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ABSTRACT

Consider the standard linear model Y, = x:g + e, 1 =1,...,n,... where
Xys X3 ... are assumed to bé known p-vectors, 8 the unknown p-vector of
regression coefficients, and s €5y .o the independent random error
sequence each having a median zero. Define the Minimum L]-Norm estimator
En as the solution of the minimization problem 2?=]|Y1’ ;8. =
inf{2?=]|vi-§%§|: B € Rp|. It is proved in this paper that @n is
asymptotically normal under very weak conditions. In particular, the
condition imposed on'{xi} is exactly the same which ensuring the asymptotic

Py . o n ."] =
normality of Least Squares estimate: ]1mn+~max1§j5m§i(2j=l§j5j) X; 0.
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g 1. INTRODUCTION AND SUMMARY '

Coﬁsider the standard linear regression model

Y. ='x;eo te, =T, (1.1)

1 ~ |~

o . where Xys %p» +.. are assumed to be known p-vectors, g, the unknown p-vector

of regression coefficients, and €1 €5 ... the i.i.d. random errors with a

lac e r——

. common density function f and median zero, f is continuous at 0 and f(0) > O.

& The Minimum L]-Norm (ML]N) estimate én of go is defined as a solution of the
W .
) 4
:: n . n P , !
o VR = ini -yx'nl-

1Z]lv1 X8, | 1nf{izl|yi xigl: 8 e R}, (1.2)
-' \
;; Here we assume that the parameter space is the whole p-dimensional Euclidean
}
b space Rp. It will be indicated (see Corollary 3 below) that no change in
[ the argument is needed when RP is replaced by any of its subset containing
N
g the true parameter By as an inner point.
X
" The ML]N estimate, whose usefulness is by now universally recognized,
‘f dates back to Laplace. But for a long time in history it°never attracted
L
N much attention. One reason is in the difficulty of its computation, which '
\)

has now been resolved with the advent of modern computing facilities, and
QE ' the paper of Charnes et al (1955) linking the computation of én to the solu-
’ d
ﬁ ‘ tion of a linear programming problem. Another reason is the lack of an ade- ]
9 quate asymptotic theory. It is well known that in the problem of estimating
o .
b the median of a univariate population, the sample median is (under certain \
e
N conditions) asymptotic normal. Motivated by this simple case, write
n L)

P n = L x5 (1.3)
h ~ i=1"~
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It is naturally expected that (4£+ means convergence in distribution)

2(0)5)/%(6, - ) £> M@, 1), asnse (1.4)

under reasonable conditions. Here Ip is the identity matrix of order p.

The first attempt to give a proof of (1.4) was made by Bassett et al
(1978). They assumed that'{ei} satisfies the conditions stated earlier, the

solution of (1.2) is unique (a condition difficult to justify), and that

S,/ Q. a positive definite matrix. (1.5)

Unfortunately their argument contains serious mathematical gaps which do not
seem easy to resolve. For one thing, they overlooked the fact that the o(1)

at the right-hand side of the equation above (3.10) of their paper should be

oh(l), and it is by no means clear that the convergence (as T -+ «) oh(l) +0

should be uniform over h € H, Moreover, the assertion (3.9) is not generally
valid. A simple counter-example is (in notations of their paper):

Ye

XeB* Uy, t= 1,2,..., (B: one-dimensional)

X) 1/7/2, Xy = 1+ v/2/10, X3

Ups Ups ... i.i.d., uy = N(0,1).

‘It is easy to verify that all conditions, including the uniqueness assumption

and nonlattice condition, are satisfied. But it can easily be shown that

Pr(z;(s.h) e €[0,11) = 0

for h = 1 (which belongs to H = {1,2,3,...T}) when T = 2,4,6,..., and (3.9)
breaks down (see Appendix 1).
Bloomfield and Steiger (1983) advanced a proof of (1.4) under the assump-

tion that x,, x,, ... are observations of a random vector X with a positive

>
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definite covariance matrix, and (xy,Y,), (x55¥5)5 ... are stationary and
ergodic. Unfortunately they failed to notice that for {gn(g)} (defined by
(6) on p.45 of their bpok) to be equicontinuous, gn(c) must be defined as
?=]hn(ri(g)) /n, and not Z?ﬂhn(ri(g)) as in their book. But if g (c) is
defined as Z?ﬂhn(r].(g)) /n, the assertion n-1[Qn(£n)] + 2f(0)C on p.47
should be [Qn(gn)] + 2f(0)C, and one can only obtain ¢, - 2, » 0 in probabil-
ity, not the crucial assertion (8) on p.46 of their book, and the proof
breaks down. Besides; they made the mistake that the function hn(t) defined
on p.45 of their book has no second order derivative at t = tn'p, making
the relation (12) on p.47 invalid.

Meanwhile Amemiya (1982) gave a proof of (1.4) by approximating the
absolute value function with a twice-differentiable one. He made, in addi-
tion to (1.5), the assumption that {51} is a bounded sequence, and that go
is confined in a compact region. Unfortunately his proof, too, is invalid.
One problem is that his assertions (in notations of his paper) A] +0 in
(3.12) and By + 0 (in (3.22)) are both incorrect. Quite contrary, we have
shown by simple arguments that actually A] »> o, B] + « in probability
(see Appendix 2). Another crucial point is that in order to show -

T(ﬁ— q*)'(é- g*) -+ 0 in probability as T » =, {3.11) should be understood
as sup{|S*(g) -S(8)|: 8 € D} -~ 0 in probability (D is the parameter space),
while his argument, even freed from the error indicated above, is obviously

not sufficient for this.

