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Summary

This report describes the measurement of range, range rate, angle, and
angle rate of a single point-scatterer as obtained from the partial deriva-
tives of the received echo-signal phase as a function of frequency f, time
t, and position x, as follows:

3 range Its angle
ax't ax f,t

range rate a -s ..---- )- angle rate
atf,x atI f,x

where is a temporal phase (Eq 3 of the text) equal to 2wfT, T is the time
delay to the target and back, and *s is a spatial phase (Eq. 7) equal to
27r(x/x) sin g, x is the characteristic antenna dimension (in a simple
interferometer it is the distance between the two antennas), x is the radar
wavelength, and g is the angle of arrival. The angle rate is included along
with the more usual measurements of range, range rate, and angle since it can
be obtained From a spatial doppler-frequency shift, analogous to the use of
the temporal doppler-frequency shift that provides the range rate.

It is shown (Eq. 11) that the spatial doppler-frequency shift obtained by
an interferometer antenna of characteristic dimension x is fs = (vc/x)(x/R),
where vc is the cross velocity (or tangential velocity) and R is the range.
Although the spaL,dl doppler-frequency shift is derived assuming an interfer-
ometer antenna generating a spatial cosine-wave pattern (grating lobes), it
is shown that the spatial doppler-frequency shift will cause an expansion or
contraction of a conventional single-beam antenna radiation pattern just as
the temporal doppler shift results in an expansion or contraction of a time
waveform. If the angle-rate and the range R are known, the cross velocity
vc can be determined since the angle rate is vc/R. A knowledge of both the
radial velocity (from the temporal doppler) and the cross velocity (from the
spatial doppler) permits the vector velocity (speed and direction) of a

3 point scatterer to be determined.

The scanning radar interferometer is used in this report to illustrate
the extraction of the spatial doppler-frequency shift. In some cases, the
spatial doppler can be obtained on a single scan of the interferometer pat-
tern past the target. In most practical cases, however, a longer observation
time is necessary. The spatial doppler may be obtained from observations on
successive antenna scans, similar to how a conventional MTI radar recognizes
the temporal doppler-frequency shift produced by a radially moving target
from observations made on successive sweeps. Blind speeds can occur with
spatial MTI processing, but they differ from the temporal blind speeds of

Stne classical MTI radar.

The use of matched-filter detection of spatial doppler-frequency-shifted
signals is examined in both the tectoral domain and the antenna aperture
domain. It was found that the spatial doppler-frequency shift usually
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obtained with a scanning interferometer radar observing aircraft targets
requires only a single filter and not a bank of matched filters for detection
of signals with unknown spatial doppler. A bank of spatial matched filters
might still be needed, however, when the total time of observation is large,
as when a moving target traverses the pattern of a fixed (non-scanning)
antenna.

Radar measurements based on partial phase derivatives are different from
measurements made by conventional radar. The connection between the two is
made in this report. Starting with the two-frequency CW measurement of range
to a single scatterer (A /Af), which is either highly ambiguous or very
inaccurate, it is shown qualitatively how additional frequency components
can produce an accurate and unambiguous range measurement of a single point
scatterer. The further addition of frequency components to provide a "filled"
spectrum allows an accurate, unambiguous measurement of range to multiple
scatterers. It is also shown that the range measurement of N scatterers can
be had by measuring A /Af for N independent pairs of frequency.

Expressions for the rms accuracy of the range-rate and angle-rate measure-
ments are given. They show that measurement of range rate based on temporal
doppler frequency can be much more accurate than the measurement of the rate
of change of range based on two measurements spaced a finite time apart.
Similarly, the measurement of angle-rate based on the spatial doppler fre-
quency can be more accurate than the measurement of the rate of change of
angle with time. It is found that the angle-rate accuracy depends on the
extent of the antenna radiation pattern in space.

This report has shown the connection between classical radar measurements
from a point scatterer and the measurements derived from the partial deriva-
tives of phase from the echo signal. This has led to a better appreciation
of the spatial character of radar signals; in particular, the spatial doppler
frequency due to cross velocity and the measurement of angle rate based on
the spatial doppler.
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RADAR INFORMATION FROM THE PARTIAL DERIVATIVES OF
THE ECHO SIGNAL PHASE FROM A POINT SCATTERER

1. BASIC RADAR INFORMATION

The traditional role of radar has been to detect the presence of targets,
to determine their location in range and angle, and to infer something about
their nature. Initially, radar was essentially a "blob" detector. Targets
were detected and located, but little else could be said about them since one
blob looke-' like any other blob when viewed on a conventional PPI radar dis-
play. Ii the target were tracked so that its speed and trajectory were found,
something could be learned about its nature; i.e., that it was a ship and not
a high-speed aircraft. Over the years, improvements in signal processing,
waveform design, and a better understanding of radar signals have allowed
the extraction of more information about the target. For example, high
range resolution,'using either a short pulse or a pulse compression waveform,
provided the radial "profile" of a distributed target. The doppler frequency
shift, which is extensively used in radar for detecting moving targets in
the presence of clutter, was applied to give cross-range resolution when
there was relative motion between radar and target (as in synthetic aperture
radar). Modulation of the echo cross section due to mechanical motions of
the target (such as propeller or jet engine modulation) gave information
about the character of the target. Radar measurements made with orthogonal
polarizations have also been explored for target recognition.

Table 1 summarizes the information that has been considered in the past
to be potentially available from radar. The information is grouped according
to (1) the target considered as a "point" scatterer, (2) the target considered
as a distributed scatterer, and (3) the surface properties of a target. (A
"point" scatterer is, of course, a fiction; but it is a convenient concept
when the effects.of a finite-size scatterer need not be considered.) The
listing in this table represents what has been achieved or what is thought
likely, but one finding of the present study is that this list is not
complete.

In addition to adding to our knowledge of radar capability, understanding
of the basic target information available from a radar signal is of practical
interest for (1) the remote sensing of the environment and (2) noncooperative
target recognition (NCTR). (A noncooperative target is one which is not in
direct communication with the radar; it is recognized by actions taken unilat-
erally by the radar.) Remote sensing is generally, but not always, a civilian
application. NCTR is generally, but not always, a military application.

Radar has been employed or considered as a remote sensor of the environ-
ment for many applications, as shown by the partial listing in Table 2.
Weather radar is a good example of the increasing effectiveness of remote
sensing. The early weather radars, such as the National Weather Service's
WSR-57, can only ireasure the geometrical extent and strength of precipitation.
New meteorological radars such as Nexrad, that extract the doppler frequency
and its spectral spread, are able to provide considerably more weather infor-
mation. They permit forecasting the appearance of severe meteorological
conditions such as mesocyclones, tornadoes, hail, flooding, and downbursts
that are a threat to aircraft.

As a recognizer of nonccoperative targets, radar can distinguish one
type of target from another (e.g., a ship from a*n airplane) or recognize
different classes of the same type of target (e.g., a Starling from a
Mallard). There are several levels of NCTR, as listed in Table 3.

Manuscript approved October 19, 1987. 1
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Table 1 - Information from a Radar Target

o Target as a Point Scatterer

- range
- range rate (doppler frequency shift)
- angle

o Target as a Distributed Scatterer

- size
- shape
- change of shape

I- symmetry (polarization response)

o Surface Properties of a Target

- roughness

- dielectric constant

2



Table 2 - Radar Applications of Remote Sensing

Atmosphere

- weather
- ionosphere
- ornithology
- entomology

Land

- geological prospecting
- agriculture (soil moisture, crop census)
- mapping (land use)

Sea

- geoid measurement
- sea state, sea spectrum, surface wind
- ice mapping

Underground

- detection of utility pipes and cables
- subsurface anomalies

Extraterrestrial

- meteors, aurora
- planetary exploration

3



Table 3 - The Several Levels of Noncooperative Target Recognition with Radar

Kind of target

- ship, aircraft, land clutter, motor vehicle, cloud, chaff,
bird, etc.

General nature of target

- military or civil

Type of target

- fighter vs bomber
- cargo ship vs tanker
- armored vehicle vs truck
- chaff vs ship

Class of target

- F-14 vs MIG-23
- DO 963 vs FFG-7
- Starling vs Mallard (birds)

Identification

- name or side number (not usually possible with radar)

4



Thus there are important civilian and military applications which require
the extraction of the information from radar echo signals. Understanding
the basic information available from a radar signal allows radar to be used
to its full potential.

The purpose of the study of Radar Information, of which this report is
a part, is to provide a general treatment of the information potentially
available from radar, to describe the basic nature of radar measurements,
and to identify the factors that affect them. The initial approach is based
on the amplitude and phase spectra of the target-scattered (echo) signal. The
variation of the amplitude and phase of the echo as a function of frequency,
time, and spatial position provides information about the target. In addition
to including current radar measurements and the information they provide, as
outlined in Table 1, two measurements not usually employed with radar have
been added. These are (1) the angle rate, or cross velocity, and (2) the
change (with time) of the profile in the cross-range dimension.

The present report deals chiefly with the information that can be obtained
when the target is considered as a point scatterer. The information available
from a point scatterer is its location and the rate of change of location.
It will be shown that location and the rate of change of location are given
by the partial derivatives of the scattered signal phase as a function of
frequency, spatial position, and time. The measurement of angle-rate is
included, but the change of cross-range profile and other measurements char-
acteristic of a distributed target are not treated here.

2. AMPLITUDE AND PHASE SPECTRA

The fact that the amplitude and phase spectra of the radar echo can pro-
vide a basis for radar information extraction was first advanced in a short
paper by R. J. Lees, then with the Royal Radar Establishment in England.
(His paper apparently is not well known. It is briefly summarized in Appendix
I.) Lees's approach is intere:< 1 in that it allows radar measurements and
the extraction of information j viewed from a different perspective than
normally considered by radar enyineers. He proposed that the phase deriva-
tives of the echo signal are associated with the measurements'of range, range
rate, and angle. As was indicated in Table 1, these three measurements
assume that a target is a "point" scatterer. The amplitude variation* as a
function of frequency, spatial position, and time was said by Lees to provide
the measurements of the size, shape, and change of shape of a target con-
sidered as a distributed scatterer. The description of target information
provided by Lees (Table 4) is not complete and not fully accurate, but he
was probably the first to identify the role of the amplitude and phase
spectra in the basic understanding of radar measurements. The correct
interpretations of the amplitude variations are given in the parentheses in
Table 4.

Consider the transmitted signal to have an amplitude at and a carrier
frequency fo. The phase is taken to be zero. The transmitted signal is a

(Lees used the term "amplitude derivative"; instead of "amplitude varia-
tion," which is not quite correct.)

5

6I-2Q4 X



4- U

4- 4 U

C&. m

4- 4)
0 4J L.

