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STATISTICAL ANALYSIS OF DYADIC
STATIONARY PROCESSES*

! ABSTRACT

In this paper we consider a multiple dyadic statiorary process with

X the Walsh spectral density matrix fe(x), where 8 is an unknown parameter

Ny, -~
ﬁ vector. We define a quasi-maximum likelihood estimator § of g, and give
| the asymptotic distribution of § under appropriate conditions. Then we
B
A
v, propose an information criterion which determines the order of the model,
2
L and show that this criterion gives the consistent order estimate. As for
- a finite order dyadic autoregressive model, we propose a simpler order
; determination criterion, and discuss its asymptotic properties in detail.
o This criterion gives strong consistent order estimate. Also detections of
e " signals for dyadic stationary processes will be discussed. In Section 6
- ' we discuss testing whether an unknown parameter g satisfies a linear re-
B
D striction. Then we give the asymptotic distribution of the likelihood
e ratio criterion under the null hypothesis.
L
33
<.
< AMS 1980 Subject Classificatioms: Primary 60K99, secondary 62M99.
8
N Key words and phrases: dyadic stationary process; information criterion;
N
'3 1likelihood ratio criterion; quasi-maximum likelihood estimator; Walsh
' spectral density.
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1. INTRODUCTION K

Y P
There has been much discussion of Walsh spectral analysis for dyadic )

7 > '
stationary processes. Morettin™{1974) investigated some asymptotic prop- Qj
erties of the finite Walsh transforms of dyadic stationary processes. i
Nagai A1977) gave the spectral representations for dyadic stationary pro- ]

ey

cesses, If we consider finite dyadic linear models then the greatest ;3

differences between dyad1c stationary processes and ordinary stationary ;:
/‘\—\ ‘

ones appear, Nagai‘ {19867 and Nagai and Tan1guch1“(198¥) estab11shed that

Y

a dyadic autoregressive and moving averageeégARMﬁa process of finite order

R

can be expressed as a dyadic autoregressive7fBAR}'process of finite order

'.W o A,

and also as a dyad1c moving average GBMAQ process of finite order. Nagai

[

and Taniguchi” (1987) &1scussed the principal component analysis of a Ej
multiple dyadic process, and also the canonical correlation analysis. 51
Morgettiﬁ¥%+98%i gave a convenient survey for Walsh spectral analysis. 23
B TN rd
P —1n this paperwe considersa multiple dyadic stationary process with 4 E;
-—the Walsh spectral density matrix f (x), where 8 is an unknown parameter :E
vector. We define a quasi- max1mu;T31ke11hood estimator e of 8, and give g&
the asymptotic distribution of g under appropriate conditions. In Section >
3 we propose an information criterion\which determines the order of the :*
model, and show that this criterion givee the consistent order estimate, EEL
In Section 4, for a finite order dyadic dutoregressive model, we propose ?5‘
a simpler order determination criterion, aed show that the estimated orderJ;——*—'/ -
has strong consistency. Also some interesting examples are given in the ?% }'
identification problem for Walsh spectrum. In Section 5 we consider a :Lihzil:::jé‘
signal detectinn model for dyadic process of finite order, and show that q,_ﬂuﬁue__iﬁ
this model is equivalent to a dyadic moving average model. In Section 6 :i ngﬂg"*ﬂ:
‘ Avetl and/ov A
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L
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we discuss a testing problem whether the unknown parameter 8 satisfies
a linear restriction. Then we give the asymptotic distribution of the

likelihood ratio criterion under the null hypothesis.
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2. DYADIC STATIONARY PROCESSES AND ESTIMATION THEOQORY v

}
First we introduce some basic concepts and notations. Denote by T N,
» -
E the set of all nonnegative integers. Let x and y be nonnegative real -3
numbers and have the following binary expansions: o
o ]
; x= ) x222 with  x, =0or1, 9
W f==o0 N
N
Nt
o 3

y = zylz‘l with y, =0 or 1. F
= . gE
Then the dyadic addition@ is defined by g
o0 2 (]

x@Py = =Emlxl—yllZ . L\'

-~

A stochastic process (possibly vector process) {Y(t): t e T} is said to be

-
A

dyadic sfationary if the joint distribution of Y(t]), Y(t2), cers Y(tn) is

the same as that of Y(t]() t), Y(tZGB t), ..;, Y(tnGP t) for every finite

“p T WETN R

set of integers {t], voes tn} and for every integer t. We denote by EA
{W(t,a): 0 <x <1}, t=0,1,... the system of Walsh functions. The prop- %—
erties of Walsh functions are well known: :f

) o

q

(i) for each t € T and » € [0,1], the value of W(t,r) is only +1 or -1,

AN

"

(ii) for any s, t e T,

Wt )H(s,0) = Wt@ s, 2),  a.e. A, ’

(iii) for each t € T and A e [0,1],
Wit M(t,w) = Wit, A® ), a.el . N

(See Morettin (1974).) i
Let Y(t) = (Y](t), cees Yq(t))'; t € T be a g-dimensional dyadic stationary é.
process with zero mean and k-th order cumulants S
Ca]...ak(tl’ ceentyq) = cum{Ya1(t] @t ), Yaz(t2® t,) ...,Yak(tk)}, f

*
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tyseees ty_y € T. We denote the covariance matrices ' f

r(t]) = {ca1a2(t])}’ gxq matrices.