When the regression model contains a constant term: Yi =gt Xi8p * €

i=1,2,..., Bloomfield and Steiger (1983, p.62 Lemma 1) noticed the interest-

ing fact that the ML]N estimator én of By is in fact a special case of a class

+

of rank estimators introduced by Jaeckel (1972). Jackel showed that his

p e, J‘.:wﬂ':‘f:‘i':.-_‘.".‘-‘:'.':‘vr; NN N et o




estimator is asymptotically equivalent to an estimator introduced by

Jurec¢kova (1971). From this a proof of asymptotic normality of the ML, N
estimator én can be obtained by using the theorem proved by Jureckova

(1971). However, this does not give a satisfactory solution of the problem

for the following two reasons: First, Jureckova's theorem imposes very cum—.

bersome conditions on the sequence'{§i} which are difficult to verify., Her
theorem also requires the existence of Fisher information of the density f
of the error, so f must be positive and absolute continuous on R'. Even
the simple uniform distribution R(-1,1) does not meet this condition.
Second, the theorem so obtained cannot deal with the case of (1.1) in which
no constant term is present. If such a constant is present, the theorem
cannot deal with this term,

Dupadova (1987) proved a theorem concerning the asymptotic normality
of possible-constrained ML]N estimates in case that'{§i} is a random
sequence, Her theorem, when applied to the unconstrained case, gives
roughly the result stated by Bloomfield and Steiger (1983), as mentioned
earlier. There is a mathematically undesirable condition in her theorem:
llx;1l possesses a finite moment of third order.

It is the purpose of this paper to give a rigorous proof of (1.4)
under minimum conditions., First, in the i.i.d. case, we have the follow-

ing theorem:

THECREM 1, Suppose that in model (1.1), Bys €y, ... AYE independent
and identically distributed with a common distribution function F, and the
following two conditions are satisfied.

1. There exists a > 0 such that f(u) = F'(u) exists when |u] < &, f is

continuous at 0, f(0) > 0 and F(0) = 1/2.
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2. Sn is nonsingular for some n, and

1

lim max 5 i2n %5

e 1<i<n

= 0. (1.6)

Then (1.4) is true.

Remark., The condition (1.6) is exactly the same as that which guarantees
the asymptotic normality of the Least Squares estimate of 8 in case that
{ei} is i.i.d. and Ee] =0, 0 < Ee% < =, It was expected that the conditions
ensuring the asymptotic normality of Minimum L]-Norm estimate might be more
stringent (as compared with the LS case), as the Minimum L]—Norm estimate is

nonlinear while the LS estimate is linear.

COROLLARY 1. If {ei} is i.i.d., condition 1 is satisfied, and there

exists constant sequence {gn} such that 9, * > gn+1/gn -+ 1, and

$,/9, * A vositive definite. (1.7)

Then (1.4) is true.

Wu (1981) mentioned this condition in connection with the problem of
consistency of LS estimates.

This corollary contains, as a special case, the result stated in Bassett

and Koenker (1978). In turn it implies the following result:

COROLLARY 2, Suppose that {e;} is i.i.d., condition 1 is satisfied,
and X1s Xps ... are i.i.d. observations of a random vector X such that
E(§§ ) is positive definite, {xi) and {ei} are independent., Then with prob-
ability one (for almost every sample sequence {xi}), (1.4) is true.

Of course, we need not consider (1.4) as a conditional statement: it

is also true unconditionally. Thus we reach the conclusion stated in

Bloomfield and Steiger (1983).
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COROLLARY 3. The Minimum L]—Norm estimate én is weak consistent under

the conditions of Theorem 1 (see the remark after Lemma 4).
This assertion follows from (1.4), and the fact that

-1
2n

-+ 0. (1.8)
For a proof of (1.8), fix m such that §m is positive definite. For any
positive integer N, denote by PNl S P S e :-DNp the eigenvalues of S,.

Then by a result of von Neumann (1937), we have

tr(Sysy) 2 j]pmi/pm" m<on. (1.9)
But, by (1.6)
-1 T 1 m -1
tr(Spsy ) = L trlxpgsyt) = 1 tr(xjS i)
3=1 j=1
T el -1
= jZ]§j§" X i'"]2?2m5i§n X; >0, asn-oe (1.10)
Since oy > 0, from (1.9) and (1.10), we have 1imn+m°n1 = o, and (1.8) is
proved. -
From Corollary 3 it follows that if we use a subset G containing Py 35 é;
an inner point to replace RP in (1.2), and denote the resulting solution by E;
én(G), we shall have P(én(G) # én) +0as n . Hence (1.4) is still true gﬁ
if én is replaced by §n(G). gT
In passing we note that Y. Wu (1987) proved the strong consistency of Eg&
én under conditions slightly stronger than those of Theorem 1. [t does not E;g

seem possible to give a proof under the conditions of Theorem 1.

In practical applications there is usually a constant term in the re-
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gression function, and instead of (1.1) we have the form

o

Yi = ag * X%BO tes, i=1,...,0,... . (1.11)

Although (1.11), as a special case of (1.1), can be dealt with by Theorem 1,

for inference purpose it will be convenient to have a theorem formulated

in the following manner.

'), and

THEOREM 2. Write (&n‘éﬁ) the Minimum L]-Norm estimate of (ao,go

n
Ko = (g reecdxMny To= T O =% ) (x5 -0 (1.12)

Suppose that {ei} is i1,i.d., condition 1 of Theorem 1 is satisfied, In is

nonsingular for some n, and that

Tim max (;i-gh)'ygl(g. -x_) = 0. - (1.13)
nro J<i<n

Then as n + =, we have

1/2 L
2F(0)T, (6, -8g) == N(O, 1) | (1.14)
ZHO__ (5 -ag) - NG00, (1 15)

oo
T+ In %,

Also, the two variables 2f(0)T,/2(§, - g,) and 2F(0)/A((4 - o) + X6 - gg))
are asymptotically independent.