S- 4.-.

Ut 4o

CL L.S.. *9- im
0 -%C

CLL .C a .

4- 4- 0

0~~ 0. 0 L
-4 c 41 4

4.3~ 4. CLU 0 e

CL "- Ut Ut )
N- to cc - 4)

4) Ck c.w t d

0..

S- 4J . u.
4- V. (0

4) c -

Ut4)

4-- d

'I1 4d .0

> c4- d

(a. 4) Ut 4
>. m 0 CJ 0 )

LM t4- e
0t '

(U w 6

V)L u I



single pulse of sine wave of frequency f, represented as

st(t) = at sin 2wft (1)

(The pulse is assumed to be of finite duration and a constant amplitude, but
the pulse width does not directly enter in this analysis.) After scatteringby the target, the signal received back at the radar will be modified in both
amplitude and phase by the nature of the target and its distance from the
radar. The received signal can be described as having an amplitude spectrum
and a phase spectrum. (For a single point scatterer the amplitude spectrum
is the same as that which was transmitted.)

The emphasis in this report is on the information available from a single
point scatterer. When the signal of Eq. 1 is transmitted, the received signal
from a point scatterer is

Sr(t) = ar sin [2wf(t-T)] = ar sin (2wft- ) (2)

where = 2irfT, and T = 2R/C = transit time to target at range R and back,
c = velocity of propagation, and the received amplitude is ar. It is the
partial derivatives of the phase * that will provide the target location
information and the rate of change of location. Only the first derivatives
of phase are considered here. (In Appendix II it is shown that the imaginary
part of the received signal spectrum from a point scatterer is the same as
the * in Eq 2.)

3. PHASE DERIVATIVES

Frequency derivative - The partial derivative of phase as a function of
frequency, at a particular time t and spatial position x, is a measure of
the range (distance) to the target. Consider, as in Fig. 1, a radar illum-
inating a target at a range R. If the transmitted signal is of the form
at sin 2wft, and if the target can be considered as a point scatterer, the
received signal is that given by Eq. 2. We need only consider the phase
of the argument of Eq. 2, which is 0 = 2wfT. The rate of change of phasewith frequency 30/af = 2wT; thus, the variation of phase with frequency is
the measurement of time delay, or range. (Range = cT/2, where c = velocity
of propagation.)

In principle, a measurement of the phase 0 = 2wfT at a single frequency
can provide the range directly, without the need to take the partial deriva-
tive. However, such a measurement is highly ambiguous, since phase cannot be
unambiguously determined if it is greater than 2w radians. Thus the product
fT must be less than unity for an unambiguous phase measurement. Since
T = 2R/c, the maximum unambiguous range is one-half wavelength with a single
measurement of phase. This is an impractical limitation at microwave fre-
quencies.

Time derivative. The phase 0 = 2vfT is a function of time since T (andthe range R) varies when the target is in motion. When 0 is written as 4wR/x,
then ao/at = (4w/A) aR/at. Hence, the derivative of phase with respect to
time gives the radial velocity. As indicated in Fig. 1, the range is
expressed as R = Ro - v(cos e)t, where Ro is the range at t = 0, v is the

7
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Figure 1 - Radar Illuminating a Moving Target at Range R

x N/

N / //

- x1  x1 + x

Figure 2 - Simple Interferometer for Measurement of 
Angle

~of Arrival g; A=x sin



velocity of the target, and e is the angle between the radar line-of-sight
and the target's velocity-vector (direction). This assumes the target has a
straight-line trajectory with a constant velocity. The radial velocity is Vr
= v cos e. The phase can be written

= 21rfT = 27rf(2/c)[R0 - v(cos e)t] (3)

Taking the partial derivative of * with respect to time, at a fixed frequency
and a fixed position, gives

ao/atlf,x = -4wv(cos e)/ = -4wvr/X = -2wfd (4)

where fd is the usual (temporal) doppler frequency shift = 2Vr/X-. (The minus
sign in Eq. 4 means the range is decreasing.)

Spatial-position derivative. The measurements of range and range rate
are made from a single position of the radar. The measurement of the angle
of arrival, however, requires that the phase of the received echo signal be
obtained as a function of spatial position. Consider the geometry of Fig. 2
with an antenna at position x1 that transmits a signal and receives the echo
reflected by the target. A second antenna at x1 + x simultaneously transmits
the same signal and receives an echo from the target. The arrangement of

*, Fig. 2 is like that of an interferometer. The signal transmitted at both x1
and xl+x is at sin 2wft. The received signal at x1 is

sl(t) = ar sin 2wf(t - T1) (5)

where T1 = (2R + A)/c, A =(x/2) sin g, = angle of arrival. The
signal received at position x1 + x is

s2(t) = ar sin 2wf(t - T2) (6)

where T2 = (2R - A)/c. This assumes the target is in the far field so that
is the same at any point along the baseline. If the two signals of Eqs. 5

and 6 are applied to a phase detector, the output is the phase difference
27rf(T I - T2), or

Os = 2w(f/c) x sin g = 21r(x/x) sin (7)

where X = c/f. Dividing Os by the spacing x between radars (which is
known), gives the angle of arrival . More generally, the angle g is found
from the partial derivative of the phase s of Eq. 7 as a funct'on of x, at
a particular frequency f and a particular time t; or

a@s/aXlf,t = (27r/x) sin g (8)

Thus Eq. 8, which -apresents the variation of phase with spatial position,
provides a measurement of the angle of arrival .

The phase ps of Eq. 7 is a spatial phase that -'quires observations
be made at more than one spatial position. It is " -erent from the temporal
phase 0 given by Eq. 3, which is found from a meas :,,Aent made at a single
point of observation. Lees did not differentiate between these two different
phases since he did not express his ideas in mathematical terms. When both

9



the temporal and spatial phases are combined, as they are in either Eqs. 5
or 6, there can be coupling between the two that makes difficult the extrac-
tion of information. This coupling, which is more important when considering
the measurement of angle rate to be described later, does not appear in Eq. 7.

It might be noted that the phase given by Eq. 7 can provide the angle
if the spacing x is known, without taking a derivative. The measurement

based on Eq. 7, however, is highly ambiguous. Ambiguities can be resolved
by measuring s at more than a single spacing x. This is similar to what is
done in obtaining a3s/ax.

A similar result to Eq. 8 can be obtained with only one of the antennas
in Fig. 2 transmitting, but with both receiving.

The determination of the angle of arrival by measuring the phase differ-
ence between two antennas is not usual in radar. A surveillance radar employs
a scanning beam, and the direction the beam points at the time of maximum
echo signal strength is taken as the angle at which the target is located.
(In a tracking radar, the target's angle location is found from the antenna
pointing direction when the difference-pattern echo signal is a minimum.)

A fourth radar measurement (angle rate). The partial derivatives dis-
cussed previously provide the three usual radar measurements of range, range
rate (radial velocity), and angle. From considerations of symmetry there
ought to be a fourth bzic measurement -- that of angle rate. Angle rate,
of course, can be determined from the rate of change of angle, just as range
rate can be found from the rate of change of range rather than from the
doppler frequency shift. However, we would like to find the angle rate as a
partial derivative of the phase Os, Eq. 7. It will be seen that the phase
derivative that provides the angle rate can be related to a "spatial doppler-
frequency shift" just as the range rate can be related to the classical
(temporal) doppler-frequency shift.

If the target is in motion, the angle of arrival changes with time.
We write = g1 - (vc/R)t, where gI is the angle at t = 0, vc = v sin e,
e is defined in Fig. 1, v = target velocity, and R = range. The target's
angle rate is vc!R. Assuming sin g - g, the phase of Eq. 7 becomes

Os = 2w(x/X)[91 - (vc/R)t] (9)

The angle rate can be written, in general, as the partial derivative of Os
with respect to t, at a fixed frequency and a fixed distance x, or

a0s/atlf,x = - 2',(x/,)vc/R (10)

(The wavelength x is used here rather than the frequency f since it is
i customary to do so in antenna analysis.) Thus the angle rate vc/R is found

as the rate of change of the spatial phase Os as a function of time.

The angle rate has not been a major radar measurement in the past,
probably for the reason that it is generally a small quantity, except at
very short range. However, it has some interesting attributes that make it
worth considering.

10



Spatial doppler-frequency shift. The rate of change of phase with
respect to time is a frequency. Thus the partial derivative of s (given
by Eq. 10) can be thought of as providing a "spatial doppler-frequency shift"
equal to (a s/at)/2ir, or (ignoring the minus sign)

x VC
f - X v

, R T (11)

The spatial doppler frequency might be used, analogous to the usual temporal
doppler-frequency shift, to determine the cross-velocity vc or to separate
moving target echoes from fixed target echoes.

Cross velocity, angle rate, and vector velocity. A measurement related
to angle rate is the cross velocity, vc = v sin 0, where e was defined in
Fig. 1. (The cross velocity is sometimes called the tangential velocity.)
The angle rate t (radians/second) is equal to vc/R, where R = range. In
this discussion, the angle rate and the cross velocity will be considered
(almost) synonymous with each other. A method for finding one will be
assumed to provide the other if the range is known.

If both the cross velocity vc and the relative velocity vr are known,
then the vector velocity of the target can be found, since

Ivi = (vc2 + v r2)1/2 - speed (12)

e = arctan (vc/vr) - direction (13)

Summary of phase-derivative measurements. It has been indicated that
there are four basic measurements that can be derived from partial phase
derivatives:

r. ange s1 - angle
af x,t ax f,t

aI range rate a - angle rateat jfB 3t fx

The taking of partial derivatives is not the usual radar method for extract-
ing target information, but they can be related to the usual radar measure-
ments (as discussed in Sec. 7).

The interferometer geometry of Fig. 2 can be used to extract the spatial
doppler. A signal is transiitted and the echo signals are received by the
two antennas separated a distance x. The phase difference *s between the
two received signals is extracted, and the rate of change of phase with time
is the spatial doppler-frequency shift. We next consider the use of a scan-
ning interferometer to extract the spatial doppler. In Sec. 5 it is shown
that a spatial doppler effect is not restricted to an interferometer antenna,
but is also obtained with a single-beam radiatiorn pattern.
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4. SCANNING INTERFEROMETER

Description. The classical radar waveform is a sine wave time-domain
signal of the form sin(2vft) where f = frequency. A target approaching the
radar with a radial velocity vr = v cos o traverses an additional Vr/X cycles
per second of the transmitted signal (x = c/f). This changes (increases) the
apparent frequency seen at the target. The echo signal returned to the radar
changes by twice this, or 2Vr/X, which is the classical doppler frequency
shift. We next apply this (overly simplified) reasoning to the spatial
domain.

