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FOREWORD R
The Army Mathematics Steering Committee (AMSC) sponsors annually 4'
the Army Conferences on Applied Mathematics and Computing. As the T
title indicates these meetings deal with the mathematics needed to
understand the world around us. This is a contrast with core =
mathematics, which in the main, does not deal directly with events el
and objects of the physical world. Since very few of the papers 'ﬂ“"é
presented at the four conferences held to date were in the field !!!F;“
of pure mathematics, these meetings are rightly named. The U.S. e
Military Academy served as the host of the fifth meeting in this O
series, which was held at West Point, New York, on 15-18 June =§3b;gg
1987. Colonel David Cameron served as Chairperson on Local ﬁégﬁﬁﬁ
Arrangements. He was assisted with this task by Majors David G
Arney and Scott Huxel. The members of the AMSC would like to 1!![ ~
thank these three individuals for all their efforts in estianl
coordinating the many details needed to conduct this successful ,
scientific meeting. i
8%,
The program of this years conference consisted of three parts, A
namely: (a) Contributed papers by Army, academic and other !l-r~;
scientific personnel; (b) Three special sessions; and (c) Seven RO
invited addresses. There were more than fifty contributed papers Su&‘“q
presented in the technical sessions. About half of these papers et
were contributed by scientists from ten Army installations. These ;§4§§q‘
presentations gave the attendees an opportunity to hear about et
scientific research being conducted within these laboratories. 4
The topics for the special sessions were organized in three ey
different areas, namely, stochastic analysis, solid modeling and v%&%pﬁ:
CAD/CAM, and mathematical aspects of composites. For the invited Q.ﬁqgmi
speaker phase of the meeting, the Program Committee obtained the gﬁhgﬁét
services of the following nationally known scientists to talk on AN
topics of current interest to Army personnel: ilﬁ: o
r.;in" v“ ;
R
SPEAKERS AND AFFILIATION TITLE AND ADDRESSES kﬁgﬁﬁqq
O h@‘
Professor David Munford Some Mathematical Problems ;?“ﬂghﬂ
URI Center on Intelligent Arising from Computer &
Control Systems Vistion R
Harvard University > \ﬁ
St
Professor Roland Glowinski On the Numerical Solution :‘.@ng
University of Houston of Time Dependent Problems fﬁ&ﬂyﬂg
in High Dimensions ) Y
4 1‘5;-‘5'-
Dr. Sukmar Chakravarthy Unified Euler and Navier- ,ék&kai
Rockwell International Stokes Numerical Methods OO
Corporation e
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.....

Professor Robert Taylor Computation Mechanics:
University of California- Today and Tomorrow
Berkeley

Professor Charles VanLoan Parallel Matrix

Mathematical Sciences Computations on Loosely
Institute Coupled Systems of Array
Cornell University Processors

Professor Anthony Jameson Computational Methods
Princeton University for Transonic Flow

Professor James Glimm The Interaction on
Courant Institute Nonlinear Waves

The success of the conference was due to many individuals, the
active and enthusiastic members of the audience, the chairperson,
and the many speakers. The members of the AMSC were pleased with
the fact that most of the speakers were able to find time to
prepare papers for the Transactions. These research articles will
enable many persons that were not able to attend the symposium to
profit by these contributions to the scientific literature.
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AGENDA

s

Monday June 15, 1987

¢! 0800 - 1600 Registration - Mahon Hall Lobby
i 0800 - 0845 Opening Remarks - Mahon Auditorium

0845 - 0945 General Session I - Mahon Auditorium

X Chairperson: Dennis M, Tracey, Materials Technology
X Laboratory, Watertown Massachusetts
‘f
{: Some Mathematical Problems Arising from Computer
F Vision
. David Mumford, Harvard University
\; Cambridge, Massachusetts
",'l
o
' 0945 - 1015 Break
K
s,
B 1015 - 1215 Technical Session 1 - Vibration and Structural Optimization
:; HMahon Auditorium
u
:,’
) Chairperson: Roger Wehage, U.S. Army Tank-Automotive Command,
, Warren, Michigan
i'.
"y Nonlinear Parametric Excitation
)
;; J. Len and Richard H. Rand, Cornell University,
! [thaca, New York
f Stabilization of Ziegler's Double Pendulum by Means of the Method
i of Vibration Control
A A
o Gary L. Anderson and Iradj G. Tabjbakhsh, U.S. Army Research
L Office, Research Triangle Park, North Carolina
? An Expert System for the Creative NDesign of Mechanisms
-
D. A. Hoeltzel, F, Freudenstein, W, H., Chieng, Columbia
tr University, New York, New York
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1015 - 1215

Monday (Continued)

Statistical Machine Learning for the Application of Nonlinear
Programming Algorithms in Computer-Aided Mechanical Design

D. A. Hoeltzel, W. H, Chieng, Columbia University, New York,
New York

Application of Symbolic Computing for Optimal Design of Large
Mechanical Systems

Hashem Ashrafeiuon and Neel K. Mani, State University of
New York, Buffalo, New York

Multigrid Analysis Applied to Transmission Dynamics

Albert F. Kascak, Lewis Research Center, Cleveland, Ohio

*hkkkkk

Technical Session 2 -~ Solid Mechanics I - Mahon Hall, Room 205
Chairperson: John Vasilakis, Benet Weapons Laboratory,
Watervliet Arsenal, Watervliet, New York

Toward a Nonequilibrium Thermodynamics of Solidification

Morton E. Gurtin, Carnegie-Mellon University, Pittsburgh,
Pennsylvania

Shear-Lag Model for a Composite with Viscoelastic Matrix

Dimitris C. Lagoudas, C. Hui, and S. Phoenix, Cornell
University, Ithaca, New York

Element Level Elimination for Nonlinear Constraints in Total
Lagangian Finite Element Formulations

A, R, Johnson, and C, J. Quigley, U.S. Army Materials
Technology Lab, Watertown, Massachusetts

Condition of the Finite Element Stiffness Matrix Generated from
Highly Nonuniform Triangular Elements

I. Fried, Boston University, Boston, Massachusetts, and
A. R. Johnson, U.S. Materials Technology Lab,
Watertown, Massachusetts




1215 - 1330

1330 - 1530

1530 - 1600

Monday (Continued)

A Simple Analysis of Swage Autofrettage Process
Peter C. T. Chen, Benet Weapons Lab, Watervliet, New York

Modification of the KO Finite Difference Code for Internal State
Variable Constitutive Models

Thomas Benton, U.S. Army Materials Technology Lab,
Watertown, Massachusetts
Lunch
Special Session I - Mathematical Aspects of Composites -
Mahon Auditorium

Chairperson: J. N. Reddy, Virginia Polytechnic Institute,
Blacksburg, Virginia

Structural Optimization and Composite Material as in
Optimal Designs

Gilbert Strang, Massachusetts Institute of Technology,
Cambridge, Massachusetts

An Integrated Finite Element Analysis of Composite Structures
Jan L. Teply, Alcoa Technical Center, Alcoa Center,

Pennsylvania and G. J. Dvorak, Rensselaer Polytechnic Institute,

Troy, New York

A Finite Element Approach to Singularities in Composite Materials

Roshdy S. Barsoum, U.S. Army Materials Technology Lab,
Watertown, Massachusetts

On Nonlinear Shear Deformation Theories of Composite Laminates

J. N. Reddy, Yirginia Polytechnic Institute, Blacksburg,
Virginia

Break

Xi

igﬁEV-IEI*#lJ-~','( ﬁ




R N TN R O T R Y T X A XK AT AN Y, PR IV T TR U U US O T OW U NI TST I AT OO e a8t e Ll tek ) '.:.'(

!;;—‘ s
_B
'.;':
R
Monday (Continued) f}
L)
'}3
o
1600 - 1700 General Session Il - Mahon Auditorium aﬁ
.‘Q
4
Chairperson: Stephen Wolff, National Science Foundation, 'ﬁﬁ
Washington, OC iy

On the Numerical Solution of Time Dependent Probliems in High
Dimension. Applications

Roland Glowinski, University of Houston, Houston, Texas

Tuesday, 16 June 1987
0800 - 1600 Registration - Mahon Hall Lobby
0815 - 0955 Technical Session 3 - Approximations - Mahon Auditorium

Chairperson: William Jackson, U.S. Army Tank-Automotive
Command, Warren, Michigan

High Accuracy of Geometric Hermite Interpolation

Klaus Hollig and Carl De Boor, University of Wisconsin,
Madison, Wisconsin

On the Convexity of Bivariate Quadratic Spline Approximants
Charles Chui, Texas A&M, College Station, Texas; Harvey

Diamond, West Virginia University, Morgantown, West Virginia;

and Louise Raphael, National Science Foundation, Washington, DC

Knot Selection for Least Squares Approximation Using Thin Plate
Splines

John R. McMahon, U.S. Military Academy, West Point, New York
and Richard Franke, Naval Postgraduate School, Monterey,
California

A Rapid, Backscatter Simulation Technigues for Complex B-spline
Target Models

Karl D, Reinig, Harry Diamond Lab, Adelphi, Maryland
An Algorithm for Processing Scanning Spectrometer Data

Joseph E. Zurlinden, U.S. Army White Sands Missile Ranye,
White Sands Missile Range, New Mexicon
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;«'i Tuesday (Continued) ::'.:":
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;:‘ 0815 - 0955 Technical Session 4 - Mahon Hall, Room 205 ::::::
[ ‘\":A
:". Chairperson: Royce Soanes, Benet Weapons Laboratory, “'-‘
Watervliet, New York g
,-‘ :.‘S..:
3 The KP Equation - A Comparison to Laboratory Generated 130.'...
‘f Biperiodic Waves :E'é
b" I

L Norman W. Scheffner, U.S. Army Engineer Waterways Experiment 2:4»‘!‘
Station, Coastal Engineering Research Center,

Vicksburg, Mississippi .“:::',:

Pt

Asymptotics Beyond A1l Orders AN

Wit

CAX]

Harvey Segur and Martin D. Kruskal, ARAP Division of CRT, f-"!:'
Inc., Princeton, New York ~

:

Ground Mobility Tactical Decision Aids on a Microcomputer '::0;:

. . . h

T. C. Falls, U.S. Army Engineer Waterways Experiment Station, ‘?:
Geotechnical Laboratory, Vicksburg, Mississippi *;:_‘"i

Computational Issues in Goal Programming Resource Allocation ;:é;.;

A KM

(3

Leon Medler, U.S. Army Belvoir Research, Development, and :“:“

Engineering Center, Ft. Belvoir, Virginia :‘.:’.

.Q‘l,p'
Designing A Feeling, Thinking Machine &
o
" M. Johnson and R. Scanlon, Benet Weapons Lab, -"::{
Y Watervliet, New York SN
Y W
‘ KhE*KK* Y

\ Y 0815 - 0955 Poster Session - Mahon Hall, Room 207

U

o Diffusion Equation Resolution by Difference Equation Regression,
;. Part I

e William F, Donovan, Ballistic Research Laboratory,
o, Abeerdeen Proving Ground, Maryland

i1

b 0955 - 1015 Break
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;g Tuesday (Continued)

&

.?2 1015 - 1115 General Session IIl - Mahon Auditorium

'ié‘l(

g& Chairperson: Miles Miller, Chemical Research Development Center,
at Aberdeen Proving Ground, Maryland

) Unified Euler and Navier-Stokes Numerical Methods

N

%ﬁ' Sukmar Chakravarthy, Science Center, Rockwell International
;g Corporation, Thousand Oaks, California

49

. 1115 - 1330  Tour/Lunch

:""\

iﬁ: Also Demo: DNata Analysis/Mathematical Modeling

i;:;. 1130 - 1200

ZQ, Computer Aided Geo. Analysis

) 1230 - 1300

(] \J

7

1“ 1330 - 1530 Special Session 11 - Solid Modeling & CAD/CAM - Mahon Auditorium
"

fﬁ” Chairperson: Mark S. Shephard, Rensselaer Polytechnic Institute,
' Troy, New York

A Analysis Model Generation and Control from Solid Models

D

n Mark S. Shephard, Rensselaer Polytechnic Institute

%,‘ Troy, New York

e Solid Modeling for Automated Tolerance Analysis

e' .'

=i{ Joshua Turner, IBM, Poughkeepsie, New York

x...

ﬁﬁ Trimmed Surface Algorithms for the Evaluation and Interrogation
pn of Solid Boundary Representations

ﬂ: Rida T. Farouki, IBM Thomas J. Watson Research Canter,

W Yorktown Heights, New York

I

)

:‘ The Use of Topology in Geometric Modeling Systems

; Kevin Weiler, General Electric Corporate Research and

ﬂ' Development Center, Schenectady, New York
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2 1530 - 1600 Break
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1600 - 1700
1830 - 1900
1900 - 2000
2000 - 2030
0800 - 1600
0815 - 1015

Tuesday (Continued)

General Session IV - Mahon Auditorium

Chairperson: COL David H. Cameron, U.S. Military Academy,

West Point, New York

Computational Mechanics:Today and Tommorrow

Robert Taylor, University of California-Berkeley,
Berkeley, California

*k
Social Gathering - West Point Officer's Club
Banquet

Invited Speaker

Wednesday, 17 June 1987
Registration - Mahon Hall Lobby
Technical Session 5 - Numerical PDE - Mahon Auditorium

Chairperson: K, 0'Neill, Cold Region Research and Engineering
Laboratory, Hanover, New Hampshire

Front Tracking and Shock-Contact Interactions
John Grove, New York University, New York, New York

A Posteriori Error Estimation of Adaptive Finite Difference
Schemes for Hyperbolic Systems

David C. Arney, U.S. Military Academy, West Point, New York,
Rupak Biswas and Joseph E. Flaherty, Rensselaer Polytechnic
Institute, Troy, New York

Local Refinement Finite Element Methods for Parabolic Systems
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Joseph E. Flaherty and Peter X. Moore, Rensselaer Polytechnic

Institute, Troy, New York
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Wednesday (Continued)

Magnetic Resonance Coil Design in the Presence of Modifying
Half-Space

J. F. Schenck and M. A. Hussain, General Electric Corporate
Research and Development Center, Schenectady, New York

Electromagnetic Pulses Including the Calculating of the
Magnetics as well as the Electric Fields Near Explosion Site
(Propagator Matrices)

K. Heaton, Defence Research Establishment Valcartier,
Courcelette, P.Q.

On a Comparison of Exact and Empirical Results of Convective
Heat Transfer

Rao Yalamanchili, U.S. Army ARDEC, Picatinny Arsenal,
New Jersey
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Technical Session 6 - Solid Mechanics II - Mahon Hall, Room 205

Chairperson: S, C., Chu, Army Research and Development Command,
Dover, New Jersery

Problems with the Solutions of Crack Problems of Elastic
Composites

Ram Srivastav, State University of New York,
Stony Brook, New York

Spline-Based Finite Element Method for Solving a Stefan's
Problem in a Finite Domain

Shunsuke Takagi, Cold Regions Research and Engineering Lab,
Corps of Engineers, Hanover, New Hampshire

Plasticity and Microstructural Damage

C. Freese, P. Perrone, D. Tracey, and P. Tsirigotis,
U.S. Army Materials Technology Lab, Watertown, Massachusetts

Optimal Bounds and the G-Closure Problem for Two Dimensional
Homogenized

Robert Lipton, Cornell University, Ithaca, New York
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Wednesday (Continued) &{}
(R
Superconvergence in Finite Element Methods for Linear and &ﬁ}
Nonlinear Fracture it
John Whiteman, Institute of Mathematics, University of Brunel, ?5V
Uxbrdige, Middleses, United Kingdom ifﬁ!
Some Issues of Numerical Integration and Penalty Relaxation in Eﬁ&
Anisoparametric Shell Element Formulation $¢§
5 ’:’l‘

A. Tessler and L. Spiridigliozzi, U.S. Army Materials $¥§
Technology Lab, Watertown, Massachusetts i
-l
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1015 - 1045  Break -
1045 - 1145 General Session V - Mahon Auditorium »?”;
Chairperson: Colin E. Freese, Materials Technology Laboratory, gkﬁ
Watertown, Massachusetts ng
o
Parallel Matrix Computations on Loosely Coupled Systems of Array q;?
Processors Qj%
Charles Van Loan, Cornell University, Ithaca, New York %Fﬁ
:l:::o'
10,
1145 - 1300 Lunch Bt
%3'_{’

1300 - 1530 Special Session III - Stochastic Analysis - Mahon Auditorium el
o
Chairperson: Gerald Andersen, U.S. Army Research Office, Yhﬁ
Research Triangle Park, NC o

o

Stochastic Quantization

>"‘\
Sanjoy Mitter, Massachusetts Institute of Technology, asr:
Cambridge, Massachusetts &
Stochastic Growth Models e
i
Richard Durrett W,
bt
- e
Statistical Inference from an Infinite Server Queueing System Wb
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b Wednesday (Continued) KRR

The Analytical Approach to a Class of Diffusion Type Probability
Distributions

i Siegfried H. Lehnigk, U.S. Army Missile Command,
: Redstone Arsenal, Alabama

° Nonlinear Filtering of Discrete Parameter Paint Processes
4 Gerald R. Andersen, U.S. Army Research Office,
Research Triangle Park, North Carolina

1530 - 1600 Break

. 1600 - 1700 Technical Session 7 - Mahon Auditorium

Chairperson: Billy Z. Jenkins, U.S. Army Missile Command,
i Redstone Arsenal, Alabama

" Column Movement Model Used to Support AMM

a G. B. McKinley, U.S. Army Engineer Waterways Experiment
Station, Geotechnical Laboratory, Vicksburg, Mississippi

X A Study of the Aerodynamics of a Shaped Charge Jet

j Hubert W. Meyer, Jr. and James E. Danbery, Ballistic Research
' Laboratory, Aberdeen Proving Ground, Maryland

e Skew Grids and Irrotational Flow

)

N Robert S. Bernard, U.S. Army Engineering Waterways

;Y Experimental Station, Hydraulics Lab, Vicksburg, Mississippi
K *kddkk
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% 1600 - 1700 Technical Session 8 - Mahon Hall, Room 205

~§ Chairperson: COL James Kays, U.S. Military Acadenmy,

14 West Point, New York
X A Randomness Property of m-Sequences

n Gary W. Krahn, U,S. Military Academy, West Point, New York

’ and Harold Fredricksen, Naval Postgraduate School,

' Monterey, California
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Wednesday (Continued)

Thermodynamic Guage Theory of Solids and Quantum Liquids with
Internal Phase

Richard A, Weiss, U.S. Army Waterways Experiment Station,
Corps of Engineers, Vicksburg, Mississippi

Lagrangian Formulation of Relativistic Thermodynamics

Richard A. Weiss, U.S. Army Waterways Experiment Station,
Corps of Engineers, Vicksburg, Mississippi

*edekdede R

Thursday, 18 June 1987

0800 - 1100 Registration - Mahon Lobby
0830 - 0950 Technical Session 9 - Analysis - Mahon Auditorium

Chairperson: Raymond Sedney, U.S. Army Ballistic Research Lab,
Aberdeen Proving Ground, Maryland

Modelling of the Lean Flammability Limit in Flame Theory

Richard Y. Tam, Purdue University, Indianapolis, Indiana
On Plastic Shear Instability at High Strain Rate

Timothy J. Burns, National Bureau of Standards, Washington, OC
The Solution of the Type-Problem for N = 4

Walter 0. Egerland, U.S. Army Ballistic Research Lab,
Aberdeen Proving Ground, Maryland

Neural Networks and the Symmetric Group SN

John L. Johnson, U.S. Army Missile Command,
Redstone Arsenal, Alabama
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i Thursday (Continued)

0830 - 0950 Technical Session 10 - Estimation and Filtering - Mahon Hall,

Room 205
g Chairperson: Robert E. Green, White Sands Missile Range,
‘ New Mexico
%& An Algorithm for Adaptive System Identification
'§ Charles K, Chui, Texas A&M University,
0 College Station, Texas

Simulation of Sub-Optimal Kalman Filter Design for Target
KH Tracking Application Using Computer Algebra

e Radhakisan S. Baheti and Moayyed A. Hussian, General Electric
i Corporate Research & Development Center, Schenectady, New York

A New Approach in the Optimal Guidance of Tactical Missiles

R. V. Ramnath, Sparta Systems, Inc., Lexington, Maassachusetts

.‘.‘

t
$§ Shannon's Sampling Theorem and Control Theory

" Charles E. Hall, Jr., U.S. Army Missile Command,
R Redstone Arsenal, Alabama
|:.:
i

;E; 0950 - 1015 Break

o 1015 - 1215 General Session VI - Mahon Auditorium

c':

:Q Chairperson: Jagdish Chandra, U.S. Army Research Office,
A Research Triangle Park, North Carolina

L

)

P Computational Methodology for Transonic Flow

-

:5 Antony Jameson, Princeton University, Princeton, New Jersey
KK
if The Interactions of Nonlinear Waves

L James Glimm, Courant Institute, New York University,
W New York, New York
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Lie Transforms Applied To A Nonlinear
Parametric Excitation Problem*

Jonathan L. Len
Center for Applied Mathematics

Richard H. Rand
Department of Theoretical and Applied Mechanics

Cornell University
Ithaca, New York 14853

Abstract

We use Lie transforms to approximate the Poincaré map of a weakly non-
linear periodic perturbation of the simple harmonic oscillator in order to study
the stability of the trivial solution. Resonant frequencies, corresponding to
nonremovable terms in the differential equation, are identified through O(e?).
We show that detuning from resonance stabilizes the trivial solution when
the perturbation contains no linear periodic terms. Finally, we study a typi-
cal bifurcation between two lowest-order resonant frequencies. A MACSYMA
program which performs the Lie transform algorithm to arbitrary order is pre-
sented in the appendix with a sample run.

1 Introduction

In this paper we present some results concerning the stability of the trivial
solution of the equation

P+wlz+ef(t,z)=0 (1)

where f(t,z) is T-periodic in t. Tavlor-Fourier expandable in z and ¢ respec-
tively, and f(t,z) satisfies f(¢,0) = 0. The hamiltonian structure of eq.(1)

“This work was partially supported by NSF grant 85-09481 and by the Army Research Office
through the Mathematical Sciences Institute, Cornell University, Ithaca, NY 14853

"qw ‘.

P " "I' ' -‘.“W €y ® .~.‘-~p 1\3\ » A 0
\. “. o : J\ . N o.l::.l'n \ .“::‘I

l'.‘a‘ t‘ l'u Py ' sal' U U E S b LT, W,

s

L bt Al

. s
. "\' ‘.-"."‘."‘.N‘t" e



W %A TR At § g iia ave i fé abd 98  BRaty 38 %) MR Wk aby JUaa¥o aci afB ¥k w¥h a8 s0A LIk ¥R ABR LA aBh Al aby a¥h b ay ad UWUWIRH

J
)
hin!
s 3

R
i

{ IS

¥

permits us to use Lie transforms to reduce the nonautonomous hamiltonian :E::::

::~ induced by eq.(1) to an autonomous one by means of a periodic canonical near- §n::§4:
¢ identity transformation. The resulting autonomous hamiltonian describes the ::a:",:
N Poincaré map in a neighborhood of the origin. c::::f,
Analysis of the Poincaré map gives substantial information concerning the LA

:.; original equation. The presence of a periodic point in the Poincaré map implies :'.c::;
T the existence of a periodic orbit in the original equation. In particular, a »:',:;"'
b periodic saddle point corresponds to a hyperbolic periodic orbit, and a periodic 2150,:
K center corresponds to an elliptic periodic orbit. ‘ Bl
’ We begin by describing the Lie transform algorithm as used in this work. . '..'
! We then present a theorem which defines the O(¢) and O(e€?) resonances for e
:: the general case of eq.(1), and show that almost all higher order resonances ',»::,E
< are stable. ::fai
4 Next, we study the properties of the trivial solution of a simple equation of ::',t::
- the type (1). We identify the O(¢) and O(€?) resonances, and characterize the f_j_"'-"
stability of the trivial solution for all nonzero w. Results of the Lie transform f’.-q;

analysis are compared with numerically generated Poincaré maps. l:::tf
Finally, we study a bifurcation between O(¢) resonances of cubic and quad- ::3:::’

ratic nonlinearities. In this example, a 47-periodic hyperbolic orbit becomes a, :&:s‘,ﬂ

2r-periodic hyperbolic orbit through a sequence of bifurcations. ‘,:!f‘,:

‘.‘:t 2 Results ":’é:

|'. “':!lt
N . . e
" We consider the general equation .:.i":
i* ..:."l
' P+uwiz e z:ge,(t)av:N"'l =0 (2) &
o g o
::! where the g,(t) are periodic and the N, are positive integers. This equation ;:.‘t;.
;" was studied extensively in [1]. Here we summarize some results and refer the .:.”:
c:'. reader to [1] for additional information. ) :::qf
H In canonical variables ¢ and p, eq.(2) is generated by the hamiltonian
K 2 A
o ha,pt) = & —ga(t 3) i
Wy '
",:‘ The change of variables N
N R ]
= /2J[wsin(8 + wt), (4) _-
b p= MCOS(O + wt) ' ;'::‘
" et
W reduces eq.(3) to the O(¢) hamiltonian k:::sj
M i
[ 1 2J bt
2 H(J,0,8) = €3 5-9a(t)( )"/ sin™(0 + wt) = eH1(J,6.1).  (5) Y
o [o 4
o
' ’!a'.:t
& et
G )
:’i:‘ 2 .I:.'
»
K )
o )
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;: We will apply the Lie transform procedure to this O(¢) hamiltonian.
‘“c:' Definition 1 Let
h w(t,z,€) = w1(t,T) + ewa(t,z) + Ewa(t,z) + -+
‘;:‘:; be the Lie generating function defining a canonical transformation which re-
) duces the hamiltonian (5) to an autonomous one. Then w is a resonance at
fa': O(e€™) if it is a pole of wy(t,z) but not of wi(t,z), for 1< k< n-—1.
bN

We denote by ,, the set of frequencies which are resonant at O(€").
“ An equivalent definition of a resonant frequency may be formulated in terms
':s of the near-identity transformation generated by periodic averaging.
ia: For example, the O(¢™) resonance for the linear Mathieu equation
T
,:i' i+ wlz+excost=0
w is w = n/2, for n > 1. Resonant frequencies correspond to non-removable
o terms in the hamiltonian (with respect to Lie transforms) or in the differential
‘g" . . T .
A equation (with respect to periodic averaging).
b ging
;::0 In order to show how to generate all O(¢) and O(e?) resonances for eq.(2),
i we introduce some notation. By assumption, each g,(t) is periodic and may
. therefore be expanded in a Fourier series. Let
¥y
! 2
A (a) — i —ut
D o = o [ ga(eat
i
!:_ be the Fourier coefficients of g,(t) for integer u. Let M, denote the set of

frequencies of g,(t), that is,
"
:Z: Maz{p:cff‘);éo,uEZ}.
Iy
::' Then
B a(t)= 3 e,

#EMa
;;‘ As shown in [1], ; consists of all w satisfying
s
)
::: w=—HF ke M,
'.9": Ny -2’ 0<v <N,.
‘l'
-2 and 2, consists of all w satisfying
14
!‘.‘ l‘ E Ma
1y 4
", b+ 1€ My
:0 w= v Y- 3 0<v <N,
6N, #vNy
y;l
RN
l"
g 3
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which are not also included in ;. :t:.;e
It is also shown in [1] that if w ¢ Q; U Q2 U {0}, then the resulting reduced ::-:::
hamiltonian is of the form :::::;
L}
K = cfi(J) + Ef(I) + -
e
where f; and f; contain integer or half-integer powers of J. This implies that '.'.‘;s‘
the origin of the Poincaré map is a center, and therefore the trivial solution is ::t‘
a stable elliptic orbit. .‘f’i’
We show here that if the perturbation is strictly nonlinear then detuning s
creates a hyperbolic periodic orbit which traps the trivial solution, stabiliz- W
ing it. We then analyze a bifurcation problem between periodic orbits near ;:::.:
resonances showing how a 4r-periodic orbit bifurcates into a 27-periodic orbit. vy
dul
3 Lie Transforms L
An important characteristic of autonomous hamiltonian systems is that the .‘:i::‘t
hamiltonian is constant along solutions of the system of differential equations. ':‘::Z'.
If the phase space has dimension two then the solutions are level curves of the .g'.:n
hamiltonian. The reader is referred to [3] or [4] for a complete discussion of iyt)
hamiltonian mechanics. 3
In this work we use Lie transforms to reduce eq.(3) to an autonomous vt
hamiltonian, and then analyze the level curves of this autonomous hamilto- :':::t
nian to determine the behavior of solutions which have initial conditions close ::"::
to the trivial solution. The implementation of the Lie transform algorithm .::T!;:
which is presented here implicitly constructs a canonical change of coordinates i “8
which performs the reduction to an autonomous form. It is obvious that no Ry
autonomous canonical change of variables can make this reduction. Therefore A “d:‘_
the hamiltonian with respect to the new coordinates must be determined by ""‘z:‘
means of a generating function or some equivalent method which takes into ;«;:,0
account the nonautonomous nature of the transformation. The Lie transform G
method is an efficient perturbation scheme which explicitly generates the func- '
tional form of the reduced hamiltonian under an implicitly defined canonical ;:'.':\:
periodic near-identity transformation. \::;“
Let z and y denote the old and new coordinates, respectively. Let ¢ denote ;':
the perturbation parameter. Let H denote the hamiltonian with respect to N
the z coordinates, and let K denote the transformed hamiltonian. We assume .
that # and K may each be written as power series in ¢, ':::::
J
) H(t,z,€) = Ho(t,z) + eH (t,z) + € Hy(t,z) + - - ‘l.:‘.:':':
. MY
; and S \

K(t.z,e) = Ko(t.z) + ey (t.z) + Ry(t.z) + -+

4@&;:3,‘:;. G \4;\.} s),\’:‘.\, \Q-. y ~
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The relation between z and y is defined implicitly in terms of a Lie gener-
ating function w(t,z) as

(6)

where { , } is the Poisson bracket operator. For two-dimensional phase space,
the Poisson bracket operator is

_0f0g df 9g
{f’ g} - 81'1 3:!'2 - 322 8271 )

In words, the new coordinate system evolves from the old one by means of a
“hamiltonian flow” in the evolution quantity . See (3] for a complete discussion
of this procedure. It is straightforward to show that the change of variables z —
y defined by eq.(6) is canonical. This consists of showing that the fundamental
Lagrange brackets are preserved under the transformation.