We note that the weak consistency of &n and én still holds true. For

]

én the assertion follows from (1.14) and I; + 0, which is a consequence of

(1.13), in much the same way as (1.8) is a consequence of (1.6). For &n

the assertion follows from (1.15) and ?}T;Txn + 0, which is a trivial con-

-~

sequence of (1.13) and the fact that T;] ~ 0,
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Corollary 2 can trivially be modified to accomodate the model (1.11).

A1l we need to do is to replace the matrix E({f') by the covariance matrix
E(}f- E)_()(E- E)_()'.

The above two theorems can easily be extended to the case that ey
€ys +.. arE independent but not necessarily identically distributed. We

shall only give a formulation of the following result.

THEOREM 3. Suppose that in model (1.1), €15 €55 ... are independent,
the distribution function Fi(x) is differentiable over an interval (-a,a),
Fi(O) =1/2, i = 1,2,... and A > 0 does not depend on i. Write fi(x) = F1!(x)°
Suppose that {fi(x)} is equicontinuous at x = 0 and 0 < infifi(o) <
supifi(o) < o, Finally, suppose that (1.6) is true. Then as n + =, we

have

172 ¢ v /
2s Z Fi(0)x;xi (g, - 8y) == N(Q, 1). (1.16)

i=1

Our main task is to prove Theorem 1. Once this is achieved, only some
trivial modifications are needed in proving Theorem 3, and much the same can
be said about Theorem 2. To prove Theorem 1, it will be found convenient

to reformulate the original problem in the following manner. Write

-1/2, _ . 172, _ - -
0 % T Xape T E Tl 5780 = Bge Yoy T Ve &gy T ey
Then (1.1) has the form
Y L = l - + Ld i = o e 0 = T e e o d
ni = XniBno tpie T T Teeeosns n= 152, (1.17) kY
0
with -
n
T x.x's=1, n=1,2,.... (1.18) X
i=]~n1~n1 "p \\\‘.:
M
~
N
»
N
\:g\
’-_.\
o et e et e
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Denote by g the Minimum L.-Morm estimate of 8 ~ in (1.17 Then we have the
®n 1 Eng n (1.17).

following general theorem, which includes Theorem 1 as a special case. s

THEOREM 1'. Suppose that in model (1.17), X 15 ...s X, are known p- o

nn \

vectors satisfying (1.18), €,1° +++» €y TrE ji.i.d. variables whose common

n
distribution function F does not depend on n and satisfies the condition 1 *ni

of Theorem 1. Also, assume that ;

d = max lxpsll >0, asn-= ' (1.19) ’
1<i<n g

where ||+|| is the Euclidean norm in RP, Then as n > = we have )
o £ .
2F(0) (B, - Byg) == N(0, ). (1.20) "

This theorem will be proved in Section 3. Part of the reasoning is

(Y

{]

'I

contained in Section 2 in the form of several preliminary lemmas. »
(
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2. SOME LEMMAS

LEMMA 1 (Bennett). Suppose that Ey» --+» £, are independent, Eg, = 0,
]gil <b<w,i=1,...,n, where b is a constant. Write V = Z?=1Var(5i)/n.

Then for any € > 0, we have

L 2
P(I.Z]Ei/nl > ¢€) 5_2exp(-ne /(2V-+2be)). (2.1)
'l:

For a proof, see Bennett (1962),

In model (1.17), we can assume that

Bng = O : (2.2)

- ~

without any loss of generality. This we shall always do in the sequel, and

= = LI - P i =
we have Y . = e .. For any vector a (al, ...,ap) in R, write |a|

max |ai|. I(A) will be used to denote the indicator of the set A.

1<i<p
LEMMA 2. Suppose that in model (1.17) the conditions of Theorem 1' are

satisfied, with the possible exception of (1.19). Then we have
4 ‘ r 2 A
I(lizlsgn(Yni -5ni§n)5nil 3_(p+1)dn).§ I(l§n| > A/(Jﬁdn» (2.3)

with probability one, where sgn(0) = 0, sgn(a) = a/|a] for a # 0.

Proof. Since by definition én is a minimization point of

Z?=llyni"§ﬁi§| as a function of B € Rp, for any unit vector o € Rp, we have
by taking directional derivative
n

n
1 =y!
- iZ]Sg"(Yni 'fnign))fr'ﬁgl(Yni fl‘m’f‘.n) + ig]lfr'ﬁg“”ni )fnign) >0

This implies, in view of the arbitrariness of g, that

Wty e v B e T TR A8 T PR e T o Y
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. |iZ]59"(Ym- fnkgn).’fnil iizllfnill(vni fm’gn)‘ (2.4)
o8
a

L) A
‘:;s ‘ Now suppose that |§.| < /(/Bd). 1f 1 <4, < fp < eee < iy < and

ot .

-yl I .
o Ynk = XnkBn> k = 11"“”p+]“
¢
..‘
::3 Then find real constants Cys eoes cpﬂ not equaling to zero simultaneously
(‘.
ul such that ¢,x . + ... + . =0, W
¥ a ]xm] Cp+]XNTp+] 0 e have
)
E"::: c]Y .t ... +cC +]Y . = 0. (2.5)
2 ni, | p mp”
e .
= Considering this, and the fact that ]Bn| < A/(/Edn) implies Ixr'n'Bnl < A,
' 3
:..: we reach the following conclusion:
i
oot . n ’
= ' ~ ~

;;;‘ The event 1'Z][xm.II(Ym. fnién) > (p+])dn, and lgnl < A/(/Edn)}
}’ C the event U there exists constants c;, ..., ¢C
.‘ 1<iy<oooXd <n 1 p+l
g‘ —_ ] o0 e p+]__
KX depending only on X . ... X . » not all zero, such that

4 ni, mp”
.4

&
s pl
A2 -Z1CJ'Y"1'- = 0, and |Yni.| <By J = T,00.,pH1}. (2.6)
4 j= J J
e

A Since Ym‘ = € is €pys cees€ are i.1.d. variables whose common d1st.r1but1on
: function is continuous over (-A,A), it is seen that the probability of the
2 event on the right-hand side of (2.6) is zero. This fact, taken together
o .
» with (2.4), implies (2.3), and the lemma is proved.