Consider a 2-element interferometer antenna with the elements spaced a
distance d apart, as in Fig. 3. The intensity radiation pattern of the
interferometer can be shown (Appendix III) to be

g(g) = 2ge() cos [(d/x)sin g] (14)

where g is the angle with respect to the normal to the interferometer base-
line, and ge(g) is the "element" pattern, or pattern of the individual
antennas of the interferometer. The factor 2 in this equation occurs because
there are two antennas in the interferometer. It is retained throughout this
report. This is arbitrary; it can be readily omitted, if desired, by normal-
izing the amplitude to unity. If the illumination of the interferometer

Aantennas of dimension D were uniform, ge(g) is [sin w(D/x)u]/(wu), where
u = sin g. (The cosine of Eq. 14 could be replaced with the sine if the two
antennas of the interferometer were combined to provide a difference pattern
rather than a sum pattern.) It is assumed that the angular extent of the
interferometer pattern is limited to the region x/D by the "element" pattern
of the individual interferom - -er antennas, each of dimension D. For conven-
ience in analysis, the angle X/D is assumed small so that Eq. 14 can beEl approximated by

g(g) = 2ge(g) cos [w(d/x)g] (15)

A time-varying spatial signal is obtained by scanning (rotating) the inter-
ferometer pattern in angle at a rate Q radians per second. A target at
some angle will then see a time-varying cosine spatial waveform extending
for a time duration of approximately x/Dn. (The scanning of the interfer-
ometer pattern can be done either electronically or mechanically. Here we
assume it is scanned mechanically so as not to be concerned about the change
of beam shape that occurs when scanned electronically.) The temporal signal
seen at the target will have a carrier of the usual form, sin 2irft, which
is modulated (multiplied) by the spatial signal of Eq. 15. The temporal
carrier signal at frequency f does not basically affect the spatial waveform,
but acts as the means by which the antenna patter-, modulation can be uti-
lized. It is the spatial signal generated by the scanning antenna, as given
by g(g), that is of interest in this discussion. On reception, the carrier
represented by sin 27ft is separated (filtered) from the spatial signal

Scanning the interferometer pattern in angle will result in a time vary-
ing signal g(t). Replacing the angle g with .t, we have as the transmitted
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Figure 3 - Radiation Pattern of Two-Element Interferometer
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spatial signal

g(t) = 2 rect(t/Ts) cos[w(d/x)sit] (16)

4 where rect(t/Ts) = 1 for -Ts/2 4 t 4 +Ts/2, and is zero otherwise. With this
notation, the effect of the element pattern is taken into account by assuming
the cosine wave of spatial frequency extends over a time duration Ts = X/).

KIn all that follows the rect function will be omitted as a convenience, but
it is always understood that the signals are of finite duration T It is
assumed that the cross velocity, Ra, of the scanning beam is small compared
to the velocity of propagation c, so that any effects of the round-trip
transit time can be ignored. Also, the antenna scanning rate a is assumed
large with respect to the target's angular component vc/R.

The form of the received spatial signal w4il be the square of that trans-
mitted, or

gr(t) = 4 cos2[i(d/x) (t-T)] (17)

The time T is the time at which the antenna pattern maximum (beam center)
strikes the target located at a particular angle 1. (T = 0 for a target
at g = 0.) If the target located at angle g, has no component of angular

FAD velocity, the time T is equal to I/s. If the target has an angular compon-
ent of velocity vc/R radians/second, the angle g is g1.(vc/R)t, where gI is
the angle of the target at t = 0. The spatial signal received from a target
with an angular velocity component is then

l = -4 Cos2 r-,A)[Rt + (vc/R)t - gi]}

2 11 + cos 2w(d/,)[st + (vc/R)t - 1(18)

The received spatial signal consists of a dc component and an ac component
of frequency d/x(si + vc/R). Its time duration is ,/Dn. The signal
received from a stationary target with vc = 0 is

Sr(t) = 21l + cos 27r(d/X)(sit - gI)] (19)

Its spatial frequency is (d/X)2. By comparing Eq. 18 and 19, it can be
seen that the spatial frequency from the moving target is shifted an amount

fs = (d/X)(vc/R) (20)

which is defined as the spatial doppler-frequency shift.

The dc term in Eq. 18 results from the two-way antenna pattern which
causes the gain to appear as the square in thG received signal. This is
different from temporal signals since a dc component cannot be radiated in
space. The spatial signal, on the other hand, can have a dc component. If
the signal were transmitted with a broad antenna pattern (as From a single,
small antenna) and received with an interferometer pattern, the received
signal would be proportional to the square root of Eq. 17 and the spatial
doppler frequency would be one-half of Eq. 20. It has no dc term. The

F7 transmitted spatial signal of Eq. 16, which is not a squared function, can
ha" a dc component depending on the angular extent covered.
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Measurement on a single scan. The spatial doppler-frequency shift can
be extracted by comparing the spatial frequency from a stationary target
with the spatial frequency received from a moving target. The spatial
frequency from a stationary target is found from Eq. 19 as da/i. It is known
a priori.

The measurement of frequency requires tirme. As an approximate "rule of
thumb", the number of cycles in the doppler-shifted signal during the time on
target should differ from the number of cycles in the signal from a stationary
target (no doppler shift) by at least one in order to determine the spatial
doppler shift on the basis of a single scan by the target. Therefore, if
the spatial doppler fs is to be measured on a single scan, we need to have

fs * (time on target) > 1 (21)

The time on target is X/Dn, where X/D is the spatial extent of the radiation
pattern and D is the dimension of the individual antennas of the interfer-
ometer. Thus, it is required that

[(d/,)(vc/R)](X/D9) = (d/D)(vc/R).' ) 1 (22)

If we let d = 10 m, D = 1 m, vc = 100 m/s, and R = 10 km, then we have

(10/1) (100/104) = 0.1 rad/s >n

r This states that, for this example, the scanning rate a must be less than
0.1 rad/s, or 5.7 deg/s, which corresponds to a rotation rate of just under
I rpm, Thus if an S-band scanning interferometer had its two antennas
separated 10 m and had an interferometer pattern 6 degrees wide, the spatial
doppler frequency shift of target at a range of 10 km that moved with a cross
velocity of 100 m/s (an angular rate of 3.3 milliradian per second) would be
detectable on the basis of a single scan of the radiation pattern by the
target. However, an antenna rotation rate of 1 rpm and a range of 10 km are
small. (In this example, the spatial doppler frequency fs is I Hz and the
time on target is one second.) Thus, it might not be usual for the spatial
doppler to be extracted on a single scan.

Consider the following (more reasonable) set of parameters with an inter-
ferometer having a rotation rate of 10 rpm (a - 1 rad/s), and with d = 10 m,
D = 1 m, vc = 100 m/s, and R = 100 km. Using the criterion of Eq. 22, we
find

(d/D)(Vc/R)/ = (10/1) (100/105) = 0.01

which is much less than unity. In this case the spatial doppler shift cannot
be measured on a single observation. When it is not practical or possible to
obtain a measurable spatial doppler shift on a single scan, multiple scans
can be used (analogous to the MTI radar which extracts a doppler frequencyshift from sweep to sweep).

SpatialMTI (Moving Target Indication). The raceived signal is that givei
by Eq..18whch is repeated here:

sr(t) = 2[1 + cos 27r(d/x)[2t + (vc,'R)t- i]1 (18)
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It has a time duration x/Da. The dc component is removed to give

s(t) = 2 cos 2w(d/x)[Qt + (vc/R)t - I] (23)

In the spatial MTI radar (just as in a conventional MTI) the received signal
is mi:.ed with a reference, which is twice the scanning spatial frequency, or

reference signal = cos 2w(d/x)at (24)

It is assumed that the reference frequency d.z/X is large compared to
the spatial doppler frequency, or >>vc/R. The received signal, Eq. 23,
is mixed in a phase detector (or its digital equivalent) with the reference
signal, Eq. 24, and the difference is extracted, which is

s1(t) = k cos[2w(d/x)(vc/R)t - 2w(d/x) I]

= k cos[2wfst - s] (25)

where k is the amplitude (somewhat arbitrary), fs is the spatial doppler
shift = (d/X)(vc/R), and *s is the phase 2w(d/X)4 1. On the
next scan, a time Ts later, the received spatial signal is

s2(t) = k cosr2wfs(t-Ts) - s] (26)

Subtracting s2 (t) from st(t) gives

difference = 2k sin(nfsTs) sin[21rfs(t-Ts/2) - is] (27)

The first sine factor is an amplitude that represents the response of the
spatial MTI, analogous to the amplitude response of a MTI delay line can-
celler. The relative response (normalized by dividing by k) of the
"spatial delay line canceller" is then

H(fs) = 2 sin wfsTs = 2 sin w(d/X)(vc/R)Ts (28)

This is sketched in Fig. 4.

At those values of fs which are an integer multiple of l/Ts , the response
is zero. Thus "spatial blind speeds" vcb occur when

(d/x)(vcb/R)Ts = n

or vcb = nXR/Tsd (29)

With X = 0.1 m, R = 100 km, Ts = 4 s, and d = 10 m, the first (n = 1) blind
speed (cross velocity) is 250 m/s, or about 500 kn. In this case, the
spatial blind speeds are higher than the (relatively low) blind speeds in a
conventional S-band MTI radar. (With a prf of 400 Hz, the first blind speed
of an S-band MTI radar is about 40 kn,) The shorter the range, however, the
lower (worse) will be the spatial blind speed.
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Figure 4 - Sketch of Spatial MTI Response, With Ts=Time
Between Observations
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The ratio of the spatial blind speed Vcb to the radial-velocity blind
speed Vrb normally obtained in a classical MIT radar is

Vcb X R 2T 2RTcb _ _,p= a-
Vrb Tsd X Ts d

where fp = prf = 1/Tn. Thus there may be situations where the spatial MTI
might provide clear operation when the conventional (temporal) MTI experiences
blind speeds. Such might be the case where large unambiguous range is desired.
Since the unambiguous range Ru is equal to cTp/2, Eq. 30 can be written

vcb 4R2/cTsd (31)

Vrb

(Equation 31 assumes the target is at the maximum unambiguous range.)

The use of spatial MTI with two observations does not provide a measure-
ment of angle rate, but only that the target has a component of angular
velocity. Techniques for measuring the angle rate add complication, but
are possible. A problem that needs to be examined (but not here) is whether
the combining of temporal MTI with spatial MTI is practical.

It was pointed out by Dr. Ben Cantrell (NRL Code 5310) that the degree
of clutter cancellation with a spatial MTI could depend on the decorrelation
of the clutter over the time Ts; especially since the value of Ts (the
antenna scan period) can be considerably greater than the pulse repetition
interval (the corresponding observation time in a conventional MTI). In the
conventional MTI, clutter movement within the observ- "'n time must not be
large compared to the carrier wavelength. In the cF f spatial MTI,
however, the clutter movement must not be large comp,.t.. to a "spatial
wavelength". Thus, clutter decorrelation might not be too severe a problem.

