b)d§‘/.,,x—edf

m=-—00

’ = 2(z —£)
+[,7© L e ama i

The series has a sum in terms of elementary functions given by Gradshteyn and Ryzhik

(1965) as
Z —2—9—- =61 —cotd (3.5)

m2nr? —
m=1

for the appropriate range of . The integral equation is reduced to

(1—V2)/z (1-v3) [ m{z — )
v -7/ dt + 287 RS2 74 =(1 o 6
for —b < £ < b. Note that the cotangent function in the kernel of the integral equation

behaves as 2(a + b)/7(z — &) for (z — £) < (e + b), so that the kernel is still a Cauchy

kernel.

The condition that the tension in the film is zero at £ = —b is incorporated into
(3.6). The tension must also vanish at £ = b and, on the basis of overall equilibrium,

this will be assured if

b
/b r(€)dE = 0. (3.7)

Thus, a solution of the integral equation (3.6) subject to the auxiliary condition (3.7)

is sought.

The numerical method employed in the preceding section once again provides an
efficient means of obtaining accurate solutions. Some results on the complete interfacial
shear stress distribution are sunmarized in the form of plots of 7(z)/x0a, versus (14-z/b)
for —b < z < 0 in Figs.4 and 5. The results in these variables may be expressed in
terms of the two dimensionless parameters xb/h and a/b. The shear stress distribution

for several values of #b/h are shown in Fig. 5 for the situation of a single film segment

- 13 -
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of width 2b on the surface. This is equivalent to the case of periodic films when the N
individual film segments are widely spaced, that is, when a/b — oo with b/h held fixed. A
Calculations were carried out for the case of periodic films with a/b = 20, and the ;v‘
results were indistinguishable from those in Fig. 5. Likewise, the value a/b = 1/20 o
represents the situation of films with edges in close proximity compared to the lateral
extent of each film. The integral equation for two semi-infinite films separated by a ::‘:;:.:
gap of 2a may be obtained from (3.6) by letting a/b — 0 with a/h held fixed. This :."::‘
result was also solved independently with the results differing only slightly from those

for a/b =1/20. k

Shear stress distributions for several combinations of xkb/h and a/b are shown in )
Fig. 6. This figure shows typical results for the influence of film proximity in the gt
periodic array on stress level. Evidently, for a given value of xb/h, the level of shear ey,
stress is elevated by moving the films closer together, but the overall increase is not a':‘t::'s‘
significant unless a/b becomes small compared to unity, except possibly for the value Gty
:
N

N
The strength of the singularity in interfacial shear stress is defined by :::'z‘""

k= Ii.n(}— (z)\/27(x +b) . (3.8) i 2

of the edge singularity.

The influence of geometrical parameters on the edge singularity is shown in Fig. 7. This ‘::E:':%
W

figure shows plots of the normalized stress intensity factor defined in (3.8) at the cdge @
YRR
z = —b. From the figure, it is clear that if the film is indeed thin so that xb/h < 1 and ‘:".;:'.“:.E
RN
if the individual segments are widely spaced, so that a/b > 1, then the stress intensity ":“%;?i:
\J
factor is virtually independent of these gcometrical parameters. However, for situations 4 W
other than widely spaced, very thin segments, the figure suggests rather complicated =’ "::;
AT
behavior. For example, the dependence of k/o,Vkh on kb/h is fundamentally different '}_g:t: ;
A
for the cases when a/b > 1 and a/b < 1. Furthermore, for a given value of xb/h, the iy
. A
stress intensity factor k/o,v/xkh depends strongly on a/b as a/b decreases to values less _,,'.;\‘,,
U 4y
than unity. Indeed, k/o,v/xh — 0 as a/b — 0 for any given value of xb/h. ::'t::::,:‘
. 1
l‘:'i::',:
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These results have implications for the failure of a very wide single film due to

tensile cracking through the thickness, followed by delamination fracture due to the
resulting edge stress concentration in the newly created segments. For example, suppose
that through the thickness cracks are introduced at widely separated places, say at
intervals of 30 h/x. Then, with reference to Fig. 7, this starting situation corresponds to
a point with kb/h = 15 and a/b very small, say about a/b = 0.05. Further, suppose that
the corresponding level of stress intensity factor is large enough to drive delamination
fractures in either direction along the interface away from the through-thickness cracks.
The effect is to increase the value of the geometrical parameter a/b and to reduce xb/h
which, in turn, leads to a reduction in level of stress intensity. Thus, the growth
can continue until the value of k has been reduced to a level below that required to
sustain growth of delamination cracks, and the process can then stop. For the thin
film idealization used here, the portion of the film that is detached from the substrate
plays no role whatsoever in determining the stress distribution in the attached portion
of the film or in the substrate. Consequently, partially debonded films are treated in

the same way as bonded segments with the debonded portion simply ignored.
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4. STRESS STATE IN THE SUBSTRATE

Once the interfacial shear stress between the film und substrate is determined the
state of stress in the substrate may be calculated by superposition over the appropriate
concentrated boundary force solution. For example, an expression for one component

of stress is

2 r(z')dz’'
T JL \/(I—.'L")2+22

where L is the union of intervals in z’ along the surface of the substrate that are covered

Or:(T,y) = (4.1)

by film segments.

