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1. SUMMARY AND INTRODUCTION

1.1. Summary -s

An optimum-path-to-go (OPTG) guidance capability has been designed

in preliminary form and investigated to demonstrate its feasibility for

command adjusted trajectory (CAT) projectiles. The principal design tools

used are the calculus of variations and an advanced algorithm for synthesis of

polynomial networks from simulation data. Differential equations

governing optimum two-point boundary-value projectile guidance solutions

for maneuvering targets are derived via the calculus and initialized in real-

time calculations using an adaptively-synthesized polynomial network

(APN). Application of OPTG guidance to 120mm projectiles has been

simulated. In particular, comparisons have been made of the performance of

the OPTG guidance when it is blended with a predictive proportional

navigation (baseline) guidance law. In the blended law, pure OPTG guidance

is initialized at t = 0 and used until estimated time-to-go is less than or equal

to 1.0 sec. (No re-initialization of the OPTG guidance is used after t = 0.) The

baseline guidance is then employed after time-to-go becomes less than 1.0 sec.

until impact (or closest point of approach).

Block diagrams of the OPTG and baseline guidance laws are presented below

in Figures 1 and 2. Figure L.a illustrates an arrangement in which the means

for intercept point prediction are separate from those for computing the

initialization (and re-initialization) solutions, which is the case investigated

in the present study. Figure 1.b shows the means for intercept point

prediction combined with those for the initialization/re-initialization

computations, which is the configuration recommended for future

development. Figure 2 (in Section 5) presents a block diagram of the baseline

guidance law.

Simulations of the blended guidance law and pure OPTG guidance have

demonstrated the following performance benefits for target trajectories

having a small level of uncertainty concerning the target accelerations and

intercept coordinates:

3 '. " ,1
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1. The average closest-point-of-approach (CPA) is 2.0 times less for
the blended guidance law than for the baseline.

2. The area in the miss-distance plane reachable with a CPA less

than 6 ft. is 3.5 times greater for the blended guidance law than

for the baseline.

3. For all values of required divert, the average improvement

ratio, defined as CPA for the baseline divided by CPA for the

blended guidance law, is greater than 1.0. For required divert
distances between 22 and 54 ft., the ratio is greater than 2.0 and
between 30 and 51 ft., the ratio is greater than 5.0.

4. For the pure OTG guidance, a given divert is achieved with 10

fewer squib firings on the average than are used with the
baseline guidance. When the blended guidance law is employed,
squib utilization is equal for the blended guidance law and the

baseline. (It is believed that re-initialization of the OPTG

guidance after t = 0 in the blended guidance law will produce
Zmost of the squib-usage reduction of pure OPTG guidance.)

1.2 Background

When using conventional guidance (such as the baseline guidance
law), a critical consideration is the establishment of the threshold used for the

squib fire/no-fire decisions. If this threshold is set too low, the system may
use an excessive number of squibs when the total divert required is small or

even negligible. To illustrate this point, a simulation of the baseline guidance
has been performed for a case in which no divert was required; that is, the

gun was perfectly aimed and purely ballistic motion of the projectile would

score an exact hit against a non-moving airborne target (such as a helicopter
in stationary hover). With the decision threshold of the baseline law set to

zero, the projectile used almost all of its 40 squibs. (It became, in effect, a self-

disturbing as well as self-correcting system, a system triggered by the slightest

noise.) Although the miss distance was nearly zero, the zero-level threshold

3



clearly produced a design that was profligate in its use of maneuver resources

- a design that could be quite readily defeated by target maneuvering.

On the other hand, if the decision threshold is set too high, the baseline

guidance fails to react as early in the engagement as may be necessary if a large

divert is required. As a further illustration, the threshold of the baseline

guidance was next set to a moderate positive level so as to reduce unnecessary

squib firings for the case just described by about 50 percent. Miss distance

remained small as long as little or no divert was required, but the design

exhibited increased miss distances when stressed; that is, required to approach

its maximum total divert capabilities. The conclusion: threshold selection

for conventional guidance is at best a compromise between conditions of

small and large required divert. It can be shown also that this threshold

selection is a compromise between conditions of small and large uncertainties

(in measurements of system states and predictions of target motions).

An important attribute of OPTG guidance is that the selection of its

decision threshold is independent of the amount of divert that will be
required. To demonstrate this, the OPTG guidance was simulated for the two

extreme cases mentioned above (no divert required and maximum divert
required). The threshold was kept at zero for the OPTG tests. When no 3:
divert was required, no squibs were fired. When maximum divert was

required, the OPTG guidance began squib firing at the earliest available
opportunity (as afforded by the cyclical variation of roll attitude), and kept
firing at each succeeding opportunity until the supply of squibs was

exhausted. Clearly, no strategy for guidance could have produced a greater

divert. Between the limits of zero and maximum divert, the OPTG guidance

used a number of squibs that was approximately in proportion to the required
divert. At no time was there any question regarding the choice of decision

threshold.

For the OPTG guidance system, the decision threshold can be set

entirely on the basis of the expected levels of noise and target maneuver -

uncertainty. If the threshold is placed above zero in consideration of these

expected levels, there will be some loss of maximum divert capability. But 4

the OPTG guidance is appropriately nonlinear, and small decision thresholds
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incorporated to de-sensitize it for realistic levels of noise and uncertainty
have an almost negligible influence on the maximum divert capability.
Conversely, the baseline guidance law is proportional in its action, and the
same threshold that adequately de-sensitizes both it and the OPTG guidance
to the effects of noise and target motion uncertainties can be crippling to the
divert capability of the baseline guidance.

1.3 Optimum-Path-To-Go-Guidance

Optimum-path-to-go guidance provides optimum, real-time, two-
point boundary-value guidance. It periodically computes a new best trajectory
from the actual position and velocity state of the weapon to a designated final
position. In application to CAT projectiles, the OPTG method offers two
particularly important benefits. First, by maneuvering throughout the
engagement to establish the designated final state, the magnitude of required
terminal acceleration is minimized, greatly reducing miss distance. Second,
the OPTG guidance realizes optimum performance between specified
boundary conditions and thus enlarges the achievable boundaries in
comparison with traditional guidance.

OPTG guidance uses polynomial networks, evolved from neural
networks beginning in the early 1960s [1-3, 5-8, 12, 16], to implement, via
algebraic inverse modeling, time-varying solutions for the weapon steering
commands as functions of initial, i.e., "time-now", and designated future
trajectory states. (In trajectory prediction, information about initial states and
the steering commands is used to compute a future state or states. In inverse
modeling, the boundary conditions are supplied and the commands that
satisfy those conditions are computed.) As do other neural networks, the
polynomial network learns from experience. However, the learning process
is completed off-line during the design phase. The network that is used in
the weapon thus has fixed parameters, and its behavior is fully known
(primarily from simulations but also from flight testing) before operational
usage occurs.

The calculus of variations is employed in design of the guidance law so
as to achieve optimality and the benefits of a compact representation of the

5



optimum trajectories. The procedure is first to derive the governing

variational equations, which comprise, chiefly, a family of first-order,

nonlinear, time-varying adjoint differential equations involving the

Lagrange multipliers of the formulation. The derivation is based upon an

integral performance criterion having a variable upper limit (final time) of

integration. Next, an extensive data base of optimum trajectories is

computed. Each entry in this data base consists of an initial condition (i.e., the

initial position and velocity states), a set of initializing Lagrange multiplier

values (which determine the specific optimal trajectory flown as the adjoint

equations are integrated), and the resulting final condition (final states). The

data base may be thought of as a field of extremals between large envelopes of

admissible initial and final condition pairs. The Algorithm for Synthesis of

Polynomial Networks (ASPN) is then used to create, off-line, a nonlinear

polynomial network transformation (called an adaptively-synthesized

polynomial network or APN) that maps observed initial and desired final

states into initializing multiplier values that produce an optimum path

between the prescribed states. Within the weapon, the APN may be

interrogated periodically to obtain optimum-path-to-go solutions, and the

adjoint equations are integrated to compute steering commands until the

next re-initialization is performed.

Potential further uses of polynomial networks are to (1) predict the

target trajectory and (2) estimate sensitivities of weapon predicted final states

to changes in initial values of the Lagrange multipliers, the latter providing

the means for closed-loop vernier adjustments of guidance commands so as

to null the predicted final error.

ASPN [121 evolves the network during the off-line design, beginning

with the simplest structure (each output connected directly to the best

corresponding input) and growing to an appropriately complex structure.

The final network typically involves several layers of nodal algebraic -

elements, each having one, two, or three inputs obtained from a previous

layer and providing a nonlinear analytic function that includes cross-products

of its inputs. An information theoretic modeling criterion is used by ASPN

during the synthesis process to select the most relevant inputs and combine

them in suitable elements and in a suitable overall network transformation
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that is learned during synthesis. The criterion also regulates the allowed

complexity of the network to avoid overfitting the data (over-specialization).

The ASPN procedure has been undergoing development for 27 years and has

been extensively proven in signal processing, prediction, and control

applications.

1.4 Work Accomplished

The specific accomplishments of this Phase I work are:

1. The three-degree-of-freedom (3DOF) translational equations of

motion for a 120 mm maneuverable CAT projectile have been

written and programmed in a simulation for trajectory data base

generation. This simulation includes provisions for target

maneuvers and maneuver uncertainties.

2. A baseline predictive guidance law has been formulated and used

for comparative analysis purposes.

3. The governing equations for optimum-path-to-go (OPTG) guidance

of the CAT projectile have been derived using an extended calculus

of variations methodology. Performance sub-criteria in this

derivation of the two-point boundary-value guidance solution
include (a) minimization of thruster firings, (b) maximization of

projectile range, (c) maximization of projectile divert capability, (d)

conservation of projectile kinetic energy, and (e) trajectory shaping

factors associated with the levels of uncertainty regarding system

states and future maneuvers of the target.

4. The OPTG guidance equations have been incorporated in the 3DOF

simulation and numerical studies performed, producing the

resuilts summarized in Section 1.1 above.

5. Processor throughput required to implement the OPTG guidance

has been estimated. (The throughput requirement is

approximately 5.3 kFLOPS.)

7
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2. CRITERION OF PERFORMANCE
-s

The Lagrange formulation of the performance criterion involves, in

this application, the minimization of the definite integral

tf

1= tJ F dt 2:1

where ti is the time of guidance computation (at guidance initiation ti = to )

and tf is the final (burst or impact) time. From the mathematical viewpoint,

time ti is fixed, but tf is variable and subject to optimization. The integrand

(Hamiltonian) may be written as

n' j'

F = I WnGn + X .jfj 2:2
n =0 jl

in which the Wn's are constant Lagrange multipliers that serve as criterion
weights; the Gn's are the integrands of isoperimetric conditions that comprise

sub-criteria performance measures; and the Xj's are, in general, time-varying

Lagrange multipliers that introduce the anholonomic (non-integrable)

equations of motion and kinematic relationships.

It is assumed that F(t) is continuous and has continuous second partial

derivatives with respect to the state variables of the physical system to be
guided.

The following sub-criteria are proposed.

2.1 Guidance Effort Penalty

Let N(t) represent the cumulative number of squib firings by the

projectile as of time t. Then, if no squib firing occurs at t, N(t) is zero, and if a

squib is fired, N(t) is unity over the short finite interval (t, t + At) between t

8 0



and the next decision point. Note that N(t) is continuous even though N(t)
can exhibit jump discontinuities between the levels zero and one.

The total guidance effort over the flight of the projectile is defined as

tf

J &Z2 dt

In the context of optimum-path-to-go guidance, the guidance effort to be
expended over the time remaining as of a solution time ti is

tf

j2 dt
tij

This integral is seen to be independent of when squibs are fired and to vary
only with the number of firings over the interval (ti, tf). It may be

advantageous to fire the squibs early in the engagement, so as to obtain
maximum divert capability for the expenditure of resources. Conversely, it
may be advantageous to fire the squibs late in the engagement, so as to use
resources when there is the least uncertainty about where the target will be at
tf. One way to achieve a specified time weighting of the guidance effort is to

take

tf

ti f r N 2 dt

as the sub-criterion to be minimized, where

(t) - tf - t = time-to-go at t 2:3

Then:

9
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if r > 0, resource expenditures early in the engagement are penalized
more than expenditures late in the engagement

if r = 0, there is no time weighting of the guidance effort penalty

if r < 0, resource expenditures late in the engagement are penalized

more than expenditures early in the engagement

Accordingly, we take

Go - r 1N2  2:4

Ultimately, means should be sought to select r(ti) as a function of the
estimated uncertainty at ti regarding the present states of the projectile and its
target and, in particular, the predicted future states of the target. Further, r(ti)

should be chosen, if possible, with rigorous consideration of the expected

statistical moments of errors in these predictions.

Projectile and target state estimation and the identification of target
maneuver strategies are not treated here, but these become very important
topics as the work proceeds.

We do not now treat the case in which r changes with t after time ti,

because doing so significantly complicates the derivation.

2.2 Guidance Error Penalty

Consider a Cartesian inertial coordinate system in which the positions
of objects are described by components x1 , x2 , and x3 . (See further discussion

in the Appendix.) Then we may write a second-order Taylor series to express

the predicted final position of the target for inertial axis k (k = 1, 2, 3):

XTk (tf) = xTk (t) + 'C Xjk (t) + 2 [T(t) + AxTk (t)] 2:5

10
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where ( ) denotes an estimated or predicted value of a variable and AXT is the

effective (but not a priori known) increment to target acceleration that, treated

as shown in Eq. 2:5, will cause xTk(tf) to be an accurate estimate over the

interval of prediction. Estimation of ALT, an important topic, will not be

dealt with in this report. For the present, we take

XT -.XT + ART 2:6

whence

XTk(tf) = XTk(t) + 'C kTk(t) + TxTk(t) 2:7

For the projectile

xk(tf) = xk(t) + 'r k(t) + (0 2:8

provided the neglected higher-order terms sum to zero as t approaches tf. In

general, for large r, the proviso is violated. Nevertheless, it is admissible to

consider a simplistic predictive error function

T 2 
2:

ek(t) XTk(t) - Xk(t) + t [Tk(t) - Xk(t)] + -Tk(t) - Xk(t)] 2:9

which says, given t and measures of the target and projectile states, XT, , x, k;

given an estimate of the effective target acceleration over the prediction
interval (t, tf); and given a particular value of projectile acceleration over the

same interval, a simplistic prediction of miss distance along axis k is as stated .. 0

(Eq. 2:9). We note that the simplistic predictive error function, e(t), is not the

same as the expected final miss distance, which we intend to make essentially

zero via a two-point boundary-value (TPBV) solution. Rather, e(t) is used to

communicate to the optimization a penalty for not nulling the simplistic
prediction at ever time t (ti < t < tf).
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There is an important difference between (a) use of the simplistic

predictive error function as a sub-criterion in a variational TPBV solution

and (b) conventional guidance methods that act to null some type of
simplistic prediction throughout the engagement. The proposed optimum

TPBV solution achieves specified end conditions and produces a trade-off

between resource consumption and nulling of the simplistic prediction so as

to achieve zero terminal error and minimize the expenditure of resources in
the presence of uncertain information. In particular, this may be done for
given levels of uncertainty about the target maneuver strategy. As limiting
cases, for very large uncertainty, AxT may be taken as zero, and for very little

uncertainty, ART may be assumed to be known perfectly.

The predictive error penalty is introduced with the function

3

G 5 Er. - k2 2:10

in which s(t i ) has a role analogous to that of r, except that s > 0 corresponds to

emphasis on the error penalty late in the engagement, and s < 0 pertains to
emphasis early in the engagement.

2.3 Penalty on Loss of Kinetic Energy

The kinetic energy of the projectile, per unit of mass, is

3 .

k=l

The time rate of change of kinetic energy is, therefore 0

3

kXk k=

12



Thus

tf
3

- f XY Xk~k dtt" k=l1

represents the loss in kinetic energy over the (ti , tf) interval. The greater this

loss, the greater the sacrifice in range and maneuverability of the projectile.
To penalize kinetic energy loss, one may introduce integrals of the following

sub-criteria

G1 - , - 2 2
'  G3 = -X 3 X 3, 2:11

2.4 Limit on Total Number of Squibs Available

An approach toward limiting the total number of squibs fired is to

introduce the penalty

G4 = N 2  2:12

2.5 Distance-Travelled Constraints

It may be useful to maximize the distance travelled by the projectile.
The downrange distance traversed is the integral of

G6 = x, sin if + x2 cos Vi 2:13

and the crossrange distance is the integral of

G 7  -x 1 cos V i - x2 sin 4i 2:14 -

where Wi is the velocity heading at time ti . The change of altitude (not 9

necessarily to be maximized) is the integral of

G8  x3  2:15

13
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The total distance (slant range) traversed is the integral of

(x 1 -x 1i) <l + (x 2 - x2i)x 2 + (x 3 -x3i)3

[(X-- x1 ) 2 + (X2 -x 2 j) 2 + (x 3 - )1/2

2.6 Anholonomic Constraints

From Appendix A and first principles, one has the following

anholonomic constraint conditions:

f, - mV + mg sin y + qS CD0 + (T*)2 (qS C3 + CO H 1) N = 0 2:17

f2 mV Vcos ^y + T* (qS CO H 3 - sin (p) I = 0 2:18

f3 mVy+ mgcosy + T*(qSCoH 5 - cosq)i4 = 0 2:19

f4 , -Ucosysin V -U 2 cosycos W -U 3 siny = 0 2:20

f5 = Vy + U1 sin ysin V +U 2 sinycosi -U 3 cosy = 0 2:21

f6 = V cos- U1 cos V + U 2 sinW 0 2:22
f7 = V1 - : = 0 2:23 .