The reduced hamiltonian K is related to H by

Ko Hy
. dw
1 H1+{w1vH1}+a_t1

lawg

. 1
K, H2+5{w1,1(1+H1}+5W+{w2,H0}

Although this sequence can be written in closed form to arbitrary order, we
need it only through O(e?). See (2] for full details of this topic.

It is important to interpret eq.(7) correctly. The right-hand side of each
equation is a function of z and ¢, and the Poisson brackets are computed with
respect to the z coordinate system. The resulting function K is evaluated at
K(t,z). The z are dummy variables, and may be replaced by y to give the
transformed hamiltonian.

The sequence (7) gives the transformed hamiltonian for an arbitrary gen-
erating function w. The trick is to choose successive w; to make the corre-
sponding K’; as simple as possible. This means choosing w; at the ith step
such that

dw;

I {wi, Ho}

removes as many terms as possible in the right-hand side of the ith equa-
tion in (7). While this operator is linear, it has a nontrivial kernel; therefore
some terms may not be removable. In the context of periodic perturbations.
this means that w; cannot be chosen to make A; autonomous directly. How-
ever, after all nonessential terms have been removed to desired order using Lie




transforms, a final canonical transformation of the form

J = I
8 — &+ at

for some scalar & can always be found which makes it autonomous.

The method may be simplified considerably by the following trick: Apply
a canonical transformation which removes the O(1) terms of the hamiltonian
so that Hy = 0. Then all Poisson brackets in (7) involving Hg vanish, and the
terms which are removable are precisely the t-dependent ones. The appropriate
choice of w; is to take —w; as the t-antiderivative of the t-dependent terms.
The resulting K is autonomous by construction. This modified Lie transform
algorithm has been implemented in MACSYMA since the amount of algebra
required to carry the perturbation scheme through even O(€?) is too daunting
to compute by hand with any confidence. The program and sample runs are
given in the appendix. For a further discussion on the use of computer algebra
in perturbation schemes, see [1], [6], and [7].

While the simplification of the algorithm is important from the computer
algebra point of view, it is perhaps more important for analytical purposes.
This modified method was used to determine the O(¢) and O(€?) resonances
of the general equation given previously.

In principle, this strategy may be used in any system where the e = 0
problem may be solved exactly. For example, a system of linear oscillators
with weak nonlinear coupling may be studied using this simplification.

4 Determining the Resonant Frequencies

In this section we briefly describe the procedure by which resonances may be
found using Lie transforms. For complete details, see [1].
We assume that the equation is of the form

i+wiz+ ez:gc,,(t):r}\""'l =0.
s 4
In canonical variables ¢ and p, this equation gives rise to the hamiltonian
h(qp.t)-—+ C e nga - (8)

Our first step, as described at the end of the previous section, will be to perform
a transformation of coordinates to a system in which the hamiltonian contains
no O(1) terms. The change of variables

= \/'217wsin(0 + wt), (9)
= v2Jwcos(8 + wt)

(o]
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reduces eq.(8) to the simplified hamiltonian
.Huoz)_e§: %ux N/%mM%0+wﬂEeHﬂL&U. (10)

We now apply the Lie transform procedure to transform eq.(10) into an
autonomous hamiltonian. Note that no O(1) terms are present. As noted at
the end of the previous section, this simplification permits us to compute the
Lie generating function at each step by integration of exponentials.

To identify the resonances, we first compute wy for arbitrary w. This gives
a function similar in form to H; but whose coefficients are rational functions
of w. The poles of these coefficients, which correspond to non-removable terms
in Hy(J,8,1), are frequencies which are resonant at O(¢). Having identified the
O(¢) resonances, we may then implicitly compute w; to identify possible O(€?)
resonances.

We first introduce some notation. By assumption, each g,(t) is periodic
and may therefore be expanded in a Fourier series. Let

(a) 1 2 ~ut
Y = ﬁ./o ga(t)e ' dt

be the Fourier coefficients of g,(t) for integer p. Let M, denote the set of
frequencies of go(t), that is,

={u:c #0,n€ 2}

ga(t)= Z cf‘a)emt.

HGMa

Expanding the trigonometric functions with the binomial theorem and insert-
ing the expansion for g,(¢) in eq.(10) gives

Na
1(.],0,1) = Z Z Z a‘(ﬁl)619(2U—Na)ezt((2u—Na)w+u) (11)
a pueMy v=0

where

1 J N,
(o) — —_— {a) - Na/2 a _ Na/2-v
ay ‘Vac“ (2“)) (V>( 1) . (12)
Proceeding formally, w; is just the negative of the t-antiderivative of H;:

Na (0!) 10(2U—N )ext((2u Na)w+u)

w=y ¥ 5

o €M, v=0

(20 = NaJw + 1)

This choice of wy makes A’y the t-independent part of H,.
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The poles of w; are w = 0, which we shall ignore, and

u wE M,
N,-2v’ 0<v<N,.

Let Q, denote the set of O(€) resonances. Let 2; denote the set of poles of
wg which are not in Q;. Then Q, the set of O(ez) resonances. The equation
defining w is

8
;‘;2 2Ky — {w1, K1} - {wy, H1). (13)

It is sufficient to determine the possible exponents introduced in the right hand
side of eq.(13) since the poles of w; correspond to roots of the exponents. Since

K, and K are autonomous by construction, the new resonances can come only
from the term {w;, H1}. It is clear from the definition of a(°’) that

aafff) — _Jv_aa(a)
aJ 2J

Therefore,

Na No afﬁ',)a( (6No — vNpg)

{w, B} = 3 3 3.3,

a,8 nEM, v=068=0 Y(2v = No)w + 1)
’YEMp

£"0(2(v+6)=Na—Np)

(14)
e:t((2(u+6)—Na —Ng)w+u+7)

If a frequency is a resonance, then it is a root of the t-dependent exponential.
It is easily seen that Q; consists of all w which satisfy

B € M,
7€ Mg
YEN Nu+; ; 0<vs N
§N, # vNg

but which are not also included in ;.

We conclude this section with some examples which demonstrate how to
compute the resonant frequencies.
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4.1 Examples

Example 1
i+ wz +excos(t) =0

For this example,
Ny =2, M1={—1,1}.

Q, is generated by the numerators £1 and denominators 2 — 2v with
v = Oorv = 2. The only positive resonance is w = 1/2. For §,, the
possible numerators are 1 + 1 and —1 — 1. The denominators are given by
24+2-2(v+46) where v =0,1,2 and § = 0,1,2 with v # §. Therefore v + 6
can take on the values 1,2, and 3, and consequently the allowed denominators
are £2. The only frequency generated is w = 1. Therefore

0 = {%}’
Q. = {1}.

This agrees with the classical result for the Mathieu equation, which is that
the O(€™) resonance is n/2.
Example 2
i+ Wiz + excos(t) + ez =

Then
Nl = 2, A’Il = {-—1, 1}

Ny, =14, M; = {0}.

2, is determined exactly as in the previous example since the set M, cannot
contribute a nonzero frequency. (The O(¢) resonances can always be found by
considering each term of the perturbation separately). For €, the resonance
w = 1 is generated as in the previous example. The “mixing” of the sets
M, and M; introduces the possible numerators +1 + 0, with corresponding
denominators 2 + 4 — 2(v + §) where » = 0,1,2 and § = 0,1,2,3,4. The
forbidden pairs are (v,6) = (0,0), (v,6) = (1,2), and (v,6) = (2,4). The
allowed values of v + 6 are 1,2,3,4,and 5, giving allowed denominators +2 and
+4, so the new resonance is w = 1/4:

G = {%},

1
QZ {1’ I}

Example 3
i+ w?z + ex"cos(t) = 0. n odd

v “l:‘
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l'.q 'l'
1 :":f"‘
: nt
iy
o Here :::!::
o M=n+1 M ={-11} e
i : (o
e The resonant frequencies are !"dl,
s, v »
1 1 1 1 o
: Q = R , yoeey =), "y
n ! {n+1 n—-1n-3 5! :::i‘,’?
i 1 1 1 afee,
iy Q = ok DS s R ) Jon
:‘: 2 {n n-2n~4 1} ::;S"i
t ‘l‘
& Example 4 DN
%+ w?z + ex™cos(t) = 0, n even :
: For this example,
i
::: Ni=n+1, M, = {-1,1}.
e
‘ The resonant frequencies are
[ M/
W
N Q. = 1 1 1 1
3 v {n+1’n-1’n—3’ 1},
) 1 1 1 1
(“ Q = — —— e —— ¢ e
i . 2 n'n-2"n-4 ’2}
' Example 5
:?; %+ w?z + ex(cost 4 cos 5t) + €z3(1 + cos 3t + cos 7t) = 0
.'.
i Then
N1 =2 Ml ={—1,1,—5,5}
o" N2 = 4 M2 = {0,—3,3,—7,7}-
R .
) The resonant frequencies are
)
W
~ 1 75
a4 Q = —'7]s-1-3397 )
D 1= gy
. 1234357 _817
Y Q = P R Rl B e S 2 B N 3—16987 .
E:, : = 3yryeyrryyssesiy
]
::n Example 6
4.' ‘
K F+w’r+excost+ ex?cos5t + ez cos 12t + ex¥(1 4 cos22t) = 0
;) Here
b Ny =2 My ={-1,1}
M Ny =3 M, = {—5. 5}
b Ns=4  My={-12,12}

Ny=5 M, ={0,-2222}.
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:‘ The O(€) resonant frequencies are

15, 22 22

A O ={= = ——,5,6,—,22 .

B 1={5333 322

' The O(€?) resonances are

‘ 27 34 17 23 _34

X Q = {34,23,21,17,—,12, = 11,10, —, = 7—,

" 2 {(34.23,21,17, 5,12, 3 2'3"' 5

i 27 13 17 11 34 23 9 17 21, 11 17 10
4?21372’7,5’2’4’5’,3,573’

. 1317115127212107451511}

:. 4’6,4’2’5’37’777’5’3’47 ’6’375'

»

)

: 5 The Stability of the Trivial Solution Near

1 Resonance

Having identified the resonant frequencies, we now study the behavior of so-
X lutions close to resonance. We first study the major qualitative difference
W between linear and nonlinear parametric excitation.

We consider equations of the form

o i+wlz+ef(t,z)=0 (15)
o)
% where f(t,z) is periodic in ¢ and strictly nonlinear in z. The case when f(¢,z)
d contains terms which are linear in £ with periodic coefficients has been studied
) previously [5].
s Let wg be a resonance, and take w in eq.(15) to be
W
K)
L w2=w§+ew1+62w2+---
P
',i Then eq.(15) becomes
o P4 Wit +ef(t,z)+ (ewr + wy + -+ )z = 0.
W Detuning from resonance introduces a linear ¢t-independent perturbation. Since
o detuning at O(€™) introduces a term of the form ¢*J to H, it also contributes
h a term to K, which is independent of § and linearin J. Since a nonlinear term
b my 3 H (m+1)/2 -
,

of order O(z™) in f(t,z) contributes terms of order O(J ) to K and
;‘, terms of higher order to subsequent K;, the stabilizing effect of the detuning
i will dominate in a sufficiently small neighborhood of the origin. (This analysis

requires that € be held fixed, while J may be taken as small as necessary. For
) sufficiently small J the linear term dominates.) This implies that a strictly
" nonlinear periodic perturbation cannot cause the trivial solution to be unstable
. away from resonance.
‘l
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¢
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R 6 The Effect of Detuning From Resonance e
e X
;:ii We demonstrate the effect of detuning from resonance on the equation :‘Df :
;‘l': 'l"
‘ i+ w4+ exdcost=0. (16) =
'y . . (X
;4:: The resonances, as shown in a previous section, are :::,;;
) M5
“‘0 N 10.
) 11 ot
) W = {=-=}, [y
::‘ 1 { 2 ’ 4 ;I.g:
[ 3 1 o
Qy = {1, —}. a
0 3 “'o,"
'g?.. ,‘l:g!(
‘,: The MACSYMA implementation of the Lie transform algorithm, which is listed i ;’f
;Sl in the appendix, shows that for w? = — + ew; + 2wy the O(€?) the reduced :::t.ﬁ
:.:: hamiltonian is :Q:j;
by -
) 3 2,3 2 72 2 3
o K = - 7€ J” cos 46 + 4wr€°J“ cos 20 — €J“ cos 20 ,:;:.:
e (17) e
] Vgl
4 "".!
X —§€2J3 + wyetJ — wfe"’J + wied. .i:::‘
The fixed points satisfy -.1
" A
( ,
~ %— = 0, .‘::Q:
:‘.' aJ s‘“:'
t‘:‘ oK i
i 55 = R
&
:::‘ Solving for fixed points gives the O(1) pairs of fixed points .;::E‘
iy "
.!. / 7 2 8 7 3 8 .'..i'
‘:f; J = w1 + wy + wz(_ wy + w1w2€2 .. '.,::.,
I 2 16 64 oy
2 9 = T 3
T27 2 5
h ‘:.2
::: for w; < 0 and ..::“:
)
:::c J - u_Jl_+7wf+8w2€_wa+8w1u)2€2+.” .‘
ad 2 16 64 -
6 = 0,7 s
o . ‘n"::
Ly for w; > 0. (Solutions which are O(1/¢) also exist, but we ignore them since A
ol we are interested in the behavior of the trivial solution a neighborhood of ’\
v:‘: the origin. These fixed points indicate the presence of elliptic periodic orbits ".::‘
U . 3 . e 3
' contained in the homoclinic loops of the O(1) fixed points.) .
b;.
.::.
2
‘0: 12
W ':'t. :
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We now classify the non-trivial fixed points by studying the hamiltonian in
a neighborhood of the fixed points. Below resonance, for the fixed points at
8 = x/2 and 6 = 37 /2, the hamiltonian is

K = 1—66 ((24wze + 17wle + 24u1) co520 — Bune — 19wfe — 8un ) J.
Above resonance, for the fixed points § = 0 and @ = 7, the hamiltonian is

K= —I% ((24(4)26 + 17w?e + 24w;) €05 20 + 8wqe + 19wie + 8w1) J.
Both translated hamiltonians represent saddle points. As w — %- the saddle
points move in toward the origin along the lines cos2f = -1. At w = %,
the origin is saddle-like. As w increases from 1/2 the saddle points move out
from the origin on the lines cos 20 = 1. Figure 1 shows Poincaré maps below,
at, and above resonance. The Poincaré maps were generated by integrating
the second-order equation eq.(16). Figure 2 shows the level curves of the re-
duced hamiltonian (17), plotted on the same scale as the numerically generated
Poincaré maps.

7 A Bifurcation Between Resonances

Finally, we consider a bifurcation between two O(¢€) resonances. We will use
O(e) Lie transforms to study how the Poincaré map changes as the amplitudes
of two perturbations change. The equation to study is

%4 (14 ew))z + €(s2? cos(t) + (1 — s)z> cos(2t)) = 0

for 0 < s < 1. When s = 0, the quadratic term is absent and the cubic term
is resonant. When s = 1, the quadratic term is resonant and the cubic term is
absent. When 0 < s < 1 both terms are resonant. The interaction of the two
resonances is of interest.

Without loss of generality, set w; = 1. The resulting reduced hamiltonian

is
1-
K, = %J + @s-ﬂ/z sinf — $ 72 cos 26. (18)

Fixed points satisfy

7208}

— = 0.

aJ

01\1 - 0
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Figure 1
Numerically integrated Poincare maps (2:t=0 mod 27m)
of equation (16)
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f: which give the fixed points
i 3
o 6 = S
(19)

KA V2

J = 9s2 4+ 3238 —
i Vi =3 )(3s:i:\/s+ s - 32)
)
::: and
R
' >sin0 = v2s
p T o4s-1WT
) (20)
;.a J = 8 — 83 — s?
at To8(1-s)

‘ The requirement that the radicand of eq.(19) be non-negative restricts s to the
P interval 0.8138 < s < 1. The requirement that |sin#| < 1 in eq.(20) restricts s

% to 0 < s < 0.828427.

i We now classify the stability of the fixed points. The stability of the crit-
" ical point is characterized by the sign of the determinant of the Hessian Hh
, evaluated at the fixed point. A rather lengthy computation (cf. [1]) shows that
.l

3 det(Hh(xo)) = haghpp = (hqp)’ lo

n = hyshes — (hss)? lo-

'

The critical point is a saddle if

4 hyshes = (hye)*lo < 0

|}

)

:‘. and is a center if

'.} hashes = (hye) o > 0.

p For the fixed points satisfying 8 = 37/2,

‘s

0 (hsshes — h3g)lo < 0

1

N gives the stability criterion

15

- --J—(16(1—s)2J— 10V2s(1 — s)VJ + 332) >0

& 32

4

- where, from eq.(19),

LA VI = \/— (3s + V9s? + 328 ~

' Q(l - 3)

¢
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2, o::':::.
M Substituting this into the inequality shows, after some algebra, that the limits !'.":ﬂ::;

4 of stable s are roots of the polynomial equation ::."::“,
¢ ] ‘(ﬂ )
X . 440 5 463 , 8576 4096 it

't =8 —8 - — —_=0. i
21 9 63 63 o
b! t
3 The roots in the interval for which the fixed points exist are found to be ":.,%
B s = 0.818337 (for the + root) and s = 0.88871 (for the — root). The A
K stabilities of the fixed poirts for various s are listed in a table below. o'é'.::
X For the other fixed points, the stability criterion is o s
¢ 1-9)2J2 1-38)2J2 | Vv‘u
» _{ 2) - 2) sin?(20) > 0 :::-.:::
1 s e
P R
" where ) . ‘:':'a:ﬁ
N L LW
. J - —_ et h
1-s 8(1-s)? T3
Iyl
K and /3 .é:, a:ﬂ
it
hd VJsing = Lz—. o‘l:'o":
i 4(3 bl 1) |::‘:::._
- 4
‘ Inserting these relations gives the stability criterion iy
\ (s2+4s—4)(32+83—8)<0 :
{ 64(1 - 3)? '
‘ Since these fixed points fixed points exist for 0 < s < 0.828427 and the in-
v equality is not satisfied on this interval, these fixed points are always saddles.
The behavior for various s is summarized below:
0
i' o At s =0, saddles existat vVJ=1,0=0and VJi=1,0=r.
K’ e As s increases, the saddles move into the left side of the plane and toward
j' the horizontal axis.
'
o At s = 0.8138, a center appears at VJ = 2.31718, § = 37/2.
_; e As s increases, the centers separate, remaining on the horizontal axis.
K
5 e Ats = 0.818337 the center farthest from the origin on the horizontal axis
» becomes a saddle.
!
b s At s = 2V/2 — 2 the two saddles and the inner center coalesce and form
" a center.
N e At s = 0.88871 the inner center becomes a saddle.
y ¢ As s — 1 the inner saddle moves to vVJ = V/§/3 and the outer one moves
™ off to infinity.
Figure 3 shows the transitions for various values of s.
i
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Figure 3

Level curves of the reduced hamiltonian (18) for indicated
values of s.
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o 8 Appendix b
e i
e et 8
,'.‘5 The following MACSYMA program computes the lie transform of a weak per- ‘t;'.‘:v
::': turbation of the simple harmonic oscillator. )
e /* Program to compute the lie transform near a resonance.*/ "
" /* 1If detuning is requested, the program will supply it =/ "
" /*in the form dw[il*e"i. */ .
o lie() :=block ]
’-'?‘ ( L]
W kill(y,?w,n,j,dotran), Odﬁ'
e assume(j>0), o
:1.: maperror:false, ..:::'
5& print(timedate()), "ﬁ
, trunc:read("Truncation order:"), o)
: om:read ("Frequency"), ,
T4 f:read("Perturbation (use x, e, and t):"), oy
, X detoon:read("Detune from resonance [y/n] 7"), s
/ 3 if detoon = y then f:f+sum(e”i * dw[il,i,1,trunc)*x, Dk
0 dotran:read("Compute the co-ordinate Y
N transformation (y/n] ?"), 3
& print("Equation to work with:"), '::"‘,
» print(’diff(x,t,2) + om™2*x + £ = 0), o$c
3 (]
‘: Ig:l
e /* Construct the Hamiltonian in complex */ %ﬁi
1 /* slow~flow co-ordinates. */ ‘3&
Ry 'Qﬁ
o hh:map(pseudo.int_x,expand(exponentialize(£))), AN
D) $
4 ,
;J /* Do the canonical change of co-ordinates to */
" /* slow action-angle variables. */ il‘
¢ B,
N hh:ev(hh, x=%e"~ (i*om*t)*q/(2+%i*om) - Ye " (-/ixomxt)*p), E' \
;:l, hh:ev(hh,q=sqrt(2*j*om)*%e~ (%i*th), ‘.:\f_:
A p=sqrt(2+j*om)/ (2+%ixom)¥%e” (-%i*th)), :‘.:a :
-
W Oy

/* Now taylor expand hh to order trunc */

"c /* and assign h[i] values. */ :.'-
, tmp: expand(taylor(hh, e, 0, trunc)), N
> for i from O thru trunc do e
% ( 4

‘ h[i] : coeff(tmp,e,i) B
. b‘
::‘ o v
.::' 20 R
i S0
:,‘" LX)

k)
s
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Ml /* Initialize the new hamiltonian. */
.: X
. k(0] : n[o],
3
) /* This loop does the transforms. */
Y
) for n from 1 thru trunc do
i (
t
h print("Loop # ",n, "of ",trunc),
g temp: h[n] + sum(poisson(w[n-m],k[m]), m, 1, n-1)/n,
{a temp: expand(temp + sum(m*inverse_evolution NN
" (n-m, h(m]), m, 1, n-1)/n), _!_
o /% We don’t need wltrunc] unless we are going to */ hyﬁw
. /* compute the net transformation. */ N
. if (dotran = y or n < trunc) then w[n]: getw(n,temp), ':'
~ /* Cheat here. w[n] was chosen to make k[n] the */ *\ﬁz
/* t-independent part of temp. */ =
v k[n]: map(nuke_t,temp) e
4 ), 'J\:
] /* The result is in new action-angle variables. */ i
o /* Tell me what we got. */ 0N
W N
. print("") , 1‘- ?
f kk:sum(k[il*e~i,i,0,trunc), ;ﬁﬁf
. kk:expand(rat(kk)), ﬁ: ‘
NG
L) ' '
s' /* Tell me all about the reduced hamiltonian. */ g.'
a2 -8
o print("The reduced hamiltonian in transformed g~},
L- action-angle variables:"), SQQ,
N realkk: expand(rat(realpart(kk))), RR '
o rint(realkk), A
| P e
" /* if requested, compute the co-ordinate transformation. */ e
. L} ~ 3
' if dotran = y then -’NS‘
: 2,
'y block ::»
LA ( -}\
=L} 'ko
~ /* use the inverse evolution operator give the relation */ ,vf
: z
o
o‘:
0"
i
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/* between old and new. */

physical_j:sum(e~i*inverse_evolution(i,j),i,0,trunc),
physical_th:sum(e~i*inverse_evolution(i,th),i,0,trunc),

physical_j:expand(realpart(physical_j)),
physical_th:expand(realpart(physical_th)),

/* Now tell me how big the transformation is: */

print("") ,
print("The co-ordinate transformation has been
computed."),
print("length(physical_j)=",length(physical_j)),
print("length(physical_th)=",length(physical_th))
)
else
print("You told me not to compute the
co-ordinate transformation."),

/* Finished. */
)$
/* Function to look like integration in x. */

/* This function is mapped. */
pseudo_int_x(f):=

(

fxx/(hipow(f,x) + 1)

)$

/* function to compute poisson brackets in (th,j) space. */
poisson(f,g):=

(

diff(f,th) * diff(g,j) - diff(f,j) * diff(g,th)

)$

/* function to nuke t-independent stuff. */ .

