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SIDELOBE LEVEL OF AN ADAPTIVE
ARRAY USING THE SMI ALGORITHM

I. INTRODUCTION

An adaptive antenna array adjusts its antenna element settings so as to null out interfering
sources while maintaining a beam in a desired signal direction [1]. Two such adaptive array confi-
gurations are the ‘‘full up’’ adaptive array and the sidelobe canceller (SLC) illustrated in Figs. 1(a)
and 1(b), respectively. The full up adaptive array adjusts all the weights on identical antenna array
elements while only tke auxiliary antenna weights are adjusted on the SLC configuration. The full up
adaptive array may have some mainbeam constraints associated with it so that a desired mainbeam can
be maintained [1].
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Fig. la — Full up adaptive array
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Fig. 1b — SLC configurati-:n

Manuscript approved November 5, 1987.




KARL GERLACH
The weights on the full up adaptive array are adjusted so as to maximize the output sxgna] -to- .
noise power ratio, and the weights on the SLC are adjusted so as to minimize the output noise power

residue. If the noise environment is not known a priori, these weight settings cannot be set a priori

but n.cst be estimated from a finite set of incoming data on the input channels. Thus the weight set-
tings will have perturbations about the quiescent vptimum weight settings. These perturbations result
in a rise in the adaptive array sidelobe level above the quiescent adaptive array sidelobe level. We
call the nonquiescent sidelobe level that is due to finite sampling and averaging, the transient sidelobe
level.

This report presents an analytical result for predicting this rise in the adaptive array sidelobe
level by use of the Sampled Matrix Inversion (SMI). The SMI algorithm [2] is an open-loop, rapidly
converging, adaptive array implementation whose convergence rate is indr:pendent of the external
noise environment. For many years, it has been considered a baseline for fast converging adaptive
array algorithms. Brennan [3] has presented some theoretical and computer simulation results for the
effects of the SMI algorithm on the sidelobe level. His theoretical results pertain to the single auxili-
ary SLC. We generalize these results by examining an array with any number of inputs. Moreover,
many of his observations made as a result of computer simulations are given a theoretical basis.

The SMI algorithm is briefly reviewed in Section II, and pertinent SMI theorems are presented
in Section ITI. An exact expression for the transient sidelobe level is developed in Sections IV and V.
A discussion of this result appears in Section VI, techniques for lowering the sidelobe level are
presented in Sections VII and VIII, and other techniques that can be used to reduce the transient
sidelobe level are discussed in Section IX.

0. THE SMI ALGORITHM

In this section, we briefly review the SMI algorithm and establish the notation and assumptions
relevant to the succeeding development. Appiebaum {4] has shown that the optimal (maximization of
the average output signal-to-ncise ratio) adaptive weighting of an N element array is given by

w = uM~ls* )

where w is the optimal weighting vector of length N, s is a normalized steering vector related to the
direction of arrival of the desired signal, M is the steady state covariance matrix of the inputs, x is an
arbitrary constant, and * denotes the complex conjugate. More formally we write

w=(W0, Wl,...,WN_l)T, (2)
X = Xg X ... Xy, 3)

and
M = E{X*X"}, )

where T denotes the vector {or matrix) transpose operation, E{-} denotes the expected value, and X,
X,, '+, Xy are the inputs of the adaptive array. Because M is generally not known a priori, it and
thus the adaptive weights must be estimated from sampled data. Hence, time samples of the nth
channel, X, (k), are taken where k indexes the sampled data. Note that the data on each channel for a
given k are time coincident.
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ror this development, we make the following assumptions unless otherwise noted (the same
assumptions were made in Ref. 2).

1. The X,, X,, ..., Xy are zero mean stationary Gaussian random variables (r.v.).
2. X, (k) is independent of X, (k,) for n;, # n,or k; # kj.

3. The estimated adaptive weights are computed from an input data set that is independent of
the data that are adaptively weighted by the adaptive array. (We call this nonconcurrent
processing.)