=0 2:23
f8 V2 - 2=0 2:24

V3 - 0 2:25

f10 U1 - V1 = 0 2:26

1 U 2 - V2 =0 2:27

f12 U3 - 3 0 2:28

f V1 - Vcosysin W = 0 2:29

14~
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f14 V2 - V cos 7cos i = 0 2:30

f15 V3 - V siny = 0 2:31

where:

9 = Pt + 9i 2:32

(P = P 2:33

H1 = 1 2:34

H3 E - CNasin(p + C2 cos (P 2:35

143 = - P (CNaCOS(P + C2 sin p) 2:36

H 5  - - CN0 COSq - C 2 sin 9 2:37

P5 = P(CN sinP - C2 cos 9) 2:38

1 pV
q y .V 2  2:39

4 =p Vv 2:40

and the parameters assumed (for now) to be constant are:

m = mass
g = gravity acceleration

p = atmosphere density

S = reference area

CDO = zero-normal-force value of drag coefficient

K = induced-drag factor (see Appendix B)
CN0X = normal force coefficient

S

lT exp - - 1 /C *

C~- 2:41CO 2 1 - yy 01 N1_/1 2"

*From Hutchings, Thomas D., Ref. 2, 1984, which defines the c',rminology in

this factor.

15



p1
C2  MCyp,,, dref 2V = normalized Magnus force coefficient 2:42

C3  aK (CNat2 + C2 2) C 02  2:43

Tscaled thrust = T I At squib burn T B/At <<T 2:44
decision interval)

P rolling rate

(P roll attitude at t

16



3. DERIVATION OF GOVERNING EQUATIONS

3.1 Necessary and Sufficient Conditions of the Calculus of Variations

The calculus of variations necessary and sufficient conditions for existence of

a minimizing function F(t) are as follows. For the zeroth-order freedoms of the

solution, here represented by u:

Fu = 0 (ti < t < tf) Euler-Lagrange 3:1

Fuu 0 (ti :< t < tf) Legendre 3:2

and for the first-order freedoms, here denoted by x:

F = Fx  (ti _< t < tf) Euler-Lagrange 3:3

Fk(tf) = 0 3:4

Fik L 0 (ti < t : tf) Legendre 3:5

At least one partial derivative of the form of Ineqs. 3:2 and 3:5 must be
positive, and all cross partials at the u and k levels (such as Fulu2 and Fuj 1 ) must

be zero (Kirk, Ref. 4). Furthermore: -

F(tf) =0 3:6

3.2 Integrand of Performance Criterion

From Eqs. 2:2, 2:10, 2:11, and 2:12 - 2:15 (omitting 2:16 at this time), the

integrand of the proposed performance criterion is

3 3 2Fm W0 ,rN 2 -N + W4 N 2 + W5 -

k=1 k=1

+ W 6 (isinvi + x2 cosNWi) + W7 ( 1cos i- x2 sin vi)

15
+ W 8 V sin y + X .fj 3:7

j=l
L

17



Substituting Eqs. 2:9 and 2:23 - 2:28

3

F = W0 tr Nj2  Wk Vk Uk + W 4N 2

k= 1
3S 2 ]I2

+ W5 I XTk-Xk + tQ+Tk - Vk) + 2 ('k - Uk)

+ W 6 (V sin xi + V2 cos Vi) + W7 (VlCOSt - V2 sinwi)

15

+ W 8 V3 + = 1 fj 3:8

j1

The variational freedoms are:

Zeroth-order

UI, U2, U 3  -

First-order
V1 , V2, V3, x1, x2, x3, V, {, y, N

3.3 Derivation - ,

Eq. 3.1 for the zeroth-order freedoms applied to the integrand 3:8 yields:

1 EF+ 
-,=wV+ -+ +5 1 1T 52 T. WS5 -s u 1 = W1V1 + t s +  W - 1+ r( - V1 ) 2 XT1J ;:

( ) .- "
+ (X4cosy - X5 siny) sin + X6 cos - Xr10 3:9

1 , F-+ U -S+ 7". W 5 V-S+ 4 u 2 =W 2V2 + W 5 -s+2[XT2 - x2 + 't (XT2 - V2 ) +

+ (X4 COS Y X5 sin ycos CS - ?6 sin W -1 3:10

s18ycs 0.



1 S+ -w +A W,-s+2F+LW5 T ~4
3 = 3V3 + VT XT3 - X3+ T(3 V3) 2T 3j

+ X4 sinl -t + )L5 Cos -1 - )l23:11

Ineq. 3:2 for the zeroth-order freedoms provides:

2 5'C-3:12

which is satisfied provided W5 is non-negative.

Eq. 3:3 applied for the Vl, V2 / V3 freedoms leads to:

k0= Wl U1 + 2W 5 "-S+ 1 el - W6 sin vi - W 7 COS W - X7- X1 3:13

LIS ill ~= W2 U2 + 2W 5 r5S' e2 - W 6 COS Vi + W 7 sin xgi - X8- X14  3:14

i12 = 3 3+ 2W 5 r 5S~'e 3 + W8 -9 X531

where ek (k = 1, 2, 3) is given by Eq. 2:9.

From Eq. 3:4 applied for V1. V2, V3:

X10f = X 1 f= X 2 f 0 3:16

Ineq. 3:5 gives:

F 7 1= F =7'2 F 37 = 0 3:17

and therefore these conditions are always satisfied.

Next, Eq. 3:3 applied for xl, x2 , x3 yields:

4-S

k7= 2W 5 tel 3:18

k8- = 2W 'C-e2 3:19

19



= 2W5 -s e3  3:20

and from Eq. 3:4:

X7f = X8f = 9f = 0 3:21

Ineq. 3:5 becomes:

F;Ic1 = Fi 2i 2 = F k3k3 =0 3:22

For the V, V, and y freedoms, Eq. 3:3 produces:

i 1 m + '4 PVS {Ix 1 [CD0 + (T *)2 C 3  ] + T* (x 2H 3 + ?'3H 5 ) CO-\

+ (?2m + ?6) cosy + (X 3m + X5 )y

- (X13 sinV + X14 COSW) COSy- X15 sin7 3:23

i2m X6 V xos 2m + 6 )(Vysin - 7 cos y)
V COS 7

- (X4 cosy-X 5 sin y)(U] cos V - U2 sin xV)

+ 6 (U1 sin g+ U2 cos ) ]-13 cos V+ )'14 sin V 3:24

3 [+ (x 3 m + 5 + mg(x 1 cy- 01 siny)

(?13m + X.5 =1 -O + - ?OS
- (X 2 m + 6 )ViVsiny + ( 4 cosy + X5 siny)U 3

+ 4siny + X5 cosY(U 1 sin xV + U 2 cosy)]

- 0113sin xg + X14 cos X) sin y - X15 cos y 3:25 .

Typically, )4, 5, and i 6 are taken as zero from ti to tf. (See discussion in Section 4.)

20-.
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Eqs. 3:23 - 3:25 involve V*, W, and j, which are functions of NJ (see Eqs. 2:17 -
2:19), and U1, U 2, U3, which, in this case, are the "command" values of projectile

accelerations governed by the variational relationships in Eqs. 3:9 - 3:11. Thus:

i1 = A 10 + A 1 NJ 3:26

i 2 
= A20 

+ A2 1 N 3:27

i 3 = A 30 + A3 1 N 3:28

in which:

Aos I 1 (V3m + X5) Cv

- 13 sin iV + X14 cos N cos 7 - X15 siny 3:29

A A s -~-,V 12qSmn[X1 T* C3 + C XH3+ X3 H5)]

- (X 2 m + Q6 )(qs CoH 3 - sin p) 33

- (OL3  + X5 ) (qS CH 5 - Cos P)

20 + x6) qS + (X5 sin - )- Cos Y) (Ul CoS - U2 in

+ X6 (U 1 sin 4f + U 2 cosV) - x 13 cos W + X1 4 sin] 3:31

(XTm ~ 6 (qS C3 +CoHI) cosy
A 2 1 - m 2Vcosy + L6

-(qSCoH 5 -cosq)sin y] 3:32

21



A30  - [ 3 m + X5) (g sin y + qS CD0/m)/V

+ng (X 1 Cosy - X3 sin Y)/V

+ (.4 sin y + X5 CoS ,) (U sin x,+ U 2 COSV)/V

+ (X 5 siny - X4 Cosy)U 3 /V

- . . -t
+ L3sn + X14 COS V)sin y- X 5COS y 3:33

A31 X3 + X5) T*(qs C3 + Co Hl)

+ (;L2 m + X6 )(qsc 0 H3 - sin (p)tany] 3:34

where:

U 2 [wlv, + (X4oSY - X5siny)sin V + X6 CoSV - X10]/(w +

+ 2 XTIl-x 1 + T(,Tl - VI) + 2 3u

U 2 = 2 [W2 V2 + (X4 COSY - Xsiny)cos - X6 sin Vs -Xl1i(W5 ", + 4)2[ .T h/ ..,2J
+ xL- x2 + r(xT2- v2) + Cx2,]/, 3:36x 2 2 T2

U3 =2 (W3 V3 + X4sn + X5 CO % 2)/(W~tS+4

+2 XT3 - x3 + T (XT3- V3) TX3 J/2 3:37

and where (see Eqs. 3:13 - 3:15 and 3:18 - 3:20):

i'1 = W1 U, + % i7 - A7  3:38

ill = W2U2 + %i 8 -A 8  3:39

X12 = W3 U3 + T 9- An 3:40 -

22
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I

3 which uses the definitions:

A7 = )7 + X13 + W6 sin 4i + W7 cos Ni 3:41

A8 = X8 + X14 + W6 cos Wi + W7 sin wi 3:42

A9 = 29 + X15 - W8  3:43

From Eq. 3:4:

;.lfm + X4 f = 0 3:44

(x2fm + k6 f)VfCOSYf = 0 3:45

(x3 fm + X5ff)Vf = 0 3:46

whence:

Xlf = - X4f/m 3:47

2f = - X 6f/m 3:48

3f = - X5f/m 3:49

Continuing, for the N freedom

FN 2W 4 N 3:50

and

Fr = 2 W0 ?rNk + X1 (T*) 2 (qSC 3 + CoH 1) + X2 T*(qSCoH 3 - sin 9)

+ X3 T*(qSCoH 5 - cosp) 3:51

23
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i,4 2 W0 (tr N -rc r-1f4)
+ 1 (T*) (qSC 3 + C0H1) + X, (T*) 2(cSC 3 + CO 141)

+ i 2 T(qS CH 3 - sinp) + X2 T*(jSCOH 3 + qSCOf 3 - PCos

+ i 3 T*(qSCoH 5 + cos(p) + X3 T*(qSCoH 5 + qSCoI-I5 + Psin(p)

3:52

and Eq. 3:3 yields, upon substitution of Eqs. 2:17, 2:40, and 3:26 - 3:28:

A2 N + AIN+ A0 N= B 3:53

where:

A2  2 W0 Tr 3:54

A1  - 2 W0 rr r-1 3:55*

A0 a - 2W 4  3:56

B * - T*[T* (qSC 3 + CoH 1)A 10 + (qSCoH 3 - sin (p)A 20

+ (qSCo-I S - cos (p)A30

- pVS (X 1 T* C3 + X2 CO H3+ X3 CO H) (g siny + qS CD0/m)

+ ) 2 P(qSCoH 5 - cos I) - X3P(qSCoH 3 - sin 9)] 3:57 14"

The derivative N is zero except at a finite number of points of singularity.

Eq. 3:53 must be satisfied between these singular points, i.e., for the open interval
(ti, ti + At) and succeeding decision intervals. Thus

1N = (B - AIN)/A, 3:58

From Eqs. 3:4,3:47 - 3:49, and 3:51:

* Note that all other terms in IN that appear in Eq. 3:52 cancel one another.

24
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-X6f ( qf S C0 H3 f - sin (pf) -X 5 f (qf S Co H5f - cos yf) 2W 0 ~f r~f m /T*

3:59

From Ineq. 3:5:

A 2 = 2W 0
r a 0 3:60

which is always satisfied if W0 > 0.

It can readily be shown that all cross partials at the "u" and "x" levels are zero
for the subject performance criterion.

Lastly, the necessary condition of Eq. 3:6 provides (note that the f j's are zeroJ

in Eq. 3:8):

3 3
W0 frNf2 - I WkVkfUkf + W4 Nf 2 + Wstf- Z ekf

k= 1 k=

+ W6 (Vif sin Ati + V2f COS Vi) + W7 (Vlf cos Vi - V2f sin vi)
+ W8 V3 f = 0 3:61

33 2
Thus, taking the desired range of s, s > 0, requires that E ekf approach zero more

k= 1
quickly than rS, namely

3

i .. () t --. tf k= s -0 3:62r-
V..

I ! Inaddition, ifr>0

3

(ii) - I WkVkfUkf + W4 Nf 2 + W6 (Vlfsinxi + V2fcosvi)

k= I

+ W7(VifCOS A-i - V2fsifnii) + W 8 V 3 f 0 3:63

25
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If r < 0, it is necessary to satisfy 3:62 and 3:63 as well as

(iii) Nf = 0 3:64

In the case where r = 0, it is necessary to satisfy 3:62 as well as

3

(iv) W0 1f - WkVkfUkf + W4 Nf2 + W6 (V l f sin 4 i + V2fCOS V)

k=I

+ W7 (Vlf cos i- V2f sin Vi) + W8 V3f = 0 3:65

Solution of the governing equations is discussed in the next section.
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4. SOLVING THE GOVERNING EQUATIONS

4.1 Establishing the Final Velocity

To establish the final velocity for off-line reverse integration (data base

generation), if r > 0, Eqs. 3:63 and 3:65 require that

V1f (W 1 rlf - W6 s - WVi - csi)

+ V2f (W 2 V12f -W 6 COS i + W7 sin vi

+ V3f(W 3  3f- w 8 ) - W4 N? = 0 4:1

Eqs. 3:1 and 3:9 - 3:11 become, at tf:

WI Vif = - (X4f cos -f - 75f sin yf) sin vf - X6f COS Vf + XIof 4:2

W 2 V2f = - (;X4 f Cosyf - X5f sin yf) Cos M'f + X6f sin vf + XIlf 4:3

W 3 V3f = - X4f sinyf - X5f cos yf + X 2f 4:4

However, X Of = )L1f = )12f = 0 (Eq. 3:16), and if W1, W2 , W3 are not zero,

Eqs. 4:1 - 4:4 provide

()-4f Cos Yf - X5f sin yf) sin Nf + X6f Cos XVf ] ( "jf - W61 sin Wi

71- W7

+ 4f cos yf - X5f sin yf) cosvf - X6f sin f I (2f

- W 62 COS Wi + W 72 sin wi

+ (X4f sinf + X5f COS Yf) ('3f - w 8 3 ) + W4 N? = 0 4:5

where:

W61 = W 6 /W 1 , W 7 1 = W 7 /Wl, W 6 2 = W 6 /W 2 , W72 =W7/W2,

W 83 = W8/W 3  4:6
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Moreover, the inverse forms of Eqs. 2:20 - 2:22 are:

1 = U1 = (Vcosy - Vjsiny)sin V + V jcosyCos V 4:7

V2 = U2 = ('rcosy - Visiny) cosw- Vicosysin~v 4:8

V 3 = U 3 = Vsiny + Vycosy 4:9

If N = 0, Eqs. A:22 - A:24 provide:

V = - g sin y - qS CD0 /m 4:10

0= 4:11

- g sy 4:12
V - -V

and Eqs. 4:7 - 4:9 become:

V1 = -q(SCD/m)cosysinxv

V2 = - q(SCD0/m)cosYcosV (if N = 0) 4:13

V3 = - g - q (S CDO/m) siny

whence Eq. 4:5 yields

qf (S CDO/m) (Jlf COS yf sin f + J2f COS yf COS Wf + J3f sin Yf)

+ Jif (W61 sin Vi + W71 cos xi+ J2f (w62 cos i- w72 sin vi

+ J3f (W 83 + g) - W4 N? = 0 4:14 .

