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We deriveshinﬂow and outflow boundary conditions for the incompressible Navier- .,:.
Stokes equations in cylindrical geometries. The puyrpose of these boundary conditions is 3
to allow computations in a finite domain, that model flow in an unbounded domain, in a i)
way that the accuracy of the finite difference solution is retained, making the computation ,::j
more efficient. We use an approach similar to {9} to represent the solution asymptotically, §::;
far downstream and upstream, as a series expansion which involves eigenvalues and eigen- o
functions. These eigensolutions satisfy certain systems of ordinary differential equations. “
The boundary conditions are represented by a family of differential operators in a way :
similar to what was done’in {6} by Bayliss, Gunzberger and Turkel. To demonstrate the :::
effectiveness of these boundary conditions we applied them in numerical computations of ‘h
the incompressible Navier-Stokes equations in a channel with a step and in a pipe with a N
sudden enlargement of the cross section. To numerically solve the Navier-Stokes equatiorns i
we used a second order accurate finite difference scheme@S{nkuerda—té’»O ).%lso the bound- °’ ‘
ary operators were approximated using second order accurate finite difference formulas. $y
The numerical results show the effectiveness and the increase accuracy obtained by using Q
the higher-order boundary conditions. g_\.

h

- X

- - :

g By
AMS(’VIOS) Subject Classifications: 35Q10, 35A40, 65N99 -
B!

Key Words: Navier-Stokes, boundary conditions, dlf'ere'mal operator, Ponseullle ﬂow, ':$

C " Reynolds number) finite difference 3
P~ Ry
ny
u"
*Facultad de Ciencias, Universidad Central de Venezuela-Caracas. ::
Mail address: Apdo 4311, Carmelitas, Caracas 1010, Venezuela. P
Supported by the U. S. Armyv Research Office under Contract No. DAALO03-87-K-0028. Ny
]

)

s

S A S R R S N R AT S SR SO LR 0 O T Lo PR O (S g



. . T

v e R

e I

-

L2 N B N e 8 flp '8 4 a Bt Bk g 0" L R P PN S RO W T AR T WM A AWK W XTI b bt e g 0 ORTERTD 0] O TOTOR TS - OWOTN Ty >,

COMPUTATIONAL BOUNDARY CONDITIONS FOR THE INCOMPRESSIBLE
NAVIER-STOKES EQUATIONS IN CHANNELS AND PIPES

Gerardo A. Ache”

1. Introduction

The development of boundary conditions for fluid flow in computational domains is
an important subject in engineering applications, e.g. Engquist and Majda {12}, Hedstrom
[18], Bayliss and Turkel [6], Rudy #nd Strikwerda (29}, Han and Innis [17]. In particular
the determination of inflow and outflow boundary conditions for channel and cylindrical
geometries is a very interesting problem in computational fluid dynamics. These boundary
conditions are important since chosen properly they allow the size of the computational
domain to be reduced and therefore cut down the time of computation. They also have a
significant impact on the overall accuracy of the solution. In this paper we develop a class
of inflow and outflow boundary conditions for the incompressible stationary Navier-Stokes
equations. We consider that class of infinite domains which are combinations of cylinders
or strips, (e.g. a channel with a step or a pipe with a sudden enlargement of the cross
section), and for which conditions for flow into and out of the domain are needed in order

to reduce the finite domain to a finite one.

*Facultad de Ciencias. Universidad Central de Venezuela-Caracas.
Mail address: Apdo 4311, Carmelitas, Caracas 1010, Venezuela.
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The unsteady flow of a viscous incompressible fluid satisfies the Navier-Stokes equa-

tions

%% + (u- V")U +Vp-vViu=1 , (1.1a)

Viu=0 (1.18)

where u(Z,t) is the velocity, p(Z,t) is the pressure, f(Z,t) represents forces on the fluid,
v is the kinematic viscosity, £ is in the domain 0 in RY (N =2or 3) andt > 0. We
! here assume that the force f is derivable from a scalar potential P, i.e. f = —VP . Then
we may rewrite the pressure as p + P . In addition to (1.1a), (1.1b) we may consider the

boundary conditions

u=gondN , (1.1¢)

where g is required to satisfy

l -/ang-ﬁ=0 , (1.1d)