The statistic

dtN) 2 Y(t)W(t,n) (2.1) )

js called the finite Walsh transform of {Y(t): t = 0,1,...,N-1}. Throughout
th1s paper we assume that N=2" , With m a nonnegative integer and denote

) = (d1 (r),.. ) Here we assume the following.

ASSUMPTION 1. For every k and j = 1,2,...,k-1,

.i, co L ey (et DL <oy (2.2)
t,=0 1% J

for all a], ...,ak.

Then the Walsh spectral density matrix and the Walsh cumulant spectrum

of order k of {Y(t)} are defined by

FO) = T r(N(E),
t=0

and
f (A 9---9>\ )
a]o-oak ] k"]
k"] . \
= tz ...tz Ca]...ak(tP"" ke ]) n]w(t AJ) (2.3} .
1 k-1 .
b
respectively. The following proposition is due to Morettin (1974),
W
“
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a PROPQOSITION 1. Under Assumption 1,

! cum{d(N)(A )s ...,d(N)(A )}

a 1 a k
1 k

\ - 1

" = (3@ ...0 *k){fal...ak(*v ceesAp_q) + O(NT )L, (2.4)
- where DN(A) = 22;8N(t,x), and the term O(N'1) is uniform with respect to

‘. A]’ ...’Ak. D

)
k Although we do not assume the Gaussianity of {Y(t)}, we can make the

': Gaussian likelihood function L of {Y(0), ..., Y(N-1)}, formally, and approxi-

‘ mate L. That is, we get
‘ - N -1
e log L = = a—J {1og det fe(x) + tr IN(A)fe(A) }dAx + constant. (2.5)
g <0 - -

. where the fitted Walsh spectral density matrix of {Y(t)} is parameterized

: = ] r

! as fg(x),g (645...58 )" e o< R, and

— | I

; L) = Ry IR ()" = {1, (0)3,  say,

: Fu(l) = =

" A} = Y{t)W(t

3 N /N tz sA).

y Thus we estimate g by the value é which minimize

A ] R
; 0,1y = Jo{log det £,00) + tr [IF (1), (2.6)
E with respect to g. Henceforth we call & quasi-maximum likelihood estimator
s "

N of 8. To discuss the asymptotic properties of g, the following lemma is a

keystone,

W
.
5
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LEMMA 1, Let ¢i(A) ='{¢§ﬂ)(x)}. J = 1,e.esr, be gxq matrix-valued
continuous functions on [0,1] such that ¢j(x) = ¢j(x)'. Under Assumption 1

we can show that

1 ]
(1) 1im J tr IN(J\)¢.(A)dA = f tr £f(A)¢.(2)dr, in p, (2.7)
Moo SO J 0 J
(2) the quantities
1
Ay = N [ tri (1,00 - f(x))¢j(x)}dx, 3= Ve,

0
have, asymptotically, a normal distribution with zero mean vector and

covariance matrix V whose (j,m) element is

]
2[ trts)e, (0 a5 (1

0 -
] (3¢, ¢
J )
' a,bzc,d=1 {! *ba <A)¢d? (W) Fapeglrarou) didu. (2.8)

Proof. Notice that

L0

1 .
. 3 (3)
Ay s R a,g=] JO{Iab(A) fap(3) e’ ().

By Proposition 1, we have

E(1, (1) - £, (1) = 0(Q),

where 0(%) is uniform with respect to A. Hence we obtain

E(A,) = o(n 1y, (2.9)

Since

PN IR PRI . PP AP I



ca(1)) = ;g-{cun.@a<x>, dg()Yeum(d, (1), d (u)

+ cum(da(x), dc(u)>cum<qb(x), dd(u))

+ CUm<da(>\)9 db(l)s d (U)s dd(U)>}

c

_ 2
= OO @) ) + Ty D))

+ DN(A@AG)U@U)fade(Aax’U) + 0("14_)}

and
D3 @2 ®u® ) = 0y(0) = N,
i we have
1,1 q .
(i) (m)
cum(A.,A ) =N { 69 (W) e (wyeum(I_, (A), 1 (p))dxqda
(AysAg) ,(0 0 a’b,zc’dﬂ ba dc " (ab cd ) 19%
q 1,1 ;.
(3) (m)
= ) { J J oro /(M) () (x,2,u)drdu
a.b.c,a=11 Jolo ba dc abcd
' (3) VIV (), (2 1
+ 2J0¢ba (x)fac(x)fbd(x)dx[ﬂo«»dc (u)DN(A@u)dL] + 0(p)-
(2.10)
Note
N if I)\ 6 ul < :T 5
DN(A ® ) = '
0 otherwise,
we get that by the continuity of ¢ég)(u),
; . ]
¢gg)(x) + of1), if é%—< A< b= 5ns

1
%-[0¢§2)(u)o§(x ® u)du =

0(1), otherwise.