/* this function is mapped. */
nuke_no_t(f):=

(

if freeof(t,f) then

22 3&3
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0
else
4
)$

e -

N o e

.
‘f /* function to nuke t-dependent stuff. »/
‘g /* this function is mapped. */
$ nuke_t(f):=
b (
it freeof(t,f) then
X t
K3 else
o 0
By )8
¢
iy /* Function to compute generating function to */
? /* nuke t-dependent terms. This function is not mapped. */
’:: getw(n,f):=
N (
) [tmp],
" tmp:expand (-n*map(nuke_no_t,f)),
::‘ /* Factor the exponents in case an unspecified */
~a /* omega is given. Note: lambda returns a list. */
% tmp :map(lambda([u] ,scanmap(factor, [u])),tmp),
" tmp:part(tmp,1),
. map(innegrate, tmp)
4 )$
»
3 /* Function to look like integration of complex */
K /* exponential, hence the name. */
/* This function is mapped. */
A innegrate(f):=
P (
:': (nn,mm,tmp,z],
:g matchdeclare([nn,mm] ,freeof(t)),

¥ /* Define the pattern-matching rules for sines */
{t /* and cosines. Note that the rules do not commute,*/
::' /* and ins must be performed before inc. */

L)

he defrule(ins, sin(nn+mm*t),-cos(nn+mm*z)/mm),
; defrule(inc, cos(nn+mm*t),sin(nn+mm*t)/mm),
P
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K R
& tmp:expand(demoivre(t)), t;‘
i: ‘ tmp:expand(applybi(tmp,ins)), ;:::'
B tmp:applybi(map(nuke_no.t,tmp),inc)+map(nuke_t,tmp), RO
tmp:ev(tmp,z=t), r 3
W tmp:expand (exponentialize(tmp)) :':::":‘
DY ot
.': )% .l"::'
N idle,
A g
" /* Recursive function to compute kth term of */ s
. /* inverse of evolution operator acting on h. */ R
:.: inverse_evolution(k,h) := ’:‘:’:'
N ( s
L ) PRGN
» if k =0 then h , (R
N MK
X else iy
R sum(poisson(w[k-m],inverse_evolution(m,h)), m, 0, k-1)/k .;;?‘
! )$ :‘n‘:’:
( "y
) ooy
K /* Recursive function to compute kth term of evolution */ ':::l::
o /* operator acting on h. Note that this function is not */ XL
/* used by the program. */ 3 3
3 evolution(k,h) := Wy 3
K ( ‘w‘ﬁ»
o if k = 0 then h e
I else X c'.'fo
K -sum(evolution(m,poisson(w[k-m],h)),m,0,k-1)/k g
o )$ .:s:'c:
|: :;.l (
0 The following examples were run with the MACSYMA option “SHOW- :::::::.:
" TIME:ALL” on a VAX 8500. K
[\ . |'S
3 (c4) 1ie()$ 2y

A Wed Jun 10 15:59:17 1987 ‘

»
hab
! Truncation order: ) ::g
: L v
d Frequency ‘@
1/2; ,
Perturbation (use x, e, and t): ""}
{ e*x"3*cos(t); 5 :

. Detune from resonance [y/n] ? 5

\ B

! y: )
.
: ..'g
! t
: o
ol 24 o
; R
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BN ' '::';
% o
- g
[ U i‘-
&
t :‘!Q"
G .."
N ‘:l:::
o !
_;‘ :n' )
o Se.t
v} of
B L
e Compute the co-ordinate transformation [y/n] ? ::,:::
yi A
o i
Equation to work with: )
o)
e .!"".-,
% 2 R
s d x 3 x b
¢ -~=- + @gcos(t) x +dw ex +-=0 ‘:Q::,
" 2 1 4 :‘?‘fe'i
7,
o
. EX
o o
:,‘ Loop # 1 of 1 c'g.o“‘
i 40 ¢
" i
i el
¥ "
L¥) B
. i 1
] The reduced hamiltonian in transformed action-angle «;.;a;.
variables: l‘:o:t"
; ‘.l::‘ﬁ
B L7
)' 2 ‘:“‘:\
i . . !
Q) dw e j - e j cos(2 th) SOy
b ’ :
Y
5:' The co-ordinate transformation has been computed.
v
{
:"" length(physical_j)= 5
K length(physical_th)= 6
k)
)
Totaltime= 52500 msec. GCtime= 20116 msec.
':a, Next, a run with a symbolic frequency to show how the resonant frequencies
’ may be computed:
AF
&
(c7) 1lie()$
Wed Jun 10 16:01:32 1987
L Truncation order:
B 1
: Frequency
W omega;
W Perturbation (use x, e, and t):
s exx~3*cos(t);
W Detune from resonance [y/n] ?
)
D
i
’l
&y
)
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n;
Compute the co-ordinate transformation [y/mn] ?
y;

Equation to work with:

2

dx 3 2

--- + o cos(t) x + omega x =0
2

dt

Loop # 1 of 1

The reduced hamiltonian in transformed action-angle
variables:

The co-ordinate transformation has been computed.
length(physical_j)= 5

length(physical_th)= 6

Totaltime= 72200 msec. GCtime= 26500 msec.

(c8) factor(denom(rat(ev(w[i],t=0))));
Totaltime= 3250 msec. GCtime= 1266 msec.

2
(d8) 32 omega (2 omega - 1) (2 omega + 1)
(4 omega - 1) (4 omega + 1)

The poles of the generating function at O(¢) are w = 1/2 and w = 1/4.
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Abstract

An interactive system, referred to as MECXPERT {Mechanism Expert}, has been
designed with the expressed purpose of assisting nonexpert design engineers in
creating mechanisms for fulfilling specific motion-conversion and/or power-
transmission requirements. The particular knowledge representation chosen for this
application comprises a hybrid formulation of a rule-based production system with a
frame-based approach. The underlying control strategy is based on a series of
special-purpose, domain-specific operators whose function is to move from one
problem space to another through various stages or “states" that comprise the

mechanism design process.

The primary focus of this paper centers on the representation of knowledge and
its control within an expert system for creative mechanism design. An overview
summarizing the reasons for developing such an expert system is provided, and the
formulation of a problem is discussed through an example taken from the design of a

variable-stroke internal-combustion engine.

Introduction

The need for better and more nearly optimal and systematically designed
mechanical devices in today's competitive world economy necessitates the
development of expert systems. Capturing an expert’s knowledge and heuristic skills
in the performance of a domain specific task are the goals of an expert system.
Such a system should assist less experienced engineers in producing better designs

Note: Bold, italicized works appear in the glossary in alphabetical order.




in a timely manner. Towards that end, an expert system for the creative design of
mechanisms has been developed.

This paper discusses the manner in which knowledge is represented, manipulated
and controlled in a mechanism design expert system, an important first step in the

overall development of the system. Expandability, generality, system longevity and

BN efficiency in expended effort were subjects of prime concern in developing the
:;:’ knowledge representation, with an eye toward long term committment to system
o

" improvement.

o Historically there have been three approaches to the conceptual design of

y mechanisms: (1) the experience of a designer and/or layout draftsman, (2) the use

.;':: of atlases or compendia of mechanisms, still the most widely used approach, and (3)
e the investigation of the kinematic structure of mechanisms. The second approach has
:'.:; been developed, most notably, by Jones et al. [1] and Artoboleskii [2] and makes for
_;s‘;". interesting and informative reading. The development of the third approach is more
;:i:': elusive, but holds remarkable promise for this most difficult phase of mechanical
‘8 design, because of its systematic and unbiased nature. The expert system currently
under development utilizes the later methodology as a basis for problem formulation
:':'.: and model development coupled with a heuristic approach for determining structure-
i%: function relationships for mechanisms as a basis for what we refer to as experience-
) based mechanism design.

; Few studies have made progress of any significance in developing expert systems
:::; for mechanism design. The work of Kota, Erdman and Riley [3,4]}, stands out as the
o most notable for applying expert system techniques to the design of dwell
: mechanisms. The authors reported on progress achieved on their system with an eye
'ﬁ‘: toward future development of a more general system whose purpose is to design
:::: mechanisms capable of generating straight lines, circular arcs, symmetric curves
‘ and parallel motion, in addition to dwell.

:: The overall process of creative mechanism design can be separated into a number
'ﬁ of steps, some possessing considerable levels of difficulty and requiring significant
5

. long term mechanism design experience and intuition. These steps are depicted in

the form of a flow chart in Figure 1. The creative design, i.e type and

::“:'. dimensional synthesis, of mechanisms is a complex task requiring deep domain

\)

'.‘l‘. knowledge as compared with the knowledge required to generate routine designs for

f:u:: fulfilling relatively simple or previously determined motion conversion
requirements or to redesign, through minor modifications, existing workable
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) Figure 1 Overview of an expert systam for oreative mechanism design.
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designs.

While the generation of numerical solutions corresponding to both the kinematics
and dynamics of a known mechanism, as well as its animation represent relatively
straightforward processes, creative mechanism design, in contrast, is extremely
complex requiring, we believe, more of a heuristic approach particularly during the

more conceptual phases of the mechanism design process.

The major obstacle to overcome in creative mechanism design centers around the
determination of mechanism topologies (structures) for the fulfillment of specific
design requirements, i.e. establishing a finite definable mapping between specified
design requirements (functionality) and mechanism structure(s) capable of fLilfilling
the design requirements. Such a mapping will, in most cases, be one-to-many. Qur
work in this area centers around (1) the use of statistical machine learning for the
cognitive recognition of characteristic motion patterns (functionality) associated
with specific classes of mechanisms and the correlation of functionality (function
generation, path generation, rigid body guidance) with structural features (links,
Jjoints and the manner in which they are connected) embodied in the mechanisms and
(2) the development of a general vocabulary and "“language" hierarchically structured
consistent with the terminology of functioral requirements and structural
characteristics, through which a mechanism designer can establish a bi-directional
channel of communication with the system in order to convey his functional
requirements and receive feedback in a manner that is natural to mechanism design.
This approach can be looked upon as a heuristic extension of the concept of the

separation of kinematic structure and function conceived by Freudenstein [5].

Developing an Expert System for Mechanism Design

It is our contention that an expert system for mechanism design should act as an
intelligent assistant and mentor, guiding the design engineer during the creative
process of mechanism synthesis. Furthermore, the primary purpose of the system
should be to fulfill user-specified predetermined motion-conversion or power-
transmission requirements through the creation of an intelligent interactive

environment with the mechanism design engineer.

With this idea in mind, the system under development has been fashioned around
the concept of the separation of kinematic structure and function. Figure ZA depicts
the essence of this subtle but important concept by means of an example. The
functional requirements of the spatial slider crank mechanism (converts rotary

motion inte out-of-plane reciprocating motion) are picvided as  irput-cutput
i
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STRUCTURE 0
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output joint is P type, one degree of freedom )
mechanism design (XN

MECHANISM R revolute joint. ¥
C: cylindrical joint Al
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output P

spherical joint. e
prismatic joint. o

Figure 2a. Separation of kinematic structure from "
function in a spatial slider—crank mechanism. i

GRAPH and ADJACENCY MATRIX
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5 0 C 0 S
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Figure 2b. Graph representation of the spatial

slider-crank mechanism.
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(functional) specifications by the user while the structural characteristics, i.e. those
characteristics which will fulfill the functional requirements, are manifested in the
actual physical embodiment of the mechanism, that is the number and type of links
and joints and the manner in which they are interconnected.

The expert system system has been logically and hierarchically segmented into
the following four subcomponents:

1.Specification of the desired kinematic structural characteristics and functional
requirements.

2.Determination of the kinematic structure of all potentially useful mechanisms
based on (1) the information provided in step I and (2) statistical machine
learning for the cognitive matching of known kinematic topologies with the
functional requirements the topologies are known to fulfill.

3.Screening of mechanisms according to their ability to fulfill both the
functional and structural constraints.

4.Selection of the most favorable mechanism, i.e. the one{s) most nearly
satisfying the constraints, for further development (analysis and animation).

As demonstrated by Dobrjanskyj and Freudenstein et al. [6] and Crossley (7], the
kinematic structure of a mechanism can be conveniently, compactly and precisely
represented, mathematically, using linear graph theory. Enumeration of the
structure of mechanisms coupled with subsequent isomorphism checking for the
elimination of duplicate mechanism structures using link connectivity matrices
provides an efficient computational scheme for representing and sorting the
kinematic structure of candidate mechanisms. Figure 2B depicts the graph
representation and corresponding link connectivity matrix for a spatial slider crank
mechanism. As previously mentioned, the correlation of kinematic structure(s) with
predefined functional requirements, for large classes of mechanisms, represents the

primary bottleneck to creative mechanism design and is the area in which much work

remains to be done.

z

Remaining within the bounds of a limited domain is the natural and most logical

t
"
l."{

% g

course of action to be adopted in any new expert system development endeavor,

e
WA

particularly in a domain as complex as mechanism design. As a result of this, the

time tested incremental approach to software design has been utilized (8]. In this

o7

approach a top-down building-block strategy is employed whereby modular pieces of

(i

S,

the system are configured, keeping the overall system configuration in mind to avoid E:
costly redevelopment, and incrementally tested to insure correct results. The N

system is presently limited to planar mechanisms having kinematic pairs with a
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maximum of two degrees-of-freedom.

Finally, in designing a system for general applicability it is imperative that a

: test problem be selected that reflects the complexity of the domain (mechanism
" design) without including excessive detail or problem size which would unnecessarily
. and unavoidably complicate program verification and performance evaluation. For
« this reason a test problem fashioned around the design of a variable-stroke internal-
E. combustion engine, which has been previously solved in detail by Freudenstein and
K Maki [9], has been selected. The designer’s reasoning processes in making problem
y specific design decisions have been explicitly verbalized in their paper.

‘

::'0 Software Implementation Issues

ﬁ:_‘ In its present state, the MECXPERT system has been implemented using the OPS5
s production system programming language [10] embedded within the Knowledge Craft
::- expert system development environment [11]. Programs developed in the OPS5
o language are composed of data-sensitive unordered rules, where the data can be (1)
::- instances of physical objects, (2) facts related to the domain of application and (3)
3 conceptual objects (such as goals) related to the problem-solving strategy. The rules
o that constitute the program are composed of two parts. The first is the condition
E:u part and consists of data elements. The second part of a rule is the action part and is
' composed of instructions that change the current data configuration.

; Program execution occurs in "cycles" in which each cycle consists of three
3 actions: match rules, select matching rules and execute selected rule. A rule can be
:‘ executed only if all the data elements in its condition part match the current data

configuration. OPSS provides two possible strategies, lexicographic ordering (LEX)
o and means-ends-analysis (MEA) for selecting the rule to be fired when more than one

'; rule is applicable. In this case the MEA conflict resolution strategy was selected
N because it places additional emphasis on the recency of the working memory element
2 that matches the first condition element of a rule. In this way, when the first
oy condition element of a rule is a goal element, the system will not be distracted by a
' '. very recent working element that is not a goal (i.e. goal driven). Thus the data
configuration changes after every cycle is completed, except the final one. For this
4 reason the system can be said to use a data-driven inference strategy.

g In this system, a goal-driven inference strategy is inappropriate due to the fact
.u‘, that in the process of mechanism synthesis, the final mechanism topologies suitable
: for prescribed motion conversion or power transmission are not known apriori, but
. are to be uncovered through the interactive design process embedded within the expert
o
a:l
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system.

The structure of the software has been developed in accordance with the
requirements specified by the domain by developing data structures that insure the
creation of a planning strategy capable of simulating mechanism design procedures
and emulating human thought processes which occur during mechanism design as
these would be performed within these procedures. The procedures use various types
of knowledge to implement appropriate reasoning schemes. It is therefore of
extreme importance to effectively represent knowledge and simulate planning, since
these two functions determine the path that the design undergoes and whether or not

all facets of the design process are properly taken into account.

Building a Model for Knowledge-Based Mechanism Design

In order to develop a formal description, i.e. model, of the mechanism synthesis

problem it is necessary to:

1.Define a state space representation containing all the possible configurations of the
relevant parts of the problem, without necessarily enumerating, in detail, all
these states. In fact in mechanism design this represents an impractical task due
to the NP-completeness nature of the problem, i.e. exponential time complexity
growth rate. For example, the graphs cor‘r‘esponding to a planar six bar
mechanism represent an upper limit of O(10 ) unique kinematic structureq, while
those for a planar eight bar mechanism represent an upper limit of O(iO ) unique
kinematic structures. This later number of possible mechanism structures is too
large to undergo detailed development or in-depth evaluation given the present
level of readily available engineering computing power. This presupposes that the

problem is decomposable. We have found that it is.

2.Specify one or more states within the space representing possible situations from

which the problem-solving process may start. These are the initial states.

3.Specify a set of rules describing the operations which permit movement through the

space from its initial state to its goal state.

4.Specify acceptable solution or goal states to the problem. In mechanism design
information of this nature would be provided to the system via user input in the
form of (1) an input-output function to be generated, (2) a description of position
and orientation of a rigid body to be guided, (3) a path to be generated through a
finite number of points by a point on the coupler link of the mechanism or (4) as a

power transmission or energy conversion requirement.
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Each of the above listed parts of an overall system model, as they specifically
relate to mechanism design, are discussed in the following sections.
2 Data Structures

K Appropriately designed data structures are the means by which planning and
' knowledge representation can be effectively implemented in an expert system. The
ot problem domain, in this case mechanism design, is represented or broken down,
hierarchically, into problem-spaces {PS}. These {PS}’s represent states that the
system can reside in and pass through in its effort to achieve its goal. Thus, the

system can be imagined to emulate the mechanism designer’s thought processes,

;;.: where the current {P3} represents the issue or concept under consideration. After
;0% reaching a given state the system must choose the next state to which it will move.
B To achieve this a data structure element, referred to as a sub-problem {SP}, has been
g created to indicate to the current {PS} what the next available states, i.e. {PS}’s
:: will be. Therefore, within each {PS} there are {SP}’s which represent potential
‘:: compatible {PS}’s to which the system can move. It should be emphasized that the
3 term sub-problem is a relative one in the sense that its describes the next possible
problem-space, {PS}, to which the system may move from the current problem-
‘: space, {PS}, thereby establishing a parent-child relationship between the two.
\-‘ Operators, {OP}, whose function is to decide what the next {PS} is to be, based on
the current status of the design, are present within all {PS}’s. A data structure,
v referred to as "compatibility', defines the compatible {PS}’s and {SP}’s and is
; created each time the system is initialized. In essence this data structure
establishes the fixed (common for different design goals) graphical tree structure
. [12] that represents the domain of mechanism design (Figure 4), to the extent that it
f" is represented in this model. This structural representation is possible since the
‘,:: design domain can be hierarchically subdivided.
g The hierarchical nature of the mechanism design domain has be schematically
‘ illustrated in Figure 3. Details have been intentionally omitted at this point
L1 in the discussion in order to avoid confusion, however following sections will

o

elaborate the details of the system structure specific to mechanism design. When
the current {PS} is "1", the available {SP}’s will be "2", "3" and "4". If {SP} "3" is
oo selected then the current {PS} becomes "3" and the subsequent {SP}’s are "7" and "8".

Four different defining characteristics can be associated with each problem space. A
W {PS} is said to be "complex" when in order to be solved it has to be broken down into
! other {PS})’s (e.g. {PS}’s "1, "3", "4" and "9"). A {PS} is said to be "simple" when in
order to be solved only a few predetermined steps (actions) are necessary (e.g.

e et e e
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{PS)’s 2", "7, "8", "10", "15", and "16"). Note that in Figure 3, circles are used to
schematically represent steps rooted in simple {PS}’s. Therefore, a {PS} can be
solved either by successfully executing a predefined number of steps (actions) such
as eliminate prismatic (p-type) joints or increase the current number of independent
loops, L, 4» by one, or by solving all the required {SP}’s (defined within each {PS}
by an operator whose role is to evaluate the state of the current {PS}) that are rooted
in the current {PS}. When a {PS} is successfully achieved, then its status is said to
have been "achieved'. When a {PS} has not been successfully achieved, because its
rooted {SP}’s and/or steps are still being processed, its status is said to be
"pending”, otherwise its status is said to be "failed" (within each {PS} there is
knowledge that is used by an operator, called the evaluate-state operator, to
determine the status of the {PS}).

A {PS} is said to be “fixed" when the choice of {SP}’s is independent of the
current design assignment specified by tye user, and thus knowledge can be given to
the system to reject all but a single {SP}. Finally, a {PS} is said to be
“probabilistic" when the selection of a {SP} depends on its probability of success.
The probabilistic {SP}'s are independent of one another and each carries a weighting
factor that depends on problem specifications which are defined by the user during the
"problem definition" (entry of input data) phase of mechanism design.

In Figures 3 and 4 probabilistic problem-spaces are denoted by rooted {SP}’s
which are interconnected with their respective parent {PS}’s by dotted lines and fixed
problem spaces are denoted by rooted {SP}’s that are interconnected with their
respective parent {PS}’s by solid lines.

Making reference to Figure 3 it can be seen that when the current {PS} is 1", and
if and only if {PS} "1" is fixed, then the following knowledge can be built (hard
coded) into the system: If the status of all {SP}’s directly beneath (PS} "i" are
pending then reject all {SP}’s except "2". If the status of "2" is achieved and the
status of the remaining {SP}’s on the same level are pending, then select "4" by
rejecting the other pending {SP}’s on this level, etc. This process of rejecting
{SP}’s is realized through the use of a "reject” operator that is active in every {PS}.
In the first case of the above example, the "reject" operator would reject {SP}’s "3"
and "4" and in the second case it would reject {SP} "3". Each time control returns to
a {PS} from a lower level {SP} (either because it has been achieved or failed) the
status of {SP}’s corresponding to the current {PS} that have not been failed or
achieved are set from "rejected" to "pending" so that they will be available when
appropriate and necessary.
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YW which the knowledge representation and
planning scheme have been based.
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The primary function of the data structures described above is the computer [K]

M i“
'y implementation of a systematic methodology for mechanism design. The ;:::
o , , X
o effectiveness of the expert system depends, to a large extent, on the manner in which ::E:
. \J
::; explicit knowledge about the process of mechanism design can be built into the data ::‘:.

' structure. '
I l’l':'
;;:: Knowledpe Representation Strategy i:::
" o
Zrlf The corpus of knowledge contained within the expert system is discretized and ::::f
L) e
! partitioned into problem spaces, {PS}’s, through the use of operators, {OP}’s, )
;:" possessing certain predefined knowledge roles. These operators are the means ::"
D
:a‘:; through which a planning strategy has been imparted to the system. The operators .:'.::E
ﬁ:: and their associated functions have been created as the means through which .:.,S
“l . . Y.
' traversal, from one problem space to another, can systematically and consistently @4
i proceed within the system. Within each {PS} the operators and their associated ::::'
E: knowledge roles are defined as follows (Figure 5). .;;:
4 t."
K !
R Operator Definitions: f_’};
c' {. Propose operator: E:E::
P ¥
0% All {SP}’s applicable to the current problem-space, {PS}, have their status set to o
»“ " : " ﬁ ] : 'Iv
0, pending". e status of these {SP}’s are determined by the propose operator {§
Y whose function is to check all the {PS}’s for potentially compatible {SP}’s. oy
(R 1
< 2. Evaluate constraints operator: !
| In this stage only {PS}’s that are probabilistic exist. Under this operator the X3
) . ne:
» expert places knowled%f that checks the user’s input and the current status of the g
f, design. It assigns the appropriate weighting factors, (wt), indicative of the (i
™ contribution that each of the constraints should make to the rooted {SP}’s. Li

&

;2’" 3. Assign probability of success operator: Ko

[ ] \]
:: A probability of success, p(s), is assigned to each of the {SP}’s by averaging the 0
) weighting factors that have been determined under the evaluate constraints A
;:. operator. 'i‘
g 4. Evaluate state operator: '.:'
P When the current step of the data structure is "evaluate state", the system will ‘
o attempt to match the current configuration of the data with condition elements
o that if present in working memory, would indicate failure or success of the
0 current {PS}. If such a matching occurs then control, unless otherwise specified
. by the "failure handler'', returns to the parent {PS}.

5. Reject operator:

o {SP}’s that have been fproposed by the propose operator but which are forbidden
3 due to the presence of an appropriate piece of knowledge are rejected by this

operator. This operator is used in fixed {PS}’s to reject all but one {SP}.

h 41

o ns e
?::‘ A0 N 'k"'u

T v N e e L T
‘.. ) . h LY T A <\v‘___f, SSCELIN
A O e S

AL



Complex operator i = !
salected in problem—space i-1 o) FEGBEspNee’ 11

creates problem—space i 1

PROBLEM—SPACE: i

STEP 1: Propose Select compatible operators and determine
operators whether problem—space ias probabilistic
= : or fized.

Problam—apace

fixad 7 Dapending on problem—space asgssign new

weighting factors to consiraints,

Determine the total contributlon of ail

STEP 2: Evaluate relevant constraints to proposed operstors.
constraints

STEP 3: Datermine Determine aversge weighting factor

seceptability of of sach proposed operator.

proposed

operators Check if problem—spece has been

achieved or failed.

Operator
"ﬂ“: i?ihh status I problem—space achiaved or failed N
anlilt:?a:r‘? backup to previous problem-—space. —
Ne
- Check if theres sre instances that require
1 ™= STEP 4 Evaluate rejection ol speciflc oparators. Note that
state of it problem—space is of "fixed type then
problem—space. all but one operators will bs rajectsd.
1 |
| STEP & Reject Rejact inappropriate operator{s).
operator. _
| From remalning operator{s) select the
STEP 8 Choose | | most accepiable one.
aperator
l I selected operator is complex then set
problem—space to bes selected uvperator
STEF T: Apply .._l and set step to be "propose—operator”.
oparator
If selected operatoer is simple apply

predefined steps and if achfeved set
step to be "achieved—state”.