. and the initial condition

u(z,0) = h(3) . (1.1¢)

The Navier-Stokes equations are important since they describe fluids such as air at low

speeds, water, oil, etc. The mathematical aspects such as existence, uniqueness, and

regularity of solutions related to these equations can be found in [24} and [32].
For the steady state Navier-Stokes equations in an infinite cylinder with cross section \
C there is a relatively simple solution called Poiseuille flow. If z; measures the distance &

along the axis, for this solution the velocity has the form u*(r) = (4(zr,,r3),0.0) . and
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the pressure p™ = — Pz, , with P a constant. Then i is solution of the equation

i 9% -
(57 m) =P (1.2

and for which the flow condition
/ tdrodzz =Q >0, (1.2b)
c

is satisfied.

In 1}, {4], {20] and [21], are proven estimates which show that the difference u(z) —
u(Z) decays exponentially in the axial direction of a semi-infinite cylinder. This result
is used to formulate our boundary conditions.

Since cylindrical geometries lead to Poiseuille flow at infinite distance, (inflow or
outflow), one may impose at inflow or outflow the Poiseuille profile as a computational
boundary condition. This is often done in computations involving the incompressible
Navier-Stokes equations in channel and pipes, the resulting boundary conditions are of
Dirichlet type. These conditions have béen used for Navier-Stokes calculations and with
different formulations, e.g. stream fuﬁction-vorticity formulations or primitive variable for-
mulations (e.g. [5], [11], [22], [25], [27]). Other type of computational boundary conditions
are the specification of derivatives of the velocity or the stream function and vorticity at
inflow or at outflow, (see [19], [23], {26]). For example, in [16] Greenspan performed Navier-
Stokes calculations using Poiseuille flow as an inflow boundary condition, but at outflow he
combined the vorticity and the stream function in a way that makes the pressure constant
at the outflow boundary. He also carried out computations using Poiseuille flow at both
boundary positions and he pointed out that both formulations were numerically equiva-
lent. In {13’ the effect of some downstream boundary conditions in a channel with a step
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“ are discussed for both the stationary and time dependent incompressible Navier-Stokes

equations.

oy Since the Poiseuille profile occurs only in the limit at infinite distances, in order to con-

’ struct better boundary conditions we may consider the asymptotic nature of the solution

::: in the manner of Bramley and Dennis {9!. We assume that the solution can be regarded at
;:é large distances as Poiseuille flow plus a perturbation which decays exponentially fast. This
|

: perturbation is then expanded in terms of an eigenfunction series involving eigenvalues
:,:é and eigenfunctions which satisfy certain system of ordinary differential equations 1], 8],
{

.“:" [9], [10], [15] and [33]. Using this approach we may construct better boundary conditions
:.3:. by introducing an operator which annihilates the first few terms in the expansion. This
‘:.E method is closely related to that presented by Bayliss, Gunzburger, and Turkel 3} for the
8

:“ Helmholtz equation, where the concept of asymptotic expansion was applied to construct
' .

;%: far-field boundary conditions, see also [7]. Similar to (5], the operators which define our
N

:::, boundary conditions are linear differential operators and they may involve derivatives of
,:\: order greater than the order of the differential equations. These boundary conditions are
K

Eﬁ : different from the usual conditions used in incompressible Navier-Stokes calculations which
j; involve only the variables and first derivatives. For linear systems of elliptic equations it
h

:‘:, is known (see [3]) that it is possible to prescribe boundary conditions defined in terms of
» .

:: linear differential operators involving derivatives higher than the order of the system and
still have the problem be well-posed.

. |

v ' In [9] Bramley and Dennis formulated inflow and outflow boundary conditions in

channel-like geometries which are similar to our first-order boundary conditions. but ap-

B
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plied to the stream function formulation of the Navier-Stokes equations. They suggest

» - -

that their conditions may be suitable for numerical work involving the incompressible

Navier-Stokes equations. !