P A SN

Sk

S, -’., -’,-,-{“‘mvv-‘;‘f

- '.I'. ." )' (':':"-‘

FY" had "il",'&“,.\:, 5

S5

T LSS,

a4
’

T T FTLL ST A

k|

]



0 ta" 108" 0a" av 0t 24t 3ot g o OO PO AR TR T (3 )3 O YO0 8% . 3 1
J
\

a 8 i
‘W Substituting the above into (2.10), we get
»

1

cum(Aj,Am) = zfotr{f(x)cpm(x)f(x)cpj(x)}dx
» .

: T )y, ;
¥ J m .
, o1 006w pegtamads son. 2

a,b,c,d—]0
1; Thus (2.9) and (2711) imply our result (1). Also (2.11) gives the asymptotic 3
8 variance (2.8). As for the asymptotic normality of Aj’ we have only to

o evaluate J(J > 3)th order cumulant cum(A, s A; 5 ...5A; }. Here, without 3

S 12 J

loss of generality, we evaluate it for scalar process. s
Y bt
» By Theorem 2.3.2, p.21, Brillinger (1975), we have ‘
% cum (dy (07)dq,(01) 5 v dgy (29)d 1, (005))
5

4 = % cum(dji(xj), (3,1) € v]) e cum(dji(Aj), (3:1) € vg ) (2.12) 3
- where the summation runs over all indecomposable partitions v = v]U . Uvs E
~ N
> of the set {(j,i), j = 1,2,...,Jd, i = 1,2}, (the definition of indecomposa-

bility can be found on p.20, Brillinger (1975)). By indecomposability of
:5 the partitions, each ¥n contains at least two elements, we have :
r. s < J/2.

' By Proposition 1, we have N
: ~
: d;5(05)5 (3:1) € v)) (d55(25)5 (3,1) )o(so( @ ) :
N cum(d,.(x.), (J,i) € v, )...cum(d,.(x.), (j,i) € v ) = ) £ ).

A E3i ! It > =1 N (5, 1)ev

' Since M

) N, if0 << %, 3
Dy (1) = N

. 0, otherwise,

7 we have, for J > 2 .
: .
o n
; .
: 3




) 9
[)
_!' (] J1 s (@ A
X . no A.)dA Y :
: Jo S RN S J
)
" f1 1 *
! T O @0 D) s D) - g = 0, |
: ’
and for J = 1
8 1A
3 JO ...JODN()\]@...G))\J)dA]...d)\J=0(1).
b Thus,
8 11 q
¢ dyy(x7)d (A d voud). = , :
 : jo...jocum( NOPE00)0 e g () () dry s = 0(N) ’
N
and consequently
1
) cum(l\i soees Ay ) = N'J/ZJ . Jd’i (A]) ¥ ()\J) \
: 1 J 0 01 J -
) 'C
cum(dyy (3))dy(31) s ovs gy (ag)dgp (000 ) day - diy
3 - oY), 2
. .
: which implies the asymptotic normality. 4 A
Suppose f(A) is the spectral density of a stationary process and :
{fe()\)} is a family of fitted spectral densities which are parameterized
by 8 € 0 cRr, where 0 is a compact set in R". We define a pseudo-true )
: value g of g € 0 C R", by a value which minimizes
P ] _]
5 D(fe,f) = J {log det fe(A) + tr f(x)fe()\) }da
R ) 0 ) ) N
L
N with respect to ¢ e o. .
: X
. ASSUMPTION 2. The fitted model fe(A) is twice continuously differ- N
) entiable with respect to 6 € o.
M
)
o
e

»

V"‘
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E:

: 10

" 8
“
N ASSUMPTION 3. If 8 # 0%, then f (2) # fo,.(}) on a set of positive
e ~ ~

' Lebesgue measure. The matrix

3, - 3 -
3 Me(8) [0 s [109 det £,0) + tr £,(0)7'F0) o, (2.13)
e

) is nonsingular for all ¢ € o, and M = Mf(§).
g
{13 The first statement of Assumption 3 is an identifiaility condition.
kL In Section 4 some nonidentifiable examples will be given. Then we have
{ the following theorem.