L | Problem—space i+l
achieved or failed

Figure 5. Knowledge roles (operators) defined within the ith problem-—space
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6. Choose operator:

In probabilistic {PS}’s the {SP} with the highest probability of success (i.e. >
cutoff value) is chosen. This is true for the eliminate-joints {PS} where more
than one {SP} might have a weighting factor > cutoff value and thus more than one
{SP} can be selected (more than one joint type rejected). In other probabilistic
{PS}’s such as "get L.md-min" only one {SP} must be selected. Therefore, after the

one (SP} with the highest weighting factor is selected, applied and achieved, the
evaluate-state operator should set the current {PS} to an achieved status, and
control will then return to {PS} get-graph. In this example, what was described
happens because when a {SP} is achieved the operator under control is evaluate-
state. In fixed {PS}’s, the single {SP} with a pending status will be selected.

7. Apply operator:

The chosen {SP} is applied by the apply operator. If it is complex then the (SP}
becomes the current {PS}, otherwise the predefined steps of the appropriate
simple {PS} are executed.

Figure 5 depicts the relationship of these operators within the ith problem space.

Attributes that are descriptive of the structure and function of mechanisms such
as the number and types of links and joints, degrees-of-freedom, number of

independent loops, etc., and knowledge that describes these quantities is represented

", in the form of hierarchical frames [13]. Frames make it possible to readily
L)

Et: represent objects hierarchically and to simplify their communication control
»

e structure. The following is a frame-based knowledge representation of an atlas of
.t" g g P

graphs, written in the OPSS language, corresponding to the structure of
mechanisms. These representations can change and expand as the system grows.

e (ATLAS “graph-id <a> ; This is an atlas of graphs

W ; each of which has a unique
“degree-of-freedom <b)>) ; id number <(a> and a dof <b>

$ ; associated with it.

u

y (GRAPH “id <a> ; Each graph has structural

;2! ; variables associated with it.
"#-of-independent-loops <b)> ; Number of independent loops.

N “ground-link  <d> ; Indicates which link is grounded.

'_' “input-link <e> ; Indicates which link is the input link.

o “output-link  <f> ; Indicates which link is the output link.

l “#-of-P-joints <{p> ; Number of prismatic joints.

; “#-of-R-joints <r> ; Number of revolute joints.

M “#-of-G- joints <g> ; Number of gear joints.

“status <{n>) ; Can be pending, selected or rejected.
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(ADJACENCY-MATRIX ; Each graph, <a>, has an adjacency B
(o ; matrix, <array-id)>, associated with it. :;:::
3,:5 “graph-id  <ad :':;;:
:;': “matrix <array-id>) :‘Eg.:
” (MECHANISM ; The values of a mechanisms attributes, ,
" ; given below, represent the current design :".:
n ; status. These values are used to determine ..c:i
X ; the graphs to be enumerated and o
",' ; evaluated. R
“dof <a> ; F is specified by the user-input to the i
¥ ; question, # of inputs and # of outputs. ‘ ';:
a “Lind <b> ) ; This is defined by the knowledge found in X
:‘.:: ; "get current Lind" (Figure 2). "
p) A
¥ (JOINTS  “type  <a> ; Any of type R, P or G. ¥
228 "max-#1 <b> ; A problem-space must be created at .::i:-
) ; the appropriate level which determines e
3{ ; the maximum number of <a)> joints to :'Z::j
‘ ; be used within any loop. :}::
" . . e
max-#2 <c> ; Again, a {PS} must be created that will 3
W ; have knowledge of the maximum number o
ot ; of <a)> joints to be used in the current s
3 ; mechanism design. )
U
“status <d> ; Either rejected or pending, which is ::::::
' ; determined in the eliminate-type of 3
“ ; joints problem space. Cads
"'n’
" “wt <e> ) ; The weighting value assigned to the {SP} oy
; in the eliminate-type of joints problem- e
i~ ; space. To be used later (in case status is 1::'.:‘,
n ; pending) to help evaluate the graphs that l-fi
‘ ; use joint <ad. g
¢
:E Note that letters in triangular brackets represent the values of variables N
bty
) associated with the structure of mechanisms. This data structure stores knowledge o
% about a complex element (in this case mechanism structure) in a hierarchical format '
& and communicates it through the use of an identification (id) number. X
'\ ]
:. In addition to hierarchical frames, production rules serve as a second method of .:
3 "
P representing knowledge, a description of which has been provided under the section :’:-t'
’ of this paper entitled Software Implementation Issues.
‘.'i‘.l
. Systematic Planning for the Control of Knowledge 'E::
N )
~ The strategy used to control knowledge is systematic in the sense that it ':
‘ guarantees the generation of a solution if one exists while avoiding the possibility of ""
o o

-
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repetituous computations or enumerations of mechanism structures [14] for

it efficiency.

W . ‘ o '

:::: The planning strategy incorporated within the system has been designed to address
i the following issues:

How is the next problem-space {PS} chosen when:
:7. 1. The current {PS} has to be broken down into {SP}’s in order to be solved.
. The current {PS} has been solved successfully.

2
3. The current {PS} cannot be solved (i.e., is assigned a failed status).
4

LX)

:::' . A solution to the current {PS} is not acceptable at other levels of the knowledge
ﬁ: representation hierarchy.

& The first question refers to the concept of a complex {PS}. If, in addition to being
) complex, the current {PS} happens to be fixed then as already mentioned there must
:E: be predefined knowledge resident in the system to indicate what the next allowable
,:"':, {PS} will be (i.e., a predefined course of action). User specified input 1s assigned
th (1) weighting values over the range of values of O through ! in decimal increments
?:; corresponding to their relative importance and (Z) "degree of compatibility” values
i corresponding to how compatible they are considered to be with a given {PS} or {SP}.
EE:: If the current {PS} happens to be probabilistic, in addition to being complex, then
. selection of the next {PS} will depend on weighting factors associated with (carried
E‘::: by) the next level of {SP}’s. The overall probability of success of a yiven {SP}
E': depends on (1) the values of weighting factors assigned by the user for input that is
o compatible with the {SF}, (2) the number of inputs that are compatible with the
o {SP}, (3) the degree of compatibility of the {SP} with the current {PS}, and (4) the
;‘::: probability of success, p(s), of the {SP} in the current {PS} (the last two
:... compatibilities are defined by a domain expert). The possibility of dependence of a
R {SP} choice on the successes or failures of previous {SP}’s and/or {PS}’s is also
i taken into consideration. It can be seen that inputs provided by the user, representing
"'2 specifications that must be satisfied up to a desired predefined degree of
,: compatibility, are used to appropriately constrain or trace the path taken by the
L5 design process.

b Thz following example demonstrates, in a simplified manner, how constraint
\i propagation has been implemented. Referring to Figure 3, {PS} "4" is defined to be
:g probabilistic. Inputs "a", "b", and "c" are defined to be compatible with {SP} "9", and
' inputs “a", "c", and "d" are defined to be compatible with {SP} "10". Furthermore, it
N 45
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is assumed that the domain expert has assigned the following degree-of-
compatibility values for inputs a, b and ¢ with respect to {PS} "9": doca/9 = .7,
docb/9 = .8, docc/9 = .9, and for inputs a, b and d with respect to {PS} "10":
doca/10 = .8, docb/10 = .7 and docd/iO =.9. It is also assumed that the user has
entered the following weighting factors for the inputs:

wta: 0.8, wtb: 0.6, wt 0.3, and wtd: 0.9

Based on the above degree of compatibility values and weighting factor values, the
weighting factors for {SP}’s "9" and "10" will be respectively:

{SP} "9" : ((0.7 * 0.8) + (0.8 * 0.6) + (0.9 * 0.3)) / 3 = .4367
{SP} "10": ((0.8 * 0.8) + (0.7 * 0.6) + (0.9 * 0.9)) / 3 =.6233

Thus, in this case {SP} "10" would have been selected if there was no knowledge
under step "8" (Figure 3) that would forbid the selection of {SP} "10". Note also that
a "cutoff value' has been established for each probabilistic {PS}. In order for a {SP}
to be selected it must acquire a composite weighting factor value that is higher than
the cutoff value assigned to the current {PS}.

Finally, if the {PS} selected is simple and if it has been achieved then control
returns to the parent {PS}. In the event of failure, if recovery is possible the failure
handler will take over, otherwise control is returned to the parent {PS} and the failed
{PS} will be assigned a "failed" status. As was previously discussed, in every {PS}
there is knowledge about whether the {PS} has been achieved, failed or pending
embedded within internal {SP}’s. The failure handler will only take over when the
failure occurs at a simple {PS}. This is because only then is it possible to precisely
recommend a specific plan of action for recovery. The failure handler, when
activated, keeps track of the {PS} where failure has occured and when its role is
completed. In this way, the design process will be able to resume at the point that it
stopped. The failure handler, when activated, will go to the {PS} that is
recommended within the simple {SP} where the failure has occured and a "parallel"
process will take place until the design is re-established at a desired status. The
control will then return to the failed simple {PS}.

Defining a Mechanism Design Problem Within MECXPERT (Problem Definition Phase)

The system, as previously discussed, is broadly based on the concept of the
separation of kinematic structure from function. System functions have been
subdivided into three major phases including (1) problem definition, (2) type

synthesis, and (3) dimensional synthesis. Also included are utility modules for
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automatic sketching with animation and kinematic and dynamic analyses (Figure 1).
These utilities provide feedback to the system and designer as to the applicability of
the heuristically chosen mechanism. If necessary an iterative design procedure can
be instantiated or an alternative design may be chosen by making appropriate changes

to the specified design specifications and constraints to be satisfied.

The system must first acquire knowledge about the problem through a knowledge
acquisition facility. In this stage of operation the system attempts to acquire as
much information as possible from the user so that the design can be constrained and
the domain pruned. The only required information is the number of inputs and the
number of outputs. However, from a practical standpoint additional information
must be specified in order to narrow the number of alternative or candidate
mechanisms to be further studied. The additional information is acquired by the

system in a hierarchical manner so that only relevant questions need be asked.

Most questions require that a weighting factor be specified in the integer range of
zero to one, in decimal increments, corresponding to a certainty factor. If the term
"explain” is entered at any time during a user session, instead of the required

answer, a help facility will provide a detailed explanation of the current question.

At this stage the system will attempt to narrow down the mechanism design
search space (domain) as much as possible by identifying design goals that can be
approached in a more specific way. This is necessary since the number of potential
mechanisms for different design specifications obtained from the heuristic rules
employed, for a general design case, would most likely be unreasonably large. This
inefficiency is a result of the lack of knowledge about how the different specific
domains and sub-domains (represented as {PS}’s in Figure 2) that constitute the
general design domain relate to general concepts and of course computer-based
limitations {(memory and speed).

The following is a list of representative system querys requiring user input:

. Enter the # of inputs.

. Enter the # of outputs.

. Enter the type of mechanism.

. Enter the name of the function to be generated (ex. straight line motion).

(Questions that will specify the task of each output):

a.Order of the path traced by each of the outputs.

b.Output link(s) must be connected to a prismatic joint (wt. 0->1).
c.Which outputs must be grounded (wt. 0->1).

6. Which input(s) must be grounded (wt. 0->1).

oD W N e
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7. Which input(s) must be sliders (wt. 0->1).

8. Will there be a control or guidance function within the mechanism (wt. 0->1).
9. Enter the maximum number of links, ]max'
10. Enter the minimum number of independent loops, Lind,min'
11. Low cost design (wt. 0->1).

12. Reliable design (wt. 0->1).

13. Ease of manufacturability (wt. 0->1).

14. Speed of mechanism (wt. 0->1).

15. Load (wt. 0->1).

These inputs will be used to constrain the design domain by means of the constraint

propagation method described earlier.

The following is a partial listing of the rules that will be used by the "evaluate-

constraints" operator within the "graph-evaluation" problem space (Figure 4):

Rule-1. If the mechanism is a path generator then the output link must be a floating
link.

Rule-2. If the mechanism is a function generator then the output link must be in
contact with ground.

Rule-3. If there are more than two slider joints in any single loop then the topology
is invalid.

Rule-4. If there is a need for a guidance or control loop then the output link should

not belong to the loop that contains the input. This implies the need for
L. L2
ind,min

Rule-5. The total number of independent loops cannot be less than (the required
number of links which are adjacent with the ground link) - 1.

Rule-6. For the purpose of simplifying the analysis phase of mechanism design,
mechanisms containing at least one independent loop enclosed by {3 + (total
number of dof’s)} links should be selected for evaluation prier to those
mechanisms which do not satisfy this rule.

These rules will assist in the process of pinning down the kinematic structural
parameters during execution of the "get-graph” {PS}. Also, user input related to
load, speed, noise level, cost, reliability and manufacturability considerations are
used by the "eliminate-joint-types" {PS}, Figure 4, to reject or assign preferences
for the different available joint-types.

When the problem definition (data input) phase has been completed the planning
strategy imbedded within the MECXPERT system chooses the next design phase,

either type synthesis or dimensional synthesis.
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Type Synthesis Phase of Mechanism Design within MECXPERT

At this level two independent problem-spaces, {PS}’s, are available:

1. Modification of an existing design (Iterative Redesign):

This level assumes the existence of a known mechanism topology in order to fulfill

" the user specified design requirements. An iterative redesign procedure is initiated 8]

! - . e,
;::: where changes can be made to structural characteristics (link lengths) of a known :::,::
W ‘
’.‘,‘ mechanism in order to move the existing design closer to the required design in an '-:::
", (3

incremental fashion. After each change is made to the mechanism, animation and, if 9
\I . . . . .':
Py desired, dynamic analysis, are performed in order to assess the effect of the 9

changes on nearing the desired mechanism functional requirements.

2. Systematic type synthesis:

o In this problem space, {PS}, the system will first compute the number of links Ny
X and joints for the simplest possible mechanism, i.e the one having the minimum R
4 allowable value for Lind. This is because the goal is to satisfy the functional 8

requirements in the simplest way possible. It will then choose the appropriate non-
: isomorphic graphs of kinematic chains from an atlas stored in the database.

'}} Finally, all possible combinations for the ground link, the inputs and outputs and the

el

“ types of joints will be systematically enumerated from the non-isomorphic graphs. gi:
R After this, as shown in Figure 4, the next step will be "graph-evaluation". Heuristics }

will be used to assign a weighting factor to each of the graphs. Graphs with
e weighting factors greater than 0.5 (arbitrarily chosen, but tuning of this parameter

o may be required) will have a chance to continue on into the analysis phase, where the

2 8

4

o2

graphs will be examined in accordance with their priority as indicated by the
weighting factors.

w5
l) - l{

-
eV - -

Dimensional Synthesis Phase of Mechanism Design within MECXPERT

-

,1.“:'
=2

The dimensional synthesis phase of MECXPERT has been subdivided into two
problem-spaces, {PS}’s

1. Automatic Sketching:

The graph representation restrains the link connectivity in mechanism design.

However, a mechanism has to be uniquely defined not only by its link connectivity but — «3%

Y L
N also by its physical dimensions. The technique which applies default link lengths and ?'
N . . . . . . ~
A orientations to the graph-to-mechanism conversion problem is usually referred to as =
¢ the automatic sketching of mechanisms. In addition to the default dimensions, link ‘
lengths and orientations, default constraints associated with mechanism geometry 48
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:‘:. must also be specified. This includes (1) arbitrarily assigning a jecint position to be
ks coincident with the origin of the selected coordinate systern and (Z) arbitrarily
:E' assigning a horizontal link (this is usually the gound link). In accordance with the the
Ef number of degrees-of-freedom possessed by the mechansism, additional constraints
d must be specified, equal to the number of degree-of-freedom. These additional
o constraints are referred to as pseudo-constraints, and they determine the initial
o position of the mechanism. In order to satisfy all the constraints for automatic
:::: mechanism sketching, a Newton-Raphson iteration scheme has been adopted.

q 2. Mechanism Animation and Automatic Kinematic Analysis:

.E: The concept of the loop closure equation, referred to as the Freudenstein
;',; equation, can be expanded for solving the kinematics of multiple loop mechanisms.
" As a result, by applying this new equation solving strategy, a computationally
i:' efficient divide and conquer algorithm has been developed to generate closed form
hg solutions for 97% of all planar eight-link planar mechanisms and 56% of all ten-link
&

mechanisms requiring only seconds of cpu time. This approach can greatly expedite
the analysis phase of mechanism design. The remaining cases can be solved using
traditional numerically-based techniques such as the Newton-Raphson method.

Demonstrative Example of Planning Operations within MECXPERT

Aspects of the MECXPERT system, related primarily to knowledge
representation and planning, have been discussed in detail, while touching briefly on
I‘ issues related to heuristically-based systematic type and dimensional synthesis and

- data input. Two {PS}’s will now be examined within the context of a specific

problem in order to demonstrate how planning is actually carried out in the system.

Freudenstein and Maki [7], employed the method of separation of kinematic

E:E structure and function to develop a variable-stroke slider crank mechanism for the
':!' design of a new internal-combustion engine. The problem presented in their paper

will be used to demonstrate the sequence of planning operations which can occur <=
E within the "Design" and "eliminate-type of joints" {PS}’s (Figure 6). ,’__
: When the current {PS} becomes "Design", the system checks to determine whether !_;,;
the current {PS} is fixed or probabilistic. This, along with other information, is 9
’ stored in the compatibilityl data structures that are created prior to the time the g_::
: system enters the "start” {PS} phase, i.e. when the system is initialized. Next, the 2

= i
P& o
e

systam checks the contents of the compatibilityl records (in the current {PS}, i.e

the "Design" {PS}, there are three of them, (1) Problem definition, (2) Problem
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::: Figure 6. Sequence of events for Variabls—Stroke engine mechanism

;}' design problem.
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relaxation and (3) type synthesis) in order to propose compatible {SP}’s.

There are two types of compatibility elements shown below. Compatibility!
indicates compatible {SP}’s within a {PS} whether the {PS} is fixed or probabilistic
and whether the {SP} is simple or complex. Compatibility2 is only used in
probabilistic {PS}’s to indicate which constraints (associated with user input) are
compatible with which {SP}’s in the current {PS}, the weighting value of that
compatibility (assigned by rules based on the experts knowledge and user’s input) and
a cutoff value that indicates the minimum composite weighting factor value that a
{SP} must have in order to be selected. Clearly, with only minor modification to the
compatibility records it is possible to restructure the entire tree or to add new

{PS}’s. This would have been a difficult task if a procedural language had been used
to implement the system.

(compatibilityl "PS Design "SP type-synthesis
“type complex “typel fixed)
c Comments:

c Type-synthesis is a compatible subproblem-space of the problem-space "Design’.
" c Type-synthesis is a complex subgr‘oblem—space.
0 c Type-synthesis is a fixed subproblem-space.

(compatibility2 "PS eliminate-type of joints “constraint speed
© "SP eliminate-p joints “wt <to-be-found-under-evaluate-
constraints-operator)> “cutoff (PS-dependent))

!‘: c Comments:
A ¢ Speed is a constraint associated with the eliminate-type of joints

- c Er‘oblem-space.

T c Eliminate-p joints is a compatible subproblem-space of the eliminate-
o c type of joints problem space.
::s cA weightin% factor value, <wt.>, associated with the eliminate-p
™ ¢ joints problem-space determines if p-type joints should be eliminated
Wy ¢ from the mechanism design.

¢ A cutoff value, <cutoff)>, indicates the minimum weighting factor value

K c that the eliminate-p joints problem space must have in order to be

:!'. c selected (i.e., not rejected) for use in the design of the mechanism.

‘i

¢

" (compatibility! “PS eliminate-type of joints “SP eliminate-p joints

! . “type simple “type! probabilistic)

,, ¢ Comments:

¢ Eliminate-p joints is a compatible subproblem-space of the problem-space
s c eliminate-type of joints.

c Eliminate-p joints is a simple subproblem-space.
o Elimirate-p joints is a probabilistic subproblem-space.
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The three compatible {SP}’s corresponding to the "Design" {PS}, as shown in
Ky Figure 4, will then be created and set to a "pending” status. Since this {PS} is "fixed"
3 the system will pass over steps 1 through 4 and jump to step 5, the reject operator
(Figure S), and will look for knowledge to reject all but a single {SP}. One of the
rules that performs this function is given as follows:

3 (p reject-knowledge-in-design-1

. (goal “step reject-operator "PS Design)
! (SP “PS Design “name problem-definition
“status pending)

l (SP “problem-space Design "name {<{> problem-definition}

“:. “status pending)

| =2

:;: (modify 3 “status rejected))

b

:;‘. This rule states that when the current step is step 5, the reject-operator, in the

"Design" {PS}, and when the "problem-definition" {SP} is "pending" then reject all the

"y {SP}’s other than the "problem-definition" {SP}. After this step, the system will

é execute step 6, the choose operator, and choose the only available {SP}. Thus, the

::3: "problem-definition” {SP} is set to a "selected" status. Next, the system will move
' on to step 7, the apply operator, and apply the chosen {SP}. After the "problem

definition" {PS} is executed, its status will change to "achieved'. During the
: “problem-definition" phase the system will query the user and associate his answers
:E; with a data structure called constraint as follows:

;:, (constraint “name speed "wt <a)> “status active)

::: c Comments: _

'y c Speed is a constraint having both a weighting factor value, <{a>, and a

y ¢ status associated with it,

::; After this {PS} has been executed different constraints will acquire an active status
E;: and weighting factor values. For the variable-stroke engine design, typical inputs
e would be:
v . High speed (wt. .9) and high loads (wt. .9)
‘.' 2. l.ow noiseiness (wt. .8)
:' 3. One input and output (wt. 1.0)
0 4. Rotary input (wt. 1.0) and slider output (wt. 1.0)
: 5. Control function within the mechanism (wt. 1.0)

etc.
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o As soon as the system identifies an "achieved" {PS} it will backup to its parent
K {PS}. Thus, control will return to the "Design" {PS}. There the control will be
o assigned to step 4, the evaluate state operator (Figure 5), and the system will

XN determine whether the built in evaluation knowledge for the current {PS} makes the
current problem "achieved" or "failed". The system will also reset all the previously
:::: rejected {SP}’s to a status of pending. Since the successful completion of the
:::0 "problem-definition" {PS} does not insure that the "Design” {PS} has been achieved,
i::ﬁ knowledge in step 5, the reject operator, will decide which {SP} will be rejected.

The system at the current status will reject the "problem-relaxation" {SP} since it
e would be expected to select the "type-synthesis" {SP}. Once the "type-synthesis" {SP}
is selected, it will become the current {PS} and the procedure shown in Figure 5

EE:E will be carried out by its {SP}’s. This procedure will set the "eliminate-type of
joints" {SP} to be the current {PS}. Up to this point the status of the executed {PS}’s

:::'.-. would be as follows:

E:.:‘ Pending: Start, Design, type-synthesis, eliminate-type of joints.

K Rejected: Tutor, problem-relaxation and get-graph.

o Achieved: Choose phase, Problem-definition.

;:E The "eliminate-type of joints" {PS} is probabilistic. After its two rooted {SP}’s

3.: are proposed, the operator in control will be "evaluate-constraints". Depending on

" user input, knowledge provided by a mechanism design expert will compute a

:::; weighting factor value that will be used by the next operator to compute the total

:E:: degree of compatibility of each {SP}. Thus, the next operator will use the expert’s

;:':: assessment and the weighting factors assigned to the input, by the user, that are

) compatible with the current {SP} to compute the degree of compatibility of each of

:':E: the {SP}’s. In a more general implementation of this system additional {SP}’s would

E:':‘:' exist such as reject cam joints, reject spherical joints, etc. For the design of a

:'::: variable-stroke engine the last three {SP}’s would have the highest degrees-of-

4 compatibility since for high speed and high load operating conditions, joints having

:,E:':' surface contact rather than line contact are preferred and probably required.

;:‘:’ Next, the system will check for the existence of any knowledge that would make

1 the rejection of a {SP} necessary. For example, in this design case, both the

R "eliminate r-joints" and “"eliminate p-joints" {SP}’s would be rejected. The eliminate-

:‘: type of joint {PS} would continue to select and execute unrejected {SP}’s in order to

;‘:t:‘ make certain joint types available to lower level {SP}’s. When there are no longer

s any {SP}’s having weighting factor values greater than the cutoff value, the

o "eliminate-type of joints" {PS} will acquire a status of "achieved' and backup to the

o

i
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' “type synthesis" {PS}. In the "type synthesis" {PS}, the "get-graph" {SP} would then
be selected. The current status check, relative to the last status check, of the #

)

executed {PS}’s would be as follows: g.j:

Pending: Type synthesis, get-graph. .'.a::

Rejected: eliminate r-joints, eliminate p-joints. 4

. . N
o Achieved: eliminate-type of joints. o
: W\l
A The goal of the "get-graph" {PS} is to assign values to parameters that define the :::;
3K OQ,
0 kinematic structure of the mechanism. These parameters are: ';‘"
W 1. F, degree-of-freedom of the mechanism. This is determined by the number of :‘,‘:
" ' ;
o4 inputs required to drive the mechanism as well as the number of required ;,
o outputs, specific application requirements (i.e. how the mechanism is to be '
". . ‘l.
‘ used) , the degree of complexity of the mechanism and whether or not the I
'3: mechanism is required to be adjustable. This information is acquired from the ‘,:::f
iy S 4
e user. o
s 2 0}

- Ljg» number of independent loops in the mechanism. This variable is indicative of L
the degree of complexity of the mechanism. Its value is determined in the {PS} 8

' 480
% "define-current-Lind". The system will define, based on heuristics, a minimum and ,'
NS
X a maximum value for Lind, starting from the minimum value since simplicity is a "':
% )
:" desired property. In this design case, Lind.min Must be 2 2, based on Rule-4 o
(4 'Y e
of the "evaluate-graph" {PS}, since a control loop is required to vary the stroke of 3
. grap p q Yy R
: the output link. The given design specifications require a value of Lig= 3 in ::{:‘
) |
' order to provide separate input, control and output loops. The maximum value for ‘::::
\
" L;q could, in general, be determined, for example, from cost and compactness {4
. limitations, as well as from input/output requirements. '.?:
L “p
;;: 3. fi, the degree-of-freedom of relative motion permitted by the ith joint. &
W '
1‘::: 4. 1, the number of links. ::‘.
X b
S. j, the number of joints. 2
¢ e
R 6. A, the mobility of the space in which the mechanism operates. A = 3 for general i
> plane mechanisms, A = 6 for spatial mechanisms. N
5', The general degree-of-freedom equation may be expressed as [5]: A
i F—A(f-'-1)+ﬁf (1) o
ﬁ;‘ - J =) i 3
iy 1=
’ The number of independ is given by th ion [15): e
o e number of independent loops is given by the equation [15]: £
'.!! .
: Ly=1+j-1 (2) :
-4 ind J
: 21
i
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e Equations (1) and (2) can be combined, into the following equation: '
p - 2
& = o
N Based on equation (3) with L, ind = = 3 (as previously discussed), F = 1, and A = 3 -
:i;i: (for a general plane mechanism) the sum of the degrees-of-freedom for all the jc. - ‘.:"
B can be calculated: o
R ' i
W ﬁfi =1+3%*(3) =10 (4) s
P i= ]
> g
o Since high load carrying capability was a specified design requirement, only revolute '.:E‘
:E: (R) and prismatic (P) joints, each having one degree-of-freedom (f; = 1), can be 3
. included in the design. Based on this information, equation (4) yields a value of j = R
E: 10. Rearranging equation (2), the number of links can calculated as follows: Eiiz
W W
S p=1+j-L, =8 (5) §:§
::? In general, equations (2), (3), (4) and (5) can be used to determine values for j .:g.
.»::’ and &, depending upon the values selected for the Lingg F and X\ structural :::E
. parameters. Their values would be chosen, firstly, to achieve the simplest possible ::E‘
n design, based on heuristic knowledge appropriate to their selection. Once values for ;?
3 1 and j are known, appropriate graphs can be enumerated (labeling the graphs in as _ A
. many non-isomorphic way as possible) and different joint types can be assigned to EE‘
v the edges of the graph in a way that insures the satisfaction of equation (3). This _:g
" has been implemented in a LISP routine (Figure 6). The next step involves the ,’3‘
",: evaluation of the graphs in the "evaluate-graphs" {PS} and the assignment of an index :E
}3.‘ to each of them indicative of the order in which they should be processed, i.e. q:i:
':::‘, studied in greater detail. Additional generic (problem independent) rules can be W
established to assist in the elimination of inappropriate kinematic structures thereby .v
::: further pruning the size of the mechanism design space. :':E
K

i:‘.:': As an example o.f the F)utput provided by the system 'to the user on the Symbolics ‘%
Y 3640 Al workstation, figures 7A, 7B, 7C and 7D display an enumeration of the

A graphs and mechanism schematic diagrams of several eight-link planar kinematic N
.' chains corresponding to numbers 1, 2 and 3 in group | and number 9 in group 3 of :.:
L those enumerated by Freudenstein and Maki {7] for the variable-stroke engine .::':t
W '

mechanism problem.
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Figure 7A. : Graph enumeration and schematic drawing for an eight-link planar
variable-stroke mechanism (group 1, number 1; Freudenstein and

Maki, [7]).