4. The desired signals are not present during the adaptive weight computation.

With respect to Assumption 3, if the weights are computsd and applied to the same set of data, we
call this concurrent processing and the output residue is called the concurrent output.

We write the sampled input vector as
Xk) = Xolk), Xy k), ..., Xy (DT )
For the SMI algorithm, the covariance matrix M is estimated as
- 1 &
M ==Y X*kX"k), (6)
Kk ‘l

where the caret over the M denotes an estimate, X is the total number of independent samples per
input channel, and K = N so that M is not necessarily a singular matrix. Note that M is calculated
) in “‘batch™ style from a block of K by N input data. Thus after M is calculated, we find the esti-
mate of w as

W o= M ls* . €))

As K — o, M — M, so that for an infinite number of samples, the optimal array weighting vector
is obtained.

In many instances in the following discussion we refer to the SLC configuration of an adaptive
array. For this configuration

T ot T o B R A T

s=(,0,...,07 and wy=1; (8) )

h 41

’ \

i.e., the desired signal is present only in the Oth channel, which we call the main channel. The N —1

_ other channels referred to as the auxiliary chaunels are used to cancel unwanted signals (noise) from

; the main channel. Note that the condition that wy = 1 is a constraint on the optimal weighting vec- &
, tor

3 . .

A B

E We define &

R X,, = (Xl, Xz,...,XN_l)T, (9) &

a wa = (Wl, w2v sy wN—l)T ’ (10) %

3 X, k) = (Xk), Xp(k), ..., Xy (k)T an :

3
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M, = E{X3X]}, ‘ (12)

and
ran = E[X3Xo), (13)

where the subscript a refers to the auxiliary channels. It can be shown that the optimal weighting
vector of the auxiliary channels for the SLC configuration is given by

w, = + M Ir,,. (14)

Again with no a priori information, it is necessary to estimate M, ard r,, . These estimates are given
by the expressions

N 1 X
M, = - ¥ X3XJk) (15)
K¢S
and
1 X
Pam = = L X3()Xo(k). (16)
K2
For the steady state weights or optimal weights, we can write
N-1
XO = ann + e N (17)
n=1
where
Ef{eX*,] =0. (18)

Equation (18) is merely an exemplification of the orthogonality principle.
S o
P SMI THEOREMS

In this section, we present and prove (or cite references for) a variety of theorems related to the
SMI algorithm. We use these theorems in later sections to derive closed form solutions for the tran-
sient sidelobe level of an adaptive array.

Theorera 1: If the input vector X is transformed by a nonsingular matrix A, then the estimated e
transformed weights W' are related to the estimated untransformed weights W by the relationship %
w=AaTw. (19) ?.;-'

Proof: We know that

“'vl = M’-IS'* , (20)
where
T 1 X . T
M ==Y [AX (k)]* [AX (k)] 2D :
Kk=l ‘&
4 ®
3

-
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w}n\‘\ﬁ#‘ﬁ\ -'\1$ -\.--\._"h*\}'»\ P‘*v’#"‘.\-“"‘J"-"‘f‘-“"‘"!L"‘ -‘.‘_. ST ARE e AN e T N ST A
o L ! Y 5 % ﬂ' ) 5"5._\-\ ALY !_\“5.\-\-"\-‘ ALY \‘\‘-‘ \.\w“. ) NG N \"‘-'\""-ﬁ‘“\“\ ‘l*
hﬁk\-&; byt m&ﬂ T A T s ey e S ) w&ﬁu.‘*ﬁn WO L