R

"' In order to introduce the crucial Lemma 3, we have to define some
(o notations.

) 1]

Oy By (1.19) it follows that there exists constant sequence {u,} of positive
e
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even integers such that as n + =,

U >, u;’-‘dn >0, /Euﬁdn <1/2, for n large. (2.7)

In the following we assume that the conditions of Theorem 1' are met. Write

pc <
n
=
n

n [logn/]ogun], ry = uﬁ, m=1,...,M, el = M (2.8)

o
1t
Q
([1]

{8=(B],...,Bp)': -u_ < B. <y

n— i i = ],.on’p}o (2.9)

n’

Note that M > 1 for n large. This is true because by (1.18) we have

2 1/4

nd > 1, therefore u_ < n Partition D into a number of intervals 51,

52, cees BJ each having the form {x = (x(]), ...,x(p))': a; 5_x(i) < bi’
) 2

i=1,...,p}, such that

Nsws L) <1 B0D =B Hgs Ty 17

where L(A) is defined as sup{lg- gl: ueA,veAl. Now each subset bk is

again partitioned into a number of disjoint intervals bk]’ ka’ coes bkd
: 2

which can further be partioned. This process is defined inductively as

follows: Suppose that after the (m-])-fh round we have partitioned D into

-

{5. . }, then in the m-th round we take each D, . and partition
31+ Ip . I Ip-1 .
it into a number of disjoint intervals (D, . t2=1,2,...,d_}, such
Jpeedpa? m
that
2p 5 -2(m-1) -
Jm < L(Dj]-“jm+]£) < Mg , &= 'I,...,Jm. (2.10)
The process ends with the completion of the (M+1)-th round. Denote
G = {D, . } = the partitioning of D after the m-th round
m Jpeedg
m=1,2,...,M1, (2.11)

OB Ly i P Ao L 8 TR A 0 an e,
m{bﬁh N S e B




A typical element of Gm is denoted by B or bj i and a chosen point in

it is denoted by b or b, . . Put e
- ~Jqeeedp
wm-'(s) = sgn(e,; - x7.8) - sgn(e ) (2.12)
Ani(8) = 2(F(x;8) -1/2) = -Ey;(g) (2.13)
thi(8) = v.(8) + x;(8). (2.14)

By (2.7), when B € D and i < n, we have, for large n,
xpi8l < /P alel < (2u)”! (2.15)

and for b e B, b* ¢ B where B ¢ Gm’ we have, for large n,

|

|

E f * ‘/— 2my -1 .

| I’fni(?'? ) < pdn|§-§*| < (Zun ) ', 1 <i <n. (2.16)
From (2.15) and the conditions imposed on the distribution function F (see
condition 1 of Theorem 1), it follows that we can find a constant C > 1 such

that for g e Dand 1 < i < n:

' - 2m
Z{F(fni§'+”n

Zm ] 'zm = -
) - Flxps8-u, ")} < Cup (2.17)
-1
Ix,;(8)] < Cu (2.18)
P(leg;l < /Pdw) <Cdu . (2.19)

Let {a ;> 1<i<n,n=1,2,...} be a triangular array of real numbers,

satisfying




|

M
Q< ) (U +v ). (2,25)
m=1
Lﬂéﬁ@:ﬂm-u::-:@, R T B Ty L N s T S S e I S D A NN NI O T SN Y
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Define the following quantities:

n )
Q = ) P{sup|] § a .(t .(8)-t .(b))] > 53'"4,
o ol el @) )] 7
m (- m
l<m<M+1, (2.21)
U = T Plsup rniﬂ a5 (tni(8) -t (0))] > o3 (me) [ ¥ U(m,B)
" Beb, [geB[i=r 41 M\ NN N = " bes.
< m m
1<m<M, . (2.22)
f ; ( ( )
vV = Z p a_.(t .(b. . ) -t _.(b, .. ) ’
m j4|,...,jm+] i=rm+]+~' n’( m -J.Ioa-.]m ni "J]uon‘]m\]m,’.‘l
183-(m])f
= . z . V(majlooo-aj +'|), 1<mc< M, VvV, =0, (2 23)
J]aoc-st,,_'l m —_ - M 4

In the above expressions ¢ ¢ (0,1), pe M = 1y00.,M,M+1, has been defined

in (2.8)., Further, in the definition of Vm, the summation runs over all

is a member of Gm+], and b, is

SUCh (J], oo-’\]m_'_'l) that Dj] ~J1...jt !

...Jm+1

understood as the point chosen 1n D, j e Gt’ while in the definition of
10.‘ t
Qm and Um’ b is the point chosen in a member B of Gm, as stated earlier,

By these definitions it is easily seen that

Qm:Um+vm+Qm+]’ m= ]gooc’Mo (2024)

Therefore, on noticing that QM+1 = 0, we have

l‘l P L o
[N SN

,'h
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o
ny,
3\.:2
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Suppose that the conditions of Theorem 1' are met, and

{a ;) satisfies (2.20), € € (0,1). Then when n is large we have
Um+Vm5_4u

where C is the constant appearing in (2.17)-(2.19).