..

where:

Jif ()24f COS Tf X5f sin yf sin 14 + X6f COS 4:15

28
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J2f a (x 4fcosyf - X5 fsin -f) COS Wf - Xfsin ,f 4:16

J3f 0 14 f sin yf + 15f cos Yf 4:17

Now, substituting Eq. 2:34, 2:35, and 2:37 into Eq. 3:59, one obtains, if
Nf = 0and/orifr > 0,

11Xsf qS COC 2 + X6f (qf SCO CNa + I ]sin Vf

4f T* (qfSC 3 + Co)

Lf (qf SCO CN, + 1i) - k6f qf SCOC 2] CO 4:18
+T* (qfSC 3 + CO)

For the case pf = 0, Eq. 4:18 becomes:

Xlf % X5 f K5f - X6 f K6f 4:19
Kof

in which:

K5f -- qfSC0CNa + 1 4:20

K6f -qfSC 0 C 2  4:21

K 7f= T* (qfSC 3 + CO) 4:22

whence:

Jif= (x.fsin vf) (ff cos yf - sin y)

ICA K6f "

+ X6 f (COsf- ffCosYfsin f 4:23 k

2q



J2f = x5f Cos Vf) f COS - Sin Y)

X6f (in 'f + -ff Y f Cos qf) 4:24

(Kfsin yf+ cos y- !-- siny 4:25

J3f = "Yf F-f C6f f

and Eq. 4:14 takes the form

[X 5f sin snWf)(K5f COS Yf - Kof sifl)

+ X6f (Kof COSf - K6f Cos sin 1f)] [qf(S CD0/m) cos yf sin 1f

+ W61 sin4Vi + W7 1 COS Vi

"+(5 COS lVff)(K 5f COS If - Kof SinTf)

- X~ (o sin 14h + K~ [O OS *f(S C~D/m) COS IfCOS '*

+ W62 COS Wgi - W72 sin 4fi]

+ [Xkf(K5f sin yf + Kof cos yf) 
co

-X6fK 6f
sinYf] [q f (SCD0 /m) sinyf+ W83 + g]

- K0f W4 N? = 0 4:26 -: .

Thus, from Eq. 4:26, defining "

Qf a qt S 4:27 .. _

onehas (ifl f = 0, ifr > 0, and ifWf = (pf = 0)

affQ? + bfQf + cf 0 4:28
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where:

af C0 (C~o/M) (15f CNa - "6f C2) 4:29

bf E(15f CNa - 6f C2) CO (W83 + g) Sin Yf + k5f CDO/m

+ T* C3 [x'Sf(W 83 + g) COS If - W4N]

+ (W6 1 sin \v + cos COSVi) [x~f(CO CNa COS yf - T* C3 sin f f)sinl Nf

% 6f (CO C2 COS yf sinl q4f - T* C3 COS V4f )I

+ (W62 COS V - W72 sin ~Vi) [~F5#0 CNax COS yf - T* C3 sin f f)COS Vf

- 6f (CO C2 COS yf COS v4f + T* C3 sinl xvf)

4:30

f r. k5f (W83 + g) sin yf + T* Co Ii 5f(W83 + g)COS yf - W4 N?]

+ (w61 sin xvi + W1COS Vwi) F-s (cos yf - T* C0 sin yf ) sin 'Vf

+ AX6f T* COS vfI]

+ (W62 COS -f W72 sin 'Vi) [x~ (os yf - T* C0 sin yf) COS ff

- 6 f T C0 sin MI] 4:31

Thus S

bf bf 2.1c47 1/2

If the minus sign is used A'ead of the radical when k5 f, W6, W7, W8, and T*

are zero, one obtains Qf = (mg DO')C ,which requires that Vf = 0 (see

310
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Eq. 4:10), and this is not generally possible. Therefore, we use the plus sign.

From Eqs. 4:27 and 4:32 it follows immediately that

-f I r 4:33
pS )~

4.2 Velocity Transformations

The kinematic relationships between velocities expressed in the
inertial (x, x2, x3 ) axes and wind (stability) axes are:

V = j(V 1
2 + V2

2 + V32)1/2 4:34

y = arcsin (V3/V) 4:35

and if V2  0

/Vi
= arcsin . 4:36

1%

whereas if V2 < 0 v,
= - arcsin Vo) 4:36

(VCosy

If y = n i/2 (i.e., if cos y = 0), V is undefined. In Eq. 4:35, y varies between ±
n/2, and in Eqs. 4:36, V ranges between - n/2 and + 3n/2.

4.3 Estimation of Time-to-Go (r)

A simplistic estimate of time-to-go is

33:
- Axkjk I

A Range I Ax k =1
=Closing Velocity _ AV ICosO - 3 4:37

I XAVkjk Cos@
k 1

3)
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ow

where the j's are unitless direction vectors, 0 is the angle between the vectors

Ax and AM, and:

Axk  XTk -x k  4:38

AVk = XTk - Vk 4:39

As
Ax AV

Cos 0 4:40

IAx AV k
3

~Axk

A k=1
A= 4:41

SAxk AVk
k_

Further discussion of to time-to-go estimation is presented in

Appendix D.

4.4 Firing Commands for Multiple-Sector Thrusters

The CAT projectile may be designed with multiple (perhaps four)

sectors of impulsive thrusters, each sector containing a number of squibs that

fire through a common sector orifice. For any given sector there is an initial
roll attitude, lij, the index j denoting the sector. Correspondingly, Eqs. A:29 -

A:30 and 2:35 - 2:38 provide multiple values of H3 , H 3j, H5j, H5j as functions of

time. As a result, Eq. 3:30 provides a different Xli(t) value for each sector, and

Eq. 3:57 and 3:58 give a different W(t) value for each sector.

The other equations of the OPTG solution are the same for all sectors.
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4.5 Numerical Solution Procedure

To start numerical integration of the differential equations, the

procedure is as follows:

(1) Describe projectile (m, S, CDO, K, CN(a, and lesser constants Is, 1T,  1,

01, 02, Iyy, dref, Vav, Vmuzzle, Nmax), environment (g, p), and target
(XT1 (t), XT2 (t), XT3 (t)).

(2) Specify guidance parameters (WO,..., W8 , r > 0, s > 0).

(3) Specify P and At (At = 0.05 sec.). Compute firing constants T*, C0, C2,

and C3 from Eqs. A:17, A:19, A:31 and A:32, respectively.

For Forward Integration

(4.F) Set x1 = = x3 = 0 and N = 0. Specify initial xV, y, and (p. Set V =

Vmuzzie. Specify X,...,X15 at to.

For Reverse Integration (Negative At)

(4.R.1) Set x1 = XTlf, x2 = XT2f, x3 = XT3f. Specify Nf, yf, k5f, k6f" Use xvf and

(pf of zero.

(4.R.2) Compute Vf from Eqs. 4:29 - 4:33, adjusting W4 , Nf, X5 , and X6 if

necessary to obtain acceptable Vf.

(4.R.3) Compute -4f from Eq. 4:18 and k f, k2f, X3f from Eqs. 3:47 - 3:49. Set k7f

k8f = X9 f = ki0f 
= llf = X12f = 0, per Eqs. 3:21 and 3:16. -.

Now the system states are initialized (or "finalized"), and the state

derivatives may be calculated as follows:

34 4
....



(5) Compute V1 V2, V3 from Eqs. 2:29 - 2:31. Compute el, e2, e3 from Eq.
2:9. Compute range from ((xT1 - xl)2 + (XT2 - X2)2 + (XT3 - x3)2)1/2.

A A
(6) If range = 0, set t = 0; otherwise compute tc from Eq. 4:41.

A

(7) If r = 0, compute U1, U2 , U3 (projectile accelerations) from the
kinematic relationships, Eqs. 4:7 - 4:9; otherwise compute U1, U2, U3

from the variational solution, Eqs. 3:35 - 3:37.
A

(8) If c = 0, set Nf = 0; otherwise, if unused squibs remain, compute N

from Eqs. 3:55 - 3:58.

(9) If N > Threshold, set = 1. (Fire squib.)
If N > Threshold, set N = 0. (Don't fire squib.)

(10) Compute wind (stability) axes rates V, N, y from Eqs. A:33 - A:35.

S(1) Compute k1, k2' i3 from Eqs. 3:26 - 3:34.

A
(12) If c = 0, set k7f = k8f = k9f = 0; otherwise compute k7, i 8 , 9 from

Eqs. 3:18 - 3:20.

(13) Compute kO, k1l, k12, using Eqs. 3:38 - 3:40.

This completes the calculations of state derivatives from state values.
Numerical integration may now be employed indefinitely to compute the

states ((P, x1, x2, x3 , V, 'V' y, and 2.) from their initial (or final) values and their

respective derivatives (P, V10, VV V, y, and 2).

4.6 Discussion

The best decision interval (At) is a function of projectile rolling rate (P).
f! Preliminary evidence suggests that the difference P - 1/At should be

~approximately + 1.0 Hz. This has the effect of providing roll attitude (p )
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segments of approximately 18 deg. between 20 discrete angles "available" for

thruster firing, with each angle becoming available once per second.

The 1 command equation (Eq. 3:58) may be used in formal integration
of the equations of motion and adjoint equations, preceeding from specified
initial physical and adjoint (variable Lagrange multiplier) states, or it may be
used in reverse integration from specified final (burst or impact) conditions.
The use of reverse integration is helpful in mapping the behavior of the
system as a function of the constant Lagrange multipliers (the W's), X5, and

X6 . When employing reverse integration, final values for the adjoint states

are known from the variational conditions, except that k5f and X6 f values

must be stipulated from consideration of the required initial physical states.
(Here we assume X4 = X5 = X6 = 0.) We choose to refer to X5, X6 as the
"steering" multipliers, because they are the principal mechanisms for
satisfying the two-point boundary values imposed on guidance of the -

projectile. (The other X's and the W's also influence the boundary values, but

serve primarily to determine the optimal character of the solution.
Furthermore, the final values of most of the other X's and the k's are known
immediately once k5f and 216f have been provided.

In reverse integration, e1, e2 , e3 and 7 , X9 begin at zero. In view of

Eqs. 3:21, X7, X8, X9 also begin at zero. As long as e1, e2, e3 remain zero, X10 , X11,

k 12 (ignoring W 1, W 2 , W 3 , W 6 , W 7 , and W 8) will be proportional to X1 3 , X14 ,

X15, respectively. Now, if k10, kll, k12 are non-zero, X10, 1X1 1, X12 will integrate
away from their beginning zero values at tf (Eqs. 3:16). As this occurs, U1, U 2, -k

U 3 will become biased, which is inappropriate to the purpose of maintaining . "S
e1, e2, e3 at zero. We conclude, therefore, that it may be desirable that X13, XJ14,

X15 be kept equal to zero at all times.

The W5 G5 constraint, involving a simplistic prediction of final error, '

introduces the X7, X8, X9, X10, X11, X12 adjoint differential equations, coupling

them to the X1, X2, X3 adjoint differential equations via the variational (i.e.,
the "command" as contrasted with the kinematic) expressions for U1, U2 , U3 .o

As W5 -- 0, the coupling becomes weaker, disappearing altogther at W5 = 0.
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If W 5 = 0, the X4 , X5, X6, X10, -11, and X12 differential equations may, in
principle, be eliminated from the solution, with the present roles of X4, X5,

and X6 then assumed by X13, X15, and X14 .

Two configurations of the operational OPTG guidance should be
considered. In the first, polynomial networks would be used to estimate the
initial values of all the X's and to re-initialize the solution during the flight of

the projectile. For example, before the gun is fired, the fire control system
(FCS) could use polynomial networks to compute initial values of X1, X2, X3,

with the initial values of X4 , -- X15 being the same for all trajectories and

therefore not requiring pre-fire estimation. Then, with the projectile in
flight, other polynomial networks in the FCS could be used to modify X5 and

X6 to correct for target maneuvers and atmospheric disturbances of the

projectile trajectory. In the second formulation, polynomial networks would
provide the N decision (squib fire/no-fire decision). These configurations

will be described further in future reports.

The OPTG formulation, implemented via either of the above

configurations, will aid the system as it deals with information uncertainties
and information denial and will provide efficient use of the projectile
impulse thrusters. Regarding the problem of uncertainties, the OPTG

guidance, implemented using APNs, will (a) respond optimally to predictable
maneuvers of the target and (b) optimally desensitize the guidance to the
adverse effects of unpredictable target motions and tracking errors. These

benefits will accrue because, with careful simulation and data base generation
for APN synthesis, the true non-parametric statistics of the problem will be
mastered. (Incidentally, the payoff for good simulations will be measurably
increased.) Regarding the efficient management of projectile thrust impulse,

the calculus of variations will provide a data base of variational extremal

trajectories that optimize the usage of projectile impulse, correcting by the
most appropriate numbers of squib firings as the flights progress.

Conventional guidance laws do not have the capability (the intelligence) to

do this.
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5. A BASELINE GUIDANCE LAW

U If the simplistic predictive error function of Eq. 2:9 is set to zero, one
obtains

Uckx~ - xk + 'C(xTk - Xk) + 1--p~ 5:1

in which the subscript "c" denotes a command value. Thus, from Eqs. 2:16 -

2:18:

c =Ucl cos ysin y UC2 Cosy Cos y +U C3 sin y 5:2

(ViI)c = - Ucl sin ysin~ - Uc2sin ycos 4f + UC3 Cosy 5:3

sin xV5:4
(V Cos Y)c UclCos V UC 2 N

Eqs. A:33 - A:35 now become:

() K* (Vc + g sin y + aS C1-1)

c(T*) (q 3+ C LJQ 5:5

( K* (V i Cos Y)c .5:6
C qS C0 H 3 - sin (p

(3) K* [(vi) + g Cos Y15:
C qS C0 -H5 - COS(P5:

where

K* - m/T* 5:8

In practice, K* may take on a different value from that above so as to provide
approriate closed-loop responsiveness and stability of the guidance system.
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Usually, the first command equation, i.e., on Nc(1) , would not be

implemented, because control over V7 is weak when the directions the
thrusters fire are always normal to the projectile x axis.

The other two values of N in Eqs. 5:5 - 5:6 may each be submitted to

testing against respective thresholds, and the decision to fire an impulsive
thruster may be made if one or more of these threshold tests is/are
affirmative. However, such a policy leads to firing if the expected result along
any axis is favorable in spite of any adverse repercussions along the other
axes; therefore a decision based on a weighted sum of the individual sub-
decisions is employed, taking

Nc = Nc (2) 1Isin 9 + Nc(3) ICOS 91 5:9

The threshold on Nc is nominally set at zero, but may be raised to account for

information uncertainties.

Combining Eqs. 2:28, 5:4, and 5:6

(2) - K* (Ulc cos XV - U 2c sin )5:10
C qSCOC 2 cos(P - (qSCoCNot + 1) sin (p

and combining Eqs. 2:30, 5:3, and 5:7

K* [Ulc sin y sin V + U2. sin y cos V - (Uc 3 + g) cosy] :11N (<3) - q)5:11 ".
c (qSCOCNa + 1) cosp + qSC 0 C2 sinq

Eqs. 5:1, 5:9, 5:10 and 5:11 define a baseline guidance law, diagrammed V%
in Figure 2, that may be studied in comparison with the OPTG formulation.
Note the equivalence of Eqs. 3:9 - 3:11 and 5:1 as W5 tends to infinity. In the -: -"

limit, the OPTG guidance law responds in the same way as the baseline law if
total emphasis is placed on the W5 term in the integral performance criterion.

X
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There are important reasons for not reducing the OPTG guidance to the

baseline form. First, the OPTG guidance is a two-point boundary-value

guidance law; it provides essentially zero final error if the maneuvers of the

target are within allowable limits for the projectile system. On the other

hand, the baseline guidance law acts to minimize the integral of squared

predicted error; with the baseline formulation, the actual final error receives

no more attention mathematically than does the final error predicted at each
of the decision points prior to tf. Ultimately, it is not the time history of

predicted final errors but the actual error at tf that determines the probability

of target kill. OPTG guidance addresses directly the requirements on final
error and, depending on the value selected for W5 , may put little or almost

no weight on the time history of predicted final errors.

A second important reason for using the OPTG formulation in -+

preference to the baseline guidance law is that OPTG guidance provides

conservation of projectile maneuver resources in a way that does not
compromise final error. The W0, W 1, W2, W3, W4, W6, W7, and W8 terms in

the OPTG formulation address the management of maneuver resources.

While it is possible to incorporate a resource expenditure penalty in the

baseline type of guidance law, the effect of this penalty would be to engender V

greater miss distances. In other words, maneuver resource management is

best treated in the two-point boundary-value guidance context.
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6. SIMULATION PROGRAM

The essential parts of the three-degree-of-freedom (3DOF) simulation

employed are listed in Appendix E. A goal of the program is to enable one to

examine flights starting from arbitrary points in space and proceeding either
forward or backward in time to suitable stopping points. A system state

structure is therefore defined with which one can easily store and return the
required system "snapshots", or sets of variables which uniquely describe the
status of the engagement under study. The states S = (p, x, V, y, V, L XT, YT,

N) are arrived at by integrating their respective derivatives, _ = (P, V V, ', i,

Y VT 
1 _T, N) over time (where N is treated as either 0 or 1, as discussed in

Section 4.5).