To implement the boundary conditions we used finite difference formulas for the

- -
- cr -

b

' derivatives as efficiently as possible (these approximations are of the same order of ac-

curacy as the order of the numerical scheme which is second order accurate (Strikwerda

)
ot
(30])). The numerical results, as discussed in section 4, show the effectiveness and the v
increase of accuracy obtained by using the higher order boundary conditions. f.
i
‘\
2. Development of Inflow and Outflow Boundary Conditions "
Similar to Bramley and Dennis [9], we assume that the solution to the Navier-Stokes "
e
h
equations (u(Z), p(Z)) can be represented asymptotically, far upstream or far downstream, .
in the form i
oy 4 ° 4
u(z) =u*(y) + E W .. (¥) exp(—Anzi) (2.1) ::
o 2
where T = (2,,z2,---,zN) = (21,§) , and u®(g) is the Poiseuille profile associated with 3
the infinite cylinder. The set {W,,(f/’) exp(——,\,,:cl)} is assumed to be a complete set f
$
of eigenfunctions with {Wn(g'),A,,} being solution to an eigenvalue problem which is Y
described in §3. The eigenvalues A, satisfy, N
v
)
[An <1 Ay ] forn=1,2,--- . (2.2) b
L

-

Eigenvalues with negative real part are associated to the asymptotic solution upstream

(i.e. z; negative) and those with positive real part with the solution downstream (i.e. r,

positive).

D T A T A T T TR A T
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To construct an artificial boundary at z, = d (inflow or outflow) we observe that from

(2.1) we get the following relation,

@-u®)+M@-u®) = Olexp(-Aad)] | (2.3)

I'zl=d

8::

’ i.e. the operator d/dz; + A, annihilates the first term in the expansion (2.1). So we may

define the following boundary condition at outflow or inflow, for d large,

|
- ; = . 4
az, (0 =u) + Aafu—u ):,-.—.d ° (24)

A more accurate boundary condition is obtained by annihilating the first two terms in

(2.1), and has an error of magnitude O! exp(—A3d)] . The operator is

(50 + M)l +22) - (25)

In case that A; is complex with A; = A; (2.5) becomes

o +2R (,\)Ja—+|)‘ |2 (2.6)
oz 2 (4 axl 1 . .

To develop even more accurate conditions at the boundary, we consider the sequence of

operators
m
— 4+ ) . 2.7
1:[ azl (2.7)

A straightforward calculation gives that B,,(v) = 0, for any vector function v of the form
m
Z (#) exp(-Axz1) - (2.8)

Using the representation for u in (2.1) we obtain that

Bm(u — u™): = O0'exp(—Am+1d) . (2.9)

MM@M’*%’%&X RS A S S ARA R SR P LA
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l‘ That is for any integer m > 0 the differential operator B,, annihilates the first m terms in o
g the asymptotic expansion (2.1). Therefore we can use ‘this family of operators as a way of

matching asymptotically the solution up to the first m terms. We may therefore impose, i,

at inflow or outflow, the following boundary conditions
X Bm(u - uoo)‘; =0 ’ (2'10) &

‘ which is accurate at the boundary with an error of order O |[exp(—Am41d) | . We may

define a zero-order boundary condition replacing in (2.10) B,, by the ‘identity operator.

A M ]

Then for m = 0, the boundary condition of this family is of a Dirichlet type which is the

e W
-

- e

most common boundary condition used at inflow or outflow in engineering computations.