Define

where B e Gm and

b

?

geB 1=rm+1

DA

exp{-48"e(9“un) m=1,..,M

\ -
s = . <

2, when |e .-xi.b[ <u

otherwise

is the point chosen in B, By (2.14), (2.16) and (2.17),

ani(tni(é)- tni(g))

) 'anil("ni'E“ni) ) lanilE“di'

NN
i m 1

From (2.16), (2.17) and (2.27), we have

Enp; < Cug

By (2.20), we have for n large

=2+]Iaml&niiz
m

From (2.1), (2.28), (2.30) and by Lemma 1, we obtain

. )-g
"QE'Q':";:‘:"‘ ‘V‘v(-‘ 1"\‘.'\ AN ™ e ] e S '\1\\

RN BT GIANASAY

rm+]’ooo,rm+]-

m+
](Enni)2>]/z < 2(p 2,-4m 172

<2< e2713

- el



16 oot

m+l

U(m,B) < Pi ) -En._.)

ni
i=r +l "ni

- - ":
< 2exp {-e 2 23 (2m+2)/[( max Enz. : :'f
Y‘m<'\_<_rm+-| “l

1>r

»
e37 (M1) pay |ani|)}} (2.31) - %

U(m,B) is defined in (2.22). From (2.17), (2.20) and (2.29), we have, for -

. ¥ |'l
large n,

R (3

max |a ;| < w2, :

1>rm L
-2m -m/253-(m+1)

2 -
max E < 2C < . v
n 1 - un - Un ;

Therefore »
-~
U(m.B) < 2exp(-e3” (™M) “‘/2/15) (2.32) %

which implies n

U < 2uePMexp(-c3” S{m),M2)16). (2.33)

By (2.20),

4 max fa[e37 (M) o geam(m)-(m1)72, (2.38) ‘%
i>r o :;i
By (2.16) and (2.17), we have, on denoting 9ni = tni(t’j]...jm) -t .(tg.]“.jmﬂ),
that

2 e
Egpy < F(§n1bJ] J ) - F(-me] Jm+.|) o

< 207 < gea(m) - (m)/2, (2.35)
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Here b, ., b, i _ were explained following the definition of V . ey
A PEREN N PEPIS B 5

t

From (2.23), (2.34), (2.35), and Bennett inequality (2.1), we have ,ﬁ

|':(

V(m,j],....jm)i 2exp _523-(2m+2y[2( max Egrzn. + 4 max |ani|e3'(m”)‘) o

Ter i1 >rog Lo

< 2exp;-16“e(un/9)("'*”’ 2} 3

which in turn implies )
. - . - 2. N

Vo < 262 Vexp 16716 /9) (™1)/2) ¢ 2, 2Pesipr167 ey 19)™ 2y (2.36) f“ﬁ

w2y

Finally, for n larée, (2.26) follows from (2.33) and (2.36). Lemma 3 is proved. q?}
)

.,"i

LEMMA 4. Under the assumptions of Theorem 1', we have 3§

| %

11n|P(|§n|> v,) = 0. (2.37) el

for any constant sequence {vn} such that Tim v = o,

oV (Here we assume
(2.2).)

Proof. MWithout losing generality we may assume dnvﬁ < 1. Define

D= 6n = {g= (B],---, Bp)': Vp 285 <V T = 1,000,
*yi(8) = lem‘| len1' 561B|

r,i(8) = E(e . (8))

RiB) =0 .(8)-a.(8), i=1,...n5 n=1,2,....

The first step is

1im Vh o Sup

N>e

to verify that

n
2 p| J Rni(e)’ = 0, in probability (2.38)
gep!i=1 -
RS g W 'J‘_'-"\'J":-F;-F\'J":.';f_:l ;;-_:.-;_.-_:.-;:.:.-{:\
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In order to do this, we partition the interval D in exactly the same manner
as we have previously done for D defined by (2.9), with My replaced by Vs

! and that instead of (2.8), we now define M as a positive integer satisfying

Ao < 2lean ()2 (2:39)
E where ¢ > 0 is an arbitrarily given constant. The existence of such M follows

from the fact that Vp * = Also, the partitioning of D after the m-th round

will be denoted by ém. A typical interval belonging to ém will be denoted

by B or B, . » and a point selected from it by b or b, . . Define
J]s---st ~ ~J‘|9ooost
Vo= 1 e(] TR (b, ) 2/3)
0" X .Z] ni‘=j I 2 evy/
J] 1- ]
v = ) P<l f R . (b ) - R _.(b ) ev2/3m+‘>
= . . : - : : : >
R P NS £ N R e R R

m=1,2,...,M;

n

Q [ 2,,M

¢ j].g.j P<B€B?Up .I iZ](Rni(g)' Rni(gj]...jnj)l > ev /3 )
m ~ J]ooch

m

m ]’2,.00,M+1c
Note that for any B € éM+] and 8 ¢ B we have, in view of (2.39),

n

n
|1 (i @) @) | < ]

[

A
IO P .

(I
1".