The state derivatives, , can be written entirely as functions of S; in the
program, these calculations are split into common (dyn) and squib-related

(dey) parts. Note that the kinematic equations in dyn and deriv are general,
the variational equations derive from the calculus presented in Section 3, and
the required system-specific constants are isolated in an include file
(system.h). The guidance command, NJc , subjected to a user-defined

threshold for the fire/no-fire decision, is calculated according to one of three
guidance modes:

0: Ballistic (N = 0)

1: Baseline (Section 5)
2: Optimum Path-to-Go (OPTG; Section 4).

The fly routine integrates from Sk to Sk+1 (or vice-versa given the

derivatives at the appropriate starting point) through either the rectangular

method or Heun's method of integration, as selected by the user. In addition

to performing a single iteration of the system, fly examines whether or not

the timestep should be reduced or reversed to "zero-in-on" the desired final
condition (such as minimum time-to-go, c, for closest point of approach).

)Not shown in the listing is the capability of storing the system state and

performing a forward look-ahead -- a rapid extrapolation of current
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information to examine its closed-loop implications - which is required if

miss-distance sensitivity APNs are used.

The system is flown as long as allowed. The conditions allowing flight

vary with flight direction according to the routine condsallow. Also

depending on direction, the system is initialized or finalized in main after the

state and control variables have been retrieved from the user interface and

translated into internal units. The interface (not listed) is a user-friendly

general package developed by Barron Associates to improve flexibility and

portability in simulation development. With it, the user may save or restore

named sets of variables, change as many or as few parameters as desired

between trials, automatically reset values to defaults, and get descriptive

information on the purpose of each program option.

When the user quits a series of simulated flights, or trials, in one

direction (more-trials), the option to examine flights in the other direction is

presented. In addition to end-point condition manipulation through the

interface, the user may define a set of parameters to adjust, and initiate,

certain automatic explorations according to the following search modes found

in advise:

0: None: use interface

1: Grid: search in a regular pattern from loops within loops.

2: Grope: employ the Guided Random Optimizer of Performance

Error (GROPE), a search algorithm developed by Barron Associates

(not listed). GROPE attempts to minimize a criterion defined by the

user in main, (for ex: miss distance). The search algorithm is

capable of efficient exploration of high-dimensioned multi-modal

surfaces.
3: Gauss: randomly select values for parameters according to a zero-

mean gaussian distribution of user-defined standard deviation.
4: Uniform: employ a uniform distribution bounded in each

parameter by the user.
5: "Firtree": use a special sensitivity-APN database generation mode.
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The bounds to employ when changing the parameters are defined in the
include file bounds.h.

Also present in the program are options to select a wide or narrow

screen of published information separated by adjustable time intervals,
output a history of state variables for presentation or analysis, enter a "debug"
mode to receive interior details on certain calculations, define the record
modes to employ for efficient database generation, and to "bounce", or return
in the opposite direction, according to the same or a different guidance mode.
(For instance, one could simulate a reverse trajectory under OPTG guidance

and "bounce" forward ballistically to compare the divert, or difference in final
position.) Not shown is the use of adaptively-synthesized polynomial
networks (APNs) for guidance initialization and/or adjustment in the closed-

loop OPTG system.

MI
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7. OPTG AND BASELINE GUIDANCE SIMULATION RESULTS

UUse of the 3DOF CAT projectile simulation software presented in

Section 6 shows the OPTG guidance law consistently producing smaller

terminal miss distances, using fewer squib firings, and providing greater

maximum divert capability than does the baseline guidance. Section 1
provides some discussion of these effects; here we present detailed results

supporting the conclusions reached.

7.1 Engagements Simulated

The engagement geometry simulated is that of a maneuvering or non-
maneuvering target located in the x1 -x3 plane at a distance x2 = 10,000 ft. from

the gun muzzle (where x1 , x2 , x3 correspond to "east", "north", height

position). Target accelerations are tracked with some degree of uncertainty
(gaussianly-distributed random measurement noise) and are, in the

simulations studied, either constant or governed by the equations:

uTl(t) = g sin(cot)/3 ft./sec.2  7:1

uT3) = -32.8 co2 sin(ot) ft./sec. 2  7:2

where co is 0.1n rad./sec. The equations are derived from the elliptic target

motion relationships defined in Reference 4:

y(t) = g ( t - sin(o0t + (py/)/3co meters 7:3

z(t) = 50 + 10 sin(cot + Pz) meters 7:4

where (y, z) is (x1 , x3 ), and the random target phase components, Py and (Pz,

are omitted.

Initial projectile conditions were constant: angle of inclination, Y = 20;
muzzle velocity, Vm = 3821.5 ft./sec.; roll attitude, p = 0; muzzle attitude east

of north, V = 0; (constant) roll rate, P = 21 Hz.; and decision time step, At = 0.05
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sec. (Note that the latter two parameters cause an effective decision roll rate

of 1 Hz.) An unguided projectile (i.e., ballistic trajectory) was found to take

approximately 3.065 seconds, and to cross the 10,000 ft. downrange plane at an
x1 ("east") position of 0.0 ft., and an x3 (height) position of 182.23 ft. -- a

location henceforth referred to as the "ballistic point".

7.2 Simplified OPTG System

The complete OPTG guidance system envisioned (diagrammed at a .:

high level in Figure 1.a) is detailed in Figure 3.a. Adjoint differential

equations are integrated, and the squib fire command calculated, at each

decision point to determine whether a squib will fire, diverting or not

diverting the projectile at that point in its trajectory. Projectile and target state

information is filtered (potentially using linear polynomial filters, a class of

estimation and prediction filters) to track progress and update the OPTG

guidance equations. Those equations are initialized and, if necessary,

periodically re-initialized, by an APN synthesized off-line from simulations

of representative trajectories. The APN of Figure 3.a relies on a preceding

explicit prediction of the intercept point; but, as shown earlier in Figure 1.b,

this task may be subsumed by a more comprehensive APN which works

directly from the filtered target and projectile state measurements.

The simplified OPTG guidance system prototyped and evaluated in this

first phase of work is shown in Figure 3.b. As the class of engagements

studied terminates at a nearly constant range, intercept point prediction is

based on the ballistic flight time. The target position estimator, using this '-

and the true initial target position, was simulated to be only a minor source of

noise in the experiments. (A complete examination of this important topic --

beyond the scope of this study -- will be required for full Optimum Path-To-

Go guidance implementation). Note that, unlike full OPTG guidance, the

simplified version performs no guidance re-initialization or adjustment; it is - I

the "open loop" component of the eventual system.

In the cases examined, the constant OPTG weights defining the basic
character of the trajectories, W0 through W8 , were, in order: 1 10, 0, 0, 0, 100,

0.001, 0, 0, 0 ). Note that the adjoint equation weight which employs target
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state feedback (W5 ) was disabled; in fact, only the Nc scaling weight, W0 , and

the squib conservation weight, W4 , were used to govern the basic OPTG

tradeoffs. (The feedback weight, W5 , though shown with a small value, is

I effectively disabled when the kinetic energy weights, W 1,W2 ,W3 , are absent.)

Although most of the weights (such as W6 , W7 , W 8 , the downrange,

crossrange, and altitude change weights) were studied, it was found that the

small subset above was sufficient to demonstrate the necessary concepts.

However, further research could likely uncover more trajectory

enhancements by examining the full use of these temporarily disabled

weights.

7.3 OPTG vs. Baseline Guidance

To examine the operational range, or "handprint", of the optimum-

path-to-go strategy, initial values of two of the controlling Lagrange

multipliers, X2 and X3 , were varied randomly in simulation between values

of +/- 1.50, with all the other X's starting at 0.0. (Note that OPTG guidance

reduces to the ballistic case when the entire vector, A,, is zeroed.) The database

of engagements thus generated was filtered to reduce redundant impacts,
retaining trajectories firing the fewest squibs in the case of a conflict. The

Algorithm for Synthesis of Polynomial Networks (ASPN) was then employed
to synthesize a model (an APN) capable of revealing the appropriate 210
values to use when given the expected final target position (xTlf and xT3f).

Using "E" and "H" for expected position, Figure 3.c details the resulting

initializing APN, which network consists of a pair of "carved double"

elements, surrounded by "normalization" and "unitization" nodes (Ref. 12).

When installed in the simulation, and relied on to initialize the OPTG

guidance for a host of target position cases within the maneuver envelope,

the APN proved to be very successful. Against motionless targets, the OPTG

r - handprint in the miss distance plane, shown in Figure 4.a, is quite circular,

.providing good controllability over the entire region physically reachable by
the projectile. Examination of the data reveals, importantly, that within the

performance boundaries, the accuracy of the OPTG system does not degrade

substantially with required divert, or final distance from the ballistic impact

49



.240*bA3.034

la bd _2 = 2. 0 .01 4* + .02499+2* + 3

0.268e2*l4A2 .408bA 3 H

lambda_3 = -4.919 + 0.07874*H + 0.01 657*E -
0.4292e-3*H A2 - O.7073e-4*E A2 + O.2963e-5*E A3

+ O.7799e-6*H A3

50 '

% % %



240

220 .m_

2 0_ _ m • m U U U ..,w

--- - -

18 0 -- ---- -_---_

,'i" 160 "

140 •

120
-60 -40 -20 0 20 40 60

Final East Position, xl (ft.)

Figure 4.a: OPTG Guidance Handprint (0 Threshold)

30____

U)

ma ma

9m

Cr 15 -U--

10

0 10 2 0 40

Divrt istncefrom Ballistic Impact (ft.)

Figure 4.b: OPTG Guidance Squib Usage (0 Threshold)

51

L,_, - 2. .... " .. ..



IV

point. Figure 4.b reveals that there is a clear relationship between squibs fired

and the resulting divert; in fact, the number of squibs needed in a particular

engagement is about one half the total divert (in feet) required. '

When the baseline guidance law is sent after the same set of targets, the

handprint depicted in Figure 5.a results. Its pattern is more that of a diamond

than a circle; significantly, points at the corners of the OPTG maneuver

boundary appear to be unreachable with the baseline method. Many more .

squibs are being fired, as shown in Figure 5.b, but no clear relationship exists

between thruster energy expended and the resulting divert (a consequence

partly of the unbridled continuous correcting performed by the baseline law).

Note that if the projectiles in the above baseline case were limited to 40

squibs, most trajectories would have had many fewer opportunities to refine

final accuracy, with a consequent (bu't slight) worsening of miss distance. The

difference is only slight because, for the squibs to divert the projectile

significantly, they must be fired early enough for the effects to integrate

throughout the flight. The loss of final refinements when resources are

exhausted is therefore a consideration less important than the proper early

use of those resources. Both issues are successfully addressed by the OPTG

guidance method, which inherently conserves resources by acting early -- a

property not shared by late-acting pursuit, proportional navigation, or

predictive proportional navigation (e.g., the baseline) guidance laws.

Putting a threshold on the guidance command equation -- essential

when uncertainties in target accelerations exist -- reduces the squib firing

called for by the baseline guidance law. Figures 6.a,b depict the results when a

threshold of 0.2 is employed in the baseline law. Now a definite relationship

exists between squibs fired and divert achieved (6.b), and though the system

uses fewer squibs than without a threshold, it still fires roughly 8 more squibs

than with OPTG guidance. The price of saving squibs through a threshold,

however, is revealed in the resulting miss distance, as suggested by the

distorted and shrunken handprint (6.a). The accuracy of the conventional

guidance law in this, the simplest of engagement scenarios, is good below a

divert of about 32 feet, as revealed in Figure 7.a, but worsens quite sharply
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beyond that. When the thresholds necessary for use in noisy environments

are employed, the accuracy of the baseline guidance only worsens (Figure 7.b).

The OPTG guidance method is only slightly affected by use of the same 0

guidance command equation threshold (0.2). Though the APNs were not

trained on such a threshold, its presence served mostly to delay the onset of

each fire decision, resulting in slight "twists" of the intended trajectories. The

end effect was minor, and the trajectories have a very similar miss distance

distribution, confirming that OPTG laws can be made much less sensitive to

the values of any thresholds employed to deal with uncertain (noisy)

information. Figure 8 reveals that, with no squib fire decision threshold, the

OPTG trajectories achieved given divert distances with about 10 fewer squibs

than the thresholded (i.e., most competitive) baseline method.

Note that, as initialization and re-initialization of an optimum-path-

to-go guidance law occurs only a few times throughout a flight (and can be

aperiodic and data-driven), noisy input data may be filtered for a relatively

long time before use, reducing the effect of tracking noise. Also, as the OPTG

technique is of the two-point boundary-value class, an intercept goal is always

before the projectile. Thus, data drop-outs or loss of link with host system

("maximum noise") can be dealt with in a straightforward manner: stay on

course to the last predicted intercept point.

7.4 Blended OPTG/Baseline Guidance

To compare the guidance techniques in closed-loop (say, against

maneuvering targets), it is necessary to modify the prototype OPTG guidance

by switching to its competitor (the baseline method) in the end-game (as '.
entirely OPTG closed-loop guidance synthesis is beyond the scope of this

Phase I feasibility study). For this reason, the closed-loop comparison results,

especially in squib conservation, are slightly less dramatic than would be

possible with a pure OPTG method (such as that proposed for Phase II) which

employs target feedback information; nevertheless, the improvements are

significant.
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In this "blended" guidance law, the OPTG system of Figure 3.b becomes

the initializing component, and the baseline law (of Figure 2) is used in the --

end-game. Switching to the baseline guidance method in the final second of
flight provides a workable, if sub-optimal, way to follow the target for

preliminary evaluation purposes. The performance of a complete OPTG

system can clearly be lower-bounded by this blended version; still, as shown
below, even it outperforms what is a strong conventional technique: the

pure baseline guidance method.

The blended method takes advantage of the early OPTG guidance

decisions (when they can have the greatest effect) and the closed-loop accuracy

of the baseline method (which is good when the required divert is small).
When firing at stationary, but noisy targets switching to baseline guidance
from OPTG guidance when the estimated time-to-go, Tau, is below 1.0,
provides the accuracy results summarized in Figure 9 (and analyzed below).

In short, the accuracy of the blended system is slightly better than OPTG and
much better than any baseline case. As expected, the average number of

squibs fired is intermediate to that of each of the techniques when employed

alone -- the squib use distributions of which are depicted in Figure 10. Use of

a threshold with the blended method was found to affect these results only

very slightly.

7.5 OPTG Guidance Accuracy Potential

As the firing of a squib is a discrete event, the projectile handprint only

approximates a continuum; actually, a given trajectory contains N decision
points separated by At seconds, and therefore a maximum of 2 N possible I

positions at any given range.* "Perfect" guidance could thus be defined as the -

ability to reach all such possible final positions. Significantly, in both theory

and practice, only OPTG guidance can approach this limit. 'DI

While the accuracy of conventional guidance techniques degrades in '

rough proportion to the divert (distance from the ballistic point) required, it

* For the given x2f and At, N is relatively large (greater than 60) so the continuum
approximation is appropriate.
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is possible for an OPTG-guided projectile to be accurate throughout the entire
envelope of positions reachable by the projectile; i.e., to approach perfect
guidance. This capability is foreshadowed, or hinted at, by use of the simple

initializing APN -- as can be seen from Figure 9, which compares baseline and
blended guidance handprint subsets for various accuracy thresholds. For both
techniques, more and more targets can be defined as "hit" as the threshold on
the miss distance allowed rises from 3 to 6 to 9 feet. With the baseline
method, the handprints expand outward from a "tilted" region above the
ballistic point, into a diamond shape -- demonstrating that, for conventional
methods, guidance accuracy and the size of the maneuver envelope are

* inextricably linked.

With the blended (OPTG/baseline) method, however, virtually the
entire maneuver envelope is represented at each level of miss distance (or
closest point of approach). The handprint fills out and expands slightly as the
miss distance threshold rises, but reveals the basic circular shape of the
envelope of potential maneuvers from the beginning. As is common with
APNs, the best points (the target locations for which the model is most
accurate) are those best represented in the database; here, a ring with a

roughly 20 ft. divert radius centered around the ballistic point. Synthesis of a
b. more accurate and complete initializing APN could easily fill out and round

out this ring, leading to a 3-ft.-miss OPTG envelope covering about 6400 ft.2 --

almost four times larger than the 1700 ft.2 area of the comparable baseline

handprint.

Refinement of the initializing APN and, more importantly, synthesis

of re-initializing APNs (which would allow the method to be purely OPTG),

are sure to improve the handprints, and the authors are confident that
I -optimization of the initialization process is achievable and will lead to system

performance, in the absence of other effects, approaching that of perfect
guidance for a reasonable definition of acceptable miss distance.

Figure 9 compares the "hit distribution" of both guidance methods for

a sample of 101 low-acceleration-noise engagements (mean and standard

deviation = -0.5 ft./sec.2 ), and Figure 11 presents that data in the form of -he

cumulative number of targets hit for a given allowable closest point of
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approach (CPA) (i.e., the integral of the histogram, or density distribution vs.

CPA). Note that at every value of CPA the blended guidance outstrips the
baseline technique; only a third of the baseline trajectories miss by less than
five feet, for instance, while two thirds of the blended trajectories do. The

median CPA of the baseline engagements is 10 ft., compared to the blended
median of 4 ft. If a CPA of 10 ft. is allowable, over 90% of the blended
engagements are hits. As the following section reveals, such improvements

are possible for maneuvering targets as well.