Nonscanning interferometer. If the interferometer is fixed, rather than
scanning, the angular (cross-range) component of target velocity and the lobe
pattern of the interferometer will cause the received signal to be modulated
in amplitude at the spatial doppler frequency fs = (d/x)(vc/R). The period
of the spatial doppler frequency is the time the target takes in traversing
one cycle of a fixed interferometer pattern. With d = 10 w, x = 0.1 m,
vc = 100 m/s, and R = 100 km, the spatial doppler fs = 0.1 Hz. Thus the
period is 10 s. It is the approximate time duration required to make a meas-
urement of the frequency. (The time can be reduced somewhat if the signal-
to-noise ratio is large.) It should be noted that the same time (the recip-
rocal of fs) is required in a scanning interferometer as in a fixed inter-
ferometer (The relatively long time required for a measurement is why the
spatial MTI processes the signal from scan to scan.) The advantage of scan-
ning tho interferometer is not in reducing the time required for a measure-
ment, bur in covering a large volume of space with a directive antenna.

5. GAUSSIAN RADIATION PATTERN

In Sec. 4, a cosinusoidal spatial waveform of finite duration was assumed,
as is obtained from a two-element interferometer. Similar spatial doppler

18



effects occur with other spatial waveforms (such as the radiation patterns of
conventional antennas).

Consider, for example, a guassian antenna pattern of the form

gtta) = exp [-2.776 a2 /aJ exp [-k2 2] (32)

where aB = half-power beamwidth. Replacing the angle a i 2t to describe
the time-varying spatial signal gives

gt(t) = exp [-k2g2t2 ] (33)

The received spatial signal is the two-way signal, with a time delay T
or

gr(t) = exp [-2k2S2 (t-T) 2 ] (34)

As before, the received amplitude is taken to be unity. Substituting for
T = t/a in Eq. 34, where the target angle t =t1 - (v/R)t, gives

gr(t) = exp{-2k2 It - [t1 _ (vc/R)t] 2} (35a)

It will be shown that the half-power width of the received spatial signal
is modified by a target with an angular component of velocity. For conven-
ience of analysis, the target will be assumed to be at t1 = 0 at t = 0.
The received spatial signal is then

gr(t) = exp{-2k2 2 t 2 [1 + (vc!R)] 2 } (3 5ib)

The half-power point tI occurs when the argument of the exponential is
approximately 0.35. Thus when there is no angular velocity (vc = 0) the
the half-power width (in time) 2tI = Ato, is

Ato = 2 x [0.35/2k2I2]1
/2

= (0.84)/ka (36)

The half-power width (in time) for a target moving with a velocity vc is

At = (0.84)/[ka(1+vc/Ra)] (37)

The ratio of Eq. 36 to Eq. 37 is

Ato/At = 1 + vc/Rq (38)

If vc = 100 m/s, R = 100 km and s = 1 rad/s, the ratio of widths of the trans-
mitted and received signals is 1.001, or a change of 0.1%. This is likely to
be difficult to measure. If, on the other hand R = 10 km and Q = 0.1 rad/s,
the ratio of widths is 1.1, a 10% change, which ought to be much easier to
detect.

When using the spatial radiation pattern it is assumed that there is a
substantial number of pulses received within the pattern and that the ampli-
tude fluctuations of the echo signals do not affect the accuracy of the
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spatial pattern measurements (which follows from the basic assumption of this
section that the target is considered to be a point scatterer).

6. "MATCHED FILTER" DETECTION OF SPATIAL SIGNALS

We return to the scanning interferometer, as discussed in Sec. 4, to
examine the processing of a spatial signal. "Matched filtering" is consid-
ered here in both the temporal and spatial domains. The matched filter is
one which maximizes the peak-signal-to-mean-noise ratio and has a frequency
response H(f) proportional to the conjugate of the Fourier transform of the
signal to be detected, or S*(f). The matched filter in the temporal domain
will be considered first. (This is not the matched filter for temporal
signals, but the L.mporal filter used for extracting spatial signals.)

Spatial matched filter in the time domain. The received signal is
given by Eq. 18, which is repeated below:

gr(t) = 2{1 + cos 2w(d/X)[st + (vc/R)t - (18)

where d = interferometer antenna separation, x wavelength, S = antenna
scanning rate, vc = cross velocity, R = range, t = time, and gi = angle of
target at t = 0. The signal of Eq. 18 has a time duration X/Da, where D
diameter of an individual antenna. If the cross velocity vc = 0, Eq. 18
becomes

gr(t) = 2 {1 + cos 2v(d/X)[Qt - gI]} (39)

The received signal has a dc component and an ac component with twice the
spatial frequency of the transmitted signal (Eq.16). The spectrum of the
received signal gr(t) can be shown to be

Sr(f) 2 sin(wfx/Do)

S+j2ir(d/X) I

- e sin w[(d/xL +f](x/Dn)
ir[(dlX S+f]J

+ e sin r[(d/x)p-f1(X/D (40)
(d/X)sJ-f]

The exponential factors represent fixed phase shifts. The angle El can be
set to zero without loss of generality. (91 is a known function of time
since the scanning rate Q is known.) There are three terms: a dc componjnt,
and components at f = ± (d/)!, Fig. 5a. (Only the positive frequencies are
shown. The dc component has its first zero at f = Da/X. The ac component is
centered at f = +dsi/X and has a null-width of 2Dsi/x. (The sidelobes of the
sin X/X frequenc7 response are not shown, so as to keep the diagram uncom-
plicated.) The matched filter for-the received signal has a frequency
response equal to S*(f). For a symmetrical signal, as in Fig. 5a, this is
simply S r(f), the solid curve.
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W Figure 5 - (a) Spatial matched filter response (spectrum~ of the received spatial signal, Eq. 40); solid

curve applies for vc=O; dashed curves represent
filters in a spatial matched filter bank.
(b) Example of spatial doppler frequency response
of a moving scatterer (dashed curve)' compared to
a non-moving scatterer (solid curve), as describedI .in the text following Eq. 41.
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The above applies to a target with zero cross-velocity; i.e., vc = 0.
From Eq. 18, a target with an angular velocity will have its response cen-
tered at a frequency da/x + (d/x)vc/R, where the second term is the spatial
doppler fs = (d/x)(vc/R). The classical approach for detection when the
doppler frequency is unknown is to use a bank of matched filters. The
individual filters of the analogous spatial matched filter would have fre-
quencies centered at da/x ± nDM/h, where n 0 0, 1, 2,...N. The integer N
depends on the maximum doppler to be expected. The received signal, Eq. 18,
will be beyond the half-power width of the filter matched to zero velocity
if

fs = (d/X)(vc/R) > Dq/2X

or vc > (DRn)/2d (41)

If, for example, D = I m, R = 100 km, a = 1 r/s, and d = 10 m, then
vc > 5000 m/s before a filter bank is needed. With such numbers, a filter
bank would not be required, and only a single filter could be used. Using
the example numbers usually selected in this report to illustrate the effects,
(d - 10, D = Im, a = 1 m/s), the spatial scanning frequency dD/X is 100 Hz
and the spectral width between zeros is 2Dn/X = 20 Hz. The spatial doppler
frequency with vc = 100 m/s and R - 100 km is fs = 0.1 Hz. This is illustra-
ted in Fig. 5b. Thus, in this case, the spatial doppler frequency is well
within the pass band of the zero-doppler filter. If, however, the inter-
ferometer did not scan, the processing has to be modified and a "bank" of
filters then might be required.

Spatial matched filter in the aperture domain. In the above it was
indicated that matched filtering of the spatial signal in the time domain
should be adequate. However, it is of interest to determine what spatial
matched filtering might be like as an antenna problem.

The received signal with a spatial doppler-frequency shift fs = (d/X)
(vc/R) is written as

gr(t) = 2tI + cos(2w[(ds/X) + fs]t - *1)} (42)

where *1 = 2ir(d/X)l. The signal is assumed to be transmitted by a two-
element inteferometer with antenna separation equal to d. If the spatial
doppler shift fs is sufficiently large, the received signal is not "mat:hed"
to the interferometer of spacing d. but to some other interferometer spacing
d', given by

d'Q/x = da/x + fs

or (43)

d' = d + fsX/S

There is a minimum value of d' - d = 2D since the two interferometers cannot
be spaced closer to one another without the antennas overlapping, unless a
phased array is used. The geometry is shown in Fig. 6. The echo signal
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Figure 6 - Geometry of Two Interferometers of Spacing
d and d'=d+20
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will be matched to the interferometer of spacing d' rather than d if

d= d + (fsX)/Q ; d + 2D (44)

or fsx/g > 2D

Substituting for fs

vc  P 2 s(D/d)R (45)

With S = 1 r/s, D/d = 0.1, and R = 100 km, vc must be greater than 20,000 m/s
before a separate receiving interferoireter is needed. This velocity is quite
large. (At 10 km, the velocity must be greater than 2000 m/s, which is also
large.) Thus It is not likely under most circumstances that a spatial matched

* filter bank will be required with a scanning interferometer.

7. RELATION TO CONVENTIONAL RADAR MEASUREMENTS

The phase derivatives for measuring target location ana velocity differ
from the conventional measurements made by a radar. This section discusses
the relationship between the phase-derivative method and the conventional
method. Emphasis is placed on the range measurement, but similar arguments
apply as well to the other radar measurements.

Range measurement -- from two frequency components to many. The measure-
ment of range from the partial derivative of phase with respect to frequency,
as is discussed in this report, is not how range is determined by conventional
radar. Range is usually measured from the time taken by a waveform (such as
a short pulse) to transit to the target and back. It is well known, that the
signal bandwidth determines the accuracy of the conventional range measure-
ment. (The greater the bandwidth of the radar signal the more accurate will
be the range.) The measurement of range as a partial derivative with respect
to frequency also involves the frequency domain. It is of interest to examine
how the conventional measurement of range as a time delay is related to the
measurement of range as a partial derivative of phase with respect to fre-
quency.