=

"
3
o
]
o
in
>
3)
™
]
o
[A
=
3
<
N
=
o
—
w
]
o~
=
+
—
<
>IN
Ay e
(00

Hence

A TR

o~13
N
P
=3
—ho
-
heor)
g
]
X
=
i
—
o
S
~_
™
W
]
——
=z
+
—
S
<
N
-
L
o+

Dl AT

L

4

LE0Y
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which implies that

Qpey = O- (2.40)
It is easy to see that
Q <V +Q.s M= 1M, (2.41)
) 0 - -
P(vn ;:g Z]Rni(g) > e) <Vp * Q. (2.42)

M
ze)< mzov"" (2.43)

Since

and

“p - P R N A I R R T AR L L AL Ry e R - e T _..F_‘.‘ﬂ
O L o Y R N AV e A TN cte? e S AP SF N AV R AVS




gt

Applying Lemma 1, we get

y 2 -2

Vo.i 2vnpexp( 52v4/(2pv )) < 2v2 exp(-c 2). (2.44)
Qm < 2v§p(m+])exp{-(e3'm'1vﬁ)2/(2pv;4m+4-+sB'm']pv;2m+2)}

< 2V2p(m+1)exp(_c3-(m1)vﬁm+2), m> 1. (2.45)

Here ¢ > 0 is a constant independent of n, m. From (2.43)-(2.45), we obtain

-(m+])v2m+2). (2.46)

P(v 2sulDIZR (8)]>¢) <2 ‘

BED j=1 m=0

Since the right-hand side of (2.46) tends to zero as n » =, we obtain (2.38).

Now we note that

max |x'

Bl < d v, < v. +0, as n -+ =, (2.47)
l<i<cn ©

m.. - N

Hence, considering condition 1 of Theorem 1, we have

( (%nif
I' “(2u-2x'.8)f(u)du, if x'.8>0

|v

-niz ~ni=
0
E®m(§) - 1 0
Jx' 8(25"1' 2u)f(u)du, if Xni8 < 0
~o.nis

-£(0)(x".8) (1+o(1)) (2.48)

5 AN T TS 2% s Pl M L LR N LT LTI A 0 LW T e % 2P R T W W W e B R W W WAL R R e, P Y % e SR Ny A “ge T e o "
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tor g € 5, i=1,...,m, nsufficiently large, where o(1) > 0 as n » =
uniformly for g e D and 1 <1 <n, in view of (2.47). From (2.38) and
(2.48), we get

lim v, ;Zg‘ I (el - lenri‘,'ﬁél)w(o)llgllz‘ =0, in probability
which implies that
-2 n . n 1
"n (i21le"i| ) |B1|n=fv 121‘em’ ) ’~‘m‘§‘> <-fO) 1+ °pm) (2.49)
-~ n

. v i n '
where op(l) tends to zero in probability as n » =, Since zi=1leni —§ni§|

as a function of g is convex over Rp, (2.49) implies
-2, M n )
- 4 oyt -
n (i§ Ienil 25 Z leni §n1§l> = f(o)(]'+°p(1)/' (2.50)

Since f(0) > 0, (2.50) implies (2.37), and Lemma 4 is proved.

® Remark. Let us return temporarily to model (1.1) and.consider thé
ML]N estimate én defined by (1.2). It follows easily from Lemma 4 and (1.8)
that én is a weakly consistent estimate of Bo- For convenience of presenta-
tion we formulated this fact as a corollary of Theorem 1. Now we see that
the verification of this fact is, in fact, an important step in the proof

of Theorem 1.
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3. PROOF OF THE THEOREMS

Proof of Theorem 1. As mentioned earlier, we need only to prove

Theorem 1'. We begin with verifying that as n + =,
n -~
sup{|l } t.;(8)x ;ll: Be Dy » 0, in probability. (3.1)
i=1 N

D and tni(g) were defined by (2.9) and (2.12)-(2.14), respectively. 1In

view of (1.18), we need only to prove that as n + =,

n
Qg = P(sup{l_z]a (B)|: 8eD}>¢€)+0 (3.2)
'|=

nitnl

where {ani} is an arbitrarily given constant array satisfying 2?=]a§i =1,

and ¢« € (0,1), also arbitrarily given.

Without loss of generality, assume lani] > ...> |a Choose Mn and

nn]'

g according to (2.7) and (2.8), then (2.20) holds obviously. Define U,
Vm, Qm by (2.21)-(2.23) for 1 <m < M, and
"
Uy = P{sup| J a .t .(8)] > ¢/3) (3.3)
0 gep i=1 Minit=T] =
v, ={ ] P a_.t .(b)| > e/3} (3.4)
0 BeG, 'i=r +l -t T

with b e B. It is easily verified that with QO’ U., V, defined by (3.2)-

0’ 0
(3.4), (2.24) also holds true for m = 0. Hence

o~

QU+ Vg*+ Q< ) (U +V). (3.5)

m=0

Here M is defined by (2.8). Now we show that

o VIS TP e S L S e e e TP T T DTN T T P T e
0 L SR MU AN S S N AT OG0
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UO + V0 +0, as no =, (3.6)
By (2.18), for g e D, we have
n
2 1/2 2,1/2
121 ni m(B)l ni(@)) < (C/u )Y >0, as ns=  (3.7)
Further, wni(g) = 0 when g e D and lenil > ﬁidnu > |x Bl), here wni(g) is

defined by (2.12). From (2.7), (2.19) and (3.7), we obtain

] "
2
Uy < P{ZﬁBliZ]ani“’ni(?) # 0 < ] PUenil </d) < capd0. (3.8)

Using (2.17)-(2.20) and employing the argument for proving (2.36), it can be

shown that there exists constant C] > 0 such that
Vo 5_2u§pexp(~clu;/2) +0, as no-» =, (3.9)

Now (3.6) follows from (3.8) and (3.9). Further, by Lemma 3, we have, for n
large,

M

_a v . 2pm _ag- m/2
mzl(um+vm)54mz1"" exp(-48" e (u /9)™ ). (3.10)

Since the function x3pmexp{-a(§)m/z}, x > 0, attains its maximum at

X = b(6p/a)2/m, we have

uePMexp 167 e (/9™ 2) = P PMerp 16T, /o)™

< "9 (96p/¢)8Pe P < (11 /729)P(96p/¢) %P

Hence, noting that My > s We obtain

M ®
] (Ut V) < CRBIP T /729)7PM s . (3.12)
m= m=

BRI

122
X

,Aff?4|*.