:;.‘f-

Eg THEOREM 1. Let {Y(t)} be a g-dimensional dyadic stationary process
;‘ with mean zero and the spectral density f(x). Suppose that Assumptions
<. -

j: 1-3 are satisfied, and that 8 exists uniquely and Ties in Int 0. Then

Cd
SN _ -

o (i) 1im8 =8 inP,

i Mo =
L= Y R _

ﬂk (ii) the distribution of the vector /N{® -8}, as N > », tends to the
'\. -~ ~
’§§ normal distribution with mean zero and covariance matrix M;] v M;], where
b V= {ij} is a rxr matrix such that
Y 1
W V. =2 te[f() 22 (F, 7T F() 22 (F, 0011 s dv -
j Jjm 0 30, ) 36 8 6=06

o J -~ ‘m - - -
o0
o N (17 SR CONT LR EY
o + = . — _
5 (bsa) : - -1

. where fe (1) is the (b,a)-th element of fe(A) .
;5
‘f. -
v Proof. From the definitions of 8 and 6, we have

“

2 "= 2.14

9 % D(fg,IN)Q=§ 0, (2.14)
vy
;

4
R T R AT R TS,




11
2 p(f ,f). - =0 (2.15)
8 8’ ‘6=0 | )
7
Expanding (2.14) around 6, we have &
n::,r
0= 2 D(fs,I) + M.(6%)(8-8), (2.16) 3
36 8° N f =73 :
s
where 6* lies on the straight section with end points 8 and 8, and N
e - 1
2 Ay
y _ 3
"r(2") = sz Olfgre T 3
By Lemma 1, we have :;
, -
25 D(fz,1) > 0, inP X
-~ v

and

A

Mc(g) > Mc(e), in P for each g € o.

eSS

By Assumptions 2 and 3, absolute values of eigenvalues of Mf(e) have a

positive Tower bound for all ¢ € 0. Hence when n is large enough, with a baY,
-.’
probability arbitrarily near to one, so do the absolute values of eigenvalues i?f
of M.(s). By (2.16) we have 2
~ - ':\
g+8, inP Ry
.:\‘.
and consequently &:'
.\.
Mf(g*) > Mf(é). in P, {
Then the limiting distribution of /N (§-8) is equiva]enf to that of :%
N
-1 R
MR 2 g DifgeIy) b
-1 -1 )
= —M /"' Q {log det fj (X) + tr f (A) (A)}dx ~:
5
At R
= Mo [tr £2(0) "{I,(x) - £(x)}]dr, (2.17) A
£} g N e
1‘.:
S
y
‘!‘
T A bk (s it R A S v “xfn’»iaia’uisféfi*e*eiiiuiaii“{”ﬁﬁéfl_L{;;;{;’:E~
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! 3
) by (2.15). Again applying Lemma 1 to (2.17), we have completed the R,

proof.

Remark. 1f the true Walsh spectral density matrix f(a) fe()\), B¢
- U
K the pseudo-true value is equal to the true value, i.e,, § =9 (see

-~

Hosoya and Taniguchi (1982)).
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3. MODEL SELECTION OF WALSH SPECTRAL MODELS Y
\J
In the previous section we assumed that the order of the unknown Ry
o
*
parameter vector of the Walsh spectral model fe(x) is known. However, in 5'
-~ o)
the actual situation, we must estimate the order of dim § = r from the data. iﬁ
Here we assume that the process {Y(t)} has the Walsh spectral density matrix 3
fo (x), 0, = (645 ...58.)", where 8 is an unknown parameter vector. (We i;'
~r‘ _"
use suffix r to stress the dimension.) Then we fit the Walsh spectral é?
model fe (A), 0 < k < L, where L is a preassigned upper limit to the order. !,
-~ N l*
We determine the true order r by the value k which minimizes the following :;.
.
criterion: v
¥
kCN :
A(k) = D(fé ,IN) t for k =0,1,...,L, (3.1) o
~k .:a
where CN + = and CN/N + 0 as N> =, For this estimated order k we have 3
Ny
o
THEOREM 2. Suppose that all the assumtions in Section 2 for f(A) = -(:;
e N S
fgr(x) and fg(x) = fgk(x) are satisfied., Then 11mN+wk =r, in p. 3
7
Proof. From (2.16) we have ZE
4
AN
- - ~_1, * 1 3 -1 ..
/N(g, -06,) = -M (6 WN | — [tr f= (A)7 {1 (x)-f(x)}]dx (3.2) i
-k 2k f 2k ) 8 N o
0 "2k ~k -
{d
=
which tends to norma] by Theorem 1. Thus we have, for any sequence of ;33
positive numbers EN > @, -
o 7
PLII /N(e, -8 )l > Cy 7= o(1), (3.3) w3
l‘-'-
where ||+|| is the Euclidian norm. Taking EN = 3/5;, we obtain T

" . . e e ] - - - LIS - - . - - .'. - -
A N A NN N N R AR
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5 -5, -0 (Yo ik
- = N).
) 8, Op( Cy/"N)
Expanding around 8 = §k’ and noting (3.4) we can see that

L 900y LTy)
D(f: 1) = D(fe ,I\) + (g, -g,)" - .
ok Ok 99y 8 = 8,

—)

- - * ~
+5 (3-8, ) Bl (8 -8y ).
Since ___"K___ = 0, we have

~

D(fé‘ ’IN) = D(fé 'IN) "’% Q "ek) Mf(ek)(ek gk).