R WAFR ZEE AR N U AR IR AN RN RE AR LE RS AR RN VT VT VTV VAN ARV U AR U UV AR TR A AR A A RAAERTAARRTEARAIRER YR Y N Y

NRL REPORT 9079
and
| s = As. (22)
f Using Eq. (22), we can show that
| M' = A*MAT. (23)

| Using Eqgs. (21) and (22) in Eq. (20), we find that
W = [A*MAT) Y(As)* 24)
- (AT)—I ﬁ-ls.
=) w.
The theorem follows from Eq. (24).
Similarly, we can show
Theorem 2: If the adaptive array is in the SLC configuration and the auxiliary input vector X, is

multiplied by a nonsingular matrix transform A, then the estimated auxiliary weights W' are related to
the estimated untru.isformed auxiliary weights w, by the relationship

W, = ATW,. (25)

Theorem 3 is cited in Ref. 2.

Theorem 3: There exists a unitary matrix U that transforms the steering vector s into the vector
(1,0, ..., 0)7, where s's = 1.

Theorem 3 is important to our development because it allows us to transform any unconstrained adap-
tive array into the SLC configuration.

Theorem 4: If the input data vector X or X, is multiplied by a unitary matrix U, then

E{W'w] = E{W''W'} (26)
or for the SLC configuration

Ef{W,w,)

Etw,'W,]. (27)

Equations (26) and (27) follow directly from the fact that UU’ = I.

N-1
Theorem 5: If Xo = Y ¢, X, and the adaptive array is in the SLC configuration, then the concurrent
n=1
output of the SMI canceller is exactly zero independent of K, the number of independent samples per ;
channel taken. . ::‘- '
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Proof: We write

N-1
Xolk) = L X, (k) =  XJ(k)e, 28)
n=}
where we define
C = (ch cn ----cN-l)T' (29)
Thus
1 X T
tme = 7 L X20)X(K)e (30)
k=]
= M,c.

Hence if we solve M, W, = #,, = M,c, we see that %, = ¢, and the theorem follows.

Theorem 6 results from Theorem 5.

N-1
Theorem 6: If Xo = Y c,X, + e, then the concurrent output noise residue is indeperdent of

N-1 n=}
Y o.X,.
n=]

Nl Theorem 6 is exemplified by Fig. 2. Here, we implement two parallcl cancellers; one cancels

Y ¢, X,, and the other cancels ¢. Note that separate estimated weighting vectors are computed for
n=1
each canceller. As a result of Theorem S. the left-hand canceller always has zero residue. Hence the

final 1esidue R is dependent on only the right-hand canceller’s output residue.

N
E Cn Xn AUX CHANNELS AUX CHANNELS
n= 7, N ¢ ,x x \
l x11 le XN -1 ] 1 X Xn-y
ve e l L l .o .1
SMi SMI
CANCELLER CANCELLER
R, =0 1

-

+

.

Fig. 2 — Equivalent SMI canceller

6

J AR SO LT T TR IR T '\")A\"")“\‘\:~§Sj
R S R e

-
a3

3

y



NRL REPORT 9079
Theorem 7 was first proved by Reed et al. 12].
Theorem 7: If assumptions | through 4 are satisfied ard

| - &N
T Gh

where ($/N) is the sampled signal to noise ratio given by the expression

{ ($/N) = &'MW (32)

and S/N) is the optimal signal-to-noise ratio given by
(S/N) = W'Mw, (33)

then the probability density funciion (p.d.f.) of z is

K! - -
PO = Tk v 1= ¢ -V KN o< 51, (34)

From this theorem, Brennan and Reed [5]) showed that

Theorem 8: If assumptions 1 through 4 are satisfied and the adaptive array is in the SLC configura-

tion, then
2
osmi(K,N) K
o = FoNaT k=N, (35)

where odui(K, N) is the average output roise powcr residue of the N input SMI canceller using K
samples, and o3, is the minimum outpit noise power residue (K = o).

We can show that

adwiK. N) = E{|Xq]2) - E(WM, #,) (36)
and

omin = EL[ Xo|%) — wiM,w, . a7

IV. SIDELOBE LEVEL MEASURE
In this section, we derive an expression for the sidelobe level contribution of the adaptive array

that comes as a result of estimating the optimal adaptive weights. We consider the two adaptive array
configurations, full up and SLC.

