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PROPAGATION OF CHARGED PARTICLE BEAMS
IN THE ATMOSPHERE

Introduction

This paper presents a brief review of intense relativistic electron

beam propagation in "dense" neutral gas. To specify the meaning of

"dense", we shall assume that the beam energy is deposited locally and

promptly in the gas, resulting in the formation of a highly collisional

plasma with electron density ne low compared to the gas atom density, but

* high compared to the beam density. These assumptions are usually

reasonable for gas densities above a few tens of torr, on up to atmospheric

density. This work was originally prepared for the annual Particle

Accelerator Conference in Washington, DC, March, 1987, and was constrained

in length by the requirements of that conference. It is by no means a

complete review of the subject, but I have attempted to present at least a

coherent overview. The work reviewed is the product of many investigators;

little or no new work is presented here.

A charged particle beam injected into a neutral gas begins immediately

to ionize the gas. For example, in air at standard atmospheric density

each beam electron collisionally ionizes about 100 thermal electrons per

cm. Thus, the "plasma" electron density ne exceeds the beam density nb

almost immediately. Over a tine scale 1/4na, a very strong radial space

charge field expels a small fraction of the plasma electrons, thereby

setting up a charge-neutral region within the beam and out to a large

radius b =c/4fl0 (Since the plasma is typically weakly ionized and

collisional, it can be characterized by a local scalar conductivity ai.)
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- Thereafter, the only radial forces on the beam are magnetic: the beam is

N pinched by its self-force, but this may be partially neutralized by reverse

currents induced in the plasma. The beam thus propagates in a self-pinched

equilibrium, with the magnetic pinch balancing the beam's transverse

pressure, as well as any centrifugal force if the beam is rotating. The

equilibrium radius is proportional to the emittance and inversely

proportional to the square root of the net (beam plus plasma) current In

(If the radial profile of the plasma current J p(r) differs from that of

beam current Jb(r) it is necessary to define an appropriate radially-
1

averaged "effective current" that controls the pinch strength. We shall

neglect such subtleties here.) Since I generally increases as one movesn

backward in the beam, the equilibrium has a trumpet-like appearance, with

the radius steadily decreasing (Fig. la). Indeed, the very front of the

beam, where charge neutrality has not been established, is unpinched, has a

large radius and constantly erodes due to both radial expansion and energy

loss.

Single-Particle Energy Loss

Highly relativistic electrons lose energy, due to ionizing collisions

with gas atoms, at a rate given by Bethe's formula,
2'3

dE/dz = -(2rnnZe 4/mc 2 )ln(y m 2c 4/22 <>2 ), (1)

A where n is the gas atom number density, Z the atomic number, and h<w> a

characteristic bound electron energy. For electrons with E > 1 MeV in

full-density air, this stopping power is 200 to 300 keV/m.

For high-energy electrons (e.g., > 100 MeV in air), energy loss due to

bremsstrahlung emission dominates. This energy loss process proceeds

exponentially, with the mean energy <E> decreasing as

d<E>/dz = -<E>/Xr, (2)
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with the radiation length Xr given by
2

2 2 2 21/X = 4nZ(Z+l)(e /A c)(e /mc ) 2nA, (3)
r

with A S 192/Z I /3 if y > 100, or A a y if y < 100. In standard-density

air, X= 300m. Bremsstrahlung energy loss is statistical in nature,

leading to a large energy spread ("straggling"). This has important

implications for beam stability and range.
4

Other single-particle energy loss mechanisms, e.g., synchrotron

radiation, are relatively unimportant for beams propagating in air.
.9.

Radial Expansion

As a result of multiple small-angle scattering off nuclei, an

1 unpinched electron beam in standard-density air expands as the 3/2 power of

distance. This expansion is rapid as compared to energy loss. A pinched

beam also expands as its emittance increases by scattering, but in a

different and much slower way. Energy loss also has an effect on the beam

radius a.

Let us consider a beam which is subject to the energy loss mechanisms

discussed above, as well as to multiple small-angle scattering at an

angular rate
2

S a d<92>/dz = 16tn(Ze 2/ymc2 ) 2ln(210/Z /). (4)

'-..