The simplest implementation of the phase derivative measurement of range
is the two-frequency technique in which range is obtained from the difference
in phase of two closely spaced frequencies. At a frequency f, the phase from

*a target at range R is * = 4rf R/c, where c = velocity of propagation. The

phase from a signal at frequency f2 is 2 47rf 2R/c. The difference -

between these two phase measurements gives the range

R = (cA )(AnAf) (46)

where A =2" and Af = f2 - f1. This technique for determining range is

not widely used in radar; however, it has been known for a long time and has
seen some application. It is the basis for the multiple-CW-frequency tech-
nique used for measuring distance in surveying arid for rai)ge instrumentation.
It is also related to the so-called "delta-k" radar used in remote sensing.
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There are two limitations to the range measurement based on the phase-
difference between two frequencies: (1) its accuracy is low since the fre-
quency difference Af must be small in order to avoid ambiguities (this
results from the requirement that A must be less than 2r radians) and (2)
it cannot provide a range measurement when more than one scatterer is present
within the radar resolution cell (since the phase difference A@ cannot be
extracted when unresolved echo signals from multiple scatterers are present.)
Both of these limitations will be examined.

The accuracy of the range measurement of a single scatterer can be
improved by increasing the frequency separation Af. It can be shown (from
Eq. 24 of Appendix VI.) that the theoretical rms error in measuring range
with two frequencies is

SR=- c J T(47)
27R Af (2E/No)L/z

where Af is taken as the bandwidth 8, E = received signal energy and
No = noise power per unit bandwidth. The maximum unambiguous range occurs
when a¢ (in Eq. 46) is equal to 2w radians, or

Run = c/(2Af) (48)

For a given unambiguous range, the accuracy cannot be improved without limit
(by making Af large in Eq. 47) if range ambiguities (as given by Eq. 48) must
be avoided. It is possible, however, to make accurate, unambiguous measure-
ments of range on a single target by using more than two frequencies, Fig. 7.
If n frequency components are employed, the maximum spacing (fn - fl) deter-
mines the range accuracy. This frequency difference, however, usually gives
a highly ambiguous range measurement. The next-to-the-largest spacing
(fn-1 - fl) is chosen to resolve the ambiguities in the accurate but ambig-
ambiguous measurement made with fn and fl" If the frequency separation
fn-1 fl cannot be made small enough to completely remove the ambiguities,
another frequency pair (fn-2, fl) has to be used. Additional frequencies
with closer spacings are added until the separation f2 - fj provides the
required unambiguous range. Thus the frequencies are chosen so that the
widest spacing gives the accuracy required (Eq. 47), the closest spacing
gives the unambiguous range (Eq. 48), and the intermediate spacings resolve
the ambiguities. Radars that have used this measurement technique have
typically employed about five frequencies with separations in the ratio of
10 to 1.

The abeve has described the measurement of range in the frequency domain.
There is also an equivalent tithe-domain representation that can be found from
the application of the Fourier transform. Wnat can be done in the frequency
domain has a counter-part in the *ime domain, The physical implementation
might be different, but the results should be the same. (A well-known exam-
ple from signal detection theory is the frequency domain matched filter and
the time domain correlation receiver, both of which maximize ti peak-signal-
to-mean-noise ratio, but with considerably different physical implementa-
tions. It is sometimes instructive to examine a frequency-domain technique
in the time domain, and vice versa. (The time domain range measurement
technique assumes all frequencies are radiated simultaneously. This need
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Figure 7 - Accurate, Unambiguous Range Measurement From the
Phase-Differences Between Multiple Frequency
Components
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not be so in the frequency domain if the scatterer is stationary.) The
multiple-frequency range measurement will be examined in the time domain.

On the right-hand side of Fig. 8a is a sketch of the envelope of the
temporal waveform produced by the sum of two frequencies

sin 2rf 1 t + sin 2irf 2t = 2 coswAft sin(2wfmt) (49)

where Af = f2 - fl and fm = (f2 + fl)/2. 7ha magnitude of the envelope is
12 cos(wAft)J. The carrier at the average frequency (f2 + fl)/2 is not
shown, so as to keep the figures simple. Although the waveform of Fig. 8a
and Eq. 49 is not the typical pulse-train waveform usually associated with
radar, it might be considered as a special case where the pulse is broad
in width with a cosine rather than rectangular shape. Its null width is
I/af (half-power width = 1/2Af) and the pulse repetition frequency is Af;
hence the duty cycle is unity. The range to a scatterer can be found, in
principle, by determining the time at which the cosine "pulse" arrives at
the radar. The accuracy will be poor because the width of the "pulse" is
large. The large width of the "pulse" also makes it unlikely that the range
to multiple targets can be determined. The accuracy of the measurement can
be improved by increasing Af, but this only increases the ambiguity
problem.

The range accuracy can be improved with the same unambiguous range (same
value of Af) if a third frequency f3 is added such that f3 - fl, is much
larger than Af = f2 - fl. More than three frequencies might be used. A
sketch of the time variation of the sum of four frequencies is shown on the
the right-hand side of Fig. 8b. (Only the envelope is shown.) The unambig-
uous range interval is determined, as before, by the smallest frequency
separation Af, and the width of the major response (which determines the
accuracy) is inversely proportional to the widest frequency separation. This
example shows qualitatively how the addition of a few frequencies improves

the range measurement accuracy (because of the narrowing of the time wave-
forms) while maintaining the unambiguous range. However, the time-sidelobes
of this waveform are poor so that it does not perform well if more than one
target echo is present.

An accurate range measurement of more than one scatterer within a
specified unambiguous range interval requires a "filled" rather than the
"thinned" spectrum of Fig. 8b. There needs to be many frequencies with
equal spacing Af covering a bandwidth B, as illustrated in Fig. 8c. Range
Range accuracy is determined by the bandwidth B, and the unambiguous range
by Af. The ability to resolve multiple scatterers, and measure the range
of each, depends on having the spectrum filled. In principle, there needs
to be N = (B/af) + 1 frequency components if N scatterers are to be resolved.
From the above, and Fig. 8c, N - 1 equally spaced, equal-amplitude scatterers
can be resolved with N equally spaced, equal amplitude frequency components.

* In practice, the amplitudes of the frequency components are not equal since
this results in a waveform with high time sidelobes. Lower time-sidelobes
are obtained by tapering the frequency spectrum so that the frequency compon-
ents in the center are larger than those at the edge, just as is dona with
the antenna aperture illumination to achieve low sidelobes. The tapered
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Figure 8 - Spectra (left-hand side) and the envelope of the corresponding
tire waveform (right-hand side). (a) Two CW frequencies
providing inaccurate and/or ambiguous range measurement.
(b) Four frequencies arranged to produce an accurate range
measurement of a single scatterer within the unambiguous
interval. (c) Uniformly filled line-spectrum producing a
periodic waveform for accurately measuring the range of
multiple targets within the unambiguous interval. (d) Con-
t'inuous spectrum producing a waveform capable of accurate,
unambiguous range measurement of multiple scatterers.
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"filled" line spectrum produces a repetitive train of "pulses," the type of
radar waveform commonly used in radar for range measurement. As the number
of frequencies is increased with a fixed bandwidth B, N + -, Af+ 0, and
NAf + B, there results a continuous spectrum that generates a single pulse
with a time duration of aoout 1/B, as in Fig. 8d. This demonstrates the dif-
ference between a filled, continuous spectrum (Fig. 8d), that has no ambigui-
ties, and a discrete spectrum (Fig. 8a) that can have many ambiguities.

In the above, we have shown how to go from the two-frequency radar where
a phase-difference measurement gives an unambiguous, but inaccurate, range
measurement of a single scatterer, to the conventional pulse waveform capable
of measuring the range of multiple targets.

The determination of range from the difference in phase A between two
closely spaced frequencies Af is an embodiment of the phase-derivative method
of measuring range. A major difference between the simple phase-derivative
method and the usual measurement of range with a short pulse is that a single
phase measurement has meaning only for a single scatterer. Thus the two-
frequency method does not provide the ranges of multiple scatterers as can
the conventional pulse waveform. When there are multiple "point" scatterers
within the radar resolution cell, the phase extracted from the echo signal
is a composite of the contributions from each scatterer. With N scatterers,
each producing an echo signal of amplitude ai and phase *i (where i = 1 to N,
ci = 2wfTi, and Ti = round trip time delay to the ith scatterer), the target
echo signal can be represented as

zai sin(2rft + .i) = A sin(2rft + o) (50)

Th's phase o is given by the classical expression

N
I ai sin *i

o = arctan i = 1 (51)
N
Z ai cos i

A single measurement of phase * (at a single frequency f) as given by Eq. 51
does not provide information about the N individual scatterers. The breakdown
of the phase-derivative measurement when multiple target echoes are present
is found to be similar to the problem of angle or range glint in a tracking
radar. A tracking radar is designed to operate with the phase from a single
scatterer only. When multiple scatterers are present within its resolution
cell, the angle (or range) measurement can be misleading. This is called
glint. It can be severe enough to even cause radar tracking to be directed
outside the physical extent of the target. Similarly, the measurement of
range from the rate of change of phase with respect to frequency assumes
that only a single "point" scatterer is present. With multiple scatterers,
the apparent time delay (range) given by a@/ f can also be outside the
range extent of the scatterers.

As an example of the problem that occurs when more than one scatterer
is within the radar resolution cell, we take the partial derivative with
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respect to frequency of the phase given by Eq 51, which is

Z2rT i aiaj cos 2wf(Ti-Tj)

a= 14aia j cos 21f(Ti - Tj)

2irTe (52)

where Te is an "effective" time delay, and is defined from the above equation.
Take the simple case of two scatterers with al = a , a2 = pa, (p<l),
Tm = (TI+T 2 )/2, and AT = (T2-Tl)/2. Then

1 - p 2  (53)
Te Tm + 1 + p2 + 2p cos(2faT)

When the amplitudes of the two signals are equal (p = 1), then Te = Tm, where
Tm is the midpoint between the two scatterers. This is a "satisfying" answer
since it seems to indicate that the effective time delay Te might be some sort
of weighted time delay or target "center of mass." Unfortunately, this is
not so. When cos 27rfAT = -1, the second term of Eq 53 blows up (equals
infinity). The effective time delay Te as given by Eq. 52 and 53, therefore,
is not a usable measure of a target "center of mass." The second term of
Eq. 53 is similar in form to that in the classical expression describing the
phenomenon of glint in a tracking radar.

Thus the single phase-derivative method breaks down when multiple
scatterers are present within the resolution cell of the radar.

A note of caution (and hope), however, should be stated regarding the
above. When Eq. 53 blows up and gives a value of Te that is not related to
reality, the amplitude of the received signal goes to zero. Consider the case
where a1 = a2 and the relative phase between the two signals is r radians.
Then the resulting signal amplitude is zero and Te = -; i.e., the two signals
cancel. Te might still be a useful measure of time delay to a distributed
target (a collection of scatterers) if the measurement is ignored when the
amplitude is too low.