We simplify the full up adaptive array analysis by transforming the full up array into an Si..C
configuration by invoking Theorem 3. (The appendix gives a simple procedure for finding U when
VNs = (1, e/®, e¥% ... ¢W-1i¢)T) | et U be the unitary transform such that

Us =(1,0,0,...,07. (38)

7

% ) J By TR T a R aNa RgRp™ - « " am,w T T A Lt R et AT T R T R
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We place the SLC constraint (wy = 1) on the adaptive weights that are computed after this transfor-
mation. W' shall see that this unitary transformation does not change the transient sidelobe level.

Let
8(%) be the quiescent anienna pattern with no adaptation (0 < ¢ < 2r),
8qa (#) be the quiescent adaptive antenna pattern (K = o),
8. (%) be the adaptive antenna pattern (finite X),
w, te the quiescent adaptive weighting vector (XK' = o, SLC configuration),
w be the estimaed adaptive weighting vector (finite X}, a random variabie,
Aw = w — w,, a random variable,

V@) = 7‘; (1, &%, ¥, .., eW-HT g

u, be the nth row of U.

The auxiliary inputs have the following antenna patterns:
@) =uwve), n=12..,N-1 (39)
We define a vector of length N — 1 of these auxiliary antenna patterns:

g (@) = (8, 22(8). . gv1(@) . (40)

By using the above defined quantities, it is simple to show that

8.(®) = g, (&) — wg(9) @n

= 2(¢) — (W, + AW UV(9).

Taking the expected value over the Aw of the magnitude squared of Eq. (41) results in

Epll8.@) 7] = |g,(®) — wJUW@)|® + Eyl AW UV @)V (DU T Aw]. 42)

The fact that E,,{Aw] = 0 was used in the above derivation. Note that

Baa(®) = g4(d) — WJUV (¢). (43)
so that
Epel18@) 12 = |80 (@) |2 + EsnlaW Utv* (@)W (9)UT AW}, (44)
8

0
U W ‘C "y ™ %, - -~ -
A "":;""‘o ": '..: ': '::‘f. "\,0 ':]'.t",g n“ "."'.' ‘!" -‘m 1 J'.::..l".a::ﬁu" \J ‘\ X ‘b.oa,:".c 0 ',"'.o".c".v v'! :"::".:" "?.. i .:'9. e .



NRL REPORT 9079
Thus we see that the adaptive iransient sidelobe level contribution, ASL, , is given by

ASL, = Ey,law U*v* ($)v ($)UTAw]. 5)
The average contribution is found by averaging ASL, over 0 < ¢ < 2x. Recause

1e
! EJr @@ = o= |7 v e “5)
4
-]
where [ isthe (N — 1) x (N - 1) identity m" ix, it follows that

ASL, = E(aw'aw], 47

whereAST, is the average transient sidelobe level for a full up adaptive array, and we have dropped
the Aw subscript from the expected value notation.

Consider the SLC configuration as shown in Fig. 1(b). Here

s.(é)*th"“. n=12...,N-1i, (48)

where m,e{0, 1, ..., N — 1), the m, arc distinct for cach n, and G is an arbitrary gain associated
with the auxiliary antenna elements. Similar to the p. *ceding development for the full up anay, we
can show that

ASL, = G3E|awW Aw]. 49)

Hence the SLC configuration's average sidelobe level expression is the same as the full up adaptive
array except for the factor G2, We use Eq. (49) for both configurations by defining G = 1 for the
full up array.

Note that as a result of Theorem 4, the unitary matrix transformation of the input channels does
not change ASL,. Alsc due to the form of ASL, given by Eq. (49), Assumption 3 as given in Sec-
tion II, need not hold.

:;?’