Because neither electron-electron collisions nor bremsstrahlung emission

result in angular scattering of a high-energy electron (to within order

1/y, assumed negligible), it is easily seen that these mechanisms leave the

- unnormalized emittance C a9< 2> invariant. If we assume that scattering

is slow compared to a betatron oscillation wavelength X of the beam

2
electrons in the pinch potential, i.e., that X S/<> << 1, it can be

shown5 that the beam radial profile assumes a self-similar Bennett profile,

2 .2 2
and that c increases at a rate a S. In equilibrium, <0 > is fixed by

Bennett condition,
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< <82> = In/IA ,  (5)

where IA = 170y kA is the Alfven-Lawson current. Thus, the slow changes in

y (energy loss) and c (scattering) lead to a steady adiabatic change in a,

d ln(y- /21n /2a)/dz = 1/LN, (6a)

where

L 2)y 2UN  O c/2ne2)(I IA Xr (7)

For example, this gives L = (InE/7xlO 12 watts)Xr in standard density air.

N:n
Equations (6),(7) are known as the Nordsieck equation, derived in its basic

form (but never published) by A. Nordsieck in the early 1960s. Later

'V contributions were made by Lee. 5,6 Fawley (unpublished recent work) was

the first to derive the correct energy dependence in the LHS of (6a).

Energy loss that is due to the effect of E electric fields (ohmic

loss, to be discussed below) conserves the transverse momentum p, a ymv i of

,. each beam electron, and thus, increases the transverse pressure <ynbmv1 >.

Ohmic energy loss thus causes beam expansion, whereas it is evident in

Eq. (6a) that single-particle energy loss leads to beam contraction.

Mathematically, it can be shown that ohmic loss leaves the normalized

emittance ye constant, and that when it predominates the Nordsieck equation

takes the form

d ln(y /21 n/2a)/dz = 1/L . (6b)

A few electrons undergo larger-angle single scatterings, which lead to

"Moliere scattering". These electrons escape to large radius, and it is

simplest to regard them as lost. This leads to a slow decrease in beam

current Ib' but to a reduced rate of emittance growth for the remaining

beam. The net effect8 is to increase Eq. (7) for LN by 20% to 40%, which

9V is in good agreement with experiment.

A 4
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A beam can only be considered to be pinched, and the Nordsieck

equation only applies, if the Nordsieck expansion rate (basically an

exponential process with e-folding range LN) is slower than the diffusive

expansion rate for an unpinched beam. This sets a minimum condition for

propagation in the pinched mode in a dense medium. It is also to be noted

that in air Nordsieck expansion occurs more rapidly than single-particle

energy loss if In < 8OkA and E < 10OMeV, or if I nE < 7xlO12 watts and E >

10OMeV. It is thus evident that high current and/or energy are necessary

for effective self-pinched propagation in dense media.

Energy loss and radial expansion represent fundamental limitations on

range, which can be alleviated only by propagating in a reduced-density

channel ("hole-boring"). This can be accomplished by sacrificing the front

of a particle beam to heat the air and induce radial expansion, which

increases the range of the beam tail, or by using a series of beam pulses

to produce the same effect, or by using some other means to heat and

prepare a reduced-density channel.

Plasma Return Current, Ohmic Loss, and Nose Erosion

Lenz's law suggests that a CPB should induce an axial electric field

E which opposes the propagation of the beam and drives a reverse current.% z

in the conducting medium. E extracts energy from the beam and eventually

dissipates it in the plasma through resistive decay of the return current.

For a highly relativistic beam with v = c, E does not arise at the very

front of the beam, where the gas is nonconducting. The fields there are

purely transverse electrostatic/magnetostatic. In effect, the beam serves

as a guide for an electromagnetic wave (E ,B ) in the vacuum. As a

-p increases, many things happen in rapid succession at the point where

a ct-z = c/4na. (e is the distance behind the beam head, a very useful

0 5
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coordinate for many purposes.) The beam charge is neutralized and the

self-pinch is established. (Hence, this region of the beam is called the

"pinch point".) Maxwell's equations reduce to Ampere's law out to a large

radius b wherein space charge neutrality prevails. The E field "turns

around" and becomes an Ez field which is governed by the inductive term in

Ampere's law. This leads to a very large spike in the field E (z), which~z

can reach many MV/m. As a continues to increase rapidly, the "monopole"