Figure 7B. : Graph enumeration and schematic drawing for an eight-link planar
variable-stroke mechanism (group 1, number Z2; Freudenstein and
Maki [7]).
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Figure 7C. : Graph enumeration and schematic drawing for an eight-link planar
variable-stroke mechanism (group 1, number 3; Freudenstein and
Maki [7]).

raph enumeration and schematic drawing for an eight-link planar
variable-stroke mechanism (group 3, number 9; Freudenstein and

Maki [7]).
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Eventually, kinematic and dynamic analyses would be undertaken for performance g
K evaluation at a lower level of the design process. i
+ 4 N
N AR
B Conclusions e
‘&. ﬁ...l.
.} 4
- A systematic methodology for representing knowledge and its control within an S
- expert system for the creative design of mechanisms has been presented. Careful W
4 attention to the implementation of the control strategy for the ;
O manipulation of knowledge has been an important aspect of this research in ::,:;
o anticipation of future growth of the MECXPERT system. The conceptual basis for the &
A system relies on the separation of ‘kinematic structure and function. An example :::i;
M
R based on the design of a variable-stroke engine mechanism serves to convey the ::.*:
Ok
o manner in which information is imparted to and manipulated within the system in ,::.:;
o
an effort to enumerate potentially viable mechanism designs. "3
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W
¥ I:.
v Glossary of Terminology » |
X VoL,
R Compatibility data structure: :s:.
\; . . . . . . . :
o Defines all the compatible {PS}’s and {SP}’s each time the system is initialized ::::j
f.’;: (started). ::':'
- Constraint propagation: -
o The process of establishing the compatibility of interconnected elements, in this ::::
Eh case S an s, within an expert system. )
_.': PS}’s and {SP}’ th pert syst :::
X Creative mechanism design: ::::
iy ) . )
e The process of solvi:% a mechanism synthesis problem for which no prior, proven !
solution exists, based on the systematic separation of kinematic structure from v
W function and employing heuristics where applicable for the selection of kinematic Y
:; structural parameters in order to narrow the mechanism design search space. :::c:
! "
.::. Cutoff value: g::‘
u‘. .
i, In order for a probabilistic {PS} to be selected it must acquire a composite a0
| weighting factor value that is higher than the preset, expert defined, cutoff value a
w assigned for that {PS}. f:'.;
A A
;;‘:‘, Data-driven inference strategy: ::ﬁ::
U J
R , The search for new knowledge or information proceeds from known data to a final ,;2::
b goal. ‘.
3
. Deep domain knowledge: e
' GO
’:t Domain sfpecific knowledge acquired over years of experience enabling an expert to ::'.j-
R solve difficult problems in that domain that cannot be solved by only analytical or o
e numerical methods. ‘::g‘,
" Experienced-based mechanism design: :
. A
;?.: The process of drawing upon knowledge concerning the structure-function .:::;
’::. relationships of mechanisms obtained from (1) mechanism design experts and (2) ::’,
';3: handbooks. o8
¥
o Failure handler: .'.t;
. Keeps track of a {PS} where failure has occured. When activated, the failure handler .;.‘
s will go to the {PS} recommended by the {SP} where failure has occured and initiate o
R a process parallel to one in which failure occured until the design is reset to a ‘:}(
b desired status. ;;f,*
. Byt
?:‘ Goal-driven inference strategy: o ‘!
X The search for new knowledge or information proceeds from the goal to be achieved,
o backwards, towards the known data.
0] Help facility:
P A facility provided within MECXPERT which provides tutoring and advice to a user
o concerning the meaning and use of system commands. It can be initiated
% through the user specified system command word "explain".
\l
) Inference mechanism:
]
X An interpreter that determines how to apply the rules in the knowledge base to
infer new knowledge and the order in which these rules should be applied in an
i expert system.
2
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Instance:

o A variable whose value has been specified, i.e. instantiated.

U

E‘: Knowledge acquisition:
"::'- The process of acquiring knowledge about a specific area or domain (in this case
o mechanism design), from various sources, in order to bring this knowledge to bear

‘ on a narrow domain of difficult problems.

X
E:':: Knowledge base:

e The collection of knowledge, typically in the form of facts and rules, about a
R specific domain (in this case mechanism design) to be used for decision making in
"t an expert system.

g Knowledge roles:
e Knowledge and the action which it can impart are stored in data elements referred
::3 to as knowledge roles.

0 Mechanism synthesis:

- The process of selecting the type, arrangement and number of links and joints in a
K mechanism for the purpose of fulfilling predetermined motion conversion or power
) transmission requirements.

vat
:;:; Operators:

Data elements whose function permits the representation and control of knowledge.
A Problem-space:

;.' Represents the issue or concept currently under consideration. These are the states
1“ that the system can reside in and pass through in its effort to achieve its goal.

e Problem space status:

The status of a problem space, {PS}, can take on one of three possible values: (1)
w Pencing, (2) Achieved and (3) Failed. These are described in the text of the paper.
e Routine design:

:_‘: A design problem for which a proven solution methodology already exists and for
* which the design variables are known.

o Redesign:

::‘-': The process of changing an existing design, based on proven techniques, in order to

comply with different design requirements.
Subproblem-space:

A subproblem-space, {SP}, represents the next available problem space.
" Weighting factor:

e Indicates the degree to which each of the constraints contributes to each rooted
) {SP}. The weighting factors are denoted as Wt /i the degree to which the ith
w constraint contributes to the jth {SP}. J
b Working memory element:
b ®
o A data element that resides in the working memory portion of program memory
.': during program execution.
i
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Statistical Machine Learning for the Cognitive Selection of
Nonlinear Programming Algorithms in Engineering Design Optimization

D.A. Hoeltzel & W.H. Chieng

The Department of Mechanical Engineering

Columbia University
New York, New York 10027

Abstract _

In order to overcome the problem of lack of generality in nonlinear
programming (NLP) test problem formulation and to introduce the concept of
cognitive NLP method switching, statistical machine learning has been applied to a
sample data base of nonlinear programming problems. Reasonable conclusions have
been drawn about an optimization problem type and a corresponding sequence of NLP
solution algorithms, using statistical pattern recognition applied to local (vs. global)
design information. A program, referred to as OPTDEX-OLDM, with the capability
of learning from statistical pattern recognition is discussed. The statistical aspects
and algorithmic optimization of the nonlinear programming problem are emphasized
in this discussion. A clustering process has been performed on attributes assigned
to the NLP problem sample data base, and an example which describes this

statistical clustering process is discussed.

Introduction

Numerical optimization techniques, in the form of nonlinear programming (NLP)
algorithms, have been applied extensively to critical structural design and analysis
problems for more than 30 years 1], and to a lesser extend to mechanical design
problems [2].

The nonlinear programming problem considered here takes the form,

Minimize: F(X) objective function
Subject to:
$ (X)<0 ji=1,m inequality constraints
h (X) =0 k=1,1 equality constraints
Xi < X.1 < XL; i=1,n side constraints )
where X = 2|, vector of design variables.
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Numerical optimization provides a systematic, rational and directed approach to
design decision making where previously, heavy reliance was placed on the
experience and intuition of the designer in achieving an improved design. Due to
complexities involved in the implementation of NLP algorithms, several researchers
have undertaken performance analyses [3,4,5,], the purpose being to determine
correlations among the design problem type, the numerical optimization method and
the corresponding results. Based on such studies, it is anticipated that the novice
user shouid be able to better understand the capabilities of existing optimization
methods and furthermore, utilize them without the need to undertaken exhaustive
programs for testing and learning. While in concept this appears to be a rational
approach to ascertain the capabilities of a particular algorithm for a specific
problem, in reality, Himmelblau [6] states that "e guarantee of convergence for an
algorithm for special cases may offer little insight as regards satisfactory
strategies for more complex problems".

An optimization process invariably involves a trade-off between reality
(completing and understanding the search process) and economy (evaluating a limited
number of test functions). A process referred to as statistical concept learning' is
introduced to compensate for this trade-off. Based on a well organized data
hierarchy, concept learning has been developed to eliminate unwanted knowledge
which may occur due to noisy data®? {7} and a scheme for generalization of the

statistical results has been developed.

Method Switching Strategies in Nonlinear Optimization

Existing algorithms for nonlinear programming which have been surveyed {8,9]
may converge to local optima which are not necessarily global optima. Many
techniques for locating global optima, aside from knowing which method is the best
first method have yet to be uncovered. Method switching strategies are based, by
analogy, on the game of golf? rather than on the use of a one step optimization
schemne. This methed switching procedure is designed to be one level higher than the

so called optimization strategy level {10] (monitors the numerical optimization

! Statistical concept learning: Learning about new concepts by using given statistical
measurements.

2 Noisy data: A small amount of data contradicting the conclusions which are agreed
upon by a majority of the remaining data. In other words, data lying outside any of
the defined cluster groups (Figure 1.).

3 Game of golf analogy: The reason for method switching is in accordance with the
local geographical design information at the numerical optimum, and is analogous to
“h= rezsen for selecting an appropriate golf club, in the game of golf, to strike the

tﬁe ball.
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process) and switches suitable numerical method combinations according to local
design data.

For example, in the following problem containing a single objective function,
design variable and constraint:

Minimize the design objective function: COS (x/1000 - 5.)
Subject to the design constraint function: 400. - x2 < 0.
with design variable bounds: 0. < x < 7500.

The following cases may possibly occur,

case 1: When |x| >> 20, the local information indicates that the design constraint is
inactive.

case 2. When x = 5000, the local information indicates that the objective function
can be linearized to a polynomial of degree 2, which is {1 - (x/1000 - 5)2/2.

case 3. When |x - S000| < 10, the local design information indicates that the
objective function can be linearized to a polynomial of degree 4 by using an
approximation of a Taylor series expansion.

case 4. When x 2 7500, one more design constraint is added from the design
bounds, which can be expressed as x = 7500.

This example demonstrates that local design information can change in various
ways when the updated state of the design variables (position) is altered. Method
switching strategies are based on this 'phenomenon and may be likened to a monitoring
or blackboard* style decision making process. Method switching keeps track of the
local optimization information and switches methods when the current method fails.

According to the schematic representation depicted in Figure 2, the first design
starting point, P1, lies in an infeasible design region and is far away from the
globally optimal point. A temporary goal may be expressed as "move the design into
the feasible region as soon as possible" to increase the design efficiency. When the
design "converges" at a local optimum, P2, current NLP methods fail to move away
from this point. In accordance with the local information found in the vicinity of
P2, the method switching manager pins down ancther temporary goal which may be
stated as "find a feasible design with a smaller objective value". Method switching
terminates when the convergence criteria have been satisfied. This is usually based
on (1) a cpu time consumption limitation, (2) the number of algorithm iterations or
(3) relative or absolute difference between successive values of the objective

function.

‘Blackboard architecture: A model in which all intermediate messages and results
arz displayed to the user and stored in a common area, called a blackovara.
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Q‘I\( : Design constraints.

" L 1 11 : Design side constraints (design bounds).
N ) : Global optimum.

::: The closed curves are isoclines of the design objective
MW, function.

P1, P2, P3 are intermediate starting points for searching.

:R Figure 2. An example which demonstrates that local
& design information is different for different design
starting points.
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ot Sample Problem Testing W,
Fifteen different attributes have been chosen to characterize the test of a sample .~c

< problem. The sample problems can be separated into three domains: o
E i. The Design Problem Type - contains 8 parameters, including the number of design (e
variables, the number of total design constraints, the number of equality design

" constraints, the number of active inequality design constraints, the maximum
e (positive) order of testing polynomials, the minimum (negative) order of testing
polynomials and the function evaluation cost for one design function evaluation.

" 2. The Choice of Nonlinear Programming method - contains 3 parameters, which
::;5 according to the ADS numerical optimization library [10] are strategy, optimizer
S’:: and one dimensional search method.
i:: 3. The Performance of the Result - contains 4 parameters, including the minimum
objective value reachability, the design constraint violation condition and the
!’:E' maximum distance of search.
;E; The set of test problems for the learning program have been produced by a random
'2‘,‘. function generator (Figure 3), which randomly selects a problem type, and in
k; accordance with the selected problem type generates the objective function and the
::‘. design constraint equations. These polynomials can be thought of as local information
E:a: in real world design problem formulations since many functions can be expressed in a
" Taylor series expansion. Nonlinearity, discontinuity and differentiability can be

altered by appropriately adjusting the order of the polynomials.

o After implementing these concepts using the ADS numerical optimization library,
design problems have been tested by a number of method combinations, which have
; been randomly selected. The authors have generated approximately 10,000 samples
with results using an IBM PC/AT microcomputer. These results have been
subsequently analyzed, using statistical machine learning concepts incorporated
o within a program referred to as OPTDEX-OLDM ({Optimum Design Expert-
‘ Optimization Level Design Manager}, on a Symbolics 3640 Al workstation.

", Clustering and Associated Statistics
! Every sample inherently has several attributes, which include the characteristics

of the design problem type, the category of the nonlinear programming method and the

corresponding result. All of these attributes are represented quantitatively and some

',x:: of them are noisy, i.e. unreliable. To minimize the noise factor, a "variance" type of
;::' analysis (4] has been employed.
:;‘ Clustering techniques (13, 14,15,16] are used to find groups of samples, whose

common characteristics have not been predefined. The aim is to subdivide the
L 70
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Figure 3. Flow control of random sample generation and testing. iy
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available samples into a relatively small number of groups, based on the statistical

behavior of the different attributes.
The clustering analysis involves the following concepts:
. Scaling: Tranforms the real world value of each attribute into a machine

understandable scale. This can be done by calculating the mean, u, where

m
p={({/m)y Ei ch (2.a)
i =
and the standard deviation, o, where
og=VE{A-w9 (2.b)
where m = total number of data samples.

a,= value of the i attribute.

A = random variable which can assume the value a..

E = expected value (statistical sense).
Various models may be chosen to represent the statistical distribution of the
attributes. For example, if a Gaussian distribution is chosen, then 68% of
samples will be distributed within one standard deviation about the mean, u, and
about 95% of the samples will be distributed within two standard deviations about
the mean, . According to the mean, i, and the standard deviation, o, found for
each variable, all the variables are normalized and digitized to a predefined
scale. For the purposes of this research, 0 through 9 has been selected.

2. Nor-hierarchical clustering:  Non-hierarchical clustering is based on the

optimization of a given grouping of .objective functions, and represents the
minimization of the sum of the variances within each group and the

maximization of the sum of variances between groups.

n 2
mn 3 el
Cepn, M j=i, 1ECJ. (3)
n
and max > mj|35j—§|}

CeEpn M) j=1

where C = (Cy, Cy, Ty, ..\, Cn) and Ci represents the ith cluster group.

M= {1, 2, 3, ..., m}; set of all samples.

p (n,M} = set of all cluster groups C of M having length n.
n = number of cluster groups; 1€ n < m.

5 = the expéc:ted value of the total sample of attributes.
a, = the expected value of C..

m, = the number of samples in Cj'
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Since the total scatter in a fixed sample size is constant [10], it is sufficient to Lo

-

l-.:: minimize the sum of variances, W(n,M), within each group. Therefore, eq. (3) can ;;g
4 be expressed as follows, ?;:4
¢ .
t74 n 2 U
o min W(n,M) = min > la- a, || (4) .';:"
‘ Ce€pin, M) j=1,1i€ Cj ;‘,.l
Z::j: The necessary tools for the clustering process are described below. ‘.'ﬁ

R ‘
o To calculate the new mean value from two given groups: ;._,jf‘
\{’ N ’..
1 e
a, =——— (m_a_+ a_ 5 k.
i prq- m Fm (mp 3+ mg ag ) ) G
by L
ﬁf.c and to calculate the objective value (sum of variances) of the two given groups: b
"¢ty i
K i - = T .-
gy W =W +W_ +m_x* - - o
pra = Wp t Wt mp T L8t 3l L3y 7 2pg ] 5]
5CR - - - - T 3N
o +m *[a -a a_-a 6) "
B g7 1397 3prq 1 [2g 7 2piq] ( e
A ¢
*;‘:: 3. Clustering strategy: Since the number of all possible cluster group combinations Egt
'3 (total clustering) can become prohibitively large, it is imperative that a {;
‘; reduction in the number of clusters be attempted. For example, say m samples ',::,
};} (attribute values) have to be clustered into iess than or equal to n groups. This ::,'
K] OO
I::: number of clusters is given by: ,f;:f
n gn "»
D H (n,m) = Fi]-, S -n™t [1 ] im (7) i
‘:: 1=t 30 "::
3.0 .
:‘ For m = 1000 and n = 15, H (n,m) is greater than { * 10 . For this reseach, é;::
" )
e m=10,000 and 150 < n < 300, therefore the clustering is not practically &4
W, achievable. As a result, a special strategy has been employed to alleviate this .,’?;
]
2:: problem. Instead of searching for total clustering, the OPTDEX-OLDM program el
;',Eﬁ starts from m samples and allows each _ingle sample to be a group, i.e. n=m. ’:{;:
{
o The program then attempts to decrease the total number of cluster groups, during '%
ot each clustering cycle, by one. During each cycle the program searches for any two 3T
& g CY Y g Y prog ) %
E: groups from the current set which satisfies the criterion of equation (4). This '::
; 4
1::: clustering process terminates when the number of groups, denoted by n*, satisfies :é
L. the following condition, s
R P
: ; * > e
. min W (n*, M) 2 Wacceptable (8) ::::
, Based on this clustering strategy, H! (n,m), the reduced number of clusters are: 1;.:::
% m? - n? (9) f:':‘
H (h,m) =~ — y
i ’ o
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For the m = 1000 and n = {5 case, H' (n,m) = SE+05. Athough noise may bias this :::
2 type of clustering in the very early stages of processing, as previously predicted, 3
o Yp g Y y stag P g P Sy P "
€ .
;",:Z when compared with the increased efficiency, of approximately 2 * 10 times, it is 3
- .
o an acceptable strategy. Flow control for this process is shown in Figure 4. %
) P gy P g i
e ) tyt
1!
Explanation of The Statistical Results B
- 3
‘:::', An explanation facility [17] is an important feature which distinguishes artificial 3
L ‘.
:ﬁjg: intelligence programs from wusual programs. Its purpose is to present the ;;s:.
i . . )¢
ht computational results in the form of a natural language so that is comprehensible to )
. a novice user. In addition, this capability forms the basis of incremental machine .
™ P y g
",(: learning. A simple example that demonstrates how machine learning provides an t
Hi ¢
-;E:- explanation for a resulting cluster group follows: :g;':
;E&‘ ‘;!(
"' Group 1. Number of members = 17 .f{
B Attribute Range Mean Variance ‘:':
“"¢ ¢
i Nonlinearity 0-9 8 3.0 s
N o0
B Strategy 0-9 2 0.2 3
o Distance-of-Search 0-9 { 1.0 3
3 %
L3 -0‘
D Response from the OLDM: .
é:g"l p ."‘v
W OLDM> I found that (as supported by 17 samples), 3
' E
i IF e
;::' Generally-speaking, the nonlinearity is very-high, and ::::
Ql Definitely, the strategy is the linear extended interior penalty ?.':
) function method. gy
" Then &
o Most-likely, optimization searching will be very-local. ;:;i
Ly e
:::. (Underlined explanations represent terminology derived from the statistical results). ‘.:;:
o Classification and Incremental Machine [_earning ‘!.
¢ y % -
y Automatic concept learning, implemented in the form of concept learning :::.:
N eneralization®, has been shown to b ful in int ti d izing large R
o g , n shown to be useful in interpreting and organizing large o
Ll amounts of information about a domain [?] After performing the initial clustering A
,;:;. from the test samples (ten thousands samples in this case) the OPTDEX-OLDM e
;‘.q. D
4 !
;,:: *Concept learning gerteralization: The automatic generalization of a concept based on C;
Y a sufficiently large number of agreements among specific case (non-general) {7
B concepts. In other words, expanding a concept to include a more general class of Y
o specitic cases than previously included. :;‘
i o
»": |:‘
g'! ot
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i )
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:;' 0.“
. )
o Data normalization iy
g & scaling. 3
t:; ‘QF
t Q‘ Y
3 Ky
;".Q ‘F&
s lﬁ
" Non-hierarchical b
e cluster analysis. 3
B
o/ "l"
e o
) ;
e 3
o N Are all 2
R 0 the variances within 3N
é::{ clusters out W
Ve of. bounds ? ;i'
o 2
'r" 0::
ot '
o ¢
s t
:}, Explanation of W
statistical results. 2
. ey W ]
o (Explanation Facility) '; '
s 4 .
Q)

h
1 '.:

¥ Generalization process &
N knowledge base formulation.

" Figure 4. Flow control of cluster analysis.
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program reaches approximately 500 conclusions. These conclusions may overlap one
another, some of them may be redundant and they all have to be appropriately
formatted into a rule-based expert system.

Creating a classification scheme is typically the first step in developing the
heuristics (rules of thumb) for a collection of observaticns or phenomena. The goal
of the classification scheme is to structure given observations into a hierarchy of
meaningful categories [6]. The OLDM applies generalized-based memory to build up
a hierarchy of conclusions. It actually constructs a connective network to derive
conclusions in a canonical form. A detailed explanation of this process is provided
by Lebowitz [7]. An important feature of the OLDM is its ability to manage
contradictions between conclusions, referred to as noise, by simply counting the
number of supporting members for each conclusion. For example, the following

conclusions (non-generalized) have been drawn by the OLDM:

Conclusion 1. Supported by 19 members |

If the Discontinuity is high and
the Optimizer-choice is Golden-section-method

then the objective value is less-minimized.

Conclusion 2. Supported by 25 members

If the Discontinuity is low and
the Optimizer-choice is Golden-section-method

then the objective value is less-minimized.

Conclusion 3. Supported by 4 members

If the Discontinuity is high and
the Optimizer-choice is Golden-section-method

then the objective value is minimized.

The generalized concept, drawn by the OLDM, based on these conclusions is:
CLDM> CONCEPT-008:

If the Discontinuity is high or low* and
comment:  *<this result is based on the generalization of conclusions | & 25

the Optimizer-choice is Golden-section-method

then the objective value is less-minimized.**

comment: **<{the number of members supporting conclusion 1 is greater than

the number supporting conclusion 3>

Another important feature of the OLDM is its ability to perform on-line

statistically incremental machine learning. The OLDM is an on-line consultant during
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numerical optimization processing which has been incorporated within the ADS
(Automated Design Synthesis) optimization library. According to the existing rules
and local information from updated optimization searching, it chooses and switches
methods combinations from ADS and feedsback the result of each applied rule. These
feedbacks are always represented in a standardized format with 14 parameters as
previously described. Each piece of standardized information can be treated as an
additional test sample, a_, clustered into a group, Cj which satisfies the following

condition.

. m.
min I * [a, -3 _ (8)
Cep (i, M) mj+1

Curing the incremental machine learning process, any of the existing cluster groups,
say Ck’ such that Wk > Wacceptable’

procedures which have been discussed. After the re-clustering process has been

has to be re-clustered by utilizing the

completed, new concepts (conclusion) are born and/or old concepts die. This is
referred to as the birth-and-death procedure for maintaining and renewing concepts

in the knowledge base.

Conclusion

A new approach to design optimization, referred to as cognitive method switching,
using nonlinear programming (NLP) algorithms applied sequentially, based on local
design information, has been presented. Statistical evaluation with clustering of
attributes associated with a randomly generated problem sample data base, containing
over 10,000 samples, has led to the generation of guidelines for the application of
NLP algorithms to design optimization problems. Continued expansion of the problem
data base should permit more generalized guidelines to be obtained and thereby assist
the nonexpert user in cognitively selecting an appropriate sequence of NLP algorithms
for a specific design optimization problem.
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Y TOWARD A NONEQUILIBRIUM THERMODYNAMICS OF TWO PHASE .:2«
i MATERIALS WITH SHARP INTERFACE N

Morton E. Gurtin
Department of Mathematics

s: Carnegie Mellon University
" Pittsburgh, PA 15213
\)
o

ABSTRACT. This is a review of recent work of the author toward the
:W, development of a nonequilibrium thermodynamics of two-phase continua based on
g the first two laws in forms which contain interfacial contributions for energy
ﬁq and entropy. Topics discussed are: thermodynamic restrictions on constitutive
{& equations; interface conditions; free-boundary problems for solidification and

413 melting.

o 1. INTRODUCTION. The classical theory of Stefan, for the melting of a
" solid or the freezing of a liquid, is too simplistic to account for the myriad
W) of phenomena which occur during solidification (an example being dendritic
Ko growth, in which simple shapes evolve to complicated tree-like structures).1
Y Recent attempts to rectify this situation involve replacing the classical
A free-boundary condition,
\
v
R -
bf 8(x.t) = BM on a(t), (1.1)
o . . .
hy for the temperature 6(x,t) on the interface 5(t), by a condition in which
: the mean curvature H(x,t] and the normal velocity V(x.t} of a(t) are
allowed to influence the temperature:
8(x.t) = B, - hH(x.t) - BV(x.t). (1.2)2
Here GM, a constant, is the transition temperature, the temperature at which {¥
the bulk free energies of the solid and liquid coincide, while h and b are )
constants. N
N
The relation (1.2) with b = O 1is usually derived by assuming that (at 'J‘
each time) the interface is in thermal equilibrium with the bulk material, and Y
then linearizing the interfacial condition obtained as a consequence of Gibbs’
criterion for stability. The complete relation (1.2) with b =0 is »
generally justified on an ad hoc basis, since the presence of the normal i@
velocity V precludes the use of equilibrium thermodynamics. ﬂb
¢F~|
£
1 NS
Cf., e.g., Chalmers [1] and Delves [2] for discussions of these phenomena. :ﬂ
5
ot
2For solidification problems, free-boundary conditions of this type, with “;
b = 0, were introduced by Mullins and Sekerka [3], [4]: the term involving V >
.\ was added by Voronkov [5], Seidensticker [6]. and Tarshis and Tiller [7].
K3 (See also the review articles by Sekerka [8], [9]., [10]. Chernov [11]. Delves
b [2]. and Langer [12].)
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One expects that free-boundary conditions derived in this manner are a e,
valid approximation in many situations. On the other hand, since the ot
e underlying physical problem involves a physical system out of - although
possibly near to - equilibrium, it would seem advantageous to develop a
nonequilibrium thermodynamics which yields, as consequences, appropriate G
free-boundary conditions for the interface between phases. This review !

discusses recent work [13]3 by the author toward the development of such a
nonequilibrium thermodynamics.