As first step we show that

-

P(k<r) >0 as N o,

For k < r, we evaluate

(r-k)CN

Iy« R

= p(A(K) <A(r)) = PLD(fg ,I,) - O(f ).

k gr

Using the relation (3.6), the above probability is approximated as

p{D(f- ,I,) - D(f= ,I,)
Qk N 9]", N
(r-k)C .
N T = vem g *ye =
< + 78 -8, ) Mo )(8 - 8))

2 s YT
- 5(6,.-8.)"M(e )(6 -8 )1.

(3.4)

(3.5)

(3.6)

- (3.7)

(3.8)

Using Lemma 1 the left-hand side of the above {-} converges to D(fé ,f) -
~k

D(f ,f), which is strictly positive for k < r. On the other hand, by (3.4),

Y‘

the right-hand side of {-} converges to zero in probability which implies the

TN N "i'\-f:"‘ l'g \. o ‘- n'."{"; T L \.":"';':-;"-;"-34-” WO,

............

s R By

b LT

€

s TV N E
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probability P] + 0 as N> =, As second step we show

N

~

IR AAAAARD STl LS R

P(k>r) >0 as N =, (3.9) <
b

Ly
We have for k > r, )
(r-k)Cy :
P, = P{A(k) <A(r)} = P{D(fék,IN) -D(fé Iy <« —— 1. t
r ~

,’j’-

Using the relation (3.6), the above probability is approximated as ‘\
. 142 = Y *yoa _a -

~ ~r "

(r-k)C &

1 2 - XY * 2 - re N -
t5(8.-8)'M(e )(e -6.) <« —g—1. (3.10) i.

i

Because f; (x) = fs (1), for k > r, we can see that s
“k oy 7

Xt

- - - = 2 ) -

D(fek,IN) D(‘Fe ,IN) 0. (3.171) :

b ir .
NG
While, by (3.4), we can see that 9
‘,
1,2 ~ Y * A = ]_ 8 _ =& Y *y oA _a h

- 7(8 -8 ) Ml ) () - 8y) + 7 (8- 8, ) Mele ) (e, -8 )
[ 3

is at most of order Op( NN). However the right-hand side of {+} in (3.10) is Z:-_
(r‘k)CN )
—5 (r<k), which implies P, + 0, as N > =, Thus we have completed NG
the proof. o -
M

P
9
\
~
L

~

)

2
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4, DETERMINATION OF THE ORDER OF DYADIC AUTOREGRESSIVE MODELS

In the previous sections we could proceed in fairly analogous ways
to those used in the ordinary stationary processes. However if we consider
finite parametric models, for examples, dyadic autoregressive process of
finite order (DAR-process), dyadic moving average process of finite order
(DMA-process) and dyadic autoregressive moving average process of finite
order (DARMA-process), then there exist the greatest differences between
dyadic stationary processes and ordinary stationary ones. That is, it is
known that these DAR, DMA and DARMA are equivalent in the sense that DAR
or DARMA-process of finite order can be expressed as DMA-process of finite
order (see Nagai (1980) or Nagai and Taniguchi (1987)).

In this section, for a finite order dyadic autoregressive model, we
can propose a simpler order determination criterion. Then we show that this
criterion gives strong consistent order estimate.

A g-dimensional dyadic stationary process {Y(t), t € T} is called a
dyadic autoregressive process, if it can be expressed by

g AY(t® ) = e(t), teT, (4.1)
j=o J
where

(1) Aj's are gxq matrices, A, = Iq, and p = 2" - 1, where r is a non-

negative integer,

(ii) e(t), t e T, are i.i.d. random vectors such that

Ee(t) = 0, Ee(t)e(t)' =G > 0, (4.2)
(iii) det #(2) # 0, a.e.x, (4.3)
P
where e(x) = J AM(IN).
j=0
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If (4.,2) and (4.3) hold true, then the Walsh spectral density of {Y(t)} is
- -1 -1y,
() = (M) G{a(A) " ). (4.4)

We call a DAR process (4.1) irreducible if there does pot exist such

a matrix
21
6 (0) = T KM(3,0)
1 520 j ’
which satisfies
_ -1 -1.,
f()\) = 4’1()‘) G{‘bl()\) } s 2,2, A (4.5)

Especially, for an irreducible DAR process (4.1), there exists a tgs
2" <ty < 2" -1, such that A, 7 0.