magnetic decay length cT 0 (2naa 2/c)ln(b/a) becomes much larger than the
, ' 0

beam radius a and the net current is frozen in. Thereafter E takes thez

value necessary essentially to maintain the value of In established at the

K pinch point. Since a is rising rapidly, E () decreases rapidly, making
z

the E spike very narrow. Thus, ohmic energy loss extracts energy

primarily from beam electrons near the pinch point. Furthermore, ohmic

loss results directly in radial expansion, as we have seen. Thus, it is

appropriate to regard ohmic loss as primarily a mechanism for erosion of

the beam front. If one assumes, for convenience, that the beam current

Ib(Q ) and voltage V are constant, then the ohmic energy loss rate is

equivalent to erosion of the beam front at a rate 10'1 1

d /dz = (I n/I )ln(b 2/a 2). (8)

We note that nose erosion is additionally driven by scattering, since

Nordsieck expansion is fastest at the pinch point, where the pinch force is

weak.1 0 Scattering-driven erosion is not included in (8).

'V Calculations1 1 also show that if the ionization of the gas is due

entirely to beam collisions with gas atoms, then typically I settles downn

9., to a slowly varying value

?%"

.. I = Ib/(l+X) (9)
no 6
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shortly behind the pinch point. Here X E dT1 /dt d(naa 2/2c)/d is a

normalized measure of the beam current. The fractional current

neutralization f -I p/Ib increases with beam current because da/d is

proportional to Ib/a 2; at higher values of Ib? the effective current is

frozen in at an earlier time. For air, and most other simple gases,

Ib - lOkA represents a transition point; higher current beams are mostly

current neutralized, while lower current beams are only weakly neutralized.

f If Ib rises to its full value over a time long compared the temporal

delay from the beam head to the pinch point, then the erosion rate and I

become functions of the beam rise rate rather than the peak Ib* However,

if the beam propagates far enough, the rising portion of Ib(t) eventually

erodes away and Eqs. (8) and (9) become directly applicable.

Gas Conductivity

We have already had a number of occasions to refer to the evolution of

a, and this aspect of the physics also has a major effect on beam

* . instabilities. At this point, we shall briefly consider the principal

mechanisms that underlie plasma conductivity.

The conductivity may be written ne e, where p is the electron

mobility, determined in general by both electron-neutral (e-n) and

'. electron-ion (Spitzer) collisions. Frequently a dense gas is only weakly

ionized by a beam and e-n collisions dominate, in which case v is

independent of n and only weakly dependent on temperature T (typically, w

c IVT ). Thus, a depends primarily on the ionization and de-ionization
e

16
'V processes that control ne, which increases rapidly from zero to ne > 10

In addition to beam-collisional ionization, avalanche ionization (i.e.,

ionization of atoms by plasma electrons which have been energized by

macroscopic electric fields) may occur, particularly near the pinch point

N.



where large electric fields are present. De-ionization is usually due

primarily to recombination, at least within the core of the beam. (In some

gases, e.g., 02, attachment can be important at large radii or wherever ne

is relatively low. This will be ignored here.) We may thus write an

equation governing the evolution of a:

2
da/d = c1l(Te)Jb + a2 (Te)a - (Te)e . (10)

In the front portion of the beam and out to one or two beam radii,

beam-collisional ionization [the first term of (10)] usually dominates,

except possibly at the pinch point. In this case (and if we also neglect

the T -dependence) the radial profile of a(r) is identical to that ofe

Jb(r). Moreover, the plasma current Jp(r) = aEz has a similar profile,

since Ez is only weakly dependent on r within the beam. [See Eq. (11)

below.] This approximation is frequently made in analytic studies, and

greatly simplifies the analysis. Avalanche [the second term in (10)] has

two effects. Avalanche driven by Ez at the pinch point causes the central

o(r) profile to become narrower than Jb(r), a destabilizing effect that

will be discussed later. Avalanche driven by E in the very front of ther

beam produces a very broad low-level conductivity out to the large radius

b, which has important consequences, e.g., the large inductive logarithms

9 in Eq. (8). Further back in the beam, where recombination [the third term

of (10)] becomes important, a(r) becomes broader than Jb(r), which helps

*stability. We note that, in a complex gas such as air, recombination can

depend on water vapor content and complicated temperature-dependent

A n12
- chemistry effects, e.g., the formation of molecular complexes. On a

* practical level, even the weak dependence of p on T can have significant' e

V 13effects, e.g., on hose instability, as discussed below. To model

temperature dependent effects, it is frequently convenient to assume that

* 8
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(in a diatomic gas) T eis determined by a balance between ohmic heating and

energy loss to vibrational modes of the molecules. In this case, it can be

shown that T eis a function only of E/p, where E is the electric field and

p is the gas density. We can then write the coefficients in Eq. (10) as

functions of E/p. A summary of these coefficients is given in Refs. 13

and 14.