- -

ol

2. BASIC OONCEPTS. The work [13] begins with the first two laws in
¥ forms which are appropriate to a continuum and which contain interfacial "y
fg}: contributions for energy and entropy; but to avoid inessential complications, :"
B attention is restricted to nondeformable bodies in the absence of diffusion. i
40
S v
z: A fairly general constitutive theory for the interface is considered. e.ff
The free energy f and entropy s are allowed to depend on the temperature 3
i 6 and on the orientation of the interface through a dependence on its unit
e normal m: o
kK o
“»"' -~ ~ vt
o f = f(6.m), s = s(6.,m). (2.1) o
N O
] (The dependence on m is included to model crystal growth.) 3
&','i .gél
!. ’
':t: An essential requirement of the theory is that the temperature depend on ::'*
) the kinematics of the interface. In particular, a constitutive relation o
QG: \%
bt \‘Q':
4 ; ~ W
& 0 = 8(V.m.L) (2.2) @
".;, giving the temperature as a function of the normal velocity V of the '.'
.::: interface, the curvature tensor L for the interface, and the normal m is :
::‘s introduced. e,
t-"’ "'.
B ) S
e One might expect that the motion of the interface (relative to the v
underlying material structure) induces a transfer of mechanical energy within &
:;1, the interface. To allow for this possibility, a tangential vector field j ;
"‘o:_' is introduced; for ¢ an arbitrary subsurface of the interface 1, .0:"
'_i‘g' l’|:
- 0
- [ 40 (2-3) 0
t.y i
o w
«’J, represents a flow of energy into ¢ across dc. Here » (a tangential '.:;
‘..;0 vector field) is the outward unit normal to the boundary curve d8c. The ’::t‘
-:.: vector field J is called the accretive energy flux, and the description of :"i
:.:g the interface is completed by adding a constitutive equation !f‘_;-
i i=3(v.mL); (2.4) N
[ % {
'!. 1’
;".: interestingly, for an isotropic interface this flux vanishes identically.
¥ \
o "
3
o 3Based on the earlier study [14]. ut:
:“’ ".a
5
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i
A A ¢
Triplets (V,m,L) in the common domain of 6 and J are called states, 4
and states with V =0, L =0 are called equilibrium states. o
B It is not clear what thermodynamic restrictions ought to be placed on }'.f‘
A these constitutive assumptions, and it would seem appropriate to use the ‘,"
: second law - in the manner of Coleman and Noll [15] - to derive such )
3 a,f
’ rest,rictions.4 This is not as straightforward as it seems. For a rigid heat ',::
conductor the treatment of Coleman and Noll [15], developed for single—phase L‘;!
materials, is based on the hypothesis that the second law be satisfied in all "
; processes generated — through the constitutive equations - by smooth :z":
ot temperature fields. Here, however, there is an additional degree of freedom, ;.:,!
the evolution of the interface, and the constitutive restriction (2.2) does ‘;«:’.
not allow for an arbitrary assignment of both the interface and the underlying o
!,)
temperature. B
' 4
X3 3. THERMODYNAMIC RESTRICTIONS ON OONSTITUTIVE EQUATIORS. Compatibility ,9;;.
e with the second law leads to the following constitutive restrictions: :::.
4 0
2R (i) the free energy has the form A
LA )
st T
3 £(0.m) = fo(m) + £,(8): ;‘f
) oy
G"{ ~ ~ ,‘ﬂ'!g
‘;; (ii) the entropy s(0.m) = s(8) is independent of m and determined by the ;‘,i
“-,: free energy through the entropy relation ::‘aj
] W
s(8) = -9,f,(6): 2
5t AN
;‘:Q ':I
i:g -~ ~ (K30
e (iii) the accretive energy flux j(V.m,L) = j(V.m) is independent of L :Qii
:‘; and linear in V: Mo
\ !
Yt Wy
_ i(V.m) = - VE(m); (3.1) o
Mo L
’:“ ~ O
;'.: (iv) E(m) is determined by the free energy through the stress relation ',:.;‘;-
R oy
H - - - R Q"'
B E(m) = a-fo(n). ’
W (v) gi V.a.L M
w given any state (V,a,L), '::
e %
‘M V{[¥(6)] - Hf - 3 _E(m)-L} 2 O, (3.2) \
v‘e: ; he
& where [¥(8)] 1is the jump in bulk free-energy across the interface. i
A 2
" .’:‘i
:‘Q ..0
i e
X i
- P
,1, 4T*Iurdoch [(16] has applied this procedure to interfaces which do not move :n;n
;s;' relative to the underlying material. :::
'li 0
:t~ 'o.:
O 81 0
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Note that (3.1) reduces the energy flow (2.3) to ,‘::l

. ,':e:
PN ‘ot

VE(m) *p. '
J €(m) 3

dc e

¥ ‘.P
;?',. This integral has an obvious interpretation as power expended on ¢, with ,
E(wm)°p a force5 in the direction normal to the interface. For that reason '.-/
E(m) 1is called the accretive stress. "

a: One might object to the constitutive equations (2.1), (2.2), and (2.4). f;'
& as they are not consistent with the principle of equipresence. Consider :.:;
ot instead the system i
.‘,(3 ‘;03
f=F(V.mL), s =3(V.mL), &

i 4 (3,3) "‘;A
ﬂ:“ PN ~ "Q.‘
Yy 0 = 8(V,m,L), j = J(V.m,L). n
e"‘ “!lg
e, Near equilibrium this system is no more general than the original system :::n
Lt (2.1), (2.2), and (2.4). Precisely, it is shown that, if (3.3) is compatible "i
. with thermodynamics, then there exist a neighborhood of equilibrium N and o
:{:‘ constitutive functions f(6,m) and s(6,m) such that ::f:
f;f. .{.'-',
o . A A N ~ A .\;‘.;
::* f(V,m,L) = £f(6(V,m,L).m), s(V,mL) = s(6(V,m,L),m) ;:,‘:5
g s
on N. wﬁ

,;:‘ ‘i
H In classical theories of melting - in which the interface is devoid of e
:::‘ structure - changes of phase occur at the transition temperature BM. Within ,;!:,
U 1,
:::b the present theory a consequence of the inequality (3.2) is that the interface ::::
" have temperature GM at equilibrium, I
- & | N X
R . X
& 6(V.m.L) = 6, whenever V=0, L=0, e
) 4y
W ‘|.i
\) U
3':‘, but that away from equilibrium this need not be so; in fact, i
.‘ 0 = GM - f(-)H - b(-)V + divof(n) ":i;!
& K
o ‘,.:.;~
» is the linear approximation to (2.2) near equilibrium. Here f(m) = f(BM.n) ":::‘,
- ."‘
y is the interfacial free energy at equilibrium, £(m) = E(m) is the accretive i
5 7
'

b a
W o8
2 SWi thin a purely statical theory such a force was introduced by Cahn and :
e Hoffman [17], _18]. whose work pointed out the need for a term of this form in A
R the energy equation when the interface is anisotropic. The vector §(m) is W
i::u actually the tangential part of the vector used by Cahn and Hoffman. .::.::
\' 4
n ::«,:
i W,
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.“t stress, diva is the surface divergence, b(m) is an orientation-dependent :.::"
- RS
) constant, and we have chosen a scaling in which the latent heat ¢ satisfies .:i
2 =0,. v
M |fi"0
L
2 4. FREE BOUNDARY PROBILEMS. Approximate interface conditions are derived for o
. a weak interface, that is, one in which the interfacial densities are small »:;;.j
- and the dependence on V and L weak. These interface conditions, when vl
combined with the usual quasi-static heat equation in bulk, lead to the .’
) following system of partial differential equations and free-boundary -
Ly conditions for the temperature difference u =06 - 6,: At
Ko M 1:025
" d ‘\?CT
q 7,0
" (4.1) fut
u= - f(mH - bV + div E(m). [ql'm=2V on o. P
s N
i O
‘.*' Here o = 3(t) 1is the interface: Ki is the conductivity tensor for phase x:g:z
$ H
.: i; B1 is the region of space occupied by phase i, q is the bulk heat ::::*
344 DO
‘ flux; [q] 1is the jump in q across the interface. " |
o (7
My Global growth conditions are found for the system (4.1). To state these ."&:
::. succinctly, consider a bounded solid B(t) in an infinite liquid melt, and :,:g:‘
D)
. write :::ﬁf
:I’ .Cn{.“
L .
F(s) = j f(m) ‘3
3 : 3
,v.: \‘Q:.
e for the total interfacial free-—energy computed using the equilibrium values of W
' the corresponding density. Then: 'I:::
o !
1(B)" =0 F(s) <O (4.2) h
| vo =0, . v
o o
::' provided the liquid is thermally isolated at infinity. while E:::
) ..0
o g0
n £(a)” + u, vol(B)" < O (4.3) ‘fg
L] ‘A'
é-': whenever the liquid is isothermal at infinity. Here wu_ is the (constant) 0::::
. JOU
S far-field temperature-difference. ‘:"‘
‘.ﬂ. o'.:t
) g
f::' The results (4.2) and (4.3) motivate two variational problems: ‘,:!:'
| .
R (V1) minimize F(a) subject to vol{B) = constant; A
" A
5 (V2) minimize F(a) + u, vol(B). t_.
) '
l h
5’., The problem (V1) and the problem (V2) with u > O are well posed. On the L?;
., other hand, (V2) with u, < O has no solution, as all minimizing sequences e
. {
B N
"" + '|‘
1) (.
o !
:,': 83 !
.:‘, it
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3
: have vol(B) » ». This is as expected: u, Z < O corresponds to a solid in a ‘:,:
supercooled liquid melt, and vol(B) - » indicates the ultimate envelopment :,{
of the liquid by the more stable solid phase.
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WITH VISCOELASTIC MATRIX ':f:‘
: e
DIMITRIS C. LAGOUDAS o=

§ Mathematical Sciences Institute 0:0:':
Cornell University, Ithaca, NY 14853 ;:::;:
b e
W CHUNG-YUEN HUI R
Y Theoretical and Applied Mechanics v
Cornell University, Ithaca, NY 14853 ".,

‘t A0
. S. LEICH PHOENIX 0
bl Sibley School of Mechanical and Aerospace Engineering 'Réif
';:‘ Cornell University, Ithaca, NY 14853 ‘:s‘l
i '
3

D :‘:“\'
v N
! ABSTRACT ':'!:'A
® R
3 The shear-lag model is applied to a monolayer, unidirectional, fiber-reinforced '::::‘,
i} composite loaded in tension. The monolayer contains an infinite number of ol
parallel fibers, with an arbitrary number of them broken simultaneously. While %

¥ the fibers are modelled as linearly elastic, a linear viscoelastic constitutive a:,
" law is assumed for the matrix material. The time evolution of the overstress A
" profiles in the fibers and matrix near breaks is determined. The time n":
:: dependence of the effective load transfer length is also calculated. Explicit ';'(;,
o evaluations of the above quantities are given for a power-law creep compliance A
model, suitable for most epoxy thermosetting resins as matrix materials. _:5‘

1 f
" ':Ei
" INTRODUCTION v
) o'
1!' The shear-lag model for a unidirectional composite was developed by e
HEDGEPETH (1961) as an attempt to describe the stress fields around broken &

1 fibers. It is a simplified micromechanics model for which closed form ;'::;f
:u solutions can be obtained. In Hedgepeth's analysis the fibers are parallel, '::a:z
N equally spaced and of infinite length. The monolayer includes an infinite .;é'
N number of fibers with a cluster of them broken (see Fig. 1) and is loaded by ,.,l::
;o' uniformly distributed tensile tractions in the direction of the fibers. Both "H o
’ fiber and matrix materials are assumed to be linearly elastic. The drastic a8
3 simplification introduced by the shear-lag model is the decoupling between the oY
» mechanisms that respond to shear and normal stresses in the composite. It is hyedly)
thus assumed that the fibers alone bear the normal stresses along the fiber Rty

1 direction, while the matrix material acts only as a shear transfer mechanism -$~'
7 that overloads the adjacent fibers in tension whenever a fiber breaks. }}:
v The method of influence coefficients was used for the solution of the )
v above problem and the explicit evaluation of the overload coefficients of the Ky
" intact fibers due to fiber breaks was given by HEDGEPETH (1961). Closed-form ‘::-
Y solutions in terms of Bessel and Weber functions for the overload and ;:_,{
:’ displacement fields of the fibers were reported by FICHTER (1969,1970), who t ‘

N also looked into the problem of more than one groups of breaks. A later work

by HEDGEPETH and VAN DYKE (1967) incorporates an elastic-perfectly plastic
model for the matrix material. In a subsequent work VAN DYKE and HEDGEPETH
(1969) assumed that the matrix fails completely when a maximum shear stress is
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: reached. A modified version of Hedgepeth's shear-lag analysis was undertaken :t::
N by ERINGEN and KIM (1974), who took into account the normal stresses in the :';
< matrix transversely to the direction of the fibers. Along the same lines was ;e‘.
b, the analysis of GOREE and GROSS (1979) with the additional inclusion of e
B longitudinal yielding and splitting of the matrix and later on an extension to e
" the 3-D case (GOREE and GROSS, 1980). Comparisons of the predictions of the .
shear-lag model with 3-D finite element calculations were done by REEDY (1984). :‘:«:
“ He found excellent agreement between the two methods for the fiber stress éia:'
;1:‘ concentrations in a Kevlar/epoxy monolayer for load levels that do not cause ":zf-
" matrix yielding. ::.:<
a In the present work we analyze the time response predicted by the it
shear-lag model of a unidirectional, monolayer composite with an infinite "
a number of parallel fibers loaded in tension in the direction of the fibers, by !3':|
to: assuming a time dependent consitutive model for the matrix material. We take :::::
PN the matrix to be linearly viscoelastic, and as a special case we investigate :a:.:
& the consequences of a power-law, time dependent, creep compliance on the time .:0“:
:3: evolution of the overstress profiles around broken fibers. Such a power-law it
. creep compliance is commonly used to model the time response of epoxy 3
" thermosetting resins, which are often used as matrix material for non-metallic ':!‘,i
MK composites (POMEROY, 1978). A linear viscoelastic model for the matrix has AR
:‘ previously been used by LIFSHITZ and ROTEM (1970) in their statistical theory ‘.l::;
e of failure for composites, where Schapery's approximate technique was used to .::';
'.{: obtain the time-dependent solution of a shear-lag model that lumped all broken el
fibers into a single fiber. ?
vy In the first section the formulation of the shear-lag problem is presented :::n:
::; for a unidirectional composite under tension with broken fibers and a linearly -;‘:;
) viscoelastic matrix. Also described is the method of solution which uses ‘.:'-:
:v Laplace transforms and finite cosine transforms. In the second section a :n:i
:: power-law creep compliance is assumed for the matrix, and explicit evaluations !‘o{l“
) of the overloads in the adjacent intact fibers, the shear stresses in the j
o matrix and the effective load transfer length are carried out. iy
S, b
R t'::Q
) 1. FORMULATION OF THE SHEAR-LAG PROBLEM W
", Tab s
' The model of a thin, unidirectional laminate is shown in Fig. 1, where all 2
i fibers are identical and parallel to the X axis and have an equal center-line o~
“,:' spacing H. The laminate is considered to be a two-dimensional infinite region o,
™ with an infinite number of fibers, out of which (2N+1) neighboring fibers are '0.':.
'y broken along the Y axis at time T = 0. We are interested in calculating the ey
,",: subsequent stress fields near the breaks in the fibers and the matrix. k)
g Both the X and Y axes are axes of symmetry for the laminate in terms of ,
* geometry and loading. The external loading is uniform tension applied in the ;2:'.
0:0 direction of the fibers, which are taken to be the only tensile load carriers. gt
:-' This is a justifiable assumption for most non-metallic composites because the ‘1:!:
'y Young's modulus of the matrix is usually one or more orders of magnitude less 1‘3'..
:; than the axial Young's modulus of the fibers. Lol
* The thickness of the laminate B and the fiber spacing H are of the same )
i order as the diameter of the fibers D, which is small compared to the length of N
Q the fibers L. If we take as a reference length unit the fiber diameter D, then N
W L - ». The width of the laminate becomes infinite in this length scale as :;'*-
.. well, as it consists of a large numbers of fibers. The infinite laminate model ,
, is therefore a good approximation to the real configuration of the composite,
at least before extensive breaking of the fibers has taken place. If the
8 clusters of breaks are not sufficiently far away from each other, their
o interactions should be taken into account. However, in the linear theory the
)
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superposition principle can be applied, and the problem reduces again to the
infinite domain problem with only one group of breaks (the (2N+1) broken fibers
in our analysis).

The mechanism of the shear-lag model is a highly idelized one. In the
absence of breaks the whole laminate is in a homogeneous stress state with the

only nono-zero stresses being the constant normal stresses 4Pm/1rD2 in the axial
direction of the fibers. The load P, is the constant tensile load applied to

each fiber at an infinite distance from the breaks. The matrix material is
normal stress free before any breaks occur. This is true if sufficient time
has elapsed from the loading of the composite so that stress relaxation in the

¢ matrix has occured. Approximately the above is true for any time, since we
;c: have assumed that the fibers are much stiffer than the matrix in tension. As
a;» soon as one fiber breaks, the load of that fiber near the break is transferred
i to the neighboring fibers by means of shear forces, which are exerted on the
i:v matrix material through the fiber-matrix interface.

A free body diagram of an infinitesimal portion of the nth fiber together
a with its surrounding matrix is shown in Fig. 2. Even though the fibers are
B cylindrical and the stress fields in the laminate are inherently three-

0t dimensional, we simplify the problem by first assuming constant normal stresses
o in all cross-sections perpendicular to the fiber axis. We then assume constant
1.1 shear stresses in the matrix in the XZ plane in the Z direction, and in the Y
direction between two neighboring fibers. To justify the last assumption we
introduce an effective width Hf of the matrix layer between two neighboring

9:: fibers, such that the product (BHf) gives the matrix cross-sectional area
"
4
::: (BH - #D?/4) between these fibers. It is obvious from the above that the
]
effective width Hf must be equal to (H - #wD?/4B). If B is substantially larger
b~ than D, the requirement of constant shear stresses in the Z direction is not
X valid any more, and an effective thickness Bf has to be introduced. As a first
" )
.:’ approximation we can choose Bf = D, in wich case Hf = H - =D/4. The
0
o0 assumptions about the effective width and the effective thickness require the
. notion of an effective shear modulus for the matrix, to be determined by
'.: experiments. The effective shear modulus will in general be different for
h, different cross-sectional geometries of the fibers and different ratios B/D.
iu{: Detailed discussion on the selection of Hf and Bf is given by REEDY (1984).
f:), Further simplifications introduced by the shear-lag model concern the normal
stresses in the matrix in the X direction, which are neglected for reasons
RE mentioned earlier. The normal stresses in the matrix in the Y direction are
’:: assumed to remain constant throughout the effective width of the matrix. Any
:'. out-of-plane stresses in the fibers and in the matrix are neglected as well, as
: the problem is assumed to be two-dimensional in the above introduced effective
;‘@ configuration.
3 By taking into account the above simplifications and in the absence of
o inertial forces, equilibrium of forces in the X and Y directions (see Fig. 2)
W results in the following equations:
o
:Q: aPn
L) —— - -
! & B ~T) =0 . mdnde (1)
0
"
osl
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where P is the normal load in the n'? fiber, J, is the shear stress in the ¥
. matrix between the nth and (n--l)r'h fibers, and Ez is the normal stress in the ;:u
A i
,:', matrix between the n‘:h and (n—l)th fibers in the Y direction. Eqn (1) implies ":‘.
t:‘i. that the variation of the normal load along a fiber is due to the difference in n:.f
'i,: the shear stresses applied by the matrix on both sides of that fiber. Eqn (2) il
’ implies that the dependence of the matrix shear stress on the distance from the
X breaks results in non-zero normal stresses in the matrix in the Y direction. ,-
;c',‘: These normal stresses are maximum near the breaks, where we expect the largest tf
;«'. variation in the shear stress, and they might be important in the analysis of '
ie‘,l the fiber-matrix interface, for example in the case of debonding. Note that Ve
:‘,’g: equilibrium of moments does not hold in the infinitesimal element of Fig. 2, as ;
a result of neglecting the shear stresses in the fiber cross-sections in the Y 3
. direction, unless we assume that the ratio D/l-lf is very small. Since D is of ::;
B
::'." the same order as Hf for most applications, we propose the use of a correction ‘2::
.'Q' ‘.
ft‘. factor that restores balance of moments by replacing ‘.’fn with Hﬂn/l-lf. ":::
L .i
y - {n < ineqn (2). 3
“ Upon specifying constitutive relations for the matrix and fibers. the oy
.'.5 above set of equations becomes field differential-difference equations for the ‘ﬁ:
He sf.
»:‘::l determination of the displacement fields Un and Vn of the nth fiber along the X .‘E
)
j!:. and Y directions, respectively, as functions of position X and time T. In the fy
e present work we assume that the fibers are linearly elastic, namely i
n}
" au ,
'N n %,
i P = AE — . 3 !
:;o.: n ax (3) "l:
)
1 ‘0
\,': where A is the fiber cross-sectional area and E is the axial Young's modulus of A
the fibers. The matrix material is taken to be linearly viscoelastic in shear, 5
" t}mt iS 4(
B 7
N T 3 _(X.S) .
e g ‘J G(T-S) —3=—— dS (4) a
R n® ), 3 ' N
Al
T where G(T) is the relaxation modulus and 1n(X.T) is the shear strain in the
¥
l:" matrix. In order to decouple the system of eqns (1) and (2) in Un and Vn' we
o = -
2 approximately take v = (Un Un-l)/Hf by neglecting the term ax(vn_l + Vn)/2
':t. (ERINGEN and KIM, 1974), in which case (4) reduces to
o 1 [(F 9y, T 8Un-1
¢ g = —U G(T-S) g=— dS - J G(T-8) dS] . (5)
::. n Hf —» as —» as |
R |
W We nondimensionalize the time variable by dividing T by some -
) characteristic time To of the matrix material, to be found by creep
) experiments, so that t = T/TO. We also define a normalized relaxation modulus
oy
2
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3 l.!.
! B
o $(t) = G(tT )/G . where Go is the instantaneous elastic shear modulus of the :::
: matrix mterial. (In this work lower case letters and script letters, except :

o for the script letter 3n used to denote dimensional shear stress, denote

dimensionless quantities, while upper case letters stand for dimensional
quantities.)

K If we introduce the integral operator § so that its action on a function

f' f(C) is given by :::
0 i
,\!x b .
X t 'l‘r
- o(E> = I s(e-¢) L ac 6 X
J _8(e0) Fr &« (6) 3
A .’\,
*:; substitution of (3) and (5) into (1), upon using (6)., yields second order ]
f.:: differential-difference equations for the determination of U, . namely :ﬁ.,
¢ : 4
3 e
AEHf a=U "
iy +9<U -20 +U >=0 , o<{n<=® . (7) i)
:'r:" GOBf ax2 n n-1 "i
l,g gl
','o: If the solution to (7) can be found, substitution of Un into (5) yields the :".?
. ' 7.
53' shear stresses Hn and hence eqns (2) can be solved for Vn. Vn can be easily b
e determined if a linearly elastic constitutive model is selected for the normal 7
k)
}"::. stresses in the matrix perpendicular to the fiber direction, i.e., E'; = Em(vn - '{y"
¥
::: vn—l)/Hf (Em is the effective Young's modulus for the matrix). If we use a ':'&.;
k!
"'f linear viscoelastic model for the normal stresses, the Laplace transform method r
o can be used to render eqns (2) algebraic in \7“. the Laplace transformed "'-‘r
) A
_ displacement Vn. The decoupling of the vertical and horizontal displacements o
j allows us to consider only eqns (7) in our solution procedure. v
v,‘ X and Un are normalized so that the field equations and the boundary and '
e initial conditions are independent of the material parameters. If we select x .';
k] - - M
) = = ! = 2 "
:. = X/X, = X/NAEH./G,B. and u_(x.t) = Un(X.T)/JPwa/GOAEBf. eqns (7) become ot
B ) 4
R) N
'}? 524 \
n
+ 9<u -2u_+u . >=0 , =@ {(pn{o (8) W
+ -1
“ ax2 n+l n n :,,1
e &
'_:' The boundary conditions are given by
G o
al"n
= =1 s, ©@<{n<® |, x=ao . t>0, (%a) b
g ox >3
¢ R
s aun !
s ax—=0 . -N{(n¢(N , x=0 , t>0 , (Sb) :~
‘Y d
o un=0 , = <{n<-N , N<n{e® , x=0 ,¢t>0 , (Sc) S
X »
)
.:.:
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o while the initial conditions are th

' u =x , =@ <{nw® , x20 , t=0 . (10) (¥
iy n P
) (X1
. In order to avoid unbounded displacement fields in the analysis, we perform the [ ]
o transformation "
e (11) ™

w =u —-X ,
:;%:‘ n n v
4, LY
'.::'. which, after its substitution into eqns (8), (9) and (10), results in the i
following field equations, boundary and intital conditions: ,.
- 2
S 3
; v, f
i _ - 4
[ o + ’<wn+l 2wn + wn_1> =0 , = <{n<c o |, (12) ﬁ
R pat:
3
ia awn """
" = =0 , —=w<{(n<{® , x=9 , t>0 , (13a) by
it ox "
i 4
‘Q. aw .‘.‘
"' n c"'
DCn ax—=—l . -N{n{(N , x=0 , t>0 |, (13b) '
" .’;
X w =0 , @®<{n<-N , N<n<® , x=0 ,t>0 , (13¢c) 3
X n '
v’::‘ k
b w =0 . ow{n<® , x20 , t=0 . (14) WY
,'f!:: n * '%
» Notice that the field equations remain unchanged in form. This is because the '..
N transformation (11) is a time independent translation. The change in the N
!\.’:, boundary conditions has altered the original problem into a new one, in which N
x\j there are no loads at infinity and there are only compressive loads applied on
,. the broken fibers suddenly at t = O, which open up the breaks as t grows. N
o The above equations can be solved by using Laplace transforms. The F
Laplace transform of .?<Wn> is given by the convolution law L(.?(wn>) = s%(s) E
» )
b - - - al
N wn(x ,8) , where %(s) and wn(x ,s) are the Laplace transforms of %(t) and ).
} 3
:'Q.’ wn(x.t). respectively. The Laplace transforms of (12) and (13), upon using o
) s

(14), become

4 {
o' *w_(x.s) _  _ _ _ t:"
’”, —_— - -
% e + s‘g(s)[wn+1(x.s) 2wn(x.s) + wn_l(x.s)] =0, =» <{n< @ , (15) ‘&
& )
" "y s
N awn 54
- 3 =0 . @<n® , xos0 (16) .‘¢
.{ 'I.,
i - 3
o X
" % - " s ° ~-N{(n{(N , x=0 , (17a) oy
(‘, e
i) %
'f 92 N
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;n=0.—°°<n(-N.N<n<°°.x=O. (17b)

We have thus transformed the original viscoelastic problem into an elastic
shear-lag problem (correspondence principle, CHRISTENSEN, 1982). Ve will
follow here the methodology presented by ERINGEN and KIM (1974) and used also
by GOREE and GROSS (1979) for the solution of the elastic shear-lag problem,
which is a dual integral equations technique. However, one can also use the
influence function technique developed by HEDGEPETH (1961).