V. SIDELOBE LEVEL DERIVATION

In this section, we derive aa exact expression for the average transient sidelobe level, AST.‘, In
the derivation we consider only the SLC configuration, but the result is applicable for the full up :
R =X, - WX, (50) ,

=Xo — (W, + AW'X, .

%
’ array
Consider the concurrent output residue of the SMI canceller as shown in Fig. 3. Here

o

’
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AUX CHANNELS
R

SMI
CANZELLER

I

Fig. 3 — Representation of SMI canceller

Using Eq. (17), we can write

R =e — AW'X,, (51)

wherc e is statistically orthogonral to X,,. In fact, invoking Theorem 6, we see that

Aw = M, 't , (52)
where

K
B = -,1; kE X3 (ke (k) (53)

and e(k), k = 1,2, ..., K are the time samples of e.

Since the auxiliary input covariance mairix is hermitian, we can write

M, = ¥'AD, (54)

where A is a diagonal matrix of the eigenvalues of M and & is a matrix of eigenvectors of M. Note
that we assume that all powers are referenced to the internal noise level, which we set equal to one.
The eigenvalues can then be divided into two classes: significant eigenvalues >>1, and noise eigen-
values that are approximately equal to 1 or the internal noise power level.

We transform the auxiliary input by the matrix transform1 A~!/2 * as shown in Fig. 4, where
A~Y2 designates a diagonal matrix whose diagonal elements are equal to the square root of the
correspending diagonal clements of the inverse of A. Using Theorem 1, we see that

Avr = (A™172¢%)T Aw’ (55)
= ¢'A2Aw’.
Thu-
E{AW Aw] = E{AW"'A™120d' A~ 12Aw'}. (56)
10
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AUX CHANNELS
/X %,

T

A 1/2 Y

N\

LR N J

SMI
CANCELLER

R

Fig. 4 — Orthogonalization of the
auxiliary channels

Now let

AW = (Aw{, Aw}, ..., Awh )T, 1))
Wo = (1, Aw], Aws, ..., Awj )7, (58)

and Aj, Ay, ..., Ay~ be the eigenvalues of M, (and the diagonal elements of A). Because &' = I,
we can rewrite Eq. (56) as

N-1
E(AWAW) = T ——E{|Aw}|3). (59)
n=1 )‘"
Because of symmetry, we know that
Ef|aw]|?) = E{|aw}|¥ = ... = E{|Aw}_(]3}. (60)

Also, the nonconcurrent output noise power residue is given by

oK, N) = E{WSM'W,}, (61)

where M’ is the covariance matrix of the inputs (main and auxiliaries) of the SMI canceller shown in
Fig. 3. Because all the inputs are independent random variables, M’ is an N X N diagonal matrix
with the first diagonal element equal to 62, and all other diagonal elements equal to 1 so that

N-1
odwi(K, N) = o2, + ¥ E{|Aw}|?). (62)

n:=

11
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From Theorem 8 and Eq. (62) it follows that

N-d N -1
P2y o TV 2
' 'ElEHAw,,I } BN 31 Cmn K=N. (63)
From Egs. (60) and (63), it follows that
E(law,|) = ———— 2., n=1,2,...,N~1. (64)
" K-N+1 ™ rEer
Hence, substituting Eq. (64) into Eq. (59), we have shown that
Eawaw) = —m 5l 65
awawl = x—n+1 =), ©3)
or the average transient sidelobe level contribution is given by
o Gzaglin N;l 1 .
ASLG—K—_jv—_;—lnl;l-):, K =N. (66)

VI. DISCUSSION

We see from the expression derived for the average transient sidelobe level, Eq. (66), that ASL,
is eigenvalue dependent:. the more significant eigenvalues (\>>1) there are, the smaller ASL, is.
In addition, we observe that ASL, increases with the gain on the auxiliary elements G. As Brennan
[3], pointed out, there is a tradeoff in selecting G in that although ASL, increases with G, the output
noise residue after cancellation decreases because the adaptive weights are smaller, resulting in less
amplification of the internal noise in the auxiliary channels. The effect of G? on the eigenvalues is to
increase the significant eigenvalues proportionally (those >>1) but leave the noise eigenvalues
unchanged and approximately equal to one. Finally, we see from Eq. (56) that as expected,
ASL, — 0 as K — oo, and that the transient sidelobe level increases as the steady state residue o2,
increases.