We have assumed that the plasma conductivity is local, scalar, and is

created instantaneously by beam collisions. In fact, beam-gas collisions

V.. do create high-energy secondary electrons (delta rays) which have long mean

free paths. Although relatively few in number, these secondaries can have

some effect in spreading and delaying conductivity, and in responding

nonlocally to electric fields. It is also true that tensor conductivity

can play some role if the net current is high or the beam radius is small,

leading to strong magnetic fields.

Beam Instabilities

As a magnetically confined, highly ordered system, a self-pinched beam

is subject to a number of instabilities, which are driven by two effects:

(1) If there is a substantial return current I =-I then there is a

p b
repulsive magnetic force between I and I As boga ndIrmilon as I an b mi
well aligned and more or less proportional to each other, this merely

weakens the pinch in an orderly way, but if perturbations lead to a

separation of I and Ib the repulsive force can drive unstable growth of
p b

the perturbations. This is the primary mechanism for all of the

instability modes except hose. Each has a threshold value of f below which

the mode is stable. 15(The hose mode is unstable even if f = 0, but is

further destabilized by nonzero return current.) (2) Even if I U
p

symmetry-breaking distortions can~ drive locally destabilizing magnetic

1 9
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forces. Finite plasma resistivity plays a key role hete. Because a ,

magnetic field lines are not frozen into the plasma and instabilities can

. occur on the time scale for beam motion. rathet than the much slower

hydrodynamic time scale for the plasma. But becaiwe o t 1), the field lines

are subject to destabilizing phase lags as the . v t,, fl lo' beam

- distortions. This mechanism part icularily dxi ves the e i ti'.e hose

instability, which is the most notorious of the bea i 1stab i ies.

The linearized normal modes of a beam can be chat ai te i i 7ed by a pait

of quan tuM numbers ( m, n where m i nd i ca t es 0 dependen e ex 1 ( ) and 11 is

the radial mode number. roughly speaking the numbe oft s , Ila t i on - it h in

-. the beam radius. The first few modes, shown in Fig. 1. a e the most

important for pinched beams: (m = 0. n I I) is the sausage *,.h-.. toughly a

self-similar expansion/contraction of the beam; (m . 0, u -) ij the

axisymmetric hollowing mode, in which the beam density alternate;ly hollows

out and peaks on axis; (m = 1, n = 0) is the hose mode, in hich the beam

thrashes around more or less like a firehose, without a great deal of

-. internal distortion. The filanentation modes (m > 2 n i > A) > generally

15
have a high threshold value of f and are believed to li, stable fc,

-pinched beams, except in annular (Ltsualy rotating) beamf o1p i i In ia.
.. °

Axisymmetric Hollowing Instability

The axisymmetric hollowing instability was d ico-vei ed in oMpitet

0 14
:" simulations as a particularly violent instabi it , loaltinl: To apil.-

growing radial oscil lations that destroy the beam oilv; a iew a,,<.

behind the pinch point. Computer simulat ions have ) t,.:in d (t, iT i ld

quant i tat ive, and ra the r su-p-is i ng p i c tire of its tite F i, gute .1 sho

the growth of the instability as a f unr t ion of z and i (:ed as i ndependent

variables in place of tIh usutal / and I) , and ig . h shioy's the tadial

prof ii Ib( , ( ) charasto is tic of the instabi it,.
. ,

W*
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Since the simulations show the instability in the large-amplitude

nonlinear stage, where large radial oscillations are apparent, it was

thought at first that this was basically a sausage instability, although

hollowing of the beam profile is apparent in Fig. 3. However, when the

beam profile was constrained to a self-similar shape, the instability

disappeared, thus indicating that hollowing is an essential feature.

Furthermore, a linearized analytic theory of the sausage mode 16shows that

instability is not expected for a beam injected into neutral gas.