However, one can expect a significant improvement in the efficiency of the computations

by using the higher-order boundary conditions rather than the Dirichlet condition because
of faster decrease of the error at the inflow or outflow boundary. The result will be a
considerable gain in computer storage and running time as well, due to a reduction in
the size of the computational domain. Notice that since the operators which define these

boundary conditions involve higher-order derivatives we also can expect an increase of the !

we will show, these difficulties in the implementation are usually offset by the substantial

increase in accuracy and efficiency. b

3. The Eigenvalue Problems
The eigenpair (W ,(J), A,) are obtained from an eigenvalue problem that results when g’
we seek asymptotic solutions of the Navier-Stokes equations in the form <

u(#) = uS(§) - W(§)exp(-Azy) . (3.10)

7

g
¢
o~
i difficulties in the implementation of these boundary conditions as the order increases. As
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p(Z) = p*™(z1) + R™ q(y) exp(—-Azy) . (3.1b) % |

For flow in a channel, neglecting nonlinear terms, these eigenvalue problems can be written

%'

as " o
J

d*w, ) . di, i 5

dy2 = —R{u(y)/\W 1 — ;i;“ 2} — /\q - A2W1 , (3.20.) g',f

dw. Y

—2 =W, , (3.20) N

d N dw ;3

q N r N2 1 e

— =R AWy + AWy + A—— 3.2 <4

v i(y) AW, 2T dy (3.-2¢) )

G

with boundary conditions ::'.c
Wi(£1) =Wy(=1) =0 . (3.2d) "

Similarly for axi-symmetric flow in a pipe 2*
LRV (3.30) R
dr T ) ]
%,

d2W2 d‘& ~ 1 dW2 n - . ‘.f

= R{—W,; -2 Wy} — ———— — AW, - AG, 3.3b o

s = R{GW - MW} - TR - AW - g (3.3) 7

> :
4 _ Ri(r)AW, - A—2 + A%, (3.3¢) ﬂ'
dr dT

with boundary conditions, '.;ft
dW, , 2

w 1(0) = d (O) =0 and W’l(l) = ”’2(1) =0 N (33d) 7

r ‘:

o

where & is the parabolic profile in Poiseuille flow, as defined in (1.2a), (1.2b) and R = % :';
A

is the Reynolds number. Results concerning the numerical solution of these eigenvalue :,.
.-

b,

problems can be found in [1}, 8], |9}, {10], {15] and ;33], for flow in a channel and in [1}, :';
a

l\'
for axi-symmetric flow in a pipe, also there are even and odd eigenvalues associated to the .‘
channel flow problem. In this paper we compute solutions of the Navier-Stokes equations, :E
]
8 N,
;.r
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in a channel and-a pipe, using inflow and outflow boundary conditions of the form (2.10),
where the eigenvalues \; in B,, are determined from the eigenvalue problems (3.2) and -

(3.3) respectively.

4. Numerical Implementation

An important ingredient needed to test these boundary conditions is a numerical
scheme to solve the Navier-Stokes equations. The method we used here is based on a
second-order finite difference scheme to solve the Stokes and Navier-Stokes equations ;29 ,
{30]. This method deals with primitive variables formulation, i.e., it uses the velocity and
the pressure as dependent variables. Then the laplacian and convection terms, given in
conservative form, are discretized using standard centered difference formulas, while the
pressure gradient and the continuity equation are discretized using regularized centered

difference formulas {29}, e.g.

] 1
'a—z & 6z0p — 5'125:—534.1’ ) (4.1a)
3 1
a—;’ ~ 8y0p = gh’6,-60.p . (4.1b)
Ju 1
a_xl ~ brouy — 6h26,+62_u1 : (4.1¢)
) 1
7;?2- ~ 6y0u2 - 6h26y+62_U2 ) (41d)

where (620,640), (6z—,6y_), (6z+,6y+) are centered, backward, and forward differences in
the r and y direction, respectively. Formulas (4.1) are used in the pressure gradient and
the continuity equation. To determine the pressure on the boundaries cubic interpolation

formulas are used, i.e.

"""""" SR o o I R R g A LU SR T . SR RS R W o S AR g
A*AA“AL‘A-.IEA}.A‘:A e AAATI WA A A L S S 'J\J‘-.A~:l‘.1\..'.l‘._h\
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po; =3(p1; — P25) —P3; (4.20)

pio=3(pi1 —pi2) —pPis - (4.26)

To solve the resulting finite difference equations an extended S.O.R. iterative proce-
f dure [30; was used. This numerical method is very efficient and accurate. It has been used
to compute flow in a spinning and coning cylinder {31 .