We reduce eqns (15) to a single differential equation by introducing the

finite cosine transform (CHURCHILL, 1972). Define w by

w =

ﬂlotl

+ 2
w

M8

;ncos(ne) , 0<CHB< T (18a)
1

with the inversion formula given by

;'n K? cos(n8) d8 (18b)

where w = w(x,s,0), ;n = ;n(x.s). By summing eqns (15) with n running from -«
to @, after having multiplied them by cos(nf)., and by taking into account the
symmetry ;n(x.s) = ;_n(x.s). it is found that w satisfies

O™ _ 453(s) sin®(6/2) W = O . (19)

2

2

The resulting simplification in the field equations has shifted the difficulty
into the boundary conditions, which turn out to be integral equations, namely

%=o . X"“’ * (20)
3w 1

J':-a?cos(ne)d6=—; , 0¢(n¢(N , x=0 , (21a)

chos(ne) d8=0 , N<n<e® , x=0 (21b)

0

A solution to (19) that satisfies the boundary condition (20) is given by
w = £(s.0) exp[-2sin(68/2) xIs8(s) ] . (22)

for some f(s,0). Substitution of (22) into (2l1a) and (21b) yields the
conditions
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C“:l
3
+, ol 1 ;.":'
s f(s.0) sin(6/2) cos(nf) d8 = ———— , 0 {(Nn (N , (23a) ::».‘
% "0 2sis%(s) l(::."
Kk iy
s,
i »

f(s.0) cos(n8) d8 =0 , N<n<c o , (23b) e

o "0 :::,
. L
g N !
for f(s.08). By letting f(s.0) =3 am(s) cos(m@8), the conditions (23a) for the o
R m=0 -4
N broken fibers reduce to ‘.”
4 i
':‘ N 52*"1
’ of.
5 Z a_(s)| sin(8/2)cos(n8)cos(mb)de = 1 ,0<{ng¢N, (24) o
‘y m=0 L 0 —_ i,
iy 2s{s¥(s) first
o while conditions (23b) for the unbroken fibers are satisfied identically. The O
o complete satisfaction of the boundary conditions reduces then to the solution .:Q.,
i of the algebraic sustem (24) of (N+1) equations, for the determination of the i&:f;
By (N+1) unknown functions a (s). m = 0,1,2,....N. The solution to the a:;‘
A ARH
Ayt - s
3 transformed problem is found by substituting w from (22) into (18b) and is ‘3
Vi given by the following expression: o8
) ‘Q_“a.‘
s _ N — i
) - - W
u wn(x.s) -n:oam(s) oexp[ 2sin(6/2)4s%(s) x] cos(m8)cos(nf)de . (25) ‘3‘_.
K ¥t
3
7 - iy
W The inversion of the Laplace transforms of v will result in wn(x.t). The c,:,:
,‘: difficulty of the inversion will mainly depend on the selection of the i:;‘
X% - U
o constitutive model (i.e., 4(s)) for the viscoelastic matrix. :j:f,
0 A clarifying remark regarding the number of broken fibers is mentioned at ~E
this point. We have assumed that the number of breaks is an odd integer, v

i::c namely 2N+1, and as a consequence we have used the finite cosine transform ‘:;
i : - OUE
::: (18), taking into account the symmetry of L about x axis. We could easily :;:,
L b2t
::; model any number of breaks by using the finite exponential transform ::g;;
N (CHURCHILL, 1972). which is given by "
=+® R
™ - 1 T N
b w(x,s,0) = o 3 w_(x.s) exp(inf) . (18¢) O
O n=—o n ‘:’:'
& A\,
¢ Yy
2 wn(x.s) = r w(x,s,08) exp(-inf) d6 . (18d) =

&) - )
. > 4
. _ _ _ )
b and reduces to the finite cosine transform whenever w =Ww_.orvis symmetric &
N Yoy
. in 8. The only change in the previous analysis is that now f(s,8) = 2 am(s)° :'?
W m=— 0‘.'
";: exp(-im@), where the total number of breaks is (M+N+1) and the algebraic system c,::0:
" i
,,:u w.:‘:

o 9 :
3, o
x T -~ bt q .' Y - ' - " .\' . ‘

R ‘.-.'.c.‘»:.. st .:u 5 e "\"s’v" ‘0-"} G NSRS A e LRt NS \"' RS
N A A St
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(24) involves (M+N+1) unknown functions am(s).

The important quantities in the analysis of shear-lag models are the
overloads in the fibers near breaks and the shear stresses in the matrix. The
nondimensional loads in the fibers, defined by pn(x.t) = Pn(xx0'tT0)/P°°' can be

found by substituting wn(x.t) from (25) into (3) upon using (11). and they are
given by

aw (x.t)
pn(x.t)=T+1 ,» Nn20 . (26)

The normalized shear stresses Tn(x.t) = 3n(xXo.tTo)/~|P:G0/AEB H, between the

ff
nth and the (n—l)th fibers are evaluated by substitution of wn(x.'r) into (5)

(which upon using (11) yields the normalization), and they are given by

t a(w_ - 'n—l)

T (x.t) = I (=) —’lgg-—-—dg , n>1 . (27)

0

Another useful quantity. especially for statistical models of failure of
composites (PHOENIX and TIERNEY, 1983), is the effective load transfer length
Lf. vwhich for present purposes is defined as the distance from the breaks in
the x direction, within which the gverload of the first unbroken fiber has
dropped to zero. Since in the shear-lag model the load PN+1 of the first
intact fiber actually descends to values below P_ before it decays
exponentially to P as x - ®, we define Lf as the distance from the breaks at

which PN-l-l crosses P . In this case Lf or equivalently the normalized

effective load transfer length lf = Lf/JAEHf/GoBf must satisfy the conditions

ow, . (l,..t)
pN+1(1f.t) =1 , or %f——-=0 . (28)

In general' 1 £ will depend on time because PN+l depends on time. The so defined
lf becomes a characteristic length for the whole laminate for a given number of
breaks (2N+1).

Ve summarize the results of this section by giving explicit evaluations
for the various quantities. If we define bm am(s) 2s{s%(s), then bm are
determined by solving the algebraic system

N

b rsin(9/2)cos(nG)cos(mG)de =1, 0{(ng¢N, (29)
m0 ™ Jo

which is independent of s. Eqns (25),(26) and (27) reduce to
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2 o
K e
N N -1 —_ - o
i w((x.t) = 2 b rL {exp[-2sin(08/2)1s%(s) x]/(2s{s%(s))} 0
“4 n m |G
5 m=0 0 .
« cos(mB)cos(nB)de , (30) o
. l::‘
\ N _1 ———e— ‘I“:
B p.(x.t) =1-2 b rL {exp[-2sin(6/2)s%(s) x]/s} byt
‘ n m=0 m 0 :l:s‘
* sin(6/2)cos(mB)cos(nb)d6 , (31) “,
i N &
.j:;; T (x,t) = 3 b rL—l{exp[—2sin(6/2)Js§(s) x] Is%(s)/2s}) e‘;
"‘ts n m=0 m 0 '.3
* cos(m8)[cos(nb) - cos((n-1)6)1d8 , (32) :"1
l:l where :’f‘;
,;s' -1.= 1 +1 _ ::{;
.:; f(t) =L "[f(s)] = Gy lim r exp(ts)f(s)ds , t > 0. (33) et
i A - ¢
re B‘m e iB -—;
o
‘}: 2. POWER-LAW CREEP COMPLIANCE MODEL FOR THE MATRIX MATERIAL :.:
) h !
::.: A useful model that describes closely the viscoelastic properties of :12“'
Y, commercially used matrix materials (epoxy thermosetting resins) is a power-law “g
creep compliance model that can be expressed in the form o
X (P
;‘: T ,a a, - :26’:
2 W) = dg 1+ (% 1= Jg(1 + ¢ = g 2(6) (34) o
s O
Here Jo characterizes the instantaneous elastic response of the matrix material i
y under loading and TO and a are material constants that describe the creep :?,:
P [
B behavior under dead loading. The characteristic time Ty is the time required 5:::
if, for the initial displacement to be doubled, while the exponent a is usually :E:::
"8 much smaller than unity. The limit a - 0 corresponds to the elastic case, A
while a - 1 gives a linear time dependence which is equivalent to the Maxwell :
W viscoelastic model. The connection between the relaxation modulus $(t) and the g‘;
::n creep compliance #(t) is expressed through the Laplace transformed quantities .‘:l
" (CHRISTENSEN, 1982) by the well-known formula o
i | g
. ACk
X ; - 2
(s) #(s) s° =1 (35) 3
"\‘ . ...l'
::: if G0 = 1/Jo. From (34) and (35) the Laplace transform of the relaxation ;:::'.
I ) ]
»::' modulus is found to be 'r‘.'.::
D i
* - 2
. s ‘8(8) = —a——_ . (36) iy
)y s + I'(a+l) :.:::
B o
J0 " ()
,l’ 9 '.“‘
l‘l -6 .-l L
u: |;|
’;‘ O 'l. 0‘ \ .‘i I‘ I.\ ' .‘ \) I .. n k
. ":“"':‘::'-.‘ OO ::t‘n“ :.: :b :b o \!:' : \';h‘u"::\,":’v . “ .‘:l:“.h". k“‘l“'t’! :‘. t..'tf :‘ .o Y l.::‘ :l.‘:.".l' .ﬂ ' " 'n:‘ !" .:hh‘.":s:‘e'-
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By inserting (36) into (30),(31) and (32) it is possible to obtain
explicit evaluations for W Py and T in terms of x and t for different values

of a. The inversion of the Laplace transforms has been done by contour
"integration. We will only report the solution here for the fiber loads and the
shear stresses, while the displacement fields can be obtained by integrating
(26). The fiber loads and the shear stresses are found to be

N 4
pn(x.t) =1~ 2 bmj h(x,t,0) cos(mB) cos(né) sin(6/2) d6 .
m=0

N L4
Tn(x.t) = 2 bm Ig(x.t.e) cos(mf)[cos(nf) - cos(n-1)08)]d6 .
m=0 0

where the functions h(x.t,6) and g(x.t,08) are given by

) a a
h(x,t,80) =1 - =~ re@( -tr) exp[-)\J— cos(—f)] sin[?\J
0

. sin( )]—- .

a

-5 J}*P(-tr) exv["‘J;— cos(55H)] s"‘["J;_a 1n ()

a
I Cumay Js_d_r
2 pr
The quantities A, p and ¢ have the following evaluations:

A = 2 sin(6/2) x (41)

J[ra cos(aw) + 1"((14-1)]2 + [ra sin(mr)]2 (42)

m‘l[ ra Sin(a"f) ] , 0¢ P <7 . (43)
¢ cos(ar) + I'(a+l)

Numerical integration of the above formulae has been carried out for both
P, and T, even though they are related through (1). The reason for this is
that P, is usually the quantity of primary interest and the numerical evaluaton
of T from P, involves differentiaton which should be avoided. Numerical

integration has been done by using a midpoint Romberg integration technique,
with an appropriate change of variables at the singular points of the
integrands. The results are plotted in Figs 3, 4, 5 and 6, for one and three
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N broken fibers and for the first and second intact fibers for various times (a = ity
‘ 0.1 for all cases). ::'f'.‘
j From Figs 3 and 4 we notice that at x = O we recover the overload S,%
coefficients (P_(x=0,t)/P_ = p_(x=0,t)) in accordance with the elastic solution ey
. n @ n p'.i'!
! of HEDGEPETH (1961). The overload coefficient of the first intact fiber in a
laminate with N neighboring breaks as calculated by Hedgepeth is given by o
K R
L4y 4 6 +8 ¢+ (IN+ 4 R
; Ky =SS s) - 0SNEe (=) i
S v‘,,’sf
" The above formula holds for the viscoelastic case as well because the overall .—',
static equilibrium of the composite is not affected by the viscoelastic o
;:' properties of the matrix material. This is because the matrix material cannot e
0 sustain normal loads in the x direction and there is no stress relaxation in :ﬁi
'e: the fibers as they are assumed to be elastic. Therefore, the excess load :'1:’4?
) caused by the simultaneous breaks has to be shared by the neighboring intact g:fgi',
fibers and only the stress distributions are affected by the viscoelastic ‘3
properties of the matrix material. ‘ e
N Several observations can be drawn from Figs 3 and 4. The slope of the :.:,:.
9 stress distribution in the fibers decreases as time increases, resulting in a ;:’.:a'
L growth of the effective load transfer length lf with time (Figs 3a, 4a). The .'..:.:
': overload undershoots and actually becomes negative before it decays to zero as :’.ﬁ:ﬁ
B X = o for the intact fibers. Global equilibrium of the composite in the x 3
;q direction implies that 2[pn(x.t) - 1] = 0, with summation extending to all :..:
§: fibers. Since the negative overloads in the broken fibers grow with time, as a ,:::',
i result of the shear stress relaxation in the matrix, the positive overloads in :t:s'b
j:c the intact fibers increase with time for fixed x, so that global equilibrium is ofizai
K satisfied (see Figs 3 and 4). This implies that the probability of failure for o
the intact fibers near breaks increases with time. The length over which this "—?
;: increased probability occurs also grows with time, this being the effective .a.::»
:: load transfer length 1 £ ':Q‘:'
?‘: The relaxation of the shear stresses in the matrix can be seen in Figs 5 :::i:
bl and 6. The shear-lag model gives inaccurate results for the shear stresses iy
' near the breaks (whithin one or two fiber diameters). The shear stresses in &
. the matrix should go to zero at the break points and this is clearly violated O
' according to the numerical results in Figs 5a and 6a. Modifications, like for *‘
X example the correction in the calculation of the shear strain introduced by k:,f!
" ERINGEN and KIM (1974), are consistent with continuum mechanics but in reality "‘:1
;‘ they are not accurate either. The reason for this is that debonding in the N
‘ fiber-matrix interface near the breaks usually occurs due to the high stress &
- concentrations there. This changes drastically the geometry in a small !
& neighborhood around the breaks, and leads to additional plastic deformations in 0:.:':1_
:t the matrix. Nevertheless, finite element results for the elastic shear-lag :u‘l:u
&: model (REEDY, 1984) indicate that the shear-lag model predicts correctly the “,
d stress concentrations in the intact fibers. Even though it is an approximate .‘g
S model, the shear-lag model for the viscoelastic case unravels the trend in the Y
E time dependence of the stress fields near broken fibers. Note that since the o
oy fibers are much stiffer than the matrix (2100), the region in which the W
' stresses are perturbed due to fiber breaks is 50 or more fiber diameters, while ::N::
t the shear-lag analysis fails to predict correctly the shear stresses in a small ‘.'::ﬁ
:" region of one or two fiber diameters away from the breaks. n::guff
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ELEMENT LEVEL ELIMINATION OF NONLINEAR CONSTRAINTS

IN TOTAL LAGRANGIAN FINITE ELEMENT FORMULATIONS

A. R. Johnson and.C. J. Quigley
Mechanics and Structures Division
U.S. Army Materials Technology Laboratory

Watertown, MA 02172-0001 USA

SUMMARY

Nonlinear constraints in elastic finite deformation theory can be enforced by
an iterative element level variable elimination method which takes advantage
of the finite element discretization. A Lagrangian potential energy method is
used and load steps are taken small enough so that the potential energy is
nearly quadratic when expanded as a function of displacement increments. The
Newton - Raphson method is used to find minimal locations. Element gradient
and tangent matricies are computed and modified to be consistent with an
incremental representation of the nonlinear constraint. This iterative
variable elimination method is used to determine the solutions to the bending
of an elastica around an ellipse for aspect ratios of 0.75, 1.00 and 1.50.
Two exterior methods are also used to solve these problems for comparison.
The Lagrange multiplier method (ABAQUS code) and a penalty method are used.
The results obtained using the element level elimination method are compared
to the results obtained using ABAQUS and the penalty method.
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INTRODUCTION

Many problems in solid and fluid mechanics involve finding either a minimum
or stationary value of an energy functional such that an additional
constraint equation remains valid. Frictionless contact problems which
involve large elastic deformations and curved rigid contact surfaces are
considered here. Applications include contact between long thin metal or
paper items being passed through channels and rigid smooth surfaced indentors
penetrating rubberlike solids. When these problems are formulated using the
finite element method the enforcement of the constraint equations
(description of the contact surface) is usually the cause of difficulties.
The minimization problem is often modified by attaching the constraint
equations using either the Lagrange multiplier technique or a penalty method.
When the minimization problem is quadratic in the displacement variables and
the constraint equations are linear, elimination methods are often used. This
suggests that when the nonlinear minimization problem can be made nearly
quadratic an elimination method may be possible. An appropriate
representation of the nonlinear constraints is necessary which will allow
variables to be eliminated from the minimization problem and approximately
incorporate the constraint. We briefly describe the nonlinear minimization
problem associated with the large deformations of a cantilever beam, the
'elastica'. The minimization problem is then modified by attaching the
constraint that the elastica bend around a rigid frictionless elliptical
surface. General methods for solving this constrained minimization problenm
are reviewed to provide background and to provide methods to compare to the
element level elimination method proposed here.

Finite element formulations for large deformations of beams exist in
several forms[1-5]. We selected Fried's[3] formulation since it is presented
as a nonlinear minimization problem in terms of configuration variables.
Contact surfaces can be described in terms of these variables. Also, the
nonlinear 'B23' element in the ABAQUS[5] code can model the same problem
allowing for independent comparisons. Analytical solutions are not available.
The nonlinear programming problem which we are concerned with can be
presented as follows:

Minimize: f({u}) ; {u} ¢ RN (1)

Such that: gj({u}) 20 j=1,...,J

vhere {u} = the global set of nodal variables,
f({u}) = a nonquadratic potential energy function,

and g.({u}) = a differentiable function describing the j'th contact
3 surface.
Frictionless nonlinear contact problems can be represented by equation (1). A
large amount of information is available on methods for treating these
problems. We present a brief summary of several methods used so that they can
be compared to the iterative element level elimination method.

Lagrange multipliers are used to attach the constraint equation to the
function being minimized[5-13]. Although this method is not attractive from a
theoretical point of view, since it introduces possible saddle points, it has
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j\::» found widespread wuse because the Lagrange multipliers represent contact %j}j
O pressures. This method solves the nonlinear programming problem described by .
R g L
N equation (1) by formulating it as follows. U
[ ]
ot J OO
’3"( N+J l'!it
iy Stationary points: f({u}) + Ajgj : {u,A}C R (2) e
.;t. t“ i
e = L
= o
i "6
¥
B vhere A " j'th Lagrange multiplier. :::"
¥
.'Q "“
f::: There are many methods used to construct representations like equations (2) ‘:::‘
n:;: and to solve them. The paper by Simo, Wriggers and Taylor{[1l] describes the n:'n
e Lagrange multiplier method in detail and introduces a perturbed form which is 0
. a mixed penalty / Lagrange multiplier method. 3
:g‘;. The penalty method[6,14-18]) also attaches the constraint equations to o,
he. the function being minimized. In doing so, it maintains a minimization ',!:-'
‘,", problem. No variables are added to the analysis set but the large penalty .::'
;.f: . parameters needed can cause ill - conditioning of the modified function's :o:'.
H tangent matrix. The problem given by equation (1) is solved using the penalty 't
e method as follows. 3
.:,‘c, <
w
M J W
)I‘ 2 N 'Q'
M Minimize: £'({u}) = £({u}) + E Y; 8] ; {u}eR (3) .:::
(1Y
k() j'1 __‘i
::: ;-;' o
l.’ . '!
:::: vhere Y j = j'th large constant which may depend on the tangent :.6"
:‘:" matrix of f({u}). (See references 17,18). i
et Q‘_l'
o Nonlinear programming problems can sometimes be made to look like a %
:',:; quadratic programming problem if sucessive trial vectors {u} are sufficiently oy
‘;:.i close(19,20). If, in addition, the constraint equations can be linearized, o
W then the revised simplex method method for quadratic programming can be used :\f.
:“::‘ in an iterative scheme to solve equation (1)[19-21]. In this case the problem N
N is formulated as follows. o0
e
K 0
N . ' 1 T T ol
e —> Minimize: f£'({u}) = == {u} [K_J{u} - {P_} {u} b
,: ! 2 o (o] (A) Ry
L i
s Such that: [Al{x} - {b} 2 0 o
X
Q"l A
Set: {u } = {u) '
W ° &y
) f:
l..q‘ Y
. ‘—— Repeat until contact set, {x}, does not change,
s 2
ahy P
3
W 1
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st o
i o
]
3 £2 o
5 ]
i vhere [K] = 3 , Ve
a{u}
R Of
.:‘:: {uo} :.::"
"'l T - T Q.‘.
i (B} = {u}[K ], i
e [A]J{x} - {b} = the linearization of equations By in (1) o
" {x} &€ {u} is a trial set of variables in the contact set, ;3
: [ 5y N
E:”. {u} = a trial vector near {uo}, «::
)
:3" and {u_} = a vector which minimizes f({u}) but does not satisfy 't:f‘
2:- the constraints. '..::
(N : b
This method can be useful when the functions {f,g,} can each be expanded in a y
‘ Taylor series and when small changes in the constéaint set are expected. Uy
) A less often used method of enforcing constraints during minimization is :',!.:
3 to solve the J constraint equations for the relations for J variables (in .Q:‘
B terms of the remaining N-J variables). The relations are then substituted :'.h“
2o into the function being minimized. That is, they are eliminated[6]. This .0:3
yields an unconstrained minimization problem. The method is given as follows. by |
I“‘
e o
n:' Solve equations gj({u}) =0 j=1,...J ::.:
b and get =F ({v}) j=1,...3 (5) t
& N-J 3 3 NN
where {v)€ R T
-1 Substitute (5) into (1) to obtain the unconstrained minimization %
problem. N-J bt
¢ Minimize: £({v}) ; {(v}C R (6) o
Lre A
We have intentionally presented elementary descriptions of the above \ ’:
’ methods so that the relationship between these methods and the element level :i
':;, elimination proposed here can be easily identified. ..‘::
1t t
n ELEMENT LEVEL ELIMINATION METHOD X
W o
N The elimination method (eqns 5,6) is typically not used when the Y,
constraints are nonlinear since it is difficult to determine the functions Y
e F.({v}) given by equation (5). Also, when the minimization problem involves X
:" many variables, as in a finite element problem, it is difficult to automate a :h‘
N nonlinear elimination method. The method we propose here avoids the n:::
::‘, difficulties associated with determining equation (5) by working with the o
: derivatives of the constraint equations. We return to solving equation (1) y
with {u} equal to the vector of element nodal variables. Expanding (1) in a ’5
N Taylor series we have: nhy
) W,

f({u}) = f({uo) + {4u})

= £+ (g 170w + 3 (2K 1(ou) + ... (7) s
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where {u} = a vector "near" {uo} which is closer to the minimum,
{uo}- the current location

{ou} = {u} - {uo}

ah of
” 8} = 3w
‘::: : {uo}
:,!','
.t:" 325
O [K ] =
i (<) 2
) 3{u}
t:: {Uo}
fi’v
e Since f is derived from an energy principle and has been discretized by the
::'n finite element method, we can express equation (7) as
N
,
“ T 1 T
- f({u}) = Z ((feo + {8} {ou } + 5 {au }[K _Hau} + ... ) (8)
o e
0
Wy
:"'o Assuming the constraint equations in (1) are differentiable we have
?
dg. =0 (9)
b J
)
' For simplicity we assume one constraint equation (i.e. J=1)
g Then, we can write (9) as
o
¥ 2 ag
. — dx, =0 (10)
:". axl i
o
3 where {x} < {u}
"o

For small displacement increments

:1: 3
v B
W —_ -
Ay 2 3, ox 0 (11)
K
9 Solving (11) for a displacement increment Axi in the set {x} we have
!

P

) 1 ag
i Axl = - a—g—- 2 E Axi (12)

Front iz

ut 2
1
3
o
.:t:
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This suggests that we can eliminate Ax in favor of g({x}) equal to zero at
the element level. That is,

{Au )} = lAe]{Auer} (13)
for an element
where (a,) = [Ae({ue})]

{uet} = (Aue} - {sz}

Thus, [Ae] represents a constraint matrix which depends on the displacements
and {Au_"} the reduced set of element variables. Substituting (13) into (8)
we have

3 T
£ ) = ) (5, + (o 1T Mau, ) +
L

T T
+ (o TR IR M tau ) + )

In equation (14) we identify the reduced element gradient and tangent
matrices as

(g} = [A]{s o}
and (x_) = [A1TIK__1[A,]

(15)

Global gradient and tangent matrices can now be assembled in the standard way
for the '"reduced incremental variable set". The Newton - Raphson method is
then used to find {u}. The £, norm of the reduced gradient is checked at the
new location. If not zero %:hen {u} is set to {u_} and the process is
repeated. It should be noted that the x, associated With the eliminated Ax
must be updated by solving a one dimensional nonlinear equation obtained from
the constraint equation at each iteration.