[Basically this is because beam perturbations create similar conductivity

perturbations through Eq. (10). This effect inhibits spatial separation of

Iand Ilp, and thus reduces the growth rate for all modes; it just barely

suffices to stabilize the sausage mode.] Furthermore, when the avalanche

0 k7 iterm in Eq. (10) was artificially turned off, the instability disappeared.

Finally, it was found that when E/p was extremely large (specified below),

the instability turned off.

The essence of the hollowing instability is as follows. Behind the

pinch point, where Ampere's law (in its axisymmetric form) is valid, one

can show that the electric field has the radial profile

Ez (r) -ln[(l + b 2/a 2)/(l + r 2/a )J(1

E has a weak (logarithmic) maximum on axis, which is usually ignored in
-. z

analyses. However, over a wide range of parameters, the exponentiation

* rate for avalanche ionization rates increase as a high power (4 to 6) of

E/p. Thus, a, and also the plasma return current J E za, become strongly
p

peaked there, and the repulsive magnetic force hollows out the beam and

blows it out to large radius. This expansion reverses itself only because

the radial expansion of the beam Current decreases the inductance L of the

system. Roughly speaking, LI ntends to be constant, so the defocusing

plasma current decreases, or may even reverse itself so as to augment the



17,18

pinch. 'The beam current then comes crashing back onto the axis, and

the cycle is repeated with rapidly increasing amplitude.

The key quantitative features revealed by the simulations are that the

instability occurs, over a wide range of densities, only if two conditions

are met. First, f > 50%, in qualitative agreement with prior analytic

predictions. 1 his is easily understood: even if the return current

flows in a profile that is very narrow compared to the beam current, the

pinch is destroyed overall if and only if J > J 12. Secondly, the value
p b

of E zIp at the pinch point (in air) must fall into the range

13 MV/m-torr < E /p < 50 XV/m-torr. (12)
z

The lower limit on E /p ensures that avalanche is strong enough to play a
z

significant role. The upper limit is due to the fact that, although

avalanche is very strong at large values of E/p, it no longer increases

rapidly as a function of E/p.

In order to avoid the hollowing instability, it is thus necessary to

keep the maximum value of E below the lower limit of Eq. (12). (In gas at
z

any significant fraction of atmospheric density, the upper limit is not

9exceeded.) This can be accomplished in several ways: (1) By limiting the

rise rate of Ib(t), so that the current at the pinch point is not above a

critical value. (2) By limiting the peak value of I b* Even if I b(t) rises

instantaneously, instability occurs (in air) only if I b > 2OkA multiplied

by the density in atmospheres, for beam radii in the vicinity of 1cm. (3)

Increasing the beam radius.

These conclusions were subsequently tested in an experiment performed

* .19
on the IBEX electron beam facility at Sandia National Laboratories. The

%W hollowing instability was clearly seen to occur at air densities below 80

torr, in quantitative agreement with predictions based on Eq. (12), and to

turn off at higher pressures where E /p became too small.
*6z

12
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Hose Instability

The resistive hose instability is the most important impediment to

propagation of pinched beams. It is observed in nearly all beam

propagation experiments, and has been studied extensively by means of

linearized analytic theory as well as both linearized and nonlinear

numerical simulations. The analysis indicates that the instability is

always present for a pinched beam injected into neutral gas, but that it

can be minimized by limiting the beam duration and reducing the level of

initial perturbation.

Analytic studies of the hose instability have usually been based on

linearized theory for perturbations to an axially uniform beam equilibrium,

i.e., Jbo(r,.) independent of . Hose normal modes take the form

f(r,Qexp[i(O + Qz/c)]. It may also be assumed that the equilibrium plasma

current J po(r,) and (in the simpler theories) conductivity 0 (r,) are

4-independent, in which case the normal mode dependence reduces to

f(r)exp[i(Oc + w + Qz)/cJ and a dispersion relation w(Q) is sought.

Effects associated with the beam head and pinch point, e.g., low

conductivity, space charge, and incomplete pinch, are usually neglected,

and in this spirit the electrodynamics are calculated simply from Ampere's

law (exceptions are Refs. 20,21).