7.6 Maneuvering Target Results

Against targets maneuvering according to Eqs. 7:1 - 7:2, with some

noise on the measured accelerations (mean = -.25, a = -.50 ft./sec.2 ), the
blended and baseline systems performed according to the handprints in
Figure 12. (Note that, for comparison purposes, the bounds of the handprint
region were made similar to those of prior cases by offsetting the initial target
x, and x3 positions by 25 and 30 feet respectively.) The OPTG-based (blended)

form remains quite circular (and is closest to matching the targets, which end
up in a square grid, 90 feet on a side), but the baseline handprint is distorted

further from the diamond shape which it can at best attain. The average
divert of the blended method was 23 percent greater than that of the baseline
method (37.18 compared to 30.26 ft.), and the average CPA was cut in half

a(baseline CPA mean: 10.62 ft., blended: 5.26 ft.; baseline CPA standard
deviation: 8.01 ft./sec.2 , blended: 4.86 ft./sec.2 ).

Figure 13 depicts the handprint subsets for which the CPA was less

than or equal to six feet. The circular area covered by the blended handprint

(even with interior gaps) is roughly 3.5 times larger than the smaller,
rectangular region of the baseline technique, indicating that OPTG guidance

C- can expand the region of weapon effectiveness for a required closest point of
approach. The CPA distribution for all of the experiments is shown in Figure
14. A simplification of the graphic information, using the statistics above,

would be to summarize that the blended CPA is evenly distributed, at a

height of ten percent, over a ten foot region, whereas the baseline

distribution, at a height of five percent, goes out to twenty feet.
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Figure 15 presents the accuracy information in another fashion: the x2

p 10,000 ft. plane is shown riddled by the engagement "bulletholes" (or
"projectileholes") which would result from placing each target at the origin.
Here, the blended guidance delivers a tight grouping of shots fairly uniformly
distributed around the "bullseye", while the baseline guidance is much more
spread out and less accurate. The distinctive "X" pattern of the latter results
from its diamond-shaped handprint; targets requiring displacement in both
the x1 and x3 directions are the most difficult for the baseline technique to hit,

whereas they cause no particular hardship for an OPTG-based guidance

method.

Clearly, a major source of the blended guidance accuracy is its ability to
deliver well, over the full region of weapon operability, the divert demanded.
Figure 16 compares the ability of the two techniques to track the required
divert; the blended law, it can be seen, approaches much better the ideal line
of unity slope. In fact, given targets with the maneuver capability as defined

above, one can conclude that the OPTG-based method is accurate enough
over a wide enough area to hit (i.e., have a CPA of a few feet) any target at

which it is correctly (ballistically) aimed -- regardless of the general maneuver
direction of the target. Alternately, for non-maneuvering targets, the
authority of the OPTG projectile is such to compensate for 4-5 mils of total
aiming error in azimuth or elevation.

To summarize the comparison results, it is helpful to define a "ratio of
ON improvement" as the baseline CPA of a given trajectory divided by the CPA

resulting from blended guidance. The median such ratio for the
maneuvering target case is 1.793. Figure 17 shows the statistic collected into
divert bins of five foot width, averaged, smoothed, and plotted onto a log
scale against required divert. Note that improvement is as much as an order
of magnitude in the intermediate region: 30 to 50 feet. Baseline guidance
appears competitive for small diverts from ballistic (up to 20 feet), and both
methods begin to run into the physical maneuver limits of the squib-based
weapon system beyond about 55 feet. Overall however, the OPTG-based

guidance technique is shown to be more accurate than the conventional

method at every region of divert.
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7.7 Required Throughput

Each decision timestep, At, the OPTG guidance system must update the

adjoint differential equations described in Section 4.5. Less often (perhaps one
tenth to one one-hundredth of the time) an APN is employed to reinitialize
the equations due to new information about the target activity. Summing up
the processor requirements of these two components, therefore, provides a

good estimate of the throughput required in an OPTG guidance law
implementation, exclusive of the tasks of sensor data filtering, target tracking,
advanced time-to-go or distance-to-go calculations, or explicit computation of
estimated miss distance (if used).

An efficient form of the adjoint equations has been found to consist of
156 multiplies, 91 adds, and 7 look-up operations (the latter for sine, cosine,
and square root functions). At a At of 0.05 sec., these 254 calculations translate

to 5,080 operations per second. The APN of Figure 3.c contains 14 multiplies
and 6 adds (in network form), but a more comprehensive APN might consist
of up to 50 of each; i.e., 100 operations. Even at a reinitialization interval of
0.50 seconds, such an APN would only contribute 200 operations/sec. to the
required throughput, for a total of 5,280 floating-point operations per second.

Therefore, a processor capable of only 5.3 kFLOPS (a quite reasonable number)
would suffice for the OPTG guidance calculations.

I
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APPENDIX A

I A. APPROXIMATE EQUATIONS OF TRANSLATIONAL MOTION

FOR CAT PROJECTILE

The three-degree-of-freedom translational equations of motion for the

CAT projectile, treated as a mass particle, are, in a wind-axes coordinate

system, using a flat-Earth approximation and ignoring the effects of winds:

mV + mgsiny + qSC D + T(cos a wsin - sin sin w ) = 0 A:1

mV cosy- qSCyw - Tsin (pcosI3w = 0 A:2

mVy + mgcosy- qSCLw - Tcos(pcoscLx = 0 A:3

in which:

m = mass (here assumed constant)

V = velocity magnitude, measured tangential to instantaneous
flight path

g = acceleration of gravity (here assumed constant)

y = flight path elevation angle, measured p.mitive up from
horizontal plane

q dynamic pressure = p V 2

p = atmosphere density (here assumed constant) .

S = reference area

CD = coefficient for component of aerodynamic drag force acting
along negative of velocity vector

75



CLw = coefficient for component of aerodynamic normal force
acting perpendicular to the velocity vector in the vertical

plane containing V, measured positive up

Cyw = coefficient for component of aerodynamic normal force

acting in a horizontal direction that increases iy

T = thrust perpendicular to projectile body -R axis (spin axis),
acting at roll attitude angle p

(P = projectile roll attitude angle, measured clockwise from the

vertical plane containing V (as viewed from rear of
projectile)

a~w  = aerodynamic angle of attack in wind-axes system

O3w  = aerodynamic angle of sideslip in wind-axes system

= flight path heading angle, measured V3 (verticle) axis

()w = denotes the wind-axes system

For small aw and O w, the lift and side-force coefficients may be

expressed as:

P
CLw = CNa aw - C1L'Ow A:4

P D
Cyw = - CN wC1 " V A:5

where:

CN( = aerodynamic normal force coefficient (here assumed

constant)

C1  Magnus force coefficient Cyp0a d ref /2 (here assumed

constant)
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dref = reference length

P - rolling rate, measured positive in RH direction along projectile

body "t axis, i.e., positive in direction of increasing 9 (P is here
assumed constant)

The drag coefficient may be written as a quadratic drag polar:

CD = CD0 + (CLW~ W ~ )A6

where:

CDO = drag coefficient when lift and side forces are zero (here CDO is

assumed constant)

K = induced-drag factor (here assumed constant)

Substituting Eqs. A:4 - A:6 into A:I - A:3, one obtains, for the case in
which otw and Ow are small:

mV + mg sinNy + qS[ + K 2 + C12_J(4 +

+ T ((wcos (p - Ow sin (p) = 0 A:7

mV cosCy + qSNO3W + C1 "aw - T sin 4P = 0 A:8

qiL PW) - T cos (p =0 A:9mV; + mgcosy - qS - C1 [xw -V :

Also, for small aw and JPw:

Mw = atot cos q A:10

Ow = - ctot sin (p A:11

where cOtot is the total aerodynamic angle.
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In Ref. 2 it is reported that the firing of a squib in the CAT projectile

produces two temporary effects: a brief reaction force, T, of duration St (a few

milliseconds) and a transient aerodynamic force. When the transient forces i

have decayed, "...the resulting steady-state solution to the change in heading

from lift force effects is given by

A 0 ) C -1 A:12

in which amax is the maximum value of the damped oscillation, cil is the

nutation frequency (the frequency of the projectile short-period oscillation),

and o)2 is the precession frequency.

But mVAO is the change in momentum of the particle and is equal to

the effective lift force multiplied by a time interval At established by the time

required for the transient aerodynamic force to subside. However, the

effective lift force may be expressed as q S CNa aeff, where Gteff is the effective

angle of attack over the interval At due to the thruster impulse. Therefore

q S CNa Oaeff At = mVAO A: 13

and

mVAO A:14
leff =q S CNa At

From Ref. 2
(tz-. /2

i T exp 1 27

Ccix JYA:15 L

wherein:

is  squib total impulse (approximately 0.75 lb.-sec.) = T St
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I

IT  = thrust moment arm, measured positive ahead of C.G. -6

N I YY= pitching moment of inertia of projectie

1 = nutational damping coefficient

Combining Eqs. A:12, A:14, and A:15:

T 8t IT 1_ exp .....

1 ef f A:16
2At yy Jl -C2

Let

T * = scaled thrust T St/At << T A:17

and

t ef f = CoT* A:18

where

IT(---exp
CO  - A:19

~~2IyyC0 ol -VT1

For present purposes, Co is assumed to be constant. But cceff may be viewed as

the total aerodynamic angle during the interval (t, t + At), and thus Eqs. A:IO,

A:lM become, for the case in which a squib is fired at the beginning of the
interval:

ccw = CoT* cos q A:20

w = -COT* sin (p A:21
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Having accounted for the aerodynamic effects of a squib firing, and

noting that the reaction effects are those of a scaled thrust T* acting over the

entire interval (t, t + At), one has (from Eqs. A:7 - A:9) the following two sets U

of equations of motion.

When a squib is not fired

mV7 + mg siny + qSCD0 = 0 A:22

mV cosy = 0 A:23

mV i + mg cosy = 0 A:24

When a squib is fired

mV + mgsiny + qSC D0

+ C (T*)2 [qSK (CN + c, c + H] 0 0 A:25

mV tcos + T* (q S COH 3  sin p) = 0 A:26

/W

mVy + mg cos y + T* (qS C0 H 5 - cos 9)= 0 A:27 I

wherein:

H1  1 1 A:28

p

H3  - CNa sin (p + C1 -cosp0 A:29

H5  --CN(aCOs (P C1V sinqp A:30
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For present purposes, we shall employ the following parameters,
treating them as constants. In future work, these may be taken as functions of

the indicated variables:

cyp c c0
C2  C1 CV= UYdefV) AM3

C3  K(CNO2 + C2 2)C 02 A:32

Next, let NT be a variable that signifies if a thruster is fired within (i.e., at
the beginning of) a solution interval (t, t + At). Then N is binary, N = 0 in-

dicating no firing, N = 1 indicating that a firing occurs. Now, the equations
of motion (A:22 - A:27) become:

mVr + mgsiny + qSCD0 + (T*)2 (qSC 3 + CoHI1)N = 0 A:33

mV' q cos y + T* (qS COH 3 - sin 9) t = 0 A:34

mV y + mgcosy + T* (qSCoH 5 - cos 9)N1 = 0 A:35

In Eq. A:33, N is not squared because its influence on the thrust terms is the

same whether used as N or N2.

0
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APPENDIX B

B. COEFFICIENTS IN PROJECTILE DRAG POLAR

The drag polar of a projectile is the series expansion of its wind-axes
drag coefficient (CD) as a function of its wind-axes lift coefficient (CL):

CD =CD + ICLI 'CD/ tCL + CL2 aCD/L 2 +... :1 'V

Typically:

CD CDO + CDox2 2 +... B:2

CL =CLa + CL 3 a 3 +... B:3

where a is here used to represent the effective total aerodynamic angle of
attack.

Wind-tunnel data are customarily expressed in the form of projectile
body-axes force coefficients. As shown by Hutchings* partial derivatives in
the wind-axes system may be written in terms of partial derivatives in body
axes, viz.:

CDO = CX B:4

CDa2 = CNa- TCX0 + CX2 B:5

CLa = CNa -CX 0  B:6

CLa3 = CNa3 - CXa2 - yCNx B:7

where the subscripts X and N denote axial (rearward) and normal force
components, respectively.

V

Hutchings, Thomas D., notes dated September 13, 1983.
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Now:

WCD/'c:L =L~ =C/c 0~ B:8

KD/aL 2 = CDI/aC2  CDax2 B:9

But, from Eq. B:3: BI

CL 2 = (CLa )2 a2 +B:10

whence

aCL2/ac 2 =(CLa )2  B:11

and, therefore

L2 CDac2
-DOC (L B:12

Defining

2=CDa2 B1

K O'CD/KCL )2 induced-drag factor B1
(CLa)

and introducing the quadratic-form drag polar

2'

CD = CDO + KCL' B:14

one then has CD0 determined by Eq. B:4 and

K= CNa - CX + CXaX2 B:15
(CNa -

J)
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APPENDIX C

C. PROJECTILE AERODYMAMIC COEFFICIENT VALUES

f The following aerodynamic coefficient values have been calculated
from ARDEC data provided December 10, 1987:

M CD0  K CNoa, rad."1

0.5 0.467 1.335 5.03

0.9 0.514 1.362 5.03

1.1 0.582 1.569 5.03

1.2 0.631 1.768 5.03

1.5 0.572 1.562 5.03

2.0 0.500 1.110 5.55

2.5 0.444 0.940 5.61

3.0 0.394 0.942 5.55

3.5 0.336 0.858 5.35

9 4.0 0.308 0.812 5.01

The above coefficient values are based upon a reference area (S) of 0.12151 ft. 2.

The induced-drag factor (K) decreases with a, indicating that the drag polar for
this projectile is not a pure parabola. Because axeff (Eq. A:18) is a small fraction
of 1 deg., we have used ARDEC data for a = 0 and a = 1 deg., rather than

ARDEC data for ax = 0 and cc = 2 deg., in computing K.

Figure C.1 shows the dependencies of K, CDO, and CN(, on Mach

number.
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APPENDIX D

D. ALTERNATIVE ESTIMATE OF TIME TO GO*

It has been noted that

p S CDO(M)V 1/2

4m D:1

is approximately constant over the Mach number range of interest (1.2 < M

_< 3.5), and it can therefore be shown that

Rg/ D:2

V -V1/2 Rgo

where Rgo is the distance to go to reach the target.

For the projectile described in Appendix C, with m = 0.966 slug,!
calculated using sea level standard atmosphere density is 1.695 x 10- 3. This

gives close agreement with the actual r values during OPTG guidance.

* Suggested by Albert Rahe of ARDEC, December 10, 1987.
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APPENDIX E

E. SOURCE LISTING OF SIMULATION PROGRAM

The critical components of the 3DOF simulation are listed here. As the

program is in the "C" language, the file in which a routine appears is
significant, so a brief directory of routines and their locations is provided.
The "makefile", appearing last (page 115), reveals the file dependencies and

automatically governs program re-compilation.