We note that for the full up adaptive array the eigenvalues we are referring to are those of the
N — 1 auxiliary inputs. Hence these depend on the unitary matrix transform U, which created those
auxiliary inputs. However, since the number of significant eigenvalues is generally equal to the
number of degrees of freedom (DOFs), Npgr, needed to effectively suppress a given external
environment noise, we see that the number of significant eigenvalues is a constant. Hence, if
M>NM>... M\, >>1 and N, = 1 for N > Npgp, then we can approximate ASL, as

_NDOF_]

— 22N
ASLa=GOmin K- N + 1

(67)

Equation (67) can be used to properly specify the number of indepeudent samples per channel K
necessary for the adaptive array sidelobes to settie within some arbitrary value of the quiescent adap-
tive sidelobe level. If SL, is the average sidelobe level of g,(¢) and SL,, is the average quiescent
sidelobe level of, g, (¢), then we can write

12
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N - Npog — 1
K-N+1

We find the K to be such that sfa is within 3 dB of the quiescent adaptive sidelobe level, SL,,. This
is found simply to be

Eza = §an + szﬁjn (68)

G2o2, G0l
Kap=W -1 |1+ —="— | — Npog —=——. (69)
SLgq SLea

If .§Zq is the average quiescent sidelobe level when the sidelobe cancellor is disabled (all weights
set equal to zero), then normally the adaptive array is designed so that the quiescent adaptive sidelobe
level is equal to SL, and 0k, = 1. If we define Gy = GZ/SLq to be the gain margin of the auxili-
ary antenna elements with respect to the main antenna’s average sidelobe, then we can show by using
Eq. (69) that

Kyg = (N — 1) (1 + Gy) — NpogGy; - (70)

When there is no external interference, then SL, is at a maximum. For this worst case,
Npor = 0, so that

N -1

e = C ¥ N+1

(M)

B}

In addition, for this worst case, K34p is at a maximum, SIq is exactly equal to .§an , and o2, = i.
We use this worst case scenario to specify Ki4p:

Ky = (N = D1 + Gy). (72)

We set N,,, = N — 1, the number of auxiliary input channels, and plot K335/N,,, Vs Gy in Fig. S.
Note that for Gy, >>1, K4 is directly proportional to the gain margin. Hence large gain margins
result in long settling times for the adaptive sidelobes.

VII. SIDELOBE LEVEL REDUCTION BY NOISE INJECTION

In this section, we give the theoretical basis to a technique discussed in Refs. 3, 6, and 7, which
significantly reduces the settling times of the adaptive sidelobes. For this technique, arbitrary
independent noise is injected into each auxiliary channel (SLC configuration). This noise is indepen-
dent from sample-to-sample, channel-to-channel, and has noise power equal to ¢2. It can be shown

that in the steady state the adaptive auxiliary weights are given by

w, =M, + D7 'r,,. (73)

After the auxiliary weights have been calculated by using the SMI algorithm, these weights are then
applied to auxiliary data (concurrent or nonconcurrent) that do not contain the injected noise. The
noise power of the injected noise, o2, is chosen so that the steady state noise power residue is not
significantly increased (normally within 1 dB). Brennan [3], using computer simulation, showed that
o can be chosen to be much greater than one (the refer~nced internal noise power level) without
seriously degrading cancellation performance.
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Fig. 5 — K1y4n/Ny vs the gain margin

Figure 6 shows the SLC configuration with noise injection. The effect of injecting noise is to
increase each of the auxiliary eigenvalues by o2 so that

Gzagiin N-1 1
K-N+1 n=l)‘n+02.