The stress distribution in the substrate has been determined for several combina-
tions of geometrical parameters by numerical evaluation of the integrals such as the one
in (4.1). Representative results are shown in Figs. 8 and 9. In Fig. 8, the distribution
of mean normal stress in the substrate is shown for the case of periodic film segments
with kb/h = 10 and a/b = 0.5. The result is in the form of a surface over the z, z—planc
where the elevation of the surface represents the level of normal stress. A film, which
carries residual tension, occupies —10 < xz/h < 10 on xz/h = 0, and a gap between
identical film segments occupies 10 < kz/h < 20. Because of symmetry, results arc
shown for only half of the film segment and half of the gap, to a depth of xz/h =15 in
the substrate. Mean normal stress is sclected for presentation because the gradient of
this field is the driving force for chemical diffusion of point defects in the substraie. For
example, interstitial components in the substrate will diffuse from regions of low mean
normal stress to regions of high mean normal stress with transport flux in the direction
of the gradient spatial gradient vector. Thus, a qualitative observation based on Fig. 8
is that interstitial components in the substrate will tend to diffuse from under the film
into the region under the gap, with maximum conclcntration developing near the film

edge and near the substrate surface in the gap region.

The similar surface in Fig. 9 shown the distribution of resolved shear stress on
plane in the substrate inclined at angles of £7/4 to the substrate surface. This stress

measure is sclected for presentation becanse of the importance of the resolved shear

- 16 -
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stress on dislocation glide planes in a crystalline substrate for dislocation defect gen-
eration and motion. The values of the various geometrical parameters are the same
for this illustration as for Fig. 8. It is evident that the local interfacial shear stress
concentration can be relieved by forcing glide dislocations into the substrate as shown
schematically in Fig. 10 and the resolved shear stress shown in Fig. 9 provides the
driving force for this process. Figs. 8 and 9 provide some motivation for further study

of both the diffusion and dislocation generation issues in connection with the thin film

edge stress concentration.
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5. ASYMPTOTIC PROPERTIES OF STRESS DISTRIBUTION

The idealization of the film as an elastic membrane in the present study leads
to a boundary value problem that is relatively simple. Consequently, the problem
can be analyzed in some detail and the results are instructive in illustrating edge stress
concentration effects in thin film configurations, at least in a qualitative sense. However,
the idealization is quite extreme for certain purposes, and the shortcomings must be

kept in mind in considering specific applications.

Essentially, the membrane idealization implies that the film resists deformation
only if that deformation includes extension or contraction of the mid-plane of the film.
There is no resistance to bending or to transverse shear of the film. While these
features are expected to provide a basis for accurate description of the deformation
of the film over most of its length, they become suspect at points close to film edges
where stress gradients are large (that is, stress changes significantly over distances
comparable to film thickness) and where shear deformation effects become important.
Because deformation by shear is precluded in the membrane idealization, the response
to the edge shear stress observed in the analysis is stiffer than it would be if shear
deformation were included. Consequently, the edge stress concentration is more severe

than it would be in a more complete description of the edge effect.

Indeed, for points very close to the corner at ¢ = 0, = = 0 the structure of the
mechanical fields may be determined by examining the states of stress that can exist in
the case of plane strain deformation of an elastic quarter plane bonded to an elastic half
plane. For correspondence to the problem class under study here, the quarter plane
should be subject to an extensional mis-match strain of magnitude ¢, in the plane
of the common interface. This problem may be treated by the eigen-value approach
developed by Bogy (1971) for problems of this type. In particular, it can be shown that
the stress field in the vicinity of the corner (that is, within the region where sr/h «

o

in the present case) varies with distance r from the edge as ¥~ where a s a root of

a transcendental equation in the range 0 < R(a) < 0.5. For the particular case when
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the two materials are the same, x = 1 and a = 0.4555 (Bogy (1971)). In any case, the
singularity in stress at the corner is weaker than the membrane model suggests. The
membrane model can be expected to provide a good description of the stress fields,

taking into account the finite thickness of the layer in some way, only for xr/h greater

than about 1/2.