To implement the boundary conditions, we construct numerical approximations to
these derivatives of order O(h?), where h is the grid size in the axial direction. These
approximations do not destroy the entire accuracy of the interior scheme. We provide the
finite differences formulas used to approximate the differential operators for each boundary
condition, e.g.

—First-order :

! o — =" = 4 O(h? . (4.4)
L 6:1:1 iN—l/2 h ( )
—Second-order:
9%u uny —2un-1] +UN-2
— = 222 L 0(hY 4.5
ax'f N-1 h2 ( ) * ( a)
a_”, = UINTUN-Z oY) . (4.56)
aI] fhr_] 2h
: —Third-order :
) 3 By g ) — U~
Q_zg _uxy = 3(ux- Ux-2) —uNx-3 -0y (4.60)
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.6'2u uN'— (uN.—l + uN_z) -‘;;-uN_s : o
—|. - = +0(h?Y) ' 4.6b
023 |n_3/2 4 2h? ). (4.6,
7] UN_1— UN— :
, Sul  _uNo ZUN-2 o4y (46¢)
9z, IN—3/2 h T

—PFourth-order :

0%u| uny —4duy_) +6un_2 —4dun-_3+un_g4
— = “=2 +0(h?) , 4.7¢
ortin_, hA (~%) (4.7a)
63u uN—2(uN_1——uN_3)—uN_4
= = +0(h?) 4.7
0z¢ in_, 2h3 47
0%u Un_] —2uN_2+UuUN_3
= = . +0O(h?) (4.7¢)
oz} N-2 h?
Ou = IN-1_UNS3 L o(R?) . (4.7d)
81:1 N-2 2h

5. Test Problems

In order to test these boundary conditions we used two problems as test problems.
The first problem corresponds to an incompressible viscous flow in a channel with a step
(see Figure 1) which can be regarded as the union of two strips, one upstream of the form

Ry = (1,1) x (—00.0} and the strip downstream of the form Rz = (0,1) x {0,00) .

11
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X The Poiseuille solution associated with the infinite strip having the same cross section
1 .""-.:’» s ' R e o .

I LT i e e e e

R'l 1s gnven by

. 1

i) =48y - )1 -y) (5-10)

9%
PPE) = -pz+Ci (5.1b)

X where C; is a constant.

. Similarly the Poiseuille solution associated with the infinite strip with same cross

1 v

section as R, is given by

K i(y) =6y(1-y) (5.2a)
12
Pr(z)=-Fz+Cr . (5.2b)

To solve the Navier-Stokes equations we imposed boundary conditions at inflow and

; outflow of the form (2.8), and the non-slip condition at the walls. The eigenvalues in the
, expansion {2.1) are obtained by solving the eigenvalue problems described in §3.

E The second test problem consists of a pipe with a sudden enlargement on the cross
' section, the fluid motion is considered axi-symmetric. Computations are made only in

half of the domain, so the computational domain is similar to that for the channel flow

f problem.

) The Poiseuille solutions associated which each part of the domain are given by,

)

f i(r) = 4(1 - 4r%) (5.3a)

! p%°(2) = —(ﬁz - C. (5.35)

R

p for the pipe upstream. i.e. Ry = (0.}) x (-00,0 and

! i(r)=1-r% | (5.4)
| 12
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4 — : . '--.','_, ‘
P¥(2) = -p2z+Ca, (5.4)- T

for the pipe downstream, i.e. R; = (0,1) x (0, 0).
These two problems have been the subject of many numerical studies in the last 20

years, e.g. [11], [16], [19], [22], [23], [25], [26], [27]. ‘ N

6. Numerical Results

- -
-

iy S

AN

"~

s e k-
PR

--wa

Figure 1: A Channel with a step. by
. v

We have done numerical computations which include the two test problems for flow
in a channel and flow in a pipe. These two problems retain the full non-linear character

of the Navier-Stokes equations. Boundary conditions of order 0, 1, 2, 3 and 4 have been