M
x_r

B

.4

2,
>
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From (3.5), (3.6) and (3.12), (3.2) follows. This concludes the proof of
(3.1).

By (3.1) we have

n
.E]tni(gn)xni I(6,€D) ~ 0 in probability, as n» = (3.13)
i= * 2

and (2.7) gives, for n large, A/(ﬁgdn) > uﬁ (a is the number appearing in

condition 1 of Theorem 1). So by Lemma 2 we have

> (p+])dn)1(|§n| <pn) =0, a.s.

n
- . a2
I(Iizlsgn(eni *ni8n)%ni

Hence by (1.19)
n ~ -~
iz]sgn(em.-_)5"1i§n)z(n1.|1(|§nl<un):(p+])dn+0, a.s.  (3.14)

From (2.12)-(2.14), (3.13) and (3.14), we have

n n
iglkni(gn)fni' 1'Z]sgn(em.)i(m.ll(|f.3."| <ug) = 0, in probability. (3.15)

.  » . S . 2
Since sup(|x .8 |: |8] <upp V<i <nt <ud <ud >0, we have

Ini(By) = 2F(0)(1+0 (1))

n on account of condition 1 of Theorem 1,

' ~
fnign
where op(l) + 0 in probability as n + = uniformly for 1 < i <n, From this,

(1.18) and (3.15), we have

n
lZf(O)gn- iZ]sgn(eni)fnill(lgnl <un) + 0, in probability. (3.16)

In view of (1.18), (1.19) and the assumptions on {e;}, it follows by

Lindeberg's theorem that

A é’.’.-..-
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sgnle ;)X ; N N(O, 1 ). (3.17)

~

)

i=1

From (3.16), (3.17) and Lemma 4, we obtain (1.20) (notice (2.2)). This

concludes the proof of Theorem 1', hence Theorem 1.

Proof of Theorem 3, The proof differs from the above argument only in

some minor details, therefore omitted.

Proof of Theorem 2, Define In by (1.12), and

= 11/2 - = - Y
Bno = Tn Bg ) "‘“04'5n§0)’ Yho (anO’gnO)
-V, = -
~n1' In (X.l z_(n)s 1= 1“”,",
- ] ' ;= ’
Zni - (]//’T, fni) 1) 1 1“--’"0

We transform the model (1.11) into the following form:

Y, =

'. + < 1. = o e o n'
i = Znilno * €iv Theees

n '
. 12 .2, =1
i=l~ni~ni  <p+l

n -+ «, Theorem 1' can be applied, and we obtain

Since § , and (1.13) guarantees that max Znil >0 as

1_<_1'_<_n|-

21(0) (3 = ypg) =2 MO, 14p)s a5 no> e (3.18)

P _ ~ A' 1 ~ A > . - :

where In = (“nO’EnO) , and angs Bno @re the Minimum Ly-Norm estimates of
%n0° &no? respectively. Now (3.18) implies the assertion (1.14) and also

the asymptotical independence of anO and énO’ Finally, (1.15) follows easily

from what has already been proved. Theorem 2 is proved,

Remark. Wu (1987) proved that in model (1.1) the ML]N estimate én is

strong consistent if the following conditions are met:
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!
i 1°, {e;} satisfies the condition stated in Theorem 3.
. 2°. Define d = max(1, I xqllseeenllx I} and p = the smallest
f eigenvalue of Sn’ then pn/(dﬁlogrﬂ + o, dn/nC + 0 for some ¢ > 0.
i At one time it was expected that if condition 1° is replaced by
1': €1s 855 ... are i.i.d. and e, has a unique median 0, the conclusion
of Theorem 1 is still true. The motivation behind this conjecture is the
simple case of estimating a population median by the éample median, in
which the uniqueness of the population median is enough for consistency.

Yet the following example shows that this is not true:

Example., In model (1.1) take p = 1 (B is one-dimensional), X, =
logn/vn, n = 1,2,3,..., €ys €5, ... are i.i.d., e, has a density function
f(u) = Ju]I(Ju| <1). Here d = 1,0, =S, ~ %(109 n)3. Hence condition 2°
is fulfilled.

In this example all conditions of Theorem 1, except that f(0) > 0, are

met. In the course of proving Theorem 1' we have already shown this (see

it IR

¢
«
['d

(3.15)). (Note that in proving (3.15) we made no use of f(0) > 0.) N
s
-1/2| ™ n *ifn gg
on L sgn(e;)x. -2 ] xif f(u)du'l(lﬁnl <1) > 0, in probability. (3.19) 3
i=1 i=1 /0 )
Y
Now if g"
. B
B, > 0, in probability, (3.20) £
'
' | ]
then since {x;} is bounded, from (3.19) and f(u) = [u[E({u] <1) we have 53?
ol
,, :
-172 8 _ =1/242 3, ; A, . o~
or 1.=]_<,gn(e1.)x1. on 3"121 x; >0, in probability. (3.21) w
<N
~1¢n L X
But by Lindeberg's theorem we have vpo ' J. .sgn{e;)x. = N(0,1), while el
n i=1 i774 :,:
2?=]x? is bounded in n, p + = and én + 0 in probability. Thus (3.21) is :ﬁﬁ
impossible, which in turn implies that (3.20) is impossible. !;,
o
e

T ey
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APPENDIX 1

In this appendix, all notations and numbering of formula are according
to Bassett and Koenker (1978), if not defined here.