Fi RoutinPA
main.c main 89

getdir 91
publish 91
record 92

fly.c condsallow 93
fly 94
finalize 96
deriv 97
setst 99
pullst 99
tconst 99

advise.c more trials 100
advise 102
cascade 103

dyn.c dyn 104

quad.c quad 107

rng.c gauss 108
random 108

'S. Include File.

standard.h 109

integrate.h 110
system.h 111

FIR init.h 112

fandb.h 113

bounds.h 114
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/* main.c

#include "standard.h" /* standard tunctions, consts */
/* (stdio.h, math fns, deg, rad, nl) */
#include "integrate.h" /* integration structure d,
/* (STATE _VAR, NSTATES, St(), LOOP_St(, FOR3()

#include <interfacel.h> -* interface strct DESCRIPTION */
#include <GetfilePkg.h> /* GETFILE, FP, GFILE, gclose */
#include <screen.h> /* wide, unwide fns

/* Global variables used in dynamics */
/* state variables
double phi; /* rotation angle (rad)
double x[41; /* position vector (ft) (1-3) */
double V, gamma, psi; /* velocity vector (ft/s, rad) */
double lam[13; /* lambdas (1-12; 4-6 const) */
double xTl[41], vT[4; * target position, velocity */

/* pseudo-state variables */
double P; /* roll rate (deg/sec) */
double W[9]; /* guidance parameters (0-8)
double SW[4]; /* guidance params, fn(W6,7,8) */

bt N; /* number of squibs fired
double N dot; /* control variable
double uT[4]; /* target acceleration (E,N,H) */
double Umean, Usig; /* T acceleration noise params */

double Range, Tau; /* range, time to target (dyn) */
int hunting, S last; /* dt iteration vars (fly)
int squib; /* flags squib firing (fly) */
int Abort; /* halt flag

/* (Primarily loc'l) interface vars */
double duration; /* max flight duration (sec) */
double dt0; /* original time step (sec) */
int debug; double ddebug; /* debug flag (used everywhere)*/
int bounce; double dbounce; /* "bounce" flag
int G mode; double dG mode; /* guidance mode (0,1,2)
int R mode; double dR-mode; /* recording mode (0,1,2)
int S mode-FALSE; double dS-mode; /* search mode (0,1,2,3,4,5) */
/* (S mode used before interface call) */
int wide; double dwide; /* wide screen print option */
int p step; double printint; /* print interval (iter, sec) */ 'd
int hist; double dhist; /* store var histories flag */

double dN f; /* final N (backward only)
/t integ; double dinteg; P integration (0:rec; l:Heun) */

double Nd thresh; /* firing threshold
#include "initoh" /* interface information
/* (fwdinfo, backinfo; included after declarations & interface include)*/

8%
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/* (primarily) local shared variables *
FILE *fp, *vfp; /* record, publish file ptrs ~
GFILE *hp; I' gfile ptr: variable history *
double Time, dt; /* current time (cap!), step '
int iter, trials; /* # iterations, trials '
int fwd; /* flight direction flag
double randomo), r-time; /* random fn, record time '
double score; I' trial performance (grope) ~
char str(SCRyWIDTH]; /* reply string *

mainoC /* 129-00 simulation program ~

STATE VAR state[N STATES); /* state variables (integrated)*/
int getdiro); /P flight direction fn
int more trialso), conds_allow!); /P control routines *

#define maxVARS 44 P~ max # interface variables '
double batorelmaxVARSI; P~ bkwd interface var storage '
double fstore~maxVARS]; /* fwd interface var storage '
mnt btrials-0, ftrials-0; /* # trials flown in each dir *
FILE *ffp, *bfp; P* fwd, bkwd file ptrs (see fp)*/
double *storage, *sptr; 1* storage pointers *
struct DESCRIPTION *info, *dptr; /* ptrs to interface structure '
mnt wscreen, tmp; /* screen flag, work integer '

#define BANNER(h) printf(*\n ----- %s =-~=\n", h)
#define SPR(h) sprintf(str, ((h) ? "Launch W d "Impact %d"), trials)
#define ENDnote(h) if (lAbort) I SPR(h); BANNER(str); record(state); )
P ---------------------------------------------------------------- *

/* un-wide the screen (to put all runs on common footing) *
scrUnwide; wscreen =FALSE; /* (& track screen condition) *

while( getdiro) ) { * get direction flag (fwd) for series ~
/* set direction-dependent interface variables *
if (fwd) ( storage-fstore; info= fwdinfo; trials-ftrials; )
else ( storage=bstore; info=backinfo; trials=btrials; )
printf C "(Irials flown in that direction =%d)\n", trials I

1* open data base file only if going in that direction *
if (Itrials) if (fwd) ffp = fopen( 'impact.db", "w" )

else bfp = fopen( "Iaunch.db", "w" I
fp - (fwd ? ffp %bfp): P* set file pointer ~
while( more-trialsC fwd, trials, info))

P* store interface variables for recall
for ( sptr-storage, dptr~info; dptr->var!=N3LL;

*Csptr++) - *C (dptr++)->var ) ;

/* translate interface variables into internal units *
tmp - (int)(print int/dt0); p step = max~l, tmp);
G -mode - Cint)dG -m-ode; wide = (intldwide; debug = (intlddebug;
R-mode - (int)dR -mode; hist - (int)dhist; bounce = (int)dbounce;
S-mode - (int)dS-mode; i nteg= (intldinteg;
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/* translate or initialize/finalize */
if (fwd) { psi *- DEGtoRAD; phi *= DEGtoRAD; N = 0;
else ( psi = 0.0; phi = 0.0; N = (int)dN_f; )

/* Change screen width if wrong; open history file if asked */
if ( wide && !wscreen) ( scrWide; wscreen=TRUE; )
else if (twide && wscreen) ( scrUnwide; wscreen=FALSE; )
if (hist) (

if (Mvfp = GETFILE( hp, "flight data file:N, "var.hist", "w")) )
( printf("?Couldn't open var history file.\n"); hist=FALSE; )

/* Reset time variables, position, counters, flags, constants */
if (fwd) I dt - dt0; Time -.0.0; FOR3( x[k] - 0.0; ) )
else ( dt - -dtO; Time = duration; FOR3( x[k] - xT[k];
tconsto); /* squib constants (fn(P,dt0)) */
iter M 0; Abort - FALSE; /* start of iterations */
S last - 1; hunting - FALSE; /* don't hunt 'til end */
N-dot - 0.0; squib = FALSE; /* default: no firing */iT (R-mode-=1) r-time - random( 2*dt,1.0 ); /P recording 1 *

if (fwd) ( /* set direction weights
SW[l] - W[6]*sin(psi) - W[7]*cos(psi); /* for lamdotlO*/
SW[2] = -W[6]*cos(psi) + W[7]*sin(psi); P for lamdotll*/
SW[3] = W[8]; /* for lamdotl2*/

else FOR3( SW[k] - 0.0; ) /*xx(not ready to use SW bkwd) V/

/* Establish integration structure states and derivatives
if (!fwd) finalizeo); /* finalize V, lambdas */
/* sequester states; calculate (& seq.) resulting derivatives */
set st(state); deriv(state); /* (also N_dot,squib,Range,Tau) */

ENDnote( fwd )
while ( conds-allowo) ) fly( state );
ENDnote(Ifwd ) publisho;

/* evaluate trial (for grope) *
if (fwd) score = Range; /* minimize final range "/
else score = x[21; /* maximize downrange (N<Nf) /

if (bounce>=0) ( /* bouncing flight! */
fwd = !fwd; tmp=Gmode; /* reverse & save flag */
G mode = bounce; /* use bounce guidance */
sprintf(str, "Bounce guidance mode: %d", Gmode ); BANNER( str );

iter a 0; Abort = FALSE; /P start of iterations */
S_last - 1; hunting = FALSE; /* don't hunt 'til end /I
N dot - 0.0; squib = FALSE; /* default: no firing */
/7 xx(these 3 init lines are repeats; could become a func) */

IP stutter-step to get back on dt0 multiples

dt = (int)(Time/dtO)*dtO - Time; if (fwd) dt +- dt0; fly( state );
dt - (fwd ? dt0 : -dtO); /* now, regular steps */
while ( conds-allowo) ) fly( state );

sprintf(str, "Bounce %d", trials ); BANNER( str );
record( state ); publishU; /* end of bounced trial '/
G_mode-tmp; fwd = !fwd; /* recover flag & reverse I/
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trials - (fwd ? ++ftrials :++btrjals); I' trial over *
fflush(fp); if (hist) gclose(hp); /* flush files */

/* recall original values for interface /
for ( sptr=storage, dptr-info; dptr->var!=NULL;

*((dptr++)->var) = *(sptr++)
/* (more trials) */

/* (direction) */

if (ftrials) fclose( ffp ); /* close at run end */
if (btrials) fclose( bfp );
if (wscreen) { scrUnwide; wscreen=FALSE; ) /* unwide screen */
/* (main) */

getdir() /* return flight direction

printf( "\nDirection to fly (forward, backward, quit): "); gets( str );
if (str[0]=='f') ( fwd = TRUE: return( TRUE );
else if (str[0]=='b') { fwd = FALSE; return( TRUE );
else if (str[0]=='q') { return( FALSE );
else ( printf( "(Need f, b, or q as ist letter)\n" ); return( getdir() ); )

publish() /* screen output routine */

M /* print column headers when debugging, screen is full, or done
if ( debug 1I I(iter % (int)(pstep*(SCR HEIGHT-4))) 1i !conds allow()

printf( "\n%4s %4s %7s %3s %4s %5s %5s %5s %5s %5s %5s %6s-%6s",
"Time", " Tau", " N dot ", "Phi", " V ", "Gamma", " Psi ",
"xl(E)", "x2(N)", "x3(H)", "Range", " Lam 1", " Lam_2"); /* 77 */

if (wide) printf(" %6s %6s %6s %6s %6s %6s %6s", /* 49 */
"Lam 3", "Lam 7", "Lam 8", "Lam 9", "LamlO", "Lamll", "Laml2");/*=126*/

nl; /* (be sure To match-column headings with variables!) */

screen output: angles in degrees */
printf( "%4.2f %4.2f %7.lf%ls %3.Of %4.Of %5.2f %5.2f", /* 39+ */

Time, Tau, N dot,(squib?"*":" "), deg(phi), V, deg(gamma), deg(psi) );
printf( " %5.of %5.Of %5.Of %5.Of %6.Of %6.0f", /* 38+ */

x[l], x[2], x[3], Range, lamIll, lam[2] ); /*= 77+ */
if (wide) printf( " %6.Of %6.Of %6.Of %6.Of %6.Of %6.Of %6.0f",

lam[3], lam[7],lam[8],lam[9], lam[l0],lam[llI,lam[12] ); /* 49+ '/
nl; /*=126+ */

if (hist) ( /* file output: angles in radians */
fprintf( vfp, " %.31f %.31f %.31f %.31f %.31f %.31f %.31f",

Time,Tau, N-dot,phi, V,gamma,psi );
fprintf( vfp, " %.31f %.31f %.31f %.31f\n", x[l],x[2],x[3], Range );
if (G mode-2) { /* OPTG guidance; show lambda's

fp7rintf( vfp, " %.31f %.31f %.31f %.31f %.31f %.31f",
lamnl],lam[2],lamD3], lam[7],lam[8],lam[91 );

fprintf( vfp, " %.31f 9.31f %.31f\n", lam[10],lam[ll],lam[121 );
) fprintf( vfp, "\n");

} /* (hist: use tabs, not spaces if cricket; dbp wants decimal pts) */
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record( state ) /* file conditions
STATE-VAR state[); /* state variables '/

/* Recording mode: 0: full states (plus)
/* (R mode) 1: throughout flight

2: simple study (a i vs. b f) '/
/* (overridden by S mode when "firtree" generating) */

int start - liter; /* start of flight -/

static int Firster-TRUE; /* first of 2 trials h/

#define fnl fprintf(fp, "\n") /* file nl macro
#define PRINTSt ( LOOPSt( fprintf(fp," Ig", St(k)); ) fnl;/*--------------------------------------------------------

if (S -mode--5) ( /h output firtree database
if (trials 1-0) { /* (after initial trial)

if (Firster) /* 1st flight h/

if (start) PRINT St
else fprintf(fp,7 Ig %g\n", xtl],x[2] ); /* 1st impact h/

else if (Istart) fprintf(fp," %g %g\n\n", x(l],x[21 ; /* 2nd h/

if (start) Firster - IFirster; /* toggle
I /* trials */
/* firtree S mode h/

else if (fwd && (R mode--2)) ( /* simple study h/
if (start) fprTntf(fp,"%3d. %8.21f 18.21f %8.21f ",

trials, lam[4], lam[5], lamt6] );
else fprintf(fp,"%3d. %8.11f %8.llf\n",

N, x[1l, x[3] );
/* (decimal points are for the sake of dbprep) */

else ( /* normal R mode(s) h/

if (start) fprintf(fp, " %g %g %g %g %g %g %g %g %g\n",
W[O],W[I],W[2],W[3],W[4],W[5],W[61,W[71,W[8] )

PRINT St
if (Istart) fprintf(fp, " %g %g %d %g %d %d\n\n",

Time, Ndot, N, Range, Abort, trials );
)/* S-mode */

if (1condsallow()) /* trial done h/

printf( "\t(Squibs fired: %2d; Distance from origin: %6.1f)\n",
(fwd ? N : (int)dNf-N), RSSS(x[I,x[2],x[3]) );

printf( "\t(Target position: %8.2f, %8.2f, %8.2f)\n",
xT[I], xT[2], xT[3] );

printf( "\t(Targ.-proj. pos: %8.2f, %8.2f, %8.2f)\n",
xT(1]-x[l, xT[21-x[21, xT[3]-x[3] );

fflush( fp ); /* close observation h/

/* record '/
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/* fly.c *I

#include astandard.h" /* standard functions, consts */
/* (io & math fns, EPS)
#include "integrate.h" /* integration structure '/
/* (STATEVAR, N STATES, FOR3(), St() */

#include *system.h7 /* system-specific constants /
/* (system: S,m; environment: g,rho) *

/* Global variables gp
extern double W[91; /* guidance parameters *

extern double dt0, dt, Time, duration; /* time variables
extern int Abort, debug, fwd; /* flags
extern int N, squib; /* #squibs fired, flag */
extern int G mode; /* guidance mode
extern int hunting; /* dt iteration (main) */
extern double Tau; /* Tgo estimate (dyn) */

/* states */
extern double phi; /* rotation angle (rad) */
extern double x14]; /* position vector (1-3: ENH) */
extern double V, gamma, psi; /* velocity vector (ft/s, rad) */
extern double lam[13]; /* lambdas (1-12; 4-6 const) */
extern double xT[4], vT[4]; /* target position, velocity */

/* state derivatives
extern double P; /* orientation */
extern double x-dot[4]; /* position */
extern double Vdot, gamma-dot, psi_dot; /* velocity */
extern double lamdot[13]; /* (4-6 const) */
extern double uT[4]; /* (actual) target accel. */
extern double uTm[4]; /* (measured) target accel. /

/* File variables: maneuver constants */
double Tstar, CO, C2, C3;

condsallow() /* stop conditions routine /

int shared = (lAbort && (fabs(dt) >= 0.0005) && (x[3] >- -0.5));

if (fwd) return ( shared && (Time<duration));else return ( shared &&(Time>0.0 ))
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fly( state ) /* One iteration of the system 6/

STATE-VAR state[); /6 state variables /i

STATE_VAR hypo /STATES]: /* Hypothetical (fwd) state '/

double Tleft; /* bkwd est of time remaining */

double val; /* variable to end at zero */
int check,passed,converging; / tieaincs lg

extern int S last; /* dt iteration var (main) '/
extern int integ; /* integration (0:rec; l:Heun) '/

extern int R mode, pstep,iter; /* record mode, step /I
extern double r time, random); /* random obs time, fn 'I
#define R-MAX 1.0 / max sec between recordings '/

#define LIST(p,q) if (debug) (printf(p); LOOP St(printf("%d:%g ",k,q(k));) nl;)
I* --------------------------- *I

/* output when printstep agrees & not aborted or hunting */
if (MC (iter % p step) 11 Abort H hunting)) publisho;
if ((R mode--l) && (r-time<-dtO*iter)) /* time to record */

{ ricord( state ); r time += randomi2*dt0, R MAX); )
LIST( "states: ", St ) EIST( "dots: ", St_DOT ) /* dbg 'I

-4

check - TRUE; /* reduce timestep magnitude near end */
if (fwd && (R model=2)) /* goal: time to go==0 /

( val - T left Z Tau; )
else if (fwd-&& (R mode=-2)) /* goal: x2==xT2 /I

( val - x[2]; T_left - (xT[2]-x(2])/xdot[2]; )
else if (lfwd && (gamma > 0.0)) /* goal: V==V muzzle */

( val - V; T left = (3821.5 - V)/Vdot;
else check - FALSE, /* (impact half of bkwd flight) *I
/* (note: these equations depend on roughly parabolic paths) '/

if (check) { /* look for dt-reducing cases
passed - (signum(val) !- S last); / goal passed '/
converging - (fabs(T left)-< fabs(dt)); /*step shrinking'/

if (hunting 11 converging II passed) I
hunting - TRUE; /* (dt reduction guaranteed) '/
if (converging) dt = T_left; /* trust prediction '/
else if (passed) dt * -0.5; /* go back half
else dt *= 0.5; /* go forward half '/

S_last - signum(val); /* (save for next pass) */

/* Update time stamp and integrate effective Ndot /I
iter++; Time +- dt; if (squib && !hunting) if (fwd) N++; else N--;
if (integ--0) ( /* Integrate states using rectangular method */

LOOP St( St(k) += dt*StDOT(k); ) deriv(state);

else ( /* Integrate states using Heun's method (I fwd est.) /
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I' get hypothetical state through rectangular integration '
LOOPSt( hypo~kl.u - St(k) + dt*StDOT(k); ) deriv(hypo);

/*use average of forward and current derivatives as slope '
LOOPSt( St(k) +- O.5*dt*(StDOT(k) + hypo[kl.up); ) deriv~state);

/* :states Idots up-to-date in both forms after LOOPSt-)deriv pairs*!
/* (fly) *
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finalizeO) /* set final V, lambda values *

double CDO, CNa, K; /* Mach "consts"*/
double qS; /* dyn pressure *
double atmp~btmp,ctmp,dtmp; /* qS work vars *
double Qa,Qb,Qc, Mroot, VV~; 1* qS work vars
int neg; /* negative discriminant flag *

#define Vain 100.0 /* minimum V-f *

/* lambda 5 and 6 are constant (and from interface) '
FOR3( lamtk+61 - lam[k+91 - 0.0; ) /* 7->12 are 0 *

/* solve for qSf to get Vf ~
/* xxx (temporarily use Mach=l.75 values for CNa,K,CDO) *
CNa-5.29; K-1.336; CDO-0.536; /* (see tables in dyn) ~

atmp - (lamCS]*CNa - lam[61*C2)*CO/Tstar; btmp - CDO/m;
ctmp - lam[5]*g*cos(gamma) - WL4]*N*N; dtmp = g*sin(gamma);
dbgC "ta: %g tb: %g tc: %g td: %g\n", atmp,btmp~ctmp,dtmp )