ASL, = (74)

Thus for 6°>>1, and 6?<<A\, My, n s My

— N —Npop—1 1
ASL, = G%¢2; — 75
e ™ K-N+1 o? 73

2 2
Omin Omin
2

- NoorGu—5- (76)

K3dB=(N_l) 1+GM
g

Not: that AST,, is significantly decreased (by =1/¢?) by using noise injection. Also the sidelobe set-
tling time is similarly decreased.
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Fig. 6 — SMI canceller using noise injection
Again if we consider the worst case (no external noise), then
K3 Gy
—_ = 1+ - an
Naux a

VIII. SETTLING TIME REDUCTION BY NOISE INJECTION
If we use the noise injection technique described in the preceding section, we can also decrease

the settling time of the nonconcurrent output noise power residue. To see this we define the follow-
ing quantities:

r lw(5.5). E{|R|% T{is the steady state (K = o) output noise power residue by use of the
noise injection technique, T}

E(|R|¥ T{is the output noise power residue for finite sampling by use of the noise injection tech-
nique, T}

E{|R;, |3} T{is the steady state output noise power residue if weights are applied to auxiliaries with
injected noise, T}

E{|R;,|? T{is the output noise power residue for finite sampling is the weights are applied to auxi-
liaries with injected noise, T}

w, ;» T( is the steady state auxiliary weights by use of the noise injection technique, and T}
W, in T{ is the estimated auxiliary weights by use of the noise i1 ection technique. T}
Awa \in

= wa in = Walin (78)
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Now we know that

E{|R|* = E{|Xo — wliXo |3, (80)
and we can show that

E(|R|Y) = E{|Xo ~ %] ;»X, |3 o
= E(1Xy ~ Oty + Awg )X, |1
= E{|R |3 + E(AW, ;M AW, ;,}
= E{R|% + E{AW] nM, in AW, i) + ¢PE(AW] 1 AW, ).

Using Theorem 8, we can show that

E”Rinlzl"'E(AwamM AWa,,,}=E[|R,-,,|2] [_K—-FKV-_'{'—I-J (82)

or

N -1

E{AW; ;s Mjy AW, ;) = E{|R;y | %) X-N+1 (83)
In Section V, we show that
E{IR. 1% ~N-1
E{chll.inAwa,inl = _ﬂ'ﬁ_l"_' E —1'—— (84)

K~-=N+1 /2 )\ +62
Hence, substituting Egs. (83) and (84) into Eq. (81) and normalizing,

EtmzZ}:HEHR,-,Fl[ N-1 o N1 } (®5)

E(|R|} E(IR|} |[K-N+1 K-N+1,2\ ) +7

Now normally o2 is chosen so that E{|R,, |%} = E{|R |?). We then rewrite Eq. (85) as

E{|R|% _ K o? N‘El 1
E(IR13 K-N+1 K-N+12~\, + 0

(86)

We see from Eq. (86) that the noise eigenvalues (A = 1) in the summation will dominate, and if
o2 >>1, then

3 |2 N-1-N
E{|R |9 < K _ DOF 87
E{|R |} K-N+1 K-N+1

or

2 b WP P o e B Ok T

E“ﬁ]}] < K —N + Npgp + 1

E(|R |} K—N+1 >
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If w: calculate how many samples K445 are needed so that the output noise power residue is within 3
dB of the quiescent value, we find

Kimp = N = 1 + Npop. (89)

Note that, N < Kj;z < 2N, depending on the number of DOFs used. Also, Eq. (89) implies that
the less DOFs used, the faster the settling time. With no noise injection, Kj;p = 2V — 2 [3].
Hence noise injection decreases the adaptive alporithm settling time.