For an irreducible DAR model (4.1), p is called the order of the model.
For simplicity, such a model is written as DAR(p). Note that in the above
definition, the order of the model (4.1) is defined as p = 2" - 1, not as
max{t: Pt#(nu The advantage of such a definition is that it suits to the
Walsh spectrum analysis, and is convenient for estimating the parameters

of the model., To see this, consider the following two scalar irreducible
DAR model:

X(t) + X(t@ 1) + aX(t® 2) = (t),
and

Y(t) + Y(tD 1) + aY(t @ 3) = e(t), teT,

where « £ 0, a # £2, ¢(t)'s are i.i.d. with Ec(t) = 0, Ee(t)Z = o2, It is

easily seen that they have the same Walsh spectral density
oZ[1 + W(1,1) + oW(2,1)]72.

But if we define the order of the model as max{t: At#()}, then their order
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may be 2 and 3 respectively. Obviously such a definition is not convenient
for Walsh spectrum analysis. It is easy to see that these two models are
not essentially different. For a gqxq matrix A = (aij’ 1<, j<q), denote
[|A]] = 2 j= ]Ia1J To determine the order p = 2" - 1 of the irreducible
model (4.1), we suggest the following criterion:

N-1

k
2°-1 C
Ly(k) = i 1 Y(t)Y(t® (2k+ ) 2 _ (4.6
N Sk nZO Iy tZO ( ") I )

where Y(0), ..., Y(N-1) are the observations of the model (4.1), N = 2" with

m positive integer, and CN satisfies the following conditions:

Cy Oy
'lmT=0 and m]—o—g‘—]a-g—N-‘

N->oo
Define

ry = maxtk>0: Ly(k-1)>0, Ly (k) <0}. (4.8)

where LN(-1) = 1 for convenience. We can use ;N as an estimate of the true

value r of the model (4.1). We have the following

THEQREM 3. If the model (4.1) is irreducible and (i), (ii) and (iii)

are satisfied, then

r]‘im FN = . (4.9)
-—-00

Proof. Suppose that p is the true order of the model (4.1) and
p=2"-1. According to Nagai and Taniguchi (1987), if det{s(1)} # O,
then {Y(t): t e T} is a DMA-process written by

-

Y(t) = 2 KJmtE(J terT.

AT RS SN 4
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Put T(n) = EY(0)Y'(n). By (4.10) and the condition (ii), it is

PR R A

easily seen that for any n,

N-1 Tog Tog N
Iy I Y(E)Y'(t@®n) - r(n)]| = 0(¢/199ﬁUElE)- a.s. (4.11)

as N+ =, (e.g., Petrov (1975)). By (4.10), for n > 2", r(n) = 0. Thus,

if k > r, then

C
- n(JoglogN, "N
Ly(k) = o(logtoally

(4.12)

CN

as N » =, From this and To—g—]m =

=, it follows that with probability

x

.-

one for N large,

v T X

e

Ly(k) <0, k>, (4.13)

o e

If r = 0, the theorem is proved.

“-',IT‘"', AR RN

Now assume that r > 0. We have

~ .

PR

N-1
IOMCCIGREN
t

™.

zr-l

-1
-1 Nr™ T +m B,  a.s.
n=

We proceed to prove that

-1

219
L 2"+ )12 > 0.
n:

L

Otherwise, we have

] ATy sRLS YT 'l'.!. N

oT=1_
f(A) = T 1(e)W(e,n),  a e [0,1].
2=0

'l
. . . . “ - Cm e .

e A o A A A \J.'u X )3,\,\*\,"-_.:-.._ N A AL A NN I AT AL N G ¢
) {1 ) (3 ol il ¥ L » id = -
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put h = 2" 121, a,

j© j/(h+1), 3§ =0,1,...,h.

We know that for all

g < h, Wg,n) = W(e,n,) for x e [Aj, Aj+1). From this it is easily seen

J
that f(a) takes only at most h + 1 different values, say, f(xo),..

By (4.4), G > 0 and ¢(») # 0, it is easily seen that f(xj) > 0, j

Hence we can write

6 =622, f0,) = /20,020,

j-0,1,...,h. Put

[W(0,2,) W(tag) ey w(h,AO)'
W(O,A]) W(],A]) N w(h,x])
ey =
_W(O,Ah) w(l,xh) cees w(h,xh)_
Then Hﬁ+1Hh+1 = (h+])1h+1‘ Thus the matrix equation
By 6 V2612, )

(M ®1) o |=

G-]/2f1/2(kh)

has a unique solution (B}, ..

(4.17) we can see that

which implies

n(A)Gn(2)' = f(x), e [0,1]

Lo “.r‘..'-_:.r NN E A A A N A N T A S N L O

o o’ » A AT T e, LAY y

Lf)A

.,Bﬁ), where Bj's are all gxq matrices.

B

0,1,...,h.

(4.17)

From

(4.18)

(4.19)

R PO NN U SCA

LM

=

v

Pl Ot

o X
Ly ]

P4

R A SX ARG

i

I{ .