C3 - K*( CNa*CNa + C2*C2 )*CO*CO; /* new firing constant 6
Qa - atmp*btmp;
Qb - atmp*dtmp + lam[S]*btmp + C3*ctmp/Tstar;
Qc - lam[5]'dtmp + CO'ctmp;
dbg( "Qa: %g Qb: %g Qc: %g\n", Qa,Qb,Qc )

quad( QatQbQc, &qS, &Mroot, &neg ); /* (use plus root) I-

VV - 2.0*qS/( rho*S ); I' (qS - 0.5*rho*V*V) *
if (neg II(VV < Vmin*Vmin))

Abort =TRUE;
printf( 0--> qSf problem (V*V - %g); try again.\n\n", VV )
V - qS - EPS; /* (just to finish out iter) *

else V - sqrtC VV )

/* solve for lambda 4 (--(lam5*Q5 + lam6*Q3)/QO '
lam[41 -(qS*C0*( lam[51*CNa -lam[6J*C2 )+ lam!5]'Tstar

I(qS*C3 + Tstar*CO );
printf( "Lambda_4f: %g\n", lam[4] ;1a

/* now assign lambda's 1-3 *
lamfIll - -lam[41/m; -

lam(2) - -lam[61/m; .*

lam(33 - -lam[5J/m;

P(finalize) I* -a

0. a-
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deriv( state ) /* obtain state derivativ- */
STATEVAR state(]; /* state variables */
extern double N dot, Nd thresh; /* firing variable, threshold
extern double CDO, CNa,-K; /* Mach-dependent variables */

double 13,H5, QO,Q3,Q5; /* work vars */
double sgamma,cgamma; /* work vars
double qS, s.phi,c phi; /* work vars */
double CHH, AO, AT, B; /* OPTG vars */
double Uc[4], Ndcpsi,Ndc gam; /* baseline */
double d_Vdot,d_gamma dot,dpsidot; /* delta dots */
double L26, L35; P delta L vars*/

#define Nmax 4000 /* maximum #squibs (xx no lim) */
/ *-------------------

pull st( state ); dyno; /* pre-squib state derivatives */
/* (xx: could put pull st in dyn again along w/ integrate.h) */

s phi - sin(phi); s_gamma = sin(gamma);
c phi - cos(phi); c gamma = cos(gamma);

H3 - CO*( -CNa*s phi + C2*c-phi );
H5 - CO*( -CNa*cphi - C2*sphi ); /* (H's include new CO) */

C3 = K*( CNa*CNa + C2*C2 )*CO*CO; / new firing constant */
/* (C3 = K*SS(H3,H5)) */

qS - 0.5*rho*S*V*V;
QO - qS*C3 + Tstar*CO;
Q3 = qS*H3 - Tstar*sphi;
Q5 = qS*H5 - Tstar*c phi;
dbg( "QO: %g Q3: %g Q5: %g\n", QO,Q3,Q5 );

/* compute Ndot if guiding, not impacting, and squibs left */
if ( G mode && IHhunting 11 (Tau=0.0)) && (( fwd && (N<Nmax)) II

(!fwd && (N>O )))

CHH - rho*V*S*( lam[l]*C3 + lam[2]*H3 + lam[3]*H5 );

P if (G mode-2) I /* OPTG guidance
/* Calculate N dot: A2*Nd dot + Al*N dot + AO*N = B */
/ (Note: coefficient signs opposite those of notes) */
/ (A2 = -2*W0*Tau-rr, but Nd dot is n.e. zero) */
Al - 2.0*W[0]; /* 2.0;W[0]*rr*Tau-(rr-l)
AO - 2.0*W[4];

B - lamdot[l]*Q0 + lamdot[2]*Q3 + lamdot[3]*Q5
+ V dot*CHH + P*( lam[2]*Q5 - lam[3]*Q3 );

/* (...whether we use derivatives with or w/o Ndot) */

N dot - ( B - AO*N )/Al; /* or (B/2 - N*W4)/WO %/
dbg( "AO: %g Al: %g B: %g\n", AO,AI,B );

else ( /* G mode-I --> baseline guidance
/* acceleration commands zeroing predicted miss*/
FOR3( Uc[k] - uTm[k] + 2.0*(vT[k]-x_dot(k] + (xT[k]-x[kJ)/Tau)/Tau;

dbg( "Uc%d: %g ", k,Uc[k] ); ) dbg("\n");
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if (fabs(Q3) < EPS) Ndc psi - 0.0;
else Ndc psi - m* (UcC2T*sifl(psi) - Uc~l]*cos(psi))/03;
if (fabs(Q5) < EPS) Ndcgam - 0.0;

else Ndcgam - m*((Uc[2J*cos~psi) + Uc~ll*sin(psi))*s..gamma

N dot - Ndc-gam'fabs(c phi) + 14dcypsi*fabs(s..phi);
dlg( *Ndcpsi: %g Ndc gain: %g\n", Ndc psi, Ndc gain)

I/* (G-mode) */

squib - (N dot > Nd thresh); /* N-dot large enough? t

/* (G-mode, etc.) * /

if (squib) ( /* physical effects of squib (treat N -dot as 11*!
d -V -dot = -00/m; V-dot += dV -dot;
d_gamma dot - -QS/(m*V); gamma_dot += dgamma dot;
d psi -dot - -Q3/(m*V*c-gamma); psidot += dpsi dot;
/; (gamma I- k'pi/2) *

if (G mode-2) ( /* update lamdots 1-3 *

L35 - m*lam[3] + lam[5]; /* ML14 not needed)

lamdot[l] += ( CHH + L35*d gamma dot + L26*d psi dot*c gamma )/m;

lamdot[2] += L26*( V*d gamma_dot*s_gamma - dV-dot*c_gamma)

/( m*V~c-gamma );

laindot[31 += C-L35*dV-dot - L26*V*d psi dot*s gamma /(m*V I
/* (G mode 2) ~

1* (squib) *

I* sequester the state derivatives in the structure ~
StDOT( 7) - laindotE 11;

StDOT( 0) - P; StDOT( 8) -lamdot( 2];
StDOT( 9) = lamdot[ 3];

St DOT( 1) - x dot~l];
StDOT( 2) - x-dot(2]; St DOT(10) = lamdot[ 7];
S t7DOT ( 3) - x-dot[3]; StDOT(l1) - lamdott 8];

StDOT(12) - lamdot[ 9];
St DOT( 4) - V dot;
St-DOT( 5) - gamma-dot; St_-DOT(13) - laindottlO];
St-DOT( 6) - psi-dot; StDOT(14) -lamdot(ll;

StDOT(15) - lamdot[l2];

St DOT(16) - vT~lJ; St DOT(19) - uT(l];
St DOT(17) - vTC21; St -DOT(20) = uT[2];
St-DOT(18) - vT131; St-DOT(21) - uT[31;

1/* (deriv) *
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set -st( state ) P set states in integration structure for dyn *
STATEVAR state[); 1* input: state variables

St(O)- phi;

StC2)-x[2]; St(5)=ganma; StCB)-lanC21; St(ll)=lam[83; St(14)=lanfll];

St(3-xL3]; St(6)= psi; StM9)lam(3J; St(12)=lam[9]; St(15)=lam[12];

St(16)-xT~l]; St(19)-vT[lJ;
St(l7)IXT(21; StC2O)-vT[21;
St(lB)-xTC31; St(2l)-vT[31;

pull_st( state ) 1 pull states from integration structure *
SAEVRstate(]; /* input: state variables *

staticVA double circle=2.O'PI;

St(O) -- circle*(int)(St(O)/circle); /* phi wrap-around
if CSt(O)<O.O) St(O) +- circle; /* positive version ~

phi -StCO);
x[l]-St(l); V -St(4); lam(I]-St(7); lam[7]-St(IO); lam[lO]-St(13);

x[3]=St(3); psi =St(6); lam[31-St(9); lam[91=St(l2); lam[12]-St(l5);

XTUlI-St(16); vTtl]=St(19);
XT[2]-St(17); vT[2]=St(20);
xT[3]-St(18); vT[3]=St(21);

tcnso/* set P- and dt-dependent constants ~
tconst()/* (called in main prior to first dyn) ~Tstar - O.75/dtO; /* I_s/dt -decision

CO - 6.52O5e-6*Tstar/dtO; /* -new squib constant *
C2 - P*8.1938e-4; 1* p*0.5*CYp*d-ref/Vav *

. if
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/* advise.c */

#include ustandard.hu
#include =interfacel.h" /* interfacel structure DESCRIPTION */
#include <GetfilePkg.h> /* GFTFILE, FP, GFILE package

/* Global variables from main */
extern double W[91; /* guidance parameters */
extern double duration; /* maximum flight time */
extern double score; /* grooe metric */
/* extern double Ndot; * control variable */

* state variables */
extern double phi; /* rotation angle (rad)
extern double x[4]; /* position vector (1-; ENH) */
extern double V, gamma, psi; /* velocity vector (ft/s, rad) */
extern double lam[13]; /* lambdas (1-12; 4-6 aV- */
extern double xT[41, vT[4]; /* target position, velocity */

extern int S mode; /* search mode: */
#define GRID 1 /* explore regular grid
#define GROPE 2 /* use grope for search
#define GAUSS 3 /* explore gaussian space
#define UNIF 4 /* explore unif. random space */
#define FIRTREE 5 /* generate fwd-branching db */
#define loopK(h) (int j; for (jr0; j<numK; j++) (h }

/* Global variable for record */
/* double TgoO; * firtree base time to go */

more trials( fwd, trials, info )/* routine governing trials */
int fwd, trials; /* direction flag, #trials */
struct DESCRIPTION *info; /* ptr to interface structure */

#include "bounds.h" /* Min_, Max_, Inc_, num_ (F,B)*/

double K[max(numF,numB)]; /* parameter values */
int numK; /* index, #parameters */
int advise(, interface(; /* routines */ -
int GOING; /* returned flag
static int First auto=TRUE; /* auto. mode flag */
/* GFILE *gp; static FILE *firp;* firtree file ptr */
/* static int count-0; * branch counter */
/* double tmp; * read place-holder */
/* define DELTAG 50 * G4,G5 change
/*---------------- -------------- *

if (IS mode) { /* use interface */
char *title-"129-00 TPBV Guidance Project";
GOING - interface( title, info, (trials ? NORESET RESET) );
/* ('quit' exits) */ /* (reset if no previous trials)*/

'I'.
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/* xx (firtree mode currently disabled)
else if (S mode-FIRTREE) { * adjust params through database

if (First auto) ( * open reference data file *
First auto = FALSE;
GETFILE( gp, "Base data filename: ", "base.db", "r");
firp - FP( gp ); * file pointer *

if ( (count%2)--0) { * first trial of new flight *
printf(Reading conditions for reference observation %d.\n", count/2);

* (reference assumed to impact at (0,0))
GOING =( 3--fscanf(firp,"%lf %If %if", &G4,&G5,&TgoO) );
GOING &-(l0-=fscanf(firp,"%lf %If %if %if %if %If %if %if %If %If",

&lam[6],&lam[l],&lam[2],&lam[3],
&V,&gamma,&psi, &x[l],&x[21,&x[3]) );

if (GOING) G4 + DELTA G;
else printf( "--> Reading Done <--\n" );)

else { * second trial *
GOING - TRUE;
G4 -= DELTA G; * reset G4 *
G5 +- DELTAG; * change G5 *

printf( "Try G4: %g and G5: %g.\n", G4, G5 );
count++;

(firtree) xx */

else ( /* adjust parameters automatically
numK = (fwd ? numF : numB);

if (First auto) I /* allow user to verify limits */
First auto - FALSE;
printf( "Minimums, maximums (and increments) are:\n" ); loopK(

if (fwd) printf( "%d: %g\t%g\t(%g)\n", j, MinF[j],MaxF[j],IncF[j] );
else printf( "td: %g\t%g\t(%g)\n", j, MinB[j],MaxB[j],IncB[j] ):

/* (Note: vars in both directions must match those in bounds.h) */
if (fwd) ( /* Target East, Height */

K[0]-lam[4]; K~l]-lam[5]; F[2]ilam[6];
GOING - advise( numK, K, MinF, MaxF, IncF );
lam[41-K[0]; lam[5]-K[l]; lam[6]-K[2];

else {
K[O-lam[5]; Kl]-lam[6]; K[2]nW[4];
GOING - advise( numK, K, MinB, MaxB, IncB );
lam[5]=K[0] ; lam6]=K[l] ; W[4]-K[2];

/ * (Smode) */

return( GOING );
/* (more-trials) */
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advise( numK, K, Min, Max, Inc
/* advise more trials about parameter values */ -
int numK; /* #parameters */
double K[]; /* array of parameters /I
double Min(), Max[; /* bounds
double Inc[); /* increments (if GRID)*/

static int GOING-TRUE; /* FALSE when over
static int a count-0; /* calls counter */

#define Max Iter 1000 /* maximum acount
double half; /* used for mean, sigma*/
int cascade), gropeo; double gausso), randomo;
/*------------------

a_count++;

/P distribute samples ... */
if (S mode-GRID ) { /* ... regularly

if (a count-l) loopK( K[j] = Min(j]; )
else GOING = cascade( O,numK-l, K, Min,Max,Inc );) •*

else if (S mode-GROPE) [ /* ... with a purpose
GOING - Igrope( score, numK, K, Min, Max );
/* (grope counts iterations on its own) */

else if (Smode-GAUSS) { /* ... gaussianly */
GOING - (acount <= MaxIter);
if (GOING) loopK( half = (Maxfj] - Min(j])/2.0;

do K[j] = (Min~j] + half) + gauss( half/2.0 );
while ( (Klj] < Min(j]) 11 (K~j] > Max~j]) ); )

else if (S mode-UNIF /* ... uniformly
GOING - (a count <- Max Iter);
if (GOING) loopK( K[J] - random( Min[j], Maxtj] ); )

else
printf( 0--> Unknown search mode: %d (%g) <--\n", Smode, Smode );
GOING - FALSE;

if (GOING)
printf( 0--> Try values: "); loopK( printf("%g ",K[j]); ) nl;

else (
S mode - FALSE; /P put user in interface
p'intf( "\n--> (Restart if wishing to search further) <--\n );

return( GOING );
/* (advise) */
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cascade( J,jm, K, MinMax,lnc ) /* roll down "inverted for loops"
int J, jm; /* current, maximum index */
double K[J, Min[J,Max[J,Inc[J;

K(j] +- IncIJI;
if ((j < jm) && M[J] > Maxfj])) I

~K[J] - Min[J];
k cascade( J+l,jm, K, Min,Max,lnc )

return( K[Jm] <- Max[jm] /* true while continuing '/
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/* dyn.c *U

#include "standard.h" /* standard functions, consts */
/* (stdio.h, math fns, max(), dbg) */
#include "system.h" /* system-specific constants */
/* (system: S,m; environment: g,rho) * a
double CDO, K, CNa; /* Mach-dependent system vars ~

/* calculated from tables here */

/* Global variables for others: state derivatives /I
/* (note: orientation (phi) & P (phi-dot) not needed) */
double x dot[4]; /* position */
double V dot, gammadot, psi dot; /* velocity */
double landot[131; /* (4-6 const) */
double uTm[4]; /* measured uT */

/* Global state variables from main */
extern double x[41; /* position vector (ft) (1-3) */
extern double V, gamma, psi; /* velocity vector (ft/s, rad) */
extern double lam[13]; /* lambdas (1-12; 4-6 const) */
extern double xT[4], vT[4]; /* target position, velocity */

extern double uT[4]; /* constant target acc */
extern double Umean, Usig; / noise mean, sigma */
extern double gausso; /* rng for acc noise */

dyn() /* given states, calculate state derivatives */

P --------------------------------- *
Generalized 3-DOF Dynamics */

/* Copyright 1987 Barron Assoc., Inc. */
John F. Elder IV */

/* -------------------------------- *

/* Global variables from main */
extern double W191; /* guidance parameters (0-5) */
extern double SW[41; /* guidance parameters (6-8) */
extern double Tau, Range; /* Est time, dist to target */
extern mot debug, G_mode; /* debugging, guidance flags */

/* internal variables and constants */
double v141, Uc[41; /* projectile vel, command acc.*/
double d[43, e14]; /* position, vel differences */
double det[4]; /* Taylor series diff. w/o U's */
double sagamma,spsi, Lsc,Ucsc; /* work vars /
double cgamma,cpsi, Lcs,Uccs; /* work vars */
double qS, TT, L26,L35, tmp,tmp2; /* work vars

double Mach; /* Mach * wrt V sound at alt 0 '1
int ind; double prop; /* interpolation variables
static double Mbound[ll]=( 0.0, 0.5, C.9, 1.1, 1.2, 1.5,

2.0, 2.5, 3.0, 3.5, 4.0 );
static double CDOval[ll]-( 0.450, 0.467, 0.514, 0.582, 0.631, 0.572, 0