A rule must be made for determining when a variable which is a member of
the constrained set must be released. That is, when should a point in the
contact set be released? We can write

of of af T
Af= 5;; Au, + 5;; .o+ Bu_ Au_ = [g] {Au} (16)

where u, < {u}

which simply states that {g} contains information on how f({u}) changes with
respect to {u}. If we consider changes in one variable at a time we obtain

of

- >0 —— > negative Au, decreases f
aui i

> positive A\.|i decreases f
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. The rule can then be stated as: 2:::
P LR
" RELEASE RULE: 4 .
e Find the direction to decrease the energy. Assume it is Au, . na
e Then, if u, + Au, does not satisfy the constraint equation, keep ﬂh
" u, in the éonstr*ined set. Otherwise, release it. -ﬁ:
vz; ";.i
A:‘! W
_ In the case of two dimensional contact with physical variables x and y at the .j!
" nodes and corresponding unit vectors I, j the release rule can be simplified 0
o as follows, see Figure 1. £§
H Ty
L0 > of af Ny
) Let = = [ + =— fyhac
X Bxyy; o 3y J ot
=
DI = gradient terms for node i ij
W (18) W
N v
3} n = unit normal to contact surface :g%
Al N |..
3
- -
1o and a =g . n o)
by *1s
Y )
» 3
@ R
o Then, the release rule for two - dimensional contact, with (x,y) nodal fﬁi
- variables, becomes: o
h.
L O)
RELEASE RULE FOR TWO - DIMENSIONAL CONTACT ﬁﬁ
‘C.’
» ¢
a? If a > 0 Keep in constraint set. gﬁ
! If a < 0 Release from constraint set. ";
fg We note that_a equals the component of generalized force outward from the w:
%h surface and B,y equals the contact force. W)
X ’ A
&' ELASTICA BENDING AROUND AN ELLIPSE %:
We selected the problem of an elastica bending around an ellipse, as v
- shown in Figure 2, to demonstrate the element level elimination algorithm. X:‘
) The aspect ratio, a, is varied to obtain different contact problems. If "a" ~
A is large then the contact region changes rapidly with a small change in load, ISt
ﬁi P. When "a" is small a large load is needed for initial contact and the o
b contact region changes more slowly with increasing load P. Contact solutions e
- were obtained for aspect ratios of 0.75, 1.00 and 1.50. Here, we present some 5
N details on how the solutions were obtained. First we show the ABAQUS solution ?Q
X (Lagrange multiplier method), second a penalty method and third the element :ﬂ\
>l level elimination algorithm. R
For all solution methods, the elastica was of length w. One end of the |::‘
K elastica was fixed at the origin and a vertical load P was applied to the o

other end. For each aspect ratio of the ellipse, the load history used is
summmarized in Table 1. Young's modulus was one and Poisson's ratio was zero.
To approximate an inextensible elastica, a ratio of the cross sectional area

"g‘- -
-

CJ

(3>
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N 1,

¢ to the moment of inertia equal to 10° vas selected[19,20]. The elastica was ..:'2

‘f»j; discretized into forty elements. Two noded beam elements with cubic ':‘
o interpolation functions were chosen to model the elastica. For the element 1::'
’ level elimination method and the penalty method a beam element developed by '

o Fried(8) was used. Each node has four degrees of freedom, see Figure 3. In -
::: this element the axial strain is based on the definition of engineering u::
% strain. For the Lagrangian multiplier method a beam element ('B23' element) e
;*:: with three degrees of freedom per node was selected in ABAQUS. A Lagrangian ::2:
#0 axial strain is used in this element formulation. ¥
I Lagrange Multiplier Method ';3
L 4
t To solve the problem of an elastica bending around an ellipse using the '.;::
::# Lagrange multiplier method, the finite element code ABAQUS was used. A two ::'.
(X noded planar interface element ('IRS21' element) was chosen to detect contact ¢'§
between the beam element and the rigid surface or ellipse. This contact N

. element enforces a linear pressure distribution between nodes and has ‘j
g:_’ integration points at the nodes. The material properties cited above were :Q
»:.; input using the 'general beam section' option. Tolerances were set at 0.47 of :,:._
:|:l the applied load and at one percent of the moment. Smaller tolerances did not W,
o change the ABAQUS finite element solution. The ellipse was defined by the ':',0
Bl user subroutine RSURFU. At each integration point of the planar interface b
ot element, the penetration distance into the ellipse is calculated. To do this .3
:0,‘ the coordinates of the point on the ellipse closest to the integration point :t"
:;:; must be found. The direction cosines of the tangent and the rate of change of \:::
,'.: the tangent along the surface at this point on the ellipse are also e,
:::- determined. .'::=
o To find the point on the ellipse closest to a given point along the 7%
' elastica, the Newton - Raphson method was used. Given the equation for a <ot
[ point (x,y) on the ellipse, we need to minimize the distance between the ]
::.:a point (x,y) and the integration point(x ,y ) along the elastica. This can be ]
.9:: done using the same elimination method we use to define surface contact. We :::'.
::;. proceed as follows. :gof
N Minimize: I = (x - xo)2 + (y - yo)2 (distance) (19) 1:,
:'-' 2 2 hely!
4o Given: f(x) = -LZ_ +(y+1)" =1 (constraint equation) (20) s::
::i. a8 =
;:i' Reduce the variables (x,y) to x using the constraint equation. 1.:
|'l, .
% by = ——— x (21) R
o a®(1 +y) “
_'" A
B From Ax 1 {ax} )
/i - . (22) 23
s 8y -5 %
; } a“(y +1) ':
5 That is, we have {4u} = [A]J{Au } in (22). o
,'a. v \
."' . ':
v"' 0‘3‘
“o' ’\
X 18 b6l
0 i
0 SALATAT ATy NG ":'\ w“' VMARSAR O NGO AN R A LR A0 A L At VI AL AT f"‘-ﬂ:"f"
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i ]
;‘;o ‘J'
k]
i‘E Using equation (19), the gradient and tangent stiffness matrices are derived. A
N (]
o - ™
7;:: 2(x - x) :::‘.;
2 20y -y ) ;5-3;
i. 2.
(23) 9
7 ".‘
N 2 0 ‘,o,:
o (K] = h ".‘c
R 0o 2 '3{
3:": a::f'
Next we solve for the reduced gradient and tangent stiffness matrices. a
o T ':::
W {g_} = [A]"{g} o
W r i
,.l" l..‘f
i 2x(y - y,) ¥
Y [¢] MM
L = Z(X - X ) + .‘
o 2
XY a“(y + 1) .:‘:é
M) 4 ‘|t
by (K] = [AIT(KI[A] (24) ti
(A T 'Q‘Q(
-:“ 2 .;'i‘i
“.‘. zx ‘\|!
" =2+ = i
a(y+1) : ,
" o
P "
f'.': Applying the Newton - Raphson method to solve (24) using an initial guess for ::.
a.,.:. (xl’yl) yields .:::
E M) . _1 ‘:_:
3 {x} = {x;} - [K (x;)]7"{g(x,)} ‘ji‘i:
AN _ - X
2 or, here x,(y, - y.) By
] 171 [+] W
o (x - xo) + 2 - Y
X « = x. - a’(y + 1) !
2 1 2 ,
X xl A,
¥ l + T — [
W 4 2 AN
o a( +1 Y
2 : nEYn 2
- N
,’ . e
3 To update the y coordinate, we use the constraint equation. That is,
U
: N
e x
2 , 11/2
% .V\
] Xy ol
ot yp=-l+ |1 - — (26) o)
it a -
. R
jo' This process is repeated until the reduced gradient approaches zero. [,'_
l“ (S,
L ' ¥,
R
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e e
A‘.‘
¢ 2
&
; \$
e "
For an initial guess the principle of similar triangles was used, refer to ~
Figure 4.
o
[ ]
i g xo 0‘.;'
ek xl | o—— )
R o
B (27) N
iy 0 .l
"y x 1/2 J
. - 1-11- —; e
e a P_V
A A
WY o
i:.: - -\"F
,::‘: where R = the length of the segment OX at
' 2
oy Once the point (x,y) on the ellipse closest to the integration point on the X
« elastica is located the direction cosines of the unit tangent t at this point "::c{
K .' are: :..'::i
. 2 : . ot
; i= a“(y+1)i-x3j (28) t
4
. (a (y + 1)2 + x° ) 1/2 \
3
) ¥
b The rate of change of the tangent along the ellipse can be expressed in terms .L
Kn of the curvature x and the normal to the ellipse at the point (x,y). "
f‘q‘_ x_.’
. t - oot
A 9t . (29) N
¥ ds o
» .. "
b )
W )
:"“ Hhete 2 3 / 2 e 1 !.I !
' 2 3 b3
" K = - a“(y +1) 1+ % 3 ] vig
0 a(y+1) ¥
e o
iy - x i+ a“(y+1)]j !
v n= % 2 . .2) 1/2 .
j ( a(y+1)+ x) B
::\'*
X iy
he Penalty Method o
‘ £
] A
R To obtain a penalty solution we selected a penalty term which would add ">
y the square of the minimum distance to the contact distance to the potential
- energy. This is one of many possible variations of equation (3). The "
M constraint equation (20) enters indirectly when the location of the minimal ‘:j}*
‘:::. distance point on the surface is determined. Thus we satisfy the constraint \._
" in a least squares sense by minimizing the distance between the node (xn,yn) A&
W and the ellipse. That is, minimize Oy
; %
& kR
Y oy
2 '
0y o
s “\ v
K 120 "
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o
o ' e _ 2 _ 2
:e. ne IIe + z an ((xn xe) + (yn ye) )
?.’.
:::, where an = cnknnlop = the n'th penalty parameter
1, b
4 3
::; p = a variable for convergence studies ":':'.e
by fat
o L if one or no adjacent nodes have violated the Dy
:“ constraint equation ::
3 i
] = (03
:::n ‘n |':::
) :
g 1 if both adjacent nodes have violated the constraint K]
equation arry
¥ v
AN ::2*
= the diagonal term from the tangent stiffness matrix :.’
\ nn s . y
. associated with the X, displacement 0
%, : ()
L (xe.ye) = the point on the ellipse closest to the node (xn,yn) on 3
i the elastica. This point is found using the solution A
S method described in the previous section. :-.?
~ i
<.
o The computation of the element gradient and tangent stiffness matrices are ":‘,(
shown below. e
.
| 1 A
o (g ') = il:l_e__ E:-%
i e a{ue} I
i :'
&' =
om ! on ' F-
I ={g )+ e + e (31) K
i e ax ay ‘.
1, n n Pt
L N
i N
. N
e o’ A
where e 2(xn - xo) (in row for xn)
W A
p‘} ':N_
kw)‘ an ! :.:..
N e . - .
:-a By, 2(yn yo) (in row for yn) o
i :':,s.
v Similarly, -
o alp " s,
B e r
) ., [k L ] = L-\
" e a{ue}z i
w
i
)
@

e ]2]
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form of equa;ion (30). To study convergence, the analysis was completed with
values of 10° equal to 10E-5, 10E-2, and 10E-1.

o ! ol !
' =
[ke ] [ke] + 7 + 7 (32)
ax ay
n n
where '
azne' azne' 7
7 = 5 =2 (in both (xn,xn) and (yn.yn) locations)
ax 3y
n n ,
The global gradient and tangent stiffness matrices are then assembled in the
usual manner. The Newton - Raphson method is applied to minimize the global 3
‘.'

Element Level Elimination

For this method, we need to define the matrix [A_ ] from equation (13).
From the constraint equation (20) we can compute Ay in terms of Ax.

X

= Ax = F(x) Ax (33)
a“(y+l)

Ay = -

Thus, when a node on the elastica is in the contact set we can compute the
element energy gradient and tangent matrices for which the relation (33)
holds by using equation (15). After assembly, the number of variables in the
global gradient and tangent matrices will be reduced by the number of nodes
in the contact set.

When the node in contact is the first node along the element, [Ae]

becomes:
[ 1 0 0 0 0 0 0
0 1 0 0 0 0 0

o F(x) O 0 0 0 0 0
N
A [A ] = 0 0 1 0 0 0 0 (34)
o e
;,s
; 0 0 0 1 0 0 0
=
- 0 0 0 0 1 0 0
-
5 0 0 0 0 0 1 0
:’:
E | o 0 0 0 0 0 1
<
3
} 122 ,5'

j "\“u ‘I“‘. \* t‘,’%
P e A -
N e e S N



L O T NI FUN SR SRS AN TG TR T WA T W] WU W T WUV WU T W WU W I W W ™ ‘e aid atd a'f &' ba'ha’ [ e LB e o8 & 0o Sal ek B wal Ooh .ob tal b

v,
;:‘! e
’:'! I".'i
Y 1.
h where {Au } = { xl xl ¥, X 2 x, y2 yz} o
o When the second node of the element is in contact the new [A ] can be readily o
s seen from equation (34). When both nodes of the element violfte the o
nid constraint, [A ] reduces to: s
i er :,:
$ t
". ...
e ! o o o o o0 1 ’;
o 0 My
I 1 0 0 0 0 ‘.::u
RS IR
o F(x) O 0 0 0 0 0
8
?, {
K& wl=[ o o 1 o 0o o0 (35) ﬁ
it 0 0 0 1 0 0 Y
2 e
X o o o 0 1 0 e
o
ik 0 0 0 0 F(x) 0 0
A 3
x; [ o o o 0o 0o 1 | o
"6 T . . . . "‘:Q
o and {ug )" = {x) x; ¥) %, X, ¥p) o
i ‘l‘“
&) The reduced element gradient and tangent matrices can then be computed using ‘_":‘
. equation (15). 3
D "‘i
5 ()
i RESULTS 9
% X}
o) "
.' To demonstrate the use of the element level elimination method, the problem tﬁ:
w48 of an elastica bending around a frictionless rigid surface in the form of an ‘ﬁ:{
] ellipse was solved. For comparison, this contact problem was also solved &
n:: using the Lagrange multiplier (ABAQUS) and penalty methods. Similar results :ll,,
~:;. were obtained for all methods. The displacements both in the contact region ::‘.az
:‘ and at the tip were in good agreement. oﬂ;
" A comparison of the deformed configuration of the elastica bending ‘t::;
B around a circle (a=1.00, Figure 2), at a load of 0.55, shows close agreement 'i
- between the element level elimination and Lagrange multiplier methods, see .
.:n: Table 2. The deformed configurations at loads of 0.60, 1.00, and 1.25 are X
‘:::c shown in Figure 5. The elastica first made contact with the circle at a load :n::
By of 0.55. The contact solutions do have some differences. The ABAQUS solution ity
D and penalty solution show regional contact while the element 1level ,',vt
0 elimination method shows point contact. When two nodes lie along the circle, wth
» the elastica is in contact with the circle at some point between those nodes. -
W Thus, a solution with two nodes in contact implies point contact with the ‘::.:
,3 rigid surface. The location of the contact surface on the circle vs load is l:g:
shown in Figure 6. The final node in contact at a given load is the same, ‘.:af
;’ refer to Table 3. The regional solution obtained by ABAQUS and the penalty ‘o:.:\
o method at a given load was also an iterative solution obtained by the element ish
level elimination method. By considering energy minimization and using the l
.'.' Release Rule for Two - Dimensional Contact, the additional contact points .‘:'1
e found by the other methods were released. These released points lie close to ":‘..
':‘, the circle; the maximum distance between a node and the circle was 10E-5. The ‘c:n’,
K W,
e o
b .
“ 123 o
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ey ABAQUS pressure forces for these additional nodes in contact were an order of :.c::
) magnitude lower than the largest pressure force. O
i For aspect ratios of 0.75 and 1.50, the contact solution was identical 't
' for all methods. (Refer to Tables 4 and 5.) The elastica makes initial
o contact with the ellipse at a load of 1.70 and has regional contact when the N
fj»: aspect ratio is 0.75. For an aspect ratio of 1.50, initial contact occurs at c‘..:.
" a load of 0.17 and point contact results. Deformed configurations of the ::‘z";
itf elastica at various loads for the aspect ratios of 0.75 and 1.50 are shown in : 1'::‘
i Figure 8. A summary of the results for the element level elimination contact ::"‘
' solution is found in Figure 9. w‘
. Tables 3 through 5 also demonstrate the influence of the penalty X}
‘.‘e:: parameter on the contact solution. When the penalty parameter equals 10E-5, :',.:
’g:: the optimal solution is not obtained. The distance between the nodes in :.%{
£ contact and the ellipse is 10E-2. When the penalty term is increased, the :,:a:
':' contact set becomes smaller and the distance bewteen the nodes in contact and o
the ellipse is 10E-5. At higher values, though, problems with convergence and g
e "chattering", and oscillation between two different contact solutions was o
::: observed. ‘.::v
L.
R SUMMARY i
" o
: An element level elimination algorithm for the analysis of frictionless 'j;‘
¥ geometrically nonlinear constraint problems was presented. This algorithm is e
o easy to implement within a finite element code. The release of a nodal i
:‘t variable from the constraint set is based on energy minimization principles. l::',«’
N I11 - conditioning of the tangent stiffness matrix is avoided. To demonstrate :0:::
3' this algorithm, the problem of an inextensible elastica bending around an . -f};.f
ellipse was solved. For comparison, solutions to this problem were also B
. obtained using a penalty method and the Lagrange multiplier (ABAQUS) method. (0
e :c:!:
X .l'.:t
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:::: Table 1 Load History for Each Ellipse Aspect Ratio ‘}

P ey
::' c,".:'
W, Load Number Aspect Ratio of Ellipse n::

. 0.75 1.00 1.50

Y s,

; 1 0.05 0.05 0.05 o

& 2 0.10 0.10 0.10 .
. 3 0.15 0.15 0.15 )
s 0.16 X
) . . . 0.17 ®
N . 1.65 0.50 0.18 o

# . 1.70 0.55 . M

i 1.75 0.60 . we
3 AN

A ] . . D
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X
;?;: Table 2 Deformed Configuration of the Elastica Bending Around a Circle
e at a Load of 0.55 ( a = 1.00, Figure 2.)
~!'
‘o Node Degree of Element Level ABAQUS
e Freedom Elimination Solution
¥
o Solution
iy 1 X 0.00 0.00
R Y 0.00 0.00
Y © 0.00 0.00
W 2 X 7.84601E-2 7.84585E-2
h} (contact) Y -3.0827E-2 -3.0826E-2
" 5} -7.8116E-2 -7.8113E-2
0 3 X 0.15645 0.15645
o Y -1.2168E-2 -1.2168E-2
§$0 e -0.1533 -0.1533
ol 4 X 0.23357 0.23357
] Y -2.6955E-2 -2.6955E-2
5] -0.2251 -0.2251
% . . .
|‘l .
N .
=. L]
s . . .
41 X 1.8571 1.8576
o Y -2.287 -2.287
': ‘ e -1.247 -1.247
R
v
i
2
2
vy
Lo
»;'.
e
i
s
o
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7 7
_vf. Table 3. Nodes in Contact vs Load for Circular Contact lq:'
o Surface ( a = 1.00, Figure 2.) .ns
"y l.:l
;': Load Elememt Level Lagrange Multiplier Penalty Method** iy
W Elimination Method 3
W Method** N
i g
s Iteration Nodes Iteration Nodes Penalty Nodes e
Parameter i

': :l:;:«
" 10P% l':o
0 ‘|l
,::’
o, : W
: 0.55 1 : 1 2 10E-5 2 DX
" 2 2 10E-2 2 §
::E 10E-1 2 :0:5:
t i
" 0.60 1 2 1 10E-5 2-5 u
;:;. 2 2,3 2 10E-2 2,3 ::;.:
0 3 2,3 10E-1 2,3 Aty
R, 3
) 0.65 1 2,3 1 10E-5 2-7 W
o 2 2-4 2 10E-2 2-4 3
" 3 3,4 3 10E-1 2-4 oy
RX 4 3,4 s ":
nh _‘2(
, 0.70 1 3,4 1 10E-5 2-8 K |
- 2 3-5 2 4,5 10E-2 3,4 N
3 2-5 10E-1 4,5 ¢
AN 4 2,4,5 o &
¢

e 5 4,5 5

0.75 1 4,5 1 2-5 10E-5 2-9

> 10E-2 kA N
N 10E-1 2,4,5 :‘
ﬁ? 0.80 1 4,5 1 10E-5 2-10 )
! 2 4,5,7 2 10E-2 2,4,5 i
~ 3 3-5,7 3 10E-1 2,5,6

K 4 3-7 4 20
N 5 3-6 5 2,5,6 )

6 3,5,6 &\
W 7 2,3,5,6 RN
e 8 2,5,6 A
9 5,6 ®
’ -
s 3
Y * The entire penalty term is c k 10p. see eqn (30). \
K *%* The norm of the gradient vag 18ss than or equal to 10E-8, 9
W *%% Convergence of the Newton - Raphson soltuion was not obtained after 20 Ry
- iterations. '
My N
:',t ".q
c:: ".'
."c' l‘.
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i !
5 Table 4. Nodes in Contact vs Load for Elliptical Contact :fﬁ
KX Surface ( a = 0.75, Figure 2.) e
“ . s\
»
b Load Elememt Level Lagrange Multiplier Penalty Method** !
¢ Elimination Method e
-: Method** |:;:|'
W o .D|'.!
R Iteration| Nodes |Iteration Nodes Penalty Nodes bﬁ
» Parameter .
bt .J |§
0 10P% . ﬁ:
vy N
K 1.70 1 2 1 2 10E-5 2 !
v 10E-2 2 A
“ 10E-1 2
NN e
A )
A 1.75 1 2 1 2 10E-5 2,3 i
e 10E-2 2 ue
K 10E-1 2 W
o %
) 1.80 1 2 1 2 10E-5 2-4 s
g 10E-2 2,3 o
b 10E-1 2 e
K V a.:t
v |Qu‘
W 1.85 1 2 1 2,3 10E-5 2-5 TN
a 2 2,3 10E-2 2,3 W
10E-1 2,3 3
{ o
ul 1.90 1 2,3 1 2,3 10E-5 2-6 e
o 10E-2 2,3 3
) - g
?a 10E-1 2,3 \5§
- 1.95 1 2,3 1 2,3 10E-5 2-6 &
) 10E-2 2,3 "
s 10E-1 2,3 “x3]
3 i’ '
Y 2.00 1 2,3 1 2,3 10E-5 2-7 o
¥ 10E-2 2-4 ;
10E-1 2-4
: o
! ?::
W 2.05 1 2,3 1 10E-5 2-8 &
N 2 2-4 2 2-4 10E-2 2-4 N
N~ 10E-1 2-4 oy
>, Yo
bx 2.10 1 2-4 1 2-4 10E-5 2-9 -
10E-2 Tk by
N 10E-1 2-4 E*
f: . G
‘, .

* The entire penalty term is c_k

10P, see eqn (30).

*%* The norm of the gradient waS 18ss than or equal to 10E-8.

_b *%% Convergence of the Newton - Raphson soltuion was not obtained after 20 !
‘NS iterations. 2N
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Table 5. Nodes in Contact vs Load for Elliptical Contact qq
Surface ( a = 1.50, Figure 2.) :Q
h,
o Load Elememt Level Lagrange Multiplier Penalty Method** e
.5‘ Elimination Method e
) Method** ]
0y X
N )
> Iteration Nodes Iteration Nodes Penalty Nodes H
Parameter v
..\ .
;:' lop* s :
¥ o
f‘. 4 f
et 0.17 1 5 1 10E-5 2-5 )
e 2 2,5 2 10E-2 2,3 s
3 2,3,5 3 10E-1 2,3 2
w6 4 2-5 4 Ny
! 5 2-4 5 2,3 0
{l.' t:";
i 0.18 1 2,3 1 10E-5 2-7 X8
2 2-5 2 10E-2 3,4 ‘
{ 3 2-4 3 10E-1 3,4 qg
N 4 3,4 4 3,4 s
N "
G 0.19 1 3,4 1 10E-5 2-8 o
N 2 3-5 2 10E-2 4,5 o
s 3 4,5 3 10E-1 4,5 -
A :. 4 4,5 W1
) A
DY 0.20 1 4,5 1 10E-5 2-9 o
Ny 2 4-6 2 10E-2 5,6 N
o 3 5,6 5,6 10E-1 5,6 W,
k]
e 0.21 1 5,6 1 10E-5 2-10 "
. 2 6 2 6,7 10E-2 6,7 .:::
oy 3 6,7 10E-1 6,7 4
;:“ l:
w 0.22 1 6,7 1 6,7 10E-5 2-11 b
j 10E-2 6,7 Y
7 10E-1 6,7 e
pls -4
X 0.23 1 6,7 | 10E-5 2-11 N,
o 2 7 2 7,8 10E-2 7,8 Y
Ny 3 7,9 10E-1 ki ~2
" 4 7-9
ﬁd 5 7,8 ?.
o
X * The entire penalty term is cnk nlop. see eqn (30). J:
™ ** The norm of the gradient was P8ss than or equal to 10E-8. e

**% Convergence of the Newton - Raphson soltuion was not obtained after 20
) iterations.
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Abstract. Penetration of a sharp object causes large concentrated deformations in an
elastomer solid. The nonlinear nearly incompressible elastic stress analysis of the solid
is done with quadratic triangular elements and displacements referring to an immovable
grid. A lower order triangular mesh for a linear thermal analysis is conveniently layed with
vertices at the displaced nodes. This gives rise to highly irregular grids of slender elements
near the point of maximum penetration. The condition of the global thermal (stiffness)
matrix is estimated in terms of the element geometry. It is concluded that no significant
decline in the condition of the matrix takes place inspite of the high deformation.

Introduction. To set up the finite element stiffness and mass matrices for plane thermal
analysis we need to evaluate

I = /A(ui +uj)dzdy and I = /A u*dzdy (1)

over the typical triangular element A, for a linearly assumed temperature distribution u.
Consider A with three sides /},l;,l3 and area A. If ul = (uy,u2,u3) is the nodal unknowns
vector for A, then I; and I, becomes the quadratic form I; = ul k. u,, with

2 -1 -1 -1 1 1 -1

k, = 8:(12 1 +2k1 2 -1 +d: -1) 2)
-1 1 1 -1 -1 -1 2
and I, = ul m_u,, with
A2 11
1 1 2

The matrices k, and m, are said to be the element stiffness and mass matrices, respectively.

Assembly of k, and m, over all Ne finite elements in the grid produces the correspond-
ing global matrices K and M in the manner

u Ku= Zu?k,u, , WIMu= Z ul m,u, (4)
e e

where u is the global vector of nodal unknowns, and where e indicates summation over all
triangles.

With minimization undertaken under the constraints of the boundary conditions our
thermal problem is such that

. uTKu
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