N v
5;'/‘! P

I..‘.

e

) . '.‘...;.'; 5i.':-"l'~l ..x
. 7

R
ot}

’
-

i e | L le
f".?AJ. 0‘_4 ": 'ﬂ’ '-!l

L A

I'

YR YNV

)



A ~ate Al 20 8'ye
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where

h

n(x) = ]

Bkw(z,x). (4.20)
2=0

By Nagai and Taniguchi (1987) there exists

2’15
o,(2) = 7 K W(R,)
1 =0 %
such that
¢1()\)n()\) = Iq, a.e, X. (4.21)

Thus we have

1

f0) = 0,00 6o, (07, ace. 2, (4.22)

which contradicts our irreducibility assumption. Now (4.15) has been
proved. By (4.14), (4.15), (4.6) and (4.7), with probability one for

large N,
LN(r-'l) >0, r>20. (4.23)
Noting (4.13) and (4.23), with probability one for large N, we have

;N = r, (4.28)

Remark, The following scalar process {Y(t); t e T} is a reducible
DAR process:

X(t) + X(t®1) + X(tP2)

X(t®3) = e(t), teT,

2

0 and Ee(t)2 = ¢°. Then

where e(t)'s are i.i.d. with Ee(t)

¢(A) = 1 + w(],)‘) + N(ZSA) - w(3sl)9
but
2 2
9 -
Ms(x)}2 4
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o 5. DETECTION OF SIGNALS FOR DYADIC STATIONARY PROCESSES

:ﬁ In this section we shall consider a signal detection model for dyadic

process of finite order, and show that this model is equivalent to a dyadic

55

moving average model., Then we can apply the results in Sections 3 and 4 to

our model, That is, we can determine the order of the signal dyadic process

?:T from the data.

A Let {Y(t)} be a gq-dimensional dyadic stationary process defined by
s p

_~: Y(t) = ] AGS(t®3) + £(t), (5.1)
Wy j=0

o,

P’ where S(t) is an r-dimensional dyadic stationary signal process, and £(t) is
o
'jj a q-dimensional dyadic stationary noise process, and A(j) are gxr-matrices.
b

:: Here we assume that {S(t)} is an r-dimensional DARMA(s,h)-process defined by
o 1 8(3)sE@®L) = ] c(HHuG@t),  t=10,1,..., (5.2)
3 Jj=0 j=0

AN

! where {U(t)} is an r-dimensional white noise process. Also {£(t)} is a
1:5 g-dimensional DARMA(2,m)-process defined by
iy
o
:.r 3 m

¢ L 0(ie(idt) =} FEIVEDL), t=0,1,..., (5.3)
k-~ J=0 j=0

-

Ej where {V(t)} is a g-dimensional white noise process which is independent of
e {U(t)}. We assume that all the coefficients {A(j)}, {B(j)}, {C(j)}, {D(i)
3: and {F(j)} are completely specified by an unknown parameter vector § with
ﬁi dimension k, and that
s
75 S
g, det{ ) B(j)W(j,r)} # 0,
e j=0

?« . (5.4)
Pl det{ ) D(j)W(j,x\)} #0, forall 0<x <1,
o j=0
p

e T AT A T e A A A A A S e A N AT R A A T N % N i w ey e~
A A N L TN




Denote by Walsh spectral representations of {Y(t)}, {S(t)}, {£(t)},

(U(t)} and V(t)) by ¥(t) = sgi(t,2)dz,(2), S(t) = W(t,n)dz0n),

e . 1
e(t) = ;gW(t.n)dz, (2), U(t) = soh(t,n)dZ () and V(t) = JAW(t,A)dZV(x),
respectively. The relation (5.1) can be written as

dZY(x) = WA(A)dZS(A) + dZE(A), (5.5)

briefly, where WA(A) = z§=OA(j)w(j,x). While we can have

dzg(2) = (1) v () dz,(3) (5.6)
4z, (1) = vy v (1) dz,(2), (5.6)
where vg(1) = J5_BUIM(IAY, ¥o0) = TogCMIA), vp0n) = T4 0D(NE )

and ¥ (1) = Z?=OF(j)w(j,A). Finally, we get

dZy(A) = 1, (A (0 Ty ()dz () + () Tep(n)dz, (3)

A B dz,(»)
= [wA(A)wB(A) wc(x): WD(A) WF(A)] dZv(A) . (5.8)

By Nagai and Taniguchi (1987), under (5.4), we can get the following repre-

sentations
-1 s'
vg(x)7" = ] B(3W(I.)
j=0
and
g Y
vp(A)" = ] D(IIW(E),
j=0

b - Lo
- 1, a and b are the minimum nonnegative integers

where s' = 22 - 1, &' = 2
which satisfy s < 22 . 1, 2 5.2b - 1, respectively. Thus it is easy to see

that WA(A)WB(A)_]WC(A) and WD(A)-]WF(A) can be written as finite linear

N
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combinations of Walsh functions
4 dq
L G(3)W(3.n), T H(GIW(G,n)
j=0 j=0

respectively. So the relation (5.8) implies that our model (5.1) is equiva-

lent to a DMA-process of finite order. We can assume that our {Y(t)} has

the finite DMA type Walsh spectral density matrix fe(x).