The earliest version of hose theory (the "rigid beam" model) assumed

in addition that the perturbation of each "slice" of the beam consists of a

A transverse displacement by an amount Yexp[i(w4 + Qz)], with no internal

distortion. As a nearly exact consequence of the linearized Ampere's law

the vector potential Az (rz) is also displaced from the axis of symmetry,

by an amount Dexp[i(* + Qz)], without internal distortion. The problem

reduces to ODE's,

13
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~2 2 2 2 (3
a y/az 2 = 9 (D-Y)/c (13)

D + cul(@D/aQ) = Y, (14)

where Ti = na2/2c2 is the "dipole" magnetic decay time. Equations (13)

and (14) lead to a dispersion relation

iT 1 = -2/(k 2 -2), (15)

which correctly shows that oscillation in z scales to X while growth in

scales to the T1 . However, the infinite growth rate predicted at Q 4 ko,

indicative of absolute instability in the beam frame, is incorrect.

The crucial oversimplification in Eqs. (13)-(15) is the implicit

assumption that all beam electrons oscillate at a single resonant betatron

frequency, i.e., that the potential well pinching the beam is simply

harmonic. This would be true for a flat-topped current profile, but the

rounded profiles of J and J introduce anharmonicity, and therefore a
b p

dependence of k on the amplitude of an electron's orbit. When this

feature is introduced into the modeling, as was first done by using the

22"spread mass" formalism, the dispersion relation exhibits a finite

maximum growth rate. For example, Lee finds

i =-1 3x 2-6x4 + 6(x 4-x 6)[in + ln(l/x 2-1)], (16)

2 2
where x 9 /.b Equation (16) is illustrated in Fig. 4, for a beam with

no return current. Most significantly, the instability is convective

backward in the beam frame; hence, it reaches a maximum amplitude at any

given point in the beam and then decays. Thus, the hose amplitude can be

limited by limiting the beam duration to a few growth lengths and by

insuring that the beam is initially quiescent, so that hose modes have to

e-fold many times.

' 14
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Subsequent to Lee's pioneering work, hose modeling has been extended

in many ways. More sophisticated macroscopic models, 2 3 linearized Vlasov

calculations, 24 adsmltos17,18,23-25 have been used to treat beam

dynamics. Plasma return current has been included and found to be strongly

destabilizing. 23,24,2 Self-consistent treatment of conductivity evolution

-5 introduces a variety of effects. A fully analytic linear theory has been

developed which includes the linear increase of equilibrium conductivity

a 0(r,Q) with due to beam-collisional ionization of the gas; in this

case, instability grows as a power p of , rather than exponentially. 2 4

Since p is inversely proportional to a 0, growth is most rapid just behind

the pinch point. (The formalism is invalid ahead of the pinch point).

Furthermore, dipole perturbations of the beam induce dipole perturbations

of a through Eq. (10). This significantly reduces the growth rate in the

presence of plasma return current, particularly for low frequency modes, by

24
inhibiting separation of the beam current from the return current. One

consequence of this is that the hose growth rate typically decreases with

increasing I b9 as shown in Fig. 5. This is the net result of three pieces

of physics: (i) , :l 'b9 which favors higher currents; (ii) the

destabilizing effect of current neutralization, which favors lower

currents; (iii) the effect of dipole conductivity, which swings the balance

to higher currents. Even the T e-dependence of a, i.e., the inverse
S.~hi..13

SI dependence of a on E/p, can be included in a fully analytic theory; 13since

E zis largest at the pinch point and steadily decreases thereafter, this

further accentuates the tendency for hose to grow rapidly at the pinch

point and very slowly further back in the beam.

Numerical Simulation has been essential to detailed understanding of

hi'.17,18,24,25

hoe It permits self-consistent treatment of the radial and

dependence of beam equilibria, of phenomena near the pinch point where

15



* Ampere's law is invalid, and of nonlinear effects. Conversely, the hose

instability has stimulated the development of innovative simulation

*;'- models.2 4'2 5  One conclusion from these studies is that avalanche

ionization at the pinch point is lethal, strongly driving hose as well as

.-'axisymmetric hollowing, and for similar reasons.

Conclusions

We have seen that propagation of beams in dense gases is limited in

varying ways by energy loss, radial expansion, nose erosion, and hose and

hollowing instabilities. For the most part, these limitations are

aminimized by going to higher energies and currents, fatter beams, shorter

pulses, and beams which are more quiescent at injection.
'
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Fig. 4. Dispersion relation for hose instability from the spread mass
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