In principle, the measurement of the composite phase I and composite
amplitude A of the echo signals from N frequency components can provide the
range to N scatterers. The composite amplitude A in Eq. 50 (the companion
equation to the phase of Eq. 51) is

A2 = (Zai sin2wfTi)
2 + (zai cos2wfTi)

2  (54)

Thus if the composite phase (Eq 51) and amplitude (Eq 54) are measured it N
frequencies there are enough equations to find the N values of ai and the
IN values of *i. The N values Gf Oi provide the ranges to N scatterers.

*(This can be a formidable task.)
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We again examine the frequency-domain representation. The temporal
response from a collection of point scatterers at various ranges cTi/2, i = 1,

N, (c = velocity of propagation) is

Sr(t) = jais(t - Ti) (55)
i

where s(t) represents the transmitted signal, ai is the amplitude of the echo
signal from the ith point scatterer, and Ti is the time delay for each scat-
terer. If the Fourier transForm of s(t) is S(f), then the Fourier transform
of s(t - Ti) is given by the shifting theorem as S(f) exp[-j2rfTi]. The
Fourier transform of the received signal (Eq. 55) is

Sr(f) = jaiS(f) exp[-j2wfTi]
li

= S(f) .aiexp[-.j27rfT] (56)
i

If there ar,. N equal-spaced, equal-amplitude scatterers (ai = 1) extending
from T1 to Ti + (N-1)AT, the received spectrum is

Sr(f) = S(f) sin irfN&T exp j[-2-IfTl - if(N-1)ATJ (57)
sin wfAT

The magnitude (amplitude) of the spectrum Sr(f) is
$IT.

ISr(f)I = IS(f) (sin nfNAT)/(sin rfA-TI (58)

Since the transmitted spectrum S(f) is known, the sin NX/sin X factor will
provide the extent of the target, N AT. The spacing between the lobes is
I/AT, which gives the spacing between the equally spaced scatterers. The
phase *r of the spectrum, as given by the exponential of Eq. 57, is

r = -j21rfT 1 - 7rf(N-I)AT (59)

The partial of *r with respect to frequency is

4r/3f = -27[T 1 + (N-1)AT/2] = 27rTe (60)

which is the time delay (range) to the center of the N equal-ampl.itude,
equally spaced scatterers. Although this result produces a seemingly satis-
factory answer, similar catastrophic events can occur as was the case for~the two-scatterer target (-4. 53) discussed previously in the time domain.

Other measurements. The above discussion of the measurement of range can
be directly applied to the measurement of angle, starting with a two-element
array antenna (interferometer), progressing to a thinned array antenna with
several unequally spaced elements, and to a filled phased array without
grating lebes (no angle ambiguities), and to a continuous aperture antenna.
Nothing further need be said in the section regarding the angle measurement.
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A doppler-frequency measurement (range rate, or radial velocity) can be
made from the phases obtained at two separate ti'ies, analogous to the measure-
ment of the phases at two frequencies to provide range. An MTI radar makes
this type of measurement in order to separate moving targets from stationary
clutter. The doppler-frequency measurement in an MTI radar, however, is
usually highly ambiguous since the pulse repetition period (time between
phase samples) is made long to avoid range ambiguities (rather than short to
avoid doppler a nbiguities.

The doppler ambiguities in an MTI radar result in ambiguities in radial
velocity that are called "blind speeds." A target with a radial velocity
equal to a blin, speed is attenuated and not seen. The usual method to
mitigate the effect of blind speeds is to employ more than one pulse repeti-
tion frequency (prf) so that the target will be outside a blind speed on at
least one prf. Although the MTI radar does not need to know unambiguously
the doppler frequency, or radial velocity, it is possible to do so based on
the above discussion of the selection of frequencies for making an accurate,
unambiguous measurement of range. This is done in Appendix IV.

A brief discussion of phase derivative measurements compared co other
radar measurements is given in Appendix V.

Measurement accuracy. Appendix VI examines the accuracy of the phase
derivative measurement methods and compares them with the accuracy of
conventional radar measurement methods. The following are demonstrated in
Appendix VI:

- The theoretical rms error in measuring the radial velocTty from
either the doppler frequency shift or the rate of change of phase
with frequency (ao/af) is approximately B/fo times the rms
error obtained from a from a measurement of the rate of change of
range with time, where fo is the carrier frequency and B is the
bandwidth of the signal. (Typical ratios of fo/B might be from 30
to 300.)

- Likewise, the rms error in measuring angle rate with a scanning
interferometer or from the rate of change of phase with spatial
position is D/d times the Cms error obtained from the classical
measurement of the rate of change of phase with time, where D is
the dimension of the individual interferometer antennas and d is
the spacing between the two antennas (each of dimension D) of the
interferometer. (The ratio d/D might typically be from about 10
to perhaps 100.)

Thus range rate and angle rate measurements based on the partial deriva-
-tives of phase or the doppler frequency shift (spatial as well as temporal)

can be much more accurate than measurements based on the first derivative of
range or angle with respect to time.

Appendix VI also shows that the accuracy of the measurement of range or
angle based on partial phase derivatives is about the same as can be obtaine.d
with conventinnal range or angle measurement.
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Appendix I - Review of Related Literature

This appendix briefly reviews the highlights of several publications
that relate to the subject of this report. Its purpose is to provide a
brief historical background and to place the work reported in this report
in proper perspective with respect to other work. The first paper is that
of R. J. Lees, which was mentioned in the main body of the report. The
other two publications are related to the subject matter of this report, but
not in as direct a manner as that of Lees.

I. 1. "A Generalized Theory of Radar Observations," by R. J. Lees, AVIONICS
RESEARCH: SATELLITES AND PROBLEMS OF LONG RANGE DETECTION AND TRACKING,
AGARDograph 40, Pergamon Press, N.Y. 1960.

This was the first paper to describe radar measurements in terms of the
phase and amplitude spectra of the echo signal. It is a short paper (about
four pages) and does not go into any detail. All of his discussion and
examples are qualitative. No mathematical analysis is given.

He states that the measurment of the amplitude or phase at a single fre-
quency, time, or position provides little information about a target, other
than something is present that can cause an echo. It is changes in these

*1 quantities that are needed for extracting target information.

The main body of the present report includes several extensions and
corrections to Lees's concept. These include the following:

- Lees correctly mentions that the phase derivatives with respect to
frequency, time, and position provide the range, radial velocity, and angle
of point scatterers; but he also mentions that the amplitude " derivatives"
of the same parameters provide information about finite size targets. How-
ever, it is not the amplitude derivatives that provide target information,
but the variation of the amplitude as a function of these parameters.
(Lees does use the term amplitude variations, but he seems to mean the
derivatives.) The amplitude derivatives of a distributed scatterer are not
constant, as are the phase derivatives that apply for a point target.

- He states that the phase derivatives provide information about a "point"
* scatterer (he used the term "source") but he did not indicate that the point

scatterer had to be the only scatterer present; (or else it has to be resolved
in some manner from other scatterers.)

- Lees does not indicate there is a fourth basic phase measurement that
gives the angle rate and that there is a fourth basic amplitude measurement
that provides th-eE ange of cross-range profile with time.

- What Lees calls "shape" is actually the radial profile and what he calls
"change of shape" or "target spin" is actually the change of the radial
profile with time.
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Lees also briefly mentions polarization as providing a measure of target
asymmetry, and that ambiguities in measurements will result if the observa-
tion is not continuous.

I. 2. "A Radar Tangential Moving Target Indicator," by G. 0. Young, Proc.
1984 IEEE National Radar Conference, Atlanta, Ga., pp 90-94.

This paper is concerned with the measurement of target tangential veloc-
ity, or angle rate, as well as the detection of crossing targets that would
normally be suppressed by conventional MTI processing. Dr. Young does not
cite any prior references, but the wording he uses in parts of his paper
indicates he is probably familiar with either Lees's original paper or the
description of it in Chap. 10 of the first edition of "Introduction to Radar
Systems." It is a qualitative paper in that it presents ideas without also
justifying that they can be achieved with a practical radar implementation.
He does not give quantitative (numerical) examples to show that these con-
cepts can be applied.

He offers two methods for finding the angle rate. In his first method he
-, establishes four equations that relate four radar measurementi to four target

parameters. The four measurements are ao/af, ao/at, ao/ax, a O/atax, where
* is not the same as that used in this report but includes both the range
component (as given by Eq 3 in the main body of this report) and the spatial
phase (as given by Eq 7). The target parameters to be found are R0, Ro', e0 ,
and 0o', where the subscript zero is the value at t = 0. He finds 00', as
well as the other three parameters, by solving the four equations simultan-
eously. He gives no indication how realistic this might be in practice, nor
does he discuss the value of this approach, nor its advantage compared with
other methods for extracting angle rate.

The other method for obtaining angle rate involves taking the difference
between the doppler frequencies at two separated antennas. (This is some-
times called differential doppler.) He points out that for the spatial
doppler frequency (which he calls the tangential doppler frequency) to be
comparable to the values obtained for the usual (temporal) doppler, the
spacing between antennas should be comparable to the range. For this reason
he states that the ranges must be small if the antenna separation is not to
be impracticably large. He states that the technique is well suited to
synthetic aperture radar (SAR), but he does not elaborate - and it is not
obvious - why this might be true, other than the large separations possible
with a moving vehicle carrying a SAR.

In the last paragraph of the paper the use of the interferometer is sug-
gested, but no details are given. The effect on the angle-rate measurement
of scanning the radiation pattern also is not mentioned. He seems to requirethat the target move through the beams, rather than scan the beams through

~the target.

A possible limitation to his method is that he has to eliminate the con-
stant phase term 41rfRo/c from the argument of a sine function representing
the received signal. This he claims can be done from the conventional
measurement of range (determined from the range gate in which the received
pulse lies).
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This does not seem practical since the accuracy of the phase 4rfRo/c must
be within a small fraction of 27t radians in order to subtract the phase term
in the sinusoid. Ihis means that the range must be known to a small fraction
of a wavelength, which is not likely.

1. 3. "Some Results From Utilizing Doppler Derivatives," by N. Levanon,
IEEE Trans., vol AES-16, pp 727-729, September 1980.