order of dim ©, we can use the criterion

kCN
A(k) = D(f + N

s

To determine the

given in (3.1). Of course we can use A(k) to determine the number of

signals.
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6. TEST OF HYPOTHESIS FOR LINEAR RESTRICTION OF PARAMETERS

Let {Y(t)} be a scalar-valued dyadic stationary process with Walsh

spectral density fe(A) depending on an unknown parameter ¢ = (e], ""ep)"

We assume that {Y(t)} satisfies all the assumptions in Theorem 1. The
first problem is to test a composite hypothesis HO: gz = 059> against

H: 8, # 85,5 Where 8 = (qi,gé) 87 = (91, e By), 85 = (e“], ...,ep)

and Qéo = (62+],0,...

Although we do not assumz tne Gaussianity of {Y(t)}, we can formally make

[} []
’ep,O)’ a speciried vector and (e],e 0) e Int .

the following log-likelihood ratio criterion

G =2TlogL = N{D(F ) -~ D(f IN)}, (6.1)

N 2 H I-| = s

where §' = (éi,éé) is the quasi-maximum likelihood estimator for & under H,

and é] is that for g, under H,. Put v = M(g-0), w= MN(g,-8;) and u' =

(w',0'). Expanding in a Taylor expansion around §, we have

N{D( ( ],620) IN) - D(f(é],éz)sIN)}
2
3°D(fa, I,)
=;—(u-v) _”_—"—aege N (u-v)(1+op(1))
3 D(f 1)
=2 0= gy W (1+0,()
= F(u=v)Me(u=v)' (1o (1) (6.2)
From Theorem 1 we have
- ‘/- Dy N)(]+op(])). (6.3)
Similarly we have
u = -Lfmﬁo(fQ,IN)(uop(l)), (6.4)

--------------- -
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m'a o N f,..f' ‘f a e f o

2

)
Eae 361 D(f

-1
) = 1., +0(N ).
8139 (91’620) N 11

From (6.2), (6.3) and (6.4) we have

aD(fg,1,) ) aD(fg,I,)
6= 7 N_'ée“’—N"[M Lo LI 'Lf]m—ag_"“(‘ +op(1)
aD(Fg,1,) _aD(fg,1,)
- ;/ﬁ-—SET-ﬂ [ - LA— (1 +0,(1). (6.5)

Here we put the following assumptions:

Assumption 4. The process {Y(t)} is a scalar linear dyadic stationary

process represented as

M) = ] Aelt®i), (6.6)

Jj=0

where 23=0|Aj| < = and the e(t)'s are independent random variables.

Assumption 5. The unknown parameter g of fe(A) is innovation-free, i.e.

-~

1
;2 J (Fy (1) -1 QO(A)}dA = 0, (6.7)

(See Hosoya and Taniguchi (1982).)

LEMMA 2. Suppose that Assumptions 1-5 are satisfied, and that
ijoAjw(j,A) # 0 for all x € [0,1]. For an innovation-free parameter g we
have

aD(fy,I,)
/N — 2N £ £ N M) (6.8)
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Proof. Using a similar argument to Hosoya and Taniguchi (1982), we

can see that

3 (1[ an(x) fQ(A)

T %,

f4(A’AQU)d>‘du =0, '
o v J
[}

for j,m=1,...,p, where f4(-) is the fourth order cumulant spectral density.

Putting ¢j(x) = 5%—-fe(x) in Lemma 1, we have the desired result.

B
'2 J =
Applying Lemma 2 to (6.5) we have

THEOREM 4. Suppose that Assumptions 1-5 are satisfied. Then the dis-

tribution of -G under H0 tends to xz(p- 2) as N+ =, ~

> Now we consider a more general test of hypothesis.

Ho: B8 = u,y against H: B # uyg,

. ) c . - Voo
where B is-a (p- &)xp matrix with rank B = p- ¢, and Usg (u2+]’0,..., up,O)'

Then there exists an &xp matrix A such that

(:)P(u‘\w(@%

K u
5 \ U2

LLARA TN . T

where det(g) # 0. Let é be the quasi-maximum Tikelihood estimator of ¢ € o, A
then u(8) = U. Then the likelihood ratio criterion of testing
;i HO: Uy = Uy against H: u, # Usg

is given by

G = N{D(f(a]’az), IN)- D(f(a]’uzo), IN)}, (6.9)

where G] is the quasi-maximum likelihood estimator of Uy under HO' Then

s

we have

THEOREM 5. Suppose that Assumptions 1-5 are satisfied. Then the dis- R

9 tributions of -é under H0 tends to xz(p- 2) as N > o,
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