The stress distribution in the substrate at points far from the film edged compared
to the thickness of the film is easy to determine. In all cases in which the film is
moderately thin, the interfacial shear stress is concentrated within about one or two
film thicknesses of the film edge. Thus for remote points it appears that concentrated
forces act at the film edges, and the magnitude of the concentrated force in each case is
simply the resultant of the edge stress concentration. For example, in the simplest case
of a semi-infinite film discussed in section 2, the resultant force of the interfacial stress
distribution is ho,, so the stress distribution in the substrate at points far from the

edge compared to the film thickness is that of a concentrated force of this magnitude.

The study of this issue of the edge stress concentration is continuing. In situations

where it 1s important to have accurate quantitative descriptions of stress distributions,
it is possible to obtain them by computational methods. This has been done, for
example, in a calculation aimed at estimating the influence of the piezoelectric effect
on threshold voltage in a field effect transistor. However, the development of simple
models of thin film structures is proceeding in parallel in the hope that the general,
qualitative results that follow from such models can provide a general framework for

the problem area.
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FIGURE CAPTIONS

Fig. 1 A schematic diagram of a film-substrate system; (a) the coordinate system and

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Vs g-""‘;‘!‘.g‘i .‘\1 ‘_0'..'9‘: l‘;’\!q'i'.‘l’.’iv-_.i‘a"’n" Ay R n‘l. ! o'l.u ‘

parameters, and (b) film and substrate separated to illustrate the interfacial shear

stress 7(z).

Normalized interfacial shear traction versus normalized distance along the inter-
face, where k = (1-v?)E, /(1 —v2)E, o, is the stress in the layer due to mismatch

strain, and A is the film thickness.

The contour C in the physical plane used for application of the conservation inte-

gral (2.19) to obtain the asymptotic form (2.18).

A schematic diagram of a periodic array of film segments each of width 2b attached
to a substrate with spacing 2a, with each segment subjected to the same mismatch

strain.

Normalized interfacial shear stress versus distance from the left edge of a film

segment, for the configuration shown in Fig. 4, with a/b — co.

Normalized interfacial shear stress versus distance from the left edge of a film
segment, for the configuration shown in Fig. 4, for several values of the dimensional

parameters xkb/h and a/b.

The normalized strength of the edge stress intensity factor & as defined in (3.5)

versus normalized film width for several valued of the spacing parameter a/b.

Normalized mean normal stress (07; + 04y + 0::)/30, versus position (r. z) in the
substrate for kb/h = 10, a/b = 1/2. Half of a film segment covers 0 < nx/h < 10,
kz/h = 0 and the interval 10 < xz/h < 15, kz/h = 0 corresponds to half of a gap

between segments.

Resolved shear stress on planes inclined to the interface at £45° (and normal to

the =, z—plane) versus position (., z) in the substrate for the same parameters as
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in Fig. 8. The resolved shear stress is normalized by o,. ¥ "'t ':j

Fig. 10 Schematic diagram showing straight glide dislocations on the planes inclined at

145° to the interface that relieve the edge stress concentration.
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Figure 2

From (2.16)

B oI o o
Numerical

0.0

0.1
0.0

) "o /(X)L N

v

L3
L] " . - W 4
RS 0.’..l.'u"'ﬁ',..ﬂ.’ﬂ.‘q{ A"'l’?‘l"‘!"'l.!‘"’“.!.l’!‘l'.-‘“"!‘I.!.Q’!.l’! q.!'l g'?‘u"‘n'!‘u'":’!‘&'— l‘!‘l'!‘l"‘l'e‘lfp'b‘si.o. ' "q""- l.:‘“t. Lo I‘,‘"- . i'- ' N \ .




N 0 TR s ATh R A h At A Ba d AT AR 8 Ek SRS B R R 0 0l £uB Y $ad Vel AR 0iB 0ok 1al 0ol i) Mo g <ol B St th L& NUREASRAR O TR 'l‘;‘:;;t:..
l’||‘

W
oy,

:‘?:3:12222*

OAOO0H
gt e

PEtivte,
e
O 0:‘:.:
| gt

R

AT 'i“
\J “'& Y I.
.

e htp
Q'g‘l' ‘Q' !

4 '.|
2

(]
h,

: - 2
Figure 3 3 ﬁ?