Assuming a straight-line target trajectory at constant velocity, the
author shows that the range, range-rate, and angle at t = 0 can be found from
the measurement of doppler frequency and its first two derivatives. The three
equations for fd, fj and fa are solved simultaneously. Alternatively, the
range, range-rate, and angle can be found from measurements of fd at three
or more times. No mention is made of angle rate.
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Appendix II - Phase Spectrum from a Point Scatterer

The transmitted signal can be represented as having an amplitude a(t)
and a phase *(t) modulating a carrier frequency fo, or

st(t) = a(t) sin[2wfot + *(t)] (1)

It has a Fourier transform given by

St(f) f f a(t) sin[2wfot + 0(t)] e-j 2 ft dt (2)

The signal received from a point scatterer is of the same form as Eq 1, but
it is reduced in amplitude by an amount p (p~l) and has a time delay T, so
that

sr(t) - pst(t-T) (3)

For convenience, the scale factor p is set equal to unity. The spectrum of
of the received signal is given by the Fourier shifting theorem as

=S(f) - St(f) eJ2tfT (4)

Normalizing the received spectrum Sr(f) by that which was transmitted St(f)
gives

Sr(f)/St(f) = So(f) = eiJ27fT (5)

Thus, the normalized spectrum So(f) from a point scatterer has only a phase
component * = -2wfT. The relative amplitude spectrum is unity for the case
of a point srtterer. Information about the target is only available from
the phase intormatijn. (The magnitude of the receive signal can, in prin-
ciple, vrovide the range to a point scatterer; but it requires knowledge of
the values of the parameters of the radar range equation, including the
tarpot cross section.)

If the transmitted phase 0(t) is taken to be zero, the received signal
(with p = 1 and a(t) constant) is

Sr(t) = a si)27rf(t-T) = a sin(21rft - 2nfT) (6)

so that the received phase is = 21rfT. This is the same as the phase of the
received signal spectrum.

When the target is a distributed scatterer, the amplitude and phase of
the normalized spectrum of the received signal is more complicated than
indicated above and provides inforiiazion as to the distributed nature of the
scatterer. The subject of the present report, howeve is the single point-
scatterer.

36



Appendix III - Radiation Pattern of a Two-Element Interferometer

Consider two antennas, each of dimension D, separated by a distance d,
as in the interferometer antenna in Fig. 3 of the text. In this appendix,
the intensity radiation pattern in one dimension is derived for the inter-
ferometer, which is Eq. 14 of the text. It is assumed that the illumination
is constant (uniform) across each of the two antennas of dimension D. The
angle measured from the normal is expressed here as u = sin F. The field
intensity pattern in the far field is

(-d+D)/2 (d+D)/2

11j2w(x/X)u wx/ug(u) e dx + e dx

-(d+D)/2 (d-D)/2

1st integral (-d+D)/2

j27r(x/x)u jw(-d+D)u/X -jn(d+D)u/x

! j2wu j2w u

! - -(d+D)/2

-,Jw(d/X)u( jf(Dlx)u -j=(rD/X u)

j2w u

-jwr(d/x)u
= . sin[ir(D/x)u]

iTU
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2d integral (d+D)/2

j21r(x/x)u ji(4,d+D)u/x -jir d+9 u/x
12= e =e -e2 j27ru j21tu

(d-D)/2

+jir(dlX) u (e jff(D/X) u -jw(DlX)u)
= e+1 ed/-e

j2Wu

+jw (d/X) u
= e sin[n(D/X)a]

wU

*jir(d/x) u -jr(d/X) u

I + I = sinw(D/X)u e +"
1 2 Wu

= sin iD/X)u 2 cos a(d/X)u
iru/X

The first factor (sine) is the pattern of an antenna of dimension D. The
second factor (cosine), including the factor of 2, represents the interfer-
ometer pattern of isotropic radiators, which is 2 cosw(d/X)u. This is the
same as Eq. 14 of the text if the first factor is identified with ge( ), the
pattern of the individual antenna. If the difference of the two antennas had
been taken, instead of the sum, the sign of 12 would be minus and the inter-
ferometer pattern would be -2j sinw(d/X)u. Thus the difference produces a
sine spatial pattern, the sum produces a cosine spatial pattern.

In Sec. 3 of the text, the spatial phase was taken as the phase differ-
ence, *s = 2.w(d/X)u, between the two antennas of the interferometer rather
than as the phase of the sum of the signals. The phase of the sum (or the
difference) of the signals from the two antennas of the interferometer depends
on both the range and the angle. Therefore, there is coupling between the
range and angle measurements based on the partial derivatives of the received
phase. This is shown below.

The transmit signal from the interferometer is taken as sin 2wft. The
signal received at one antenna is sin 2wf(t-T) and the signal received at
the other antenna is sin [2wf(t-T) + sj, where T = 2R/c,,R = range, c =
velocity of propagation, and s = 2i(x/)u. (The two elements of the inter-
ferometer are assumed, for convenience, to be isotropic radiators, and the
spacing d is taken as the variable x.) The sum of the signals from the two
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antennas is

sum = 2 cos [r(x/x)u] sin [2irf(t-T) + i(x/x)u]

= 2 cos [i(x/X)u] sin [2rft + a]

where a= 4i(f/c)R + n(f/c)xu

If we take the partial derivative of *a with respect to the spacing x, we
get the angle of arrival , as expected. Thus

34a/ax = W(f/c) sin g

However, the partial derivative with respect to frequency f gives

aa/f = (4w/c)R + w(x/c) sin 9

This provides the sum of the range and the angle, and neither can be
extracted separately. The partial derivative with respect to the angle
g is

a~a/au = 4w(f/c) aR/au + 7(f/c)x

since the range R depends on the angle g (u -sing). This has no obvious
interpretation. The partial of *a with respect to time is

300/at = (4w/X) 3R/at + ir(x/X) au/at

which combines both the range rate aR/at and the angle rate (au/at).

Thus the phase term of the sum (or difference) signal from the inter-
ferometer does not provide the target information we seek. The information
is in the amplitude, or 2 cos ir(dx)u, which can be considered the spatial
signal. It is the phase of the spatial signal as a function of spacing x
and time t which provides, respectively, the angle and angle-rate. It
appears only to be fortuitous that the partial of the temporal phase with
respect to x provides the same (angle) information as the partial of the
spatial phase with respect to x. The angle rate can only be obtained from
the spatial phase.
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Appendix IV - Selection of Pulse Intervals for Accurate,
Unambiguous Doppler Frequency Measurement

This discussion extends that presented in Sec. 7 for selecting the fre-
quencies for the accurate, unambiguous determination of range. The problem
considered in this Appendix is the selection of the successive pulse inter-
vals for the accurate, unambiguous measurement of the doppler frequency
(and, hence, the radial velocity) in an MTI radar. The method described
here differs from the normal staggered pulse repetttion interval waveform
often used in MTI radar.

The waveform consists of a succession of pulse intervals TI, T2, ... , TN.
The smallest interval Ti between pulses (the largest prf, fl) is chosen so
that there are no doppler ambiguities (no blind speeds). The prf is

fj = 1/T1 = 2fdmax = 4vmax/X (1)

where fdmax = maximum unambiguous doppler frequency that is expected, vmax
first blind speed, and X = wavelength. The factor of 2 that multiplies fdmax
in Eq. 1 is due to the Nyquist sampling theorem that requires at least two
samples per period of the highest frequency for unambiguous frequency meas-
ure ment. (If the concern is to avoid blind speeds rather than unambiguous
frequency measurement, the factor of 2 would be omitted.) The largest
interval between pulses TN (the smallest prf, fN) is determined by the need
for unamDiguous range Run. Thus

fN = i/TN = c/2Run (2)

The ratios of the other prfs (f2/fl, f3/f2, etc.) can be taken to be 10 to 1.

As an example, assume the maximum radial velocity (first blindspeed) is
vmax - 2000 kn and that the wavelength X = 23 cm (L band). From Eq. 1, the
largest prf is 17.4 kHz (T1 = 57.5 us), corresponding to an unambiguous
range of 8.63 km (4.66 nmil. If the unambiguous range is assumed to be 240
nmi, the lowest prf as given by Eq. 2 is 337 Hz. One additional prf is
needed. This is selected (somewhat arbitrary) as the geometric mean of the
other two values already selected, which is 2.42 kHz (instead of the 10 to I
ratio since the ratio of fN/fi in this case is less than 10). The unambig-
uous range for this prf is 62 km, or 33.5 nmi. Thus this waveform contains
four pulses with three spacings: Ti = 5.75 us, T2 = 413 us, and T3 = 3 ms.
This waveform has both range and doppler ambiguities, but it should be
possible to resolve them. It would be of interest to examine the classical
ambiguity diagram produced by this waveform.

A waveform commonly used for a long-range L-Band radar consists of a
train of five pulses with four different intervals. Unlike the waveform
described above, each of the four intervals provides an unambiguous range
measurement. The intervals might, for example, be in the ratio 25:30:27:31,
with the shortest interval corresponding to the maximum unambiguous range.
The method for selecting pulse intervals described here should have less
less than the conventional staggered interval waveform since it has a large
ratio of max to min spacing. Range ambiguities result, but it should be
possible to resolve them.
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Appendix V --Phase Derivatives in Other Measurement Methods

FM-CW Radar. A CW radar does not measure r a.,i unless its waveform is
modulated in frequency, phase, or amplitude so as to increase its spectral
bandwidth. Frequency modulation is the usual method, as is done in the
classical radio altimeter.

The phase of the returned signal is given by Eq 3 of the main body of the
report as

* = 2ffT (1)

where f = frequency, T = 2R/c = round-trip timi delay to the target at
range R, and c = velocity of propagation. The frequency f is assumed to be
a function of time. The time delay T can also be a function of time (aT/at
is a measure of velocity). Normally, the derivative of phase with respect
to time (30/at) gives the doppler frequency shift, and the radial component
of target velocity. When frequency is not a constant, ao/at gives the
range. (It will be recalled that FM-CW radars extract a frequency from which
range is determined.)

Differentiating Eq. 1 with respect to time, we get

a./at = 2rfT' + 2vf'T (2)

If the first term is small compared to the second term, this equation gives
the time delay T (or range) and is

2. .= 27rf'T (3)
at

To see that the first term can be neglected in a practical case, take
f = 3000 MHz, T = 0.001 s (R = 80 nmi), Af = 100 MHz, AT = 0.01 sec,
(f' = Af/AT = 10 GHz/s), and T' = 1 vs/s (corresponds to a velocity of 150
m/s). Then fT' = 3000 is much smaller than f'T = 107.

Differential Doppler. In this technique, the doppler frequency is
measured at two locations separated a distance x. The measurement provides
angle rate. The doppler shift is given 5y ao/at, or

a./at = ( 4 A/,)vr (4)

where vr = radial velocity = DR/at. The differential doppler is

axat at ax (5)
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If interchanging the order ?f differentiation is permitted, then Eq 5 shows
that differential doppler a /axat (left hand side of the equation) is the
same as the rate of change of angle a0/ax with respect to time.

Time Difference of Arrival (TDOA). The angle of a target can be found by
measuring the difference in the time of arrival of signals received at two
separate locations. Its advantage is that non-directive antennas can be used.
It has application in ESM, but has not been of interest in radar, because it
does not use directive antennas (with their large receiving aperture). The
narrow beamwidths and large apertures associated with directive antennas is
important in radar applications. Time and phase are related, so that bT/Ax
is equivalent to A /Ax, or angle. The advantage of measuring AT instead of
AO is that wideband signals can be used which avoid the problems of ambigu-
ities and the contamination from multiple gignals (targets) that are charac-
teristic of phase measurements.