XA WS

applied at outflow for the channel flow problem and boundary conditions of order 0, 1 and

r

2 have been applied at outflow for the pipe flow problem. The specification of Poiseuille

e, T T W

flow (zero-order boundary condition) was applied at inflow for both problems. The test

13
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these solutions correspond to boundary conditions of order 0.2.3, and 4. Since at that

‘;}j' . positions where the computational boundaries were specified were at z = d = —1 (inflow) .::
e L’h;n;t-i' T = d =4 (o'ixtﬁow)h. The 'cor;i';;—zx‘tétions ha\;e' Beén.perfof;méa' for 'Iieyr;:).lds r.it‘u’nber.s | s:
R in the range 0 < R < 50, and solutions were obtained in the largest domain (d = 4), Ez:

. '

using the grids 110 x 21, 140 x 29, gnd 170 x 35 at R = 30, 40, and 50, respectively, for the . EE:

: ¢

. channel flow problem. Similarly for the pipe flow calculations the grid sizes were 50 x 21, ":

s 4752&:, 21, 4:‘and 110 x 21 at R = 10, 20, and 30, respectively. The iterative procedure was ;
- stoppecf ‘when the re51duals of the difference satisfied a glven to]erance of 5x 1075 in the - | ':
largest domain and .5 x 10~ for computations in the shorter domain (i.e. d < 4). All the ' ::::
computations were done on the VAX 11/780 at the Mathematics Research Center at the | ‘:EE

University of Wisconsin-Madison. ]

]

The numerical study included the following aspects related to the boundary conditions. :‘

For a fixed domain. we considered the effect .of these boundary conditions as the Reynolds l;

number was increased. For a fixed Reynolds number, we considered the effect of these :

boundary conditions as the domain was reduced.

N

In Figures 2.1a to 2.3b we display graphs corresponding to the velocity field at the "

ceﬁter line of Rz, for the channel and pipe, downstream, i.e, at the line T = {(z,y)/y =

%,a < r < d}, where a is greater than zero (i.e, away from the step). These graphs show '.:_:

how the solution is affected when boundary conditions of different orders are applied. In fE

the channel flow problem at R equal 'to. 30 Figures 2.1a to 2.1b show the velocity field ..

"

corresponding to the domain at different distances downstream (i.e, d is 4 and d is 1.5). :;

‘

Reynolds number the first and second eigenvalues in the expansion (2.1) are a complex

PR

=
P
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conjugate pair (even) and the third and fourth eigenvalues are real (odd and evgn), see
Table 1, it is not appropriate to use a ﬁrst-order bouﬁdary condition. In F igﬁre 2.ia. we
notice that the solutions for the different boundary conditions are close together, except
near the outflow boundary where the solution corresponding to> the zero-orde_r boundary
condition presents the largest deviation from solutions obtained using the higherroi'dér
conditions. As the domain is reduced from d of 4 to 1.5 the solution corresponding to tﬁe
zero-order condition separates from the solutions corresponding to the higher-ord;r'c;ndi- .
tion, these solutions remaining close together. We compnted the absolute and p.eArcentageA
errors for the difference between the solution in the largest domain and solutions in a
shorter domain, for each boundary condition, these errors were measured usiné fhe dis- .
cretized Ly-norm, i.e., if U ,’f is the numerical solution in the largest domain, corresponding

to boundary condition of order k, and V,f‘ is the numerical solution in a shorter domain,

then the absolute and relative error are defined as A* := ||Uf - V}F|i; and A"/||U,’f|§2 re-
spectively, where {[Up|l2 := h(32; 3_; U%)“/z, and the sum is taken over all the grid points.
We have found that at R equal to 30, the numerical solution obtained using the zero-order
condition in the domain with outflow test positions at d equal to 1.5 present percentage
errors of about 12%, while for solutions corresponding to the higher-order condition these

percentage errors were less than 1%.

At Reynolds number 40 and 50 the first two eigenvalues in (2.1) are real (odd and
even) and the third eigenvalue is complex (even) and thus we applied boundary conditions

of order 0,1,2 and 4. We notice that at R equal to 40 the gap, near the outflow boundary.