Another method to reduce the settling time of the SMI algorithm is to estimate the number of
DOFs needed and set the number of auxiliaries equal to Npop. One method for estimating Npor is to
count the number of significant eigenvalues of the estimated auxiliary covariance matrix. A less com-
putationally intensive technique is to use the open-loop Gram-Schmidt (GS) canceller [8,9] to imple-
ment the SMI. Here, the noise power at each level of the main channel in the GS structure is moni-
tored by using finite averaging. Note that for a finite K that if N > Npgp, the output noise power in
the main channel decreases and then increases at the successive levels through the GS structure. Thus
the cancellation process in the main channel is terminated av the level where the noise power is mez-
sured to be a minimum. Hence the number of levels prior to this termination point is estimated to be
equal 10 Npgg. If we compute K ‘345 for the DOF’s monitoring technique, then

K édB = 2NDOF - 2. (90)
As a result for the three techniques
K ’
normal : —2 =2 1)
Nawx
noise K3 N
ienon e = 92)
jection N, N,
DOF K2 N
monitoring * 2 =2 2% 93)

where N, =N — 1.

We plot these quantities vs Npop/Ny,, in Fig. 7. Note that the DOF monitoring technique is
faster converging than is the noise injection technique. Hence, DOF monitoring with the GE can-
celler implementation offers a cormputationally efficient and fast converging adaptive canceller algo-
rithm. Also, because Kjjp is a measure of how perturbed the adaptive weights are about their
optimal values, we see that the transient sidelobe settling times should be faster by the use of DOF
monitoring.

IX. OTHER SIDELOBE LEVEL REDUCTION TECHNIQUES
In this section, we briefly discuss other techniques that can be used to reduce the average tran-

sient sidelobe level. The basis of these techniques is to reduce the number of auxiliar; input channels
N — 1 of the SLC to the necessary number of DOFs, NpgE.
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Fig. 7 — K38/Naux V8 Npor/Nay, for three SLC techniques

The first technique is to form N — 1 orthogonal auxiliary beams that cover the 0 to 2x angular
space. This can be done by setting the unitary wmatrix transform U equal to the Butler matrix P
where

B = [—[lﬁ- r',s':,‘x""”] , n,m=12-- N-1 (94

. 2%

Tyoi=e V1, j=+1. 95)

Thereafter, only those beams that contain high levels of external interference are inputted into the
SLC SMI canceller. Hence the number of nonsignificant eigenvalues is reduced so that ASL, will be
reduced. Also, the effects on the main channel’s sidelobe level are localized around where (in angle)
the various external interferences appear. Problems involved with this technique are the significant
amount of hardware necessarv to generate N — 1 beams and the assurance that enough beams are
used to suppress the externa. noise environment (there may be multiple interferences in a single
beam).

A second technique related to the first technique is to generate auxiliary beams that point at the
various external interferences. Even though the auxiliary beams may not be orthogonal, the effects
on the main channel’s sidelobe level are localized around where in angle the various interferences
appear. A prereyuisite for this technique is that the interference’s approximate (within an auxiliary
antenna beamwidth) angular position be known. This can be done by use of a variety of techniques
(for example, superresolution [10]).
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Appendix ,
UNITARY MATRIX TRANSFORM OF A STEERING VECTOR

In this appendix, we give a simple procedure for generating a unitary matrix transform U,
| which transforms the following steering vector

-l e QA% N=1y#T
s W(l.e ,eN® e ) (Al)

into the (1, 0, 0, ..., 0)T vector. First, we define an N x N diagonal matrix §, such that the diag-
onal elements are equal to the corresponding elements of the steering vector s. Next, we select any
unitary transformation Uy, such that all of the first row elements equal 1/VN. Examiples of this kind
of matrix are the Butler (see Eq. (90)) and the Hadamard matrices. Finally we set

U = UgS*. (A2)

It is elementary to verify that UU' = [ and that UpS*s = (1,0, 0, ..., ®)T.
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