0.500, 0.444, 0.394, 0.336, 0.308 );
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static double Kval[ll]-( 1.300, 1.335, 1.362, 1.569, 1.768, 1.562,
1.110, 0.940, 0.942, 0.858, 0.812 );

static double CNaval[ll1]=( 5.03, 5.03, 5.03, 5.03, 5.03, 5.03,
5.55, 5.61, 5.55, 5.35, 5.01 );

/* (values at Mach-0 added by hand; could instead use Glauert approx) '/
/* Glauert (below Mach 1) or Prandtl (above Mach 1) approximations: *//* if (Mach<Mbound[ 0]) CDOM - CdragO/sqrt(l.0 - Mach*Mach);/* else if (Mach>Mbound[10]) CDOM = CdragO + 0.1415/sqrt(Mach*Mach - 1.0);

int k; /* macro loop index */
#define FOR3(h) for (k-l; k<-3; k++) h}/* -- - - - - - - - - - - - - - - - - - */

R/* adjust drag coefficient according to Mach number profile */
Mach - V/1116.89; /* (using sound velocity @ 0 altitude) */

/* (max Mach of 4.0 -> max V-4457.56) */
/* find lower bound index and proportion of overflow
for( ind-0; Mach>Mbound[ind+l]; ind++);
prop - ( Mach-Mboundlind] )/( Mbound(ind+l] - Mboundlind] );

CDO - CDOval~ind] + prop*( CDOval~ind+l] - CDOvallind] );
CNa - CNaval[ind] + prop*( CNaval[ind+l] - CNaval[ind] );
K - Kvallind] + prop*( Kval(ind+l] - Kval[ind] );
dbg( "Mach: %g; CDO: %g; CNa: %g; K: %g\n", Mach, CDO, CNa, K );

qS - 0.5*rho*V*V*S;
sgamma - sin(gamma); spsi - sin(psi);
cgamma - cos(gamma); qpsi - cos(psi);

/* Geographic rates */
vIl] - xdot[l] - V*c gamma*spsi; /* "East"
v[2] - x-dot[2] - V*s gamma*c_psi; /* "North" *
v13] - x_dot[3] - V*s_gamma; /* upt

/* Acceleration vector (sans squib effects) */
V dot - -g*s gamma - qS*CDO/m; I* ft/ss*/
gamma dot - -g*c_gamma/V; /* rad/s*/
psidot - 0.0; /* rad/s*/

/* simple Tau estimation = Range/(V along Range) */
tmp - tmp2 - 0.0; /* use pos and vel differences */
FOR3( d~k] - xT[k]-x[k]; tmp += dtk]*d[k];

e[k] - vT[k]-v[k]; tmp2 -= d[k]*e[k];
Range - sqrt( tmp ); 0

if (Range-0.0) Tau = 0.0; /* impact */
else Tau - (Range/( V - 0.001695*sqrt(V)*Range ))*signum(tmp2);
/* (const ideal for 10K ft, 3.605 sec flight with 32 squibs) */
/* (signum is for iteration purposes)

I* measure (with noise) target acceleration */
FOR3( uTm[ki - uT~k] + Umean + gauss( Usig ); )
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/* Adjoint guidance equations '
if CG-Mode 1- 2) /* baseline or no guidance

FOR3( lamdot~kl-laudotlk+6]m-lamdot~k+91 -0.0; )/* (1-3, 7-12) *
I' (xx: could do this just at the beginning of each trial)

else ( I' TPBV guidance; OPTG (sans squib effects) '

Lcs - lam143*c-gammia - lamISIls gamma;

Lsc a lam(41*s gamma + lam[51*c gamma;

/6 calculate commanded accelerations '
if (Tau--0.O) ( /* kinematic eqns '

tmp - V _dot~c-gamma - V*gamma.dot*s..gamma;
tmp2 - V* psi-dot*c gamma;
Uc~lI tmp::spsi + tmp2*c psi;
Uc(2J tmpc psi - tmp2*s-psi;
Uc[3) - dotes_gamma + V*gamma-dot*c-gamma;

else {/* variational eqns ~
TT -Tau*Tau/2.0;
FOR3( det~kl - d~kI + Tau*e~k] + TT*uTm[k]; ) P measured uT *

/* MT, det required only when Tau!=D) */

Uc~lJ - Lcs'spsi + lam[63'c psi; /* (partial) ~
Uc123 - Lcs'c psi - lam[6l*s_psi;
Uc[31 - Lsc;
tmp - TT*WCS]*Tau; /* 0.5*W(5]*Tau^(4-ss) 0

FOR3( Uc~kJ +- W~k]'vlk] + det~k]*W[5]*Tau - lamlk+9];
Uc~kJ /- tmp;

FOR3( dbg( "Uctd: Sg ,k,Uclk] ; dbg("\n");

Uccs - TUc[110 c*psi - Uc[21*s psi;
Ucsc - Uc[lI*s-psi + Uc[2J'c-psi;

L26 - m~lam(21 + lam[61;
L35 - mlam[3j + lam[51; 1* ML14 not needed) 0

lamdotill - ( rho*V*S*CDO*lamll + L35*gamma dot )/m;

lamdot[21 - ( L26*( V*gamma dot~s*gamma - V dot~c gamma

- Lcs*Uccs + lamnC6]0tcsc )/( m*V~c-gamima )

lamdot[3] - m*g*( lamflJ*cgamma - lam[31*s gamma

-L35*V dot + Lsc*Ucoc - Lcs*Uct3] )/( m~v )

if CTau--0.O) FOR3( lasidot(k+61 - 0.0;
else ( tmp - 2.0*W[5]/Tau; /* C2.0*W[5]0 Tau--ss) ~

FOR3( lamdot[k+6] - tmp*( detik) - TT*UcfkI ); )ON

FOR3( lamdot[k+91 W~kl0 Uc~kl + Tau~lamdotlk+6] lamlk+61 + SW~k];

*(G mode) *
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/* quad.c */

#include "standard.h" /* standard fns, consts*/

/* Global variables from main */
extern int debug; /* debug flag
extern int Abort; /* fatal error flag */

quad( A,B,C, proot,mroot, neg ) /* solve quadradic '/
double A,B,C; /* input: Axx+Bx+C-0 /
double *proot,*mroot; /* output: +,- roots */
int *neg; /* output: error flag */
{
double tmp, discrim, RR; /* work vars */

/* -------------------------- */

*neg - FALSE; /* until proven otherwise

if ( A--O.0 ) /* solution can be linear
if ( B--0.O ) Abort - TRUE; /* (stop trial) */
else *proot - *mroot - -C/B;

else ( /* solution can be quadratic 'I
RR = -B/(2.0*A); /* real part (if discrim neg) */
discrim - RR*RR - C/A;
if (discrim < 0.0) {

*neg - TRUE; *proot - *mroot - RR; /* use real part only "/
dbg( "\n--> Warning: Negative discriminant: %g <--\n", discrim );
dbg( "(Components: a: %g; b: %g; c: %g)\n", A,B,C );
dbg( "(linear (-c/b): %g; using real (-b/2a): %g)\n", -C/B, RR);

else { /* real roots */
tmp- sqrt( discrim )* *proot - RR + tmp;

*Mroot - RR - tmp;
}/* (discrim) *

I* (A) 'I
dbg( "plus root:%g, minus root:%g\n", *proot, *mroot );
/* quad */

It 0
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/* rng.c */

double gauss( std ) /* pseudo-gaussian pseudo-random number gen'r */
/* Barron Associates, Inc. 1/9/87

double std; /* desired gaussian standard deviation
#define NUMRNDS 5 /* #uniform random numbers to sum to approx /I

extern double sqrto;

double randomo, stduse, sum; register int i;

stduse - std * sqrt(.0/NUMRNDS);

for (sum-0.0, i-0; i < NUMRNDS; i++)
sum +- random(-stduse, stduse);

return( sum );
/* (gauss) */

double random( 1o, hi ) /* uniform pseudo-random number generator /I
double lo, hi; /* limits on returned number (order-invariant) */

extern int srand(, rando;
double tmp, prop;
static int first time-l;

if (first time) { rand(12347); first time-O; ) /* (seed)
if (lo > hi) { tmp-lo; l-hi; hi-tmp; ) /* (swap) */

do prop - ((double) rando) / 32767.0; /* rand range: 0-2^15-1 */
while ( (prop < 0.0) ii (prop > 1.0) ); /* xx: shouldn't be nec.*/

return( 1o + prop*(hi-lo) ); /* Distribute between limits */
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9/* standard.h *

#include <stdio.h> /* standard i/o functions '
LN * (printfo, fprintfo), gets(), fflusho, strcpyo, strcato) *

extern double sino, coso, fabso, sqrto; /* math.h functions *
/* (also: tano, asino),acoso,atano, expo,loglO() pow(), fmodo) ~
#define PI 3.14159265359
#define DEGtoRAD (PI/180.) /* degree to radians converter ~
#define rad(h) DBGtoRAD*(h) /* convert to radians
#define degh) (h)/DEGtoRAD /* convert to degrees

#define min~a,b) ( ((a)<b))(a):Cb))
#define max(a,b) ( ((a)>bMla):(b))
#define n1 printfa\n") /* newline *
#define uignwu(x) (((x)<0.0) ? -1: 1) /* signum fn with 0 positive *
#define BPS 0.00001 /* epsilon ("small enough") *
/* define epsig(x) (Cfabs(x)<EPS) ? 0 signum(xfl *signum w/ 0 band ~

_Y #define limit(h,lo,hi) h - Ch<Clo)?lo):( h>(hi)?(hi):h )) /* bi-limit*/
#define RSS~a,b) sqrt((a)*Ca)+(b)*Cb)) /* root sum squared *
#define RSSS(a,b,c) sqrt((a)*(a)+Cb)*(b)+(c)*cc)) /* RSS w/ 3 *

#include <environ.h> /* machine-dependent params *
#define SCR HEIGHT 24
#define SCR WIDTH 80
#include <dbgoff.h> /* debug macros (incl. dbg) ~
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/* integrate.h */

typedef struct {/* a state variable
double u, up; /* current u, udot vector

STATEVAR;

#define NSTATES 22 /* number of system states

/* aliases for states and derivatives (use structure "state") */
#define St(h) state[h].u
#define StDOT(h) state[hi.up

imt k; /* macro loop index AM
#define LOOP St(h) for (k-0; k<N STATES; k++) {h}
define FOR3Th) for (kl; k<-3; k++) {h)
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/" system.h for 129 Tank projectile **

I' system constants '
#define m 0.966 /* mass (slugs) (31.1 ibs)
#define S 0.12151 /* reference area Cft-2)
/* (see also Mach-related CDO, K, CNa tables in dyn) ~

/* environment: '
#define g 32.199 /* gravity *
#define rho 0.00237692 /* atmospheric density *

.
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/* init.h: interface variables '/
/* (common variables in "fandb.h") '/

/ Backward flight
static struct DESCRIPTION backinfo[] -I

#include "fandb. h"
"N, &dN f, 200., "Final #squibs",

NULL, 0., "(endofstructure pointer)"

/- Forward flight
static struct DESCRIPTION fwdinfo[] - I
#include "fandb.h"

"lam4", &lam[4], 200., "V dot lambda (const)",

"phi", &phi, 0., "body roll attitude (deg)",
V", &V, 3821.5, "velocity magnitude (ft/sec)",
"psi", &psi, 0., "velocity vector heading (deg)",

"laml", &lam~lJ, 100., "V dot lambda",
"lam2", &lami[2, 100., "psi_dot lambda",
"lam3", &lam[3, -100., "gamma dot lambda",
"lam7", &lam[7], 0., "xl_dot lambda",
"lamS", &lam[8], 0., "x2_dot lambda",
"lam ", &lam[93, 0., "x3_dot lambda",
"laml0", &lam[ 0], 0., "vldot lambda",
"lamll", &lam~ll], 0., "v2 dot lambda",
"laml2", &lam[12], 0., "v3_dot lambda", ,

WW6", W6], 0., "downrange weight",
W7-, &W[7], 0., "crossrange weight",
-W8", &W[8), 0., "altitude weight",

NULL, 0., "(end of structure pointer)"
} ;

/* "use APN", &duseAPN, 0., "Use APN(s) (O:no; l:yes)", %/ . .

/* (xx make W6,7,8 bi-directional) /, -

IM.

1. 2=
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/* fandb.h *

"duration", &duration, 10., "maximum duration of flight (sec)",
"dt", &dt0, .05, "timestep magnitude",
"print int", &printint, .05, "printing interval (sec)",
"integ", &dinteg, 0., "integration method (0:rectangular; l:Heun)",
"wide", &dwide, 0., "wide screen flag (0: 80; 1: 132 columns)",
"debug", &ddebug, 0., "debug flag (0:normal; l:debug)",
"hist", &dhist, 0., "variable history flag (0:none; l:record)",

"guide", &dG mode, 2., "guidance (0:ballistic; 1:baseline; 2:OPTG)",
"bounce", &dbounce, -1., "(neg:no bounce; 0-2:bounce with that guidance)",
"thresh", &Nd thresh, 0., "N dot threshold above which firing occurs",
"record", &dR-mode, 0., "recording (0:end states; l:during; 2:study)",
"search", &dS_mode, 0., "0:none; l:grid; 2:grope; 3:gauss; 4:unif; 5:fir",

"PW, &P, 21., "roll rate (Hz)",
"gamma", &gamma, 2., "velocity vector inclination (deg)",

"xTl", &xT[l], 100., "Target eastward position (ft)",
"xT2", &xT[2], 10000., "Target northward position (ft)",
"xT3", &xT[3), 200., "Target altitude (ft)",
"vTl", &vT[l], 0., "Target eastward velocity (ft/sec)",
"vT2", &vT[2], 0., "Target northward velocity (ft/sec)",
"vT3", &vT[31, 0., "Target rate of altitude increase (ft/sec)",
"uTl", &uT[l], 0., "Target eastward acceleration (ft/sec-2)",
"uT2", &uT[2], 0., "Target northward acceleration (ft/sec-2)",
"uT3", &uT[3], 0., "Target altitude acceleration (ft/sec-2)",
"Umean", &Umean, 0., "mean target acceleration noise (f/sec-2)",
"Usig", &Usig, 0., "target acceleration noise sigma (f/sec-2)",

"W, 400. "Ndot scaling weight",
WW ], 0., "Eastward kinetic energy use weight",

"W2", W2], 0., "Northward kinetic energy use weight",
W3", W3, 0., "Altitude kinetic energy use weight",
W4, &W[41, 100., "Squib use (N) weight",
"W5", &Wt5l, 0.001, "Predictive error penalty weight",

"lam6", &lam[61, 10000., "psidot lambda (const)",
"lam5", &lam[5], 10000., "gamma-dot lambda (const)",
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/* file: bounds.h */

#define numF 3 /* vary fwd: lam4 lam5 lam6/
static double MinF[numF] = { -150000., -150000., -150000. 1;
static double MaxF[numF] = ( 200000., 100000., 150000. 1;
static double IncF[numF] = { 50000., 50000., 50000.

#define numB 3 /* vary bkwd: am_5 1am_6 _W4
static double MinB[numB] = ( -10000., -10000., 100. );
static double MaxB[numB] - { 10000., 10000., 600. 1;
static double IncB(numB] = { 4000., 4000., 100. );
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# 0---------------------- 129 3dof makefile------------------------------

# make - compile the program
# make lint - lint in the background
# make go -run the program
# make all -lint in the background and then run
# (note: gives you too many prompts for unknown reason)
# -------------------------------------------------------------------
#makefile template for Barron Associates, Inc. 7/30/87 (dwa, ph)

#name of final application
PROG - 3dof.out

#aime of each object file
OBJ - main.o fly.o dyn.o advise.o
OBJ2 - rng.o quad.o grope.o step.o matrix.o
#also alt.o

#list of standard libraries to use
STDLIBS = -lc -lm

#name of BAI library(ies) (now in standard place -8/3/87/ph)

#BAILIBS = -p /usr/bai/lib/libBAI.a
BAILIBS - -IBAI

#location of BAI include files
% INC - /usr/include

#------------------------------- commands--------------------------------------
#the default (just type 'make')
$(PROG): $COBJ) $(OBJ2) /usr/lib/libBAI.a

cc -o $@ $(OBJ) $(0BJ2) $(STDLIBS) $(BAILIBS)

# 'make go' will run.
go: $(PROG)

nice $(PROG)

# 'make lint' will strongly lint all in background
lint:

back lint -abchx *.c

# 'make all' will lint then run
all: lint go

#----------------------------- dependencies----------------------------------

main.o: integrate.h standard.h init.h fandb.h $(INC)/interfacel.h
71fly.o: integrate.h standard.h system.h

advise.o: standard.h bounds.h $(INC)/interfacel.h
dyn.o: standard. h system. h
quad.o: standard.h
grope.o, step.o: standard.h grope.h

inatrix.o: grope.hLt~.# alt.o: standard.h
# apn0.o, apnl.o: apn.h
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