' e Mo o NI N T U AT O AT IO
ARG R N S S e o i !‘a WAL N XU ) oty TN e Wt At e W )



N i3 &%d \ e bR o th A% alh a¥8 a8 el ath atB « M8 % b alt) il at1 ath atsaleatetats®, 3 Qe v
B e g N g 4,4 IR U 8.2'6.2" ‘8" 3B [y 9 g% ¢ 4 & € A o '
't

) ‘ ittt

q, "7"" "
et
'..I';‘l'c,'

-
-
-
C
-
.‘h‘
LA
-
-~

Figure 4

o -
*

LA

>
22

273
2

2N

55
27 L

le—— 2b —efa— 20 —ofae—— 2b —of=— 2a oo 2b —+

M\

;; >, X
. i . [ [ AT T p® - LS 1Y R ALY 3
OOOOOOUOOAOL I"‘\'a WA L AN K A‘.‘\'\. N, MOUIOUNROC D MO N i HOWN X i X i M e M0 e X 3 a X O N M L) ) L VLW ALARAAN



igure 3

0.6 0.8 1.0

1+ x/b

0.4

. ‘ ’ e R A A A A . A LW .
NG 7'."~"v'~"‘§‘.!¥‘4'«‘-'i‘t")‘s)“‘u"h‘." Ai.‘.‘lﬁ.l"‘,. W/ W A.‘l‘q‘! SehF e AN Py o ;0 ", s 2 )

e o R A

i ,
Y NS X Ty

I‘. ¢
shoate s

¥

-
.S

t's'«'.‘
Ly .
22Ok



Figure 6

=
—
Ye)
) O
lQ () o —
T 0 4 B
£ L ~ .
S 8 ° ° oo
o
o o
Q. 2 — -—
i I I ll .
& & £ £ ;
o g 9 B9 1 ©
SZ 2 52 S& ': _.o'
~+
=
I
o
"o" _O
A o
— 1 .1 T T mi <
x © 0 4 o o - O
o o () o o () o )
0
0y /(X)L

1 +x/b

e,




* 0
IR KN, Lo

ey 4R a0t Oy a st a aty

Figure 7

WU WU WU W A R W e

on ¢

o

=0.05
0.1

4
0o ———a/b

O ———a/b
A --——a/b

-
-
-®
-
.
-®

at e’ Ba Sa® 0av et Fab 427 8e®

WLl

1

———a/b=20

0

20.0

* ettt 0pt

1

10.0

xb/h

Wi L

L 0 s

A -

5.0
7

x
A
"':é‘s e

>y
LY

3

e
]

rrY.

0.0

3 v - - - -
et D R A l'.l\.

(s

» SRR e
O R W OO o X X K e o

A .
R N OO

e A
=

+
-

s
S

2

7

2

A .::
Lo,

5 :'
P

AR
..|‘

i‘.ﬁ ‘~ L8, .0“,' o\k‘!‘



5 'y
&® 2 R
o -
}:‘,'l N Q :0":
i NN to% S N
KN 0 0 2
AN :
e AU 2.
W AN ““NIM =
) AN AR v
AONONNA AR )
. 'NN"“““““ .’.“““ '
i NN OO0 S
KON ANARARYY
5 o0 AUMNANSAAAOO o = o
e © AN A0 - .
; | LN
i = e 5y
‘= A
‘ OOXXROCOXIXXRRRY B
; N - ;
OO0 ot
OO0 = R
i g
Y 7
o RGO =
QX000 /
7 Y :
7 WY
W

\

\J

E . () U0
2 o oo 00 1O
?‘ e ceod = oV
X, .

)

L R
e .,M [ O S ) Ll

Y ( §
f""‘o‘..l‘w‘i "'\“.\‘tc'\.t et et d's,



At A

R N6

v W, Vo LW o, o 'r'-v A PU A e VPV AR T T i R T T R
* o o o ’ td K N . . o 3. ¥ o - R

Figure 9

v 20 00 T vy
SSB\XXS \,-XQG)J\F\\S V\;.\E\‘ L S et ] A




7\

/ AN

7 %Glide Planes

Figure 10

; Y y ) LYK » ’
T A e N T T T o T A S S PO O W LT W o Y,

-

» -.-'

o
U ..

{ g'l '
ey
: 'n!"

.l

.070.8

i



MR LM SR AR R B R T I WP W WL WL V2 ot a8 q% s a B atD a! B aTB NS 50 2B a0 E BN R0 0 00 B 0 R Ve N BTGB B N B Bl Brg R W a8 G N,y

- - - - - - - - - - - - -w

n‘ e 'm WO N ety Ny, P
‘\. RoRSy . W ACne Sty
\‘ l:' ‘:)::3 l,‘ﬂ ot *f ) m&o ‘ N'f'-s.;); "5&5';\-’%*-.‘;\ ‘ N

AR

Ty s'u'\.fhluc'\:’l. OOt