. S T X IR SN I AN A e e Y N S~ 4 A

between the numerical solutions corresponding to the zero-order condition and solutions
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 boundary conditions. At d equal to 3 solutions were obtained for the first, second and

‘ and foﬁ;’_th order boundary condition and at d equal to 1.5 a solution was obtained only
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corresponding to the higher-order condition is bigger that for those at R equal to 30.
For d < 3 a numerical solution using the first-order boundary; condition could not be
obtained, and for d equal to 1.5 solutions were obtained only for boundary conditions

of order 2 and 4. For R equal to 50 and d equal to 4, solutions were obtained for all

fourth order boundary condmons, at d equal to 2 solutions were obtamed using the second
for the fourth-order boundary condition. For these Reynolds numbers the largest absolute
and percentage errors correspond to numerical solutions obtained using the zero-order
boundary condition, also the absolute and percentage errors for solutions corresponding to
the higher-order condition become smaller as the Reynolds number is increased, that is due
to the grid size being finer. These grid sizes were necessary in order to get a solution using
the zero-order boundary condition. However, solutions on a coarser grid can be obtained
using the higher-order boundary conditi(.)ns. As we increased the Reynolds number from
R equal to 50 to R equal to 60 we could not get a solution using the zero or first order
condition on the coarser grid, however as the grid was refined a solution was obtained

using the first-order condition but not the zero-order condition.

For the pipe flow problem we present the same type of results as for the channel flow
problem. In this case the effect of using the zero-order boundary condition or a higher-
order condition is more notable, notice also that the eigenvalues for this case are smaller
in magnitude than those for the channel flow problem (Tables 1.2). For this problem we
applied boundary conditions of order 0 and 1 at Reynolds numbers R equal to 10, 20 and

16
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boundary conditions of order 0, 1 and 2 at R equal to 30, these conditions correspond to

real eigenvalues in the expansion (2.1). Similar to the channel flow problem, we computed
absolute and percentage errors for the different boundary conditions. In this case the
percentage errors corresponding to the zero-order boundary condition, for the pipe flow
problem, are much bigger than those for the channel flow problem (see Table 3). It is
then possible to appreciate the effect of these boundary conditions in the stream function
and pressure contour plots. In Figures 3.a to 3.d we present stream function and pressure
contour plots for different boundary conditions at different test positions. Notice that

near the outflow boundary in the pressure contour plots corresponding to the zero-order

condition (Figures 3.2, 3.c) there are contours that can not be seen for the pressure contour -

plots corresponding to the higher-order condition. Similarly the stream function contour
plots associated to the zero-order condition (Figures 3.a, 3.c) presents some oscillations
near the outflow boundary while the stream function contour plots corresponding to the
higher-order condition do not present those oscillations. These oscillations in the pressure
and in the stream function contour plots are the result of the zero-order boundary condition
being applied. Notice that in the stream function contour plots the oscillations are not
as big as for the pressure contour plots, that is because we computed the stream function
integrating the velocity, using the trapezoidal rule, and the integration acts to smooth the

values,

17
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7. The Pressure Corner Singularity
Analytically, it can be shown ([1], [2]) that for plane flow the pressure, near a re-

entrant corner, behave as

pr Alr‘o"56+0(r’°‘°9') , (7.2)

where A, is a constant, and the pressure is given, near the corner, in polar coordinates,

~with the origin at the re-entrant corner.

~ Since the geometries considered in this paper, for the two test problems, present
re-entrant corners and the pressure tends to be unbounded as the re-entrant corner is
approached we need to provide, to the finite difference scheme finite pressure values at
such corners, as efficient as possible, to evaluate the pressure gradient at adjacent grid
points. In our situation, since the numerical scheme requires values of the pressure at the
solid wall and since these values are computed using extrapolation formulas (as described
in §4 ), we may compute the pressure at the corner in two different ways using such
extrapolation formulas for each of the two directions. Assuming that the re-entrant corner
is located at (zo,yo), we have
P .. := p(zo,¥0)
= 3(p(zo + hz,y0) — P(To + 2hz,y0)) + P(zo + 3z, ¥0) (7.1a)
and