4
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Appendix VI - Accuracy of Phase-Derivative Measurements

Introduction

The main body of this report discussed the use of phase derivatives
for obtaining the target location (range and angle) and change of location
(range rate and angle rate). The phase derivatives are not the usual method
for obtaining radar measurements. Therefore, this appendix addresses the
theoretical a:curacy with which phase-derivative measurements can be made and
compares them with conventional radar measurements. The emphasis is on the
angle-rate measurement since it has not been a usual type of radar measure-
ment. Angle rate can be obtained from the spatial dopoler frequency shift
or, more conventionally, from two angle-measurement3 separated by an interval
of time.

The accuracy, or rms error, with which radar measurements can be made
when the limitation is white, gaussian noise, has been described in a number
of references. 1 -3 In general, the theoretical accuracy, Sm, potentially
available from a radar measurement can be expressed in the following general
form

Sm k (1)
m (2E/N 172

0

where k = constant (depends on the shape of the waveform, and is generilly of
the order of unity), E = received signal energy, No = noise power per init
bandwidth (units of energy), and m-is related to the parameter to be measured.
The parameter m is defined by the expressiun

m2 = (2ir)2(x2 0 2 (x)dx (2)

fo 2(x)dx

where o(x) is a spectrum or waveform related to the type of measureme~t
to be made. (The parameter m is a form of second mument of the distribution

Review of Range-Rate Measurement Accuracy.

The measurement of the more familiar range rate, or radial velcity,
will be discussed first so as to provide an introduction to the less well-
known ongle rate measuirement. The measurement of range rate can be m.ide
either (1) as the rate of change of range with time, (2) from the doppler
frequency shift, or (3) from the rate of change of echo signal phase ivith
time. It will be shown that the measurement of range rate based on either
(2) or (3) can be much more accurate than the measurement of range as a
function of time.

4
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Method No. 1 - AR/AT. In this method, the range rate is fodnd from
two measurements of range separated by a time interval T. The theoretical
rns error in measuring time delay is1

6T = 1 (3)
R v2E/N °

where'a is the effective bandwidth defined by Eq. 2 with m= x f, and
O(x) = S(f). If the bandwidth B determines the pulse rise time (so that the
rise time - 1/B), the rms error from a single measurement is approximately

R B(4EI/No )

where E1 is the energy of the signal in a single range measurement. Since
* range R = cTR/2, where c = velocity of propagation and TR = time delay, the

rms error in measuring a distance R is

SR c 1/2(5
(2B) (4EI/No) "

To measure range rate, two range measurements separated by a time At T
must be made. The rms error in measuring AR, the difference in the two
range measurements, will be V2 times SR. It is assumed there is no error in
knowledge of the time separation T. The total energy in the two measurements
is 2E1 = E. Therefore the ms error in measuring AR/At, or radial velocity,
is

6 c (6)• r T ~ /
r (2) BT(2E/N )

0

Method No. 2 - doppler frequency. In this method, the radial velocity
is found from the doppler frequency shift. The theoretical accuracy (rms
error) in the measurement of frequency is given by

S f 1 (7)

a(2E/N ) '
0

where a = effective time duration (defined by Eq 2 with x = t and O(x) = s(t).
For a rectangular pluse of duration T, the effective time duration a = nT/3.
The radial velocity vr and the doppler frequency shift fd are related by

Vr = Xfd/2  (8)

where x : 'adar wavelength. The rms error in measuring the radial velocity
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is therefore

av r (x/2)6fd 2 T(E/N)1i/2(9

2irT2E/N(9)-1T= 3c

TirfoT(2E/No) 1/2

where c = velocity of propagation and fo = radar frequency.

The ratio of Eqs. 6 and 9 represents the rms error in measuring radial
velocity by means of AR/At relative to its measurement from the doppler fre-
quency. This ratio is

rms error from AR/At = Eq 6 = w fo (10)
rms irror from doppler Eq 9 V-.

Since fo/B >>1, ihe rms error in measuring radial velocity from the doppler
frequency shift %an be several orders of magnitude less (that is, better
accuracy) than the measurement based on the rate of change of range with
time. The improved accuracy of the radial velocity based on doppler
frequency measurement with pulse waveforms; however, might be accompanied
in practice by amgituities in range or radial velocity, or both.

4' Method No. 3 - A /At. This is the method described in Sec. 3 of the
main body of the report. From Eq. 4 in the main body, the radial velocity
is

vr = (X/4w)(SO/St) = (X/4w)(AO/T) (11)

The phase derivative is found by measuring two phases separated by the time
T. It is assumed that the rate of change of phase with time is linear,
that the time separation T is known without error, and that the rms error
in measuring phase is given by3

rms phase error = (2E/No)'1/2  (12)"

Since two phases have to be measured to find A0, the rms error in AO is 2
times that given by the single measurement represented by Eq 12. (A factor
of / is included because two measurements are made. Another /2 factor
accounts for the total energy, a similar argument as given for Eq. 6.)
There,-ore, the rms error in measuring the radial velocity is

Sur X 1 (13)
2wT /2E/N 0
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This is the same as the rms error of Eq. 9 for the radial velocity found from
Ithe doppler frequency, except that Eq. 13 is smaller (better accuracy) by a

factor of V3. Generall , constant factors of this magnitude have not been
of concern in the past, so that we will say that the accuracy of the meas-
urement of radial velocity by the rate of change of phase with time is essen-
tially the same as that found by the doppler frequency shift (which seems
intuitively correct.) It might be noted that the equivalent of matched-
filter measurement of phase has not been described in the literature, as it
has for the matched-filter detection of time delay and doppler frequency
shift.

Angle-Rate Measurement Accuracy

As with the measurement of range rate, the angle-rate measurement can
be made by (1) the rate of change of angle with time, (2) the spatial doppler
frequency shift, and (3) the rate of change of spatial phase with time. As
with range rate, methods (2) and (3) are similar.

Method No. 1 - Ae/At. This is the measurement of two angles separated
by a time T. The accuracy in measuring angle is given by1

6e 1 (14)
yV2E/N 0

where y = effective aperture size (in wavelengths), which is given by Eq. 2
with x = aperture parameter in wavelengths, and *(x) = A(x), the aperture
illumination. With a conventional antenna and a uniform aperture illumina-
tion, y = iD//3 X, where D = physical aperture size. The angle rate in
Method No. I is found by making two independent measurements of angle
separated by a time T. The time T is assumed to be known precisely. The
rms error in measuring the angle rate it AO/T is

t VT (15)
irDT 12E/N0

The factor of 2 in the numerator results because two measurements of angle are
needed to find Ae, and the total energy is twice that of a single measurement.

Method No. 2 - spatial doppler frequency. The spatial doppler frequency
shift is given by Eq. 20 of the text for a scanning interferometer, which is

fs = (d/x)(vc/R) = (d/)st (16)

where d = spacing between interferometer antennas, x = wavelength, vc = cross
velocity, R = range, and vc/R = Qt is the angle rate of the target. The
accuracy with which frequency can be measured was given by Eq. 7 of this
appendix.
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Assuming that the spatial signal of frequency fs has a duration T, the value
of a, the effective time duration, is a : n/V 3 . The duration T is equal to

4.x/Da, where 0 = antenna dimension, and n = angular scan rate of the interfer-
ometer pattern (radians/secon). From Eqs. 7 and 16, the rms error in meas-
uring the angle rate, based on the spatial doppler frequency, is

Sat = VT , - Dz (17)
r dTV2E/N o  7 dV2E/N o

The ratio of the rms error in measuring angle rate based on AO/At (Eq. 15) to
the error in angle rate based on spatial doppler (Eq. 17) is

rms error from AR/At E 15 = d (18)
rms error from doppler E1

Since the spacing d between antennas is larger than the antenna dimension D,
the accuracy of the spatial doppler is better than that from Ae/At. The
larger the value of d/D, the better is the accuracy of the spatial doppler
method. (The ratio of Eq. 18 assumes the same total value of E in both
cases. If two antennas are assumed in the interferometer in making the
spatial doppler, but only one for an angle measurement, the energy E in
Eq. 15 is one-half that of Eq. 17. Hence, the ratio of Eq. 18 would be
V2d/D if the antenna diameters are the same.)

The extraction of the angle rate from the spatial doppler frequency
shift is seen to be more accurate than the conventional measurement of angle
rate based on A/At. The difference, however, in the two methods is not as
large as the range rate methods since d/D is usually not as great at fo/B
in Eq. 10.

Method No. 3 - AOs/At. Eq. 10 of the main body of the report gives the
angular rate as

Qt X Aj_ (19)
R 4w x T

where the angle rate is obtained as the measurement of phase at two times
separated by the interval T. The rms error in measuring Qt is

0 t = X 2 S (20)

4ird T

where x is taken to be equal to the antenna separation d of the scanning
interferometer. The factor 2 is included since two phase measurements are
made and the total energy is twice energy of a single measurement. The~~value of 6 is (as before) (2E/No) Then Eq. 20 becomes

st X (21)
N{ 2TrdTV2E/N

0
This is similar to that given by Eq 17 for the error obtained from the
doppler frequency shift, but it is smaller by a factor VT2.1 47



N

Range-Measurement Accuracy.

Equation 4 in this appendix gives the rms error in measuring time
delay TR as

STR: 1 (22)

V'Z 8 0271

where B = bandwidth.. From Section 3 of the main body, the time delay TR
obtained from the rate of change of phase with frequency is

TR = 1 4 (23)

21r af

If a¢/af - (0 2 -0 1 )/(f 2 -f 1 ) and f2-fl is made equal to the bandwidth B, then

6TR 1 (24)

ir B /2EIN
0

assuming, as before, a factor of 2 degradation in accuracy because of the
two measurements, Eq 24 is of the same general form as the time delay accu-
racy of Eq 22, except that it is less by a factor of /12. The slightly
slightly better accuracy of the AO/Af measurement (Eq. 24 as compared with
Eq. 22) comes about because the effective bandwidth a for time delay is
largest when the spectral energy is concentrated at the edges of the band,
as it is in the two-frequency measurement of range.

Angl e-Measurement Accuracy

The rms error in measuring angle with a uniform illumination over the
aperture D is given by Eq 14 with y = D//3X , or

6X VTx (25)

The angle measurement, from Eq 8 of the main body, can be expressed as

sin As (26)

Letting g = e, Ax 0, and accounting for the factor of 2 degradation in
accuracy, we then have

_ __i (27)
2 DVM71To

which is similar to Eq 25, except for a factor of /7.
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