Consider the model

yt=xt8+ut! t=.‘§'°o’T,-oo

where g8, one-dimensional, is the unknown parameter, Uys Ups ... are indepen-
dent random errors with a common distribution N(0,1), and

y Xy = 1772, X, = 1+ Y210,

First we verify that the minimum point of the function

L an e 2

T
J(R) = ¥ |y, - x.8l
g1 ¢t

is unique. For if this is not true, then owing to the convexity of J(g),
there would exist an interval [a,b], -» <a <b < =, such that J(¢) =

inf{J(B): -» < g8 < =} for each ¢ € (a,b). Choose a point r € (a,b),

{ r# yt/xt, t=1,...,T. We should have J'(r) = 0, i.e.,
o T
- ]ESQH(Y] -r//2) - (1 +{-E)Sgn(y2- (1 +%)r) - tz3sgn(yt- r) = 0.

But this is impossible, since the sum of the first two terms is an irrational

VELLA® 2D

number while the third term is an integer. This proves the uniqueness stated

above.

AR

Now in this model H = {1,2,3,...,T}. By the choice of {xt}, the

distribution of ZT(G,T) is nonlattice. So according to (3.9), we should have

RLLLuESE™

lim T]/zPr(ZT(s,l)e:C[O,l]) exists and not zero. ()

T

N
- J'{

But

(3

o«
o

~ &

o
»

»

]
5
Jl
’
’,
..l
,l
?
)
fd
'
3
'/,
?l
L]
[ ¢
.
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T
16 = (2Bl TV ) ¢ ] stV

Therefore, when T is even the right-hand side, with probébi]ity one, equals
to an odd multiple of v2 plus +1/5, which is always outside [-1,1]. Conse-

quently we have

P(ZT(s,J)eq[o,lj) =0, for T-=2,4,6,...

and (*) breaks down.

o gt ot g ot b a

PR |
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APPENDIX 2

In this appendix, all notations and numbering of formula are according
to Amemiya (1982) if not defined here.
1. Denote by A1(§0) the value of A] in (3.12) taken at the true

parameter point By We shall proceed to show that A1(§O) -+ « in probability

as T + o,
Define
. . -1
1, if lyt"Etgol =G
Et =
0, otherwise,
Since C; = Td, %-< d < %, it follows that C}] < T 3. Hence Ly > &y» and
T ~Crly,-xi8nl
- -1 Tt “t=0
Ay(8g) = 2C; iZ] Z,log(1+e =)
T “Co|Y =218l
- T Tte
> 260 ] gglog(ive O
t=1
22! 1+e 1) : = A
> 2C; log(1+e tzlst = A.

Since Ye - 5£.0 = Uy t =1,2,... are independent and identically distributed

with a common density function f which is continuous and f(0) > 0, it follows

IO NN

that there exist two positive constants h] and h2 not depending on t, such 32
.!’-

that ::5
-1 _ -1 _ °

h]cT iP(Et"]) ihZCT ’ t - ],2,... . .::T'ﬁ

o

Therefore we obtain o

L4

ZA

E(A) > 2 log(1+e™ ) TC? » .

%%

L4
" Y
.

Here we used the fact that C, = 19 and 1/3 < d < 1/2. Further

Ry . -y w v‘. » ',
P e XN




3]

-)-’?- -'- - I(l

Var(A) < (2C.'r] log(1 +e-])) 2

2
t t

e —

Ee
1

-‘.

-1 -1,\ 2 -1
(ZCT log(1+e )) Th2CT |

A

2

4h,, log 1+e'])T/c$ + 0

-~

by the definition of C; given above. From E(A) » = and Var(A) - 0, we have

PR XA

A>win probability as T » ». Since A](go) 3_A, we obtain A1(BO) +> o in

probability as T + =, ,

. b '
2. Denote by B,(g,) the value of By (in (3.22)) taken at the true .
parameter point 50’ We shall now show that B](go) + = in probability as

T+ =,

*u
Define Et as before. Since Yi - xéeo = Uy, we have )

T ’ .
T']/Z

1 1/3C-1)|”t'60(“t”|"1t|

B,(8B,) =
10 t51 (Ju, |73

<

TV VU T Y ¥V N V. UETYY R E R SN ST RN W WSS TV TIRRRETW . .~
%
v 1 % - o AR

T
1 -1/2 2 _;
v T z Et'x’ltl =B

where M = sup{i5t|: t=1,2,...} <= by assumption. We have

A R T Y

.

;
1 -1/2, -1 2
€@ 2 fremyT MG L N

LA P
RIS

T
-11 2
C thlxit+w’ as T » o,

- ] h T1/2
Me+1T ™

v W WA v v oW W w

o

hIA TR T 4
o

; This is because EI=]x§t/T tends to a positive limit as T » = (by assumption),

I.'.

and that C. = 19, 1/3 < d < 1/2. Further

% %

[ S8 PN SV oN § ﬂ*:.:g

)

- -

{'ﬂ's‘f'i

y I LY N T PR S SR A, Y o W LT LT LW T L W T e ™ e T TR Y e e T \\\\’r‘v'\’ \'\J;‘I\
h@mmf;m-" MO0 A I ) O N 0 N A A D B A Woa i ey &, AR S ACAT PN A AN VPG A 2N 2N X

.......



cand Bt ol Gat Al dul Bad ba® Nt T
-ty ..n‘-.-s_;.lt.

ORI T AT AT x‘.\

32

oy e ]

S

. T
-2, y-2.-1 4.2
Var(B) < M “(e+1)™°T tz] Ixitl Egt

" w

T |
<M (e 2T g g
t=1

<MEe)?rlmel so, as T

Since E(B) » » and Var(é) + 0, we have B > = in probability as T - ». Since

B](go) > B, the same is true for B](go). >
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