Pc,y = p(Io, yO)
= 3(p(zo,y¥0 + hy) — P(Zo,yo + 2hy)) + p(zo,yo + 3hy) . 7.1b)

Here h;, h, are the grid sizes in the r and y directions respectively. Notice that since these
values of P ; and P, , do not need to be equal it suggests that the pressure at a re-entrant

18
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corner may be regarded as a double valued function. Therefore to evaluate the pressure
gradient at adjacent grid points we use P.; to compute the approximation to dp/dz at
(zo + kz,y0) and Py to compute the approximation to dp/dy at (zo,yo + hy).

The pressure strategy described above works well in computation at small and mod-

erate Reynolds numbers and accurately models the pressure singularity, as it is shown in

(1] and [2].

8. Conclusion

We have developed a family of local boundary conditions for the incompressible
Navier-Stokes equations in channel and pipes. The boundary conditions z;re constructed
using the fact that the solution possesses an asymptotic expansion of the form (2.1). Nu-
merical results demonstrate the effectiveness of these boundary conditions. These results
are summarized as follows:
1- For a given domain, a given grid size, and a given boundary condition, as the Reynolds
" number is increased a solution may or may not be obtained. In case the solution is not
obtained either the finite difference solution does not exist or the iterative method fails to
compute the solution. As the mesh is refined a solution may be obtained.
2- For a given domain, a given grid size, and a given Reynolds number, as the order of the
boundary condition increases the accuracy of the finite difference solution improves.
3- For a given grid size, a given Reynolds number. and a given boundary condition, as the
domain size increases the accuracy increases.

4- For a given domain, a given Reynolds number. and a given boundary condition. as the

grid size decreases the accuracy increases.




- These results demonstrate that the use of the higher-order boundary conditions can

improve both the efficiency and the accuracy of fluid flow calculations.
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TABLE 1

Eigenvalues from the expansion (2.1).for the channel flow problem

-~ | inflow Il outflow . outflow outflow |

30 | -6.33792 | 1.9842+i1.2012 . 2.48996 | 3.372034

40 | -5.95994 | 1.86981 | 1.89935 : 2.1503~i1.1312

50 | -5.69344 | 1.31807 | 1.49834 | 2.0832-i1.2186

60 | -5.49035 0.95132 ' 1.25008 ' 1.9780-i1.2161
TABLE 2

Eigenvalues from the expansion {2.1), for the pipe flow problem

inflow . outflow Q outflow |
| R Ay D PR Az :
} 10 | -11.2063-i2.1544 = 2.84871 | 4.2920-+i1.42646
| 20 . -9.89212 ~1.23859 | 3.9266+i0.7599
| 30 -9.38262  1.02639 | 2.83212
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TABLE 3
Absolute and percentage errors betwwen the solution in the largest
y

domain and solutions in a shorter domain (pipe flow)

R | d | BC | 2K7) « %  A%*™) 1 % |

10 3 [ 0 | 000048 . 128 000058 ; 0.23 !

. 2 | 0.00566 - 13.10 ~ 0.00594 | 2.72
7 1.5 | 001779 | 3852  0.01697 . 8.89
N 30 | 1 ! 000028  0.75  0.00059 - 0.23
20 | | 0.00081 . 1.87  0.00209 : 0.95
15 | 0.00190 ' 4.13 000438 @ 2.29
20 | 30 ; O |. 0.01095 ;: 36.06 ' 0.00869 ; 3.92
| |20 | 0.03650 . 115.63  0.02506 = 13.33
30 | 1 | 000080 = 2.64 . 0.00108 . 0.9
130 | 30 ; 0 | 0.03200 - 128.68 . 0.01989 9.83
. 30 | 2 1 000001 0.05 ~ 0.00003 . 0.02

* The radial velocity component

** The axial velocity component
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Pipe flow problem. Stream function and Pressure
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30 . Boundary condition of order 2 . d = 3.
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