A STUDY ON LEBESGUE DECOMPOSITION OF MEASURES INDUCED BY STABLE PROCESSES

by

Mauro Sergio de Freitas Marques

Technical Report No. 216

November 1987
115. V. Mandrekar, On a limit theorem and invariance principle for symmetric statistics, July 86.
116. O. Kallenberg, Some new representations in bivariate exchangeability, July 86.
119. B.C. Nguyen, Fourier transform of the percolation free energy. July 86.
120. B.C. Nguyen, On the existence of probability measures on continuous semi-lattices. Aug. 86.
125. C. Samorodnitsky, Local moduli of continuity for some classes of Gaussian processes. Sept. 86.
126. V. Mandrekar, On the validity of Beurling theorems in polydiscs. Sept. 86.
127. R.F. Serfozo, Extreme values of queue lengths in M/G/1 and GI/M/1 systems. Sept. 86.
136. R.J. Wilson, Model fields in crossing theory-a weak convergence perspective, Nov. 86.
138. L.L. Campbell, Phase distribution in a digital frequency modulation receiver. Nov. 86.
140. H. Odaïrâ, Fredholm-Wentzell type estimates for a class of self-similar processes represented by multiple Wiener integrals. Dec. 86.
143. F. Avram, On bilinear forms in product limit estimators of the survival functions. Nov. 86.
144. R.L. Taylor and T.-C. Hu, Strong laws of large numbers for arrays of orthogonal random variables, Dec. 86.
A study on Lebesgue decomposition of measures induced by stable processes

ABSTRACT: The Lebesgue decomposition of measures induced by symmetric stable processes is considered. An upper bound for the set of admissible translates of a general p^{th} order process is presented, which is a partial analog of the reproducing kernel Hilbert space of a second order process. For invertible processes a dichotomy is established: each translate is either admissible or singular, and the admissible translates are characterized. As a consequence, most continuous time moving averages and all...
harmonizable processes with nonatomic spectral measure have no admissible translate.

Necessary and sufficient conditions for equivalence and singularity of certain product
measures are given and applied to the problem of distinguishing a sequence of random
vectors from affine transformations of itself; in particular sequences of stable random
variables are considered and the singularity of sequences with different indexes of
stability is proved. Sufficient conditions for singularity and necessary conditions for
absolute continuity are given for p^{th} order processes. Finally the dichotomy "two
processes are either equivalent or singular", is shown to hold for certain stable processes
such as independently scattered random measures and harmonizable processes.
A STUDY ON LEBESGUE DECOMPOSITION
OF MEASURES INDUCED BY
STABLE PROCESSES

by

Mauro Sergio de Freitas Marques

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Statistics.

Chapel Hill, 1987

Approved by:

S. Cambanis
Advisor

C. R. Baker
Reader

M. R. Leadbetter
Reader

Research supported by the Air Force Office of Scientific Research Contract No. F49620 85 C 0144.
MAURO SERGIO DE FREITAS MARQUES. A Study on Lebesgue Decomposition of Measures Induced by Stable Processes. (Under the direction of STAMATIS CAMBANIS)

ABSTRACT: The Lebesgue decomposition of measures induced by symmetric stable processes is considered. An upper bound for the set of admissible translates of a general p^{th} order process is presented, which is a partial analog of the reproducing kernel Hilbert space of a second order process. For invertible processes a dichotomy is established: each translate is either admissible or singular, and the admissible translates are characterized. As a consequence, most continuous time moving averages and all harmonizable processes with nonatomic spectral measure have no admissible translate. Necessary and sufficient conditions for equivalence and singularity of certain product measures are given and applied to the problem of distinguishing a sequence of random vectors from affine transformations of itself; in particular sequences of stable random variables are considered and the singularity of sequences with different indexes of stability is proved. Sufficient conditions for singularity and necessary conditions for absolute continuity are given for p^{th} order processes. Finally the dichotomy "two processes are either equivalent or singular", is shown to hold for certain stable processes such as independently scattered random measures and harmonizable processes.
ACKNOWLEDGEMENTS

I have a few good things to remember from my academic life in Chapel Hill. It was a time of humiliation, losses, craziness and depression. However, I wish to thank three persons for their fundamental participation in the realization of this work.

I want to thank my advisor Stamatis Cambanis for his guidance, understanding and support for which I am deeply grateful. I regret not to having started working with him at a time when I still had lots of enthusiasm left.

My friendship with Victor Perez-Abreu made survival much much easier and I am specially thankful for his support of most of my academic decisions.

My warmest and deepest thanks go to Eliana. She, and only she, was able to give me the necessary motivation and strength for the pursuing of this work to the end.

I also would like to express my appreciation to the members of my committee and to Ans Janssens. Finally, I should acknowledge those which provided my financial support: UNICAMP, CAPES and Department of Statistics -UNC.
TABLE OF CONTENTS

CHAPTER I. INTRODUCTION

<table>
<thead>
<tr>
<th>1. Introduction</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Summary</td>
<td>2</td>
</tr>
<tr>
<td>3. Background and Notation</td>
<td>4</td>
</tr>
</tbody>
</table>

CHAPTER II. ADMISSIBLE AND SINGULAR TRANSLATES

<table>
<thead>
<tr>
<th>1. An upper bound for the set of admissible translates</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Translates of invertible SaS processes</td>
<td>20</td>
</tr>
<tr>
<td>3. Comments on Radon-Nikodym derivative</td>
<td>39</td>
</tr>
</tbody>
</table>

CHAPTER III. RESULTS ON EQUIVALENCE AND SINGULARITY

<table>
<thead>
<tr>
<th>1. Equivalence and singularity of certain product measures</th>
<th>46</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Remarks on equivalence and singularity of (p^{th}) order and SaS processes</td>
<td>60</td>
</tr>
<tr>
<td>3. Some dichotomies for SaS processes</td>
<td>66</td>
</tr>
</tbody>
</table>

BIBLIOGRAPHY

| | 76 |
CHAPTER I
INTRODUCTION

1.1 Introduction

The Lebesgue decomposition of measures induced by stochastic processes is important in areas such as statistical inference and information theory.

For Gaussian processes the Lebesgue decomposition has been fully described and the following dichotomy prevails: two Gaussian processes are either mutually absolutely continuous, or else they are singular (see, e.g. Chatterji and Mandrekar (1978)). In the former case expressions for the Radon-Nikodym derivative are known and the discrimination of the two Gaussian processes is based on a threshold test on the log of their likelihood ratio. In the latter case they can in principle be discriminated with probability one. Some partial results are also available for other processes having finite second moment (Fortet (1973)).

The Central Limit Theorem and the stability property provide the basic reasons for regarding stable processes as a natural generalization of Gaussian processes. Most of the work on stable processes focuses on contrasts and similarities between Gaussian and non-Gaussian stable processes. While the problem of Lebesgue decomposition of measures induced by Gaussian processes is the simplest and most thoroughly studied for non-Gaussian stable processes the problem has remained largely open.

This work investigates mainly the Lebesgue decomposition of measures induced by non-Gaussian stable processes. For non-Gaussian measures, this question seems to have been first studied by Gihman and Skorohod (1966) and Skorohod (1965) for infinitely divisible measures in Hilbert space, and subsequently by Briggs (1975), Veeh (1981), and...
Brockett (1984) for measures induced by infinitely divisible processes. Except for the first work no application of the results to non-Gaussian stable measures has been made. The only works dealing specifically with stable measures are Zinn (1975) and Thang and Tien (1980).

Sufficient conditions for an element to be an admissible translate of an infinitely divisible measure in a Hilbert space were obtained in Gihman and Skorohod (1966). However, as observed by Zinn (1975), these conditions are difficult to verify and, as simplified for stable measures, they were found to be false.

Zinn (1976), investigated the structure of the set of admissible translates of stable measures in a Hilbert space. As an application he showed that certain stable processes have no nontrivial admissible translates. The admissible translates of symmetric stable measures with discrete spectral measures in a Banach space were characterized by Thang and Tien (1980).

All these works use primarily the representation of the characteristic functional of a stable measure in Hilbert or Banach space. Here we work with stable processes and exploit their spectral representation, which in some cases allows the formulation of the problem in terms of processes with independent increments and/or sequences of independent random variables.

1.2 Summary

The next section of this chapter (1.3) introduces the setting and notation, and presents the basic definitions and results on stable processes.

Chapter II considers the Lebesgue decomposition between the measure induced by a stochastic process and its translates by a nonrandom function, i.e. the problem of detecting a nonrandom signal in additive random noise. In Section 2.1, for p-th order and symmetric stable processes a function space is introduced which plays a role partly analogous to the reproducing kernel Hilbert space of a Gaussian or second order process.
In particular, this space provides an upper bound for the set of admissible translates, is a stochastic processes version of a space introduced by Zinn (1975), page 249, and extends the results of Zinn (1975), Proposition 10, to general symmetric stable processes and the results of Fortet (1973), Théorème 4.1, to general p^{th} order processes. A lower bound for the set of admissible translates of a stable process is also provided by exploiting their structure as mixtures of Gaussian processes, and a dichotomy is shown for a class of stable processes which includes all sub-Gaussian and sub-Gaussian-like processes.

In Section 2 of Chapter II, stable processes with an invertible spectral representation are considered. Their admissible translates are characterized, and a dichotomy is established: each translate is either admissible or singular. The result is applied to show that most continuous time moving averages, and all harmonizable processes with nonatomic spectral measure have no admissible translate. Thus these processes do not provide realistic models for additive noise, as every nonrandom signal can be perfectly detected in their presence. General harmonizable processes and discrete time mixed autoregressive moving averages processes are also considered.

Section 3, Chapter II, comments on the Radon-Nikodym derivatives in the case of an admissible translate and provides an expression for the likelihood ratio in terms of the one dimensional stable density in the case of purely atomic control measures.

Chapter III considers the Lebesgue decomposition between two measures induced by certain non-Gaussian processes. In Section 3.1 equivalence and singularity of product measures are studied. An idea of LeCam (1970) is developed further and provides a necessary and sufficient condition for equivalence and for singularity of certain product measures. As an application, the results of Steele (1986) on the discrimination between a sequence of random vectors in \mathbb{R}^k and its perturbation by rigid motions, are extended to more general classes of perturbations; and for certain non-symmetric (skewed) stable sequences of independent random variables, necessary and sufficient conditions are given for equivalence and for singularity. The singularity between sequences of independent
symmetric stable random variables with different indexes of stability is also proved.

Section 2 of Chapter III, introduces the notion of domination between pth order processes. A necessary condition for equivalence of two Gaussian processes, namely the setwise equality of their reproducing kernel Hilbert spaces, is shown to be true for symmetric stable processes with the function space introduced in Chapter II replacing the reproducing kernel Hilbert space. Further, for pth order processes with 1 < p < 2, necessary conditions for absolute continuity and sufficient conditions for singularity are presented analogous to those of Fortet (1973) for second order processes.

Finally, Section 3 of Chapter III makes use of the results of Section 3.1 to show that a dichotomy holds for certain symmetric stable processes including independently scattered random measures and harmonizable processes. Necessary and sufficient conditions for equivalence and singularity are given. The singularity between an invertible symmetric stable process and its multiples is also proved.

1.3 Background and notation

The following setting is considered. \(X = (X(t) = X(t,\omega); t \in T) \) is a stochastic process on a probability space \((\Omega, \mathcal{F}, P)\) with parameter set \(T \) and real or complex values, i.e. values in \(\mathbb{X} = \mathbb{R} \) or \(\mathbb{C} \). When \(X(t) \in L_p(\Omega, \mathcal{F}, P) = L_p(P) \) for all \(t \in T \), and some \(p > 0 \), \(X \) is called a pth order process. The linear space \(L(X) \) of a pth order process \(X \) is the \(L_p(P) \) completion of the set of finite linear combinations of its random variables \(l(X) \triangleq \text{sp}\{X(t); t \in T\}. \) \(\mathbb{X}^T \) denotes the set of all extended \(\mathbb{X} \)-valued (i.e., real or complex valued) functions on \(T \), \(\mathcal{C} = \mathcal{C}(\mathbb{X}^T) \) the \(\sigma \)-field generated by the cylinder sets of \(\mathbb{X}^T \) and \(\mu_X \) the distribution of the process \(X \), i.e. the probability induced on \(\mathcal{C} \) by \(X \):

\[
\mu_X(C) = P(\{\omega; X(\cdot,\omega) \in C\}), \ C \in \mathcal{C}.
\]

For two stochastic processes \(X \) and \(Y \) we are interested in the Lebesgue
decomposition of the distribution μ_Y of Y with respect to the distribution μ_X of X, and in particular in conditions for μ_Y and μ_X to be singular ($\mu_Y \perp \mu_X$), and for μ_Y to be absolutely continuous with respect μ_X ($\mu_Y \ll \mu_X$). If the two measures μ_Y and μ_X are mutually absolutely continuous we say that they are equivalent ($\mu_Y \sim \mu_X$). Of particular interest is the case where $Y = s + X$ for a nonrandom function s on T. The function s is then called a singular or admissible translate of X if $\mu_{s+X} \perp \mu_X$ or $\mu_{s+X} \ll \mu_X$ respectively.

Here we focus primarily on symmetric α-stable (SaS) processes. A real random variable X is SaS, $0 < \alpha \leq 2$, with scale parameter $\|X\|_\alpha \in (0, \infty)$ if $E\{\exp(iuX)\} = \exp\{-\|X\|_\alpha^\alpha |u|^\alpha\}$. A real random vector $(X_1, ..., X_n)$ is SaS (or its components are jointly SaS) if all linear combinations $\sum_{k=1}^n a_k X_k$ are SaS. Similarly a real stochastic process $X = (X(t); t \in T)$ is SaS if all linear combinations $\sum_{k=1}^n a_k X(t_k)$ are SaS random variables. When $\alpha = 2$ we have zero mean Gaussian random variables, vectors and processes respectively. When $0 < \alpha < 2$, the tails of the distributions are heavier and only moments of order $p \in (0, \alpha)$ are finite with

$$\{E(|X|^p)\}^{1/p} = C_{p, \alpha} \|X\|_\alpha,$$

where the constant $C_{p, \alpha}$ is independent of X. Thus a SaS process X is p^{th} order for all $0 < p < \alpha$, and its linear space $L(X)$ does not depend on p and is the completion of $l(X)$ with respect to $\|\cdot\|_\alpha^{1/\alpha}$, which in fact metrizes convergence in probability (Schilder (1970)).

An important class of SaS processes consists of SaS independently scattered random measures, which extend the concept of a stochastic process with independent increments to more general parameter spaces. Let I be an arbitrary set and \mathcal{J} a δ-ring of subsets of I with the property that there exists an increasing sequence $(I_n; n \in \mathbb{N})$ in \mathcal{J} with $\bigcup_n I_n = I$. A real stochastic process $Z = (Z(A); A \in \mathcal{J})$ is called an independently
scattered SoS random measure if for every sequence \((A_n; n \in \mathbb{N}) \) of disjoint sets in \(\mathcal{I} \), the random variables \(\{Z(A_n); n \in \mathbb{N}\} \) are independent, and whenever \(\bigcup_n A_n \in \mathcal{I} \) then
\[
Z(\bigcup_n A_n) = \sum_n Z(A_n) \text{ a.s.},
\]
and for every \(A \in \mathcal{I} \), \(Z(A) \) is a SoS random variable, i.e.
\[
E\{\exp(iuZ(A))\} = \exp\{-m(A)|u|^\alpha\} \text{ where } m(A) = ||Z(A)||_\alpha^\alpha.
\]
Then \(m \) is a measure on \(\mathcal{I} \) which extends uniquely to a \(\sigma \)-finite measure on \(\sigma(\mathcal{I}) \), and is called the control measures of \(Z \). Conversely, the existence of an independently scattered SoS random measure with a given control measure is a consequence of Komogorov’s consistency theorem.

When \(I \) is an interval of the real line, there is an identification between independent increments processes and independently scattered random measures. Namely if \(X = (X(t), t \in I) \) is an independent increments process and \((a,b) \subset I\), an interval,
\[
Z((a,b)) \triangleq X(b) - X(a)
\]
can be extended to an independently scattered random measure on the \(\delta \)-ring \(\mathcal{I} \) of bounded Borel sets of \(I \). Conversely given an independently scattered random measure \(Z \) on \(\mathcal{I} \), and \(a \) in \(I \), \(X(t) = \text{sign}(t-a)Z((a,t,a+\delta t)) \), \(t \in I \), is an independent increments process. When the control measure \(m \) is Lebesgue measure, then \(X \) has stationary independent increments,
\[
E\{\exp (iu[X(t) - X(t')])\} = \exp \{ -|t - t'| |u|^\alpha\},
\]
and is called SoS motion on \(I \).

For any function \(f \in L_\alpha(I,\sigma(I),m) = L_\alpha(m) \) the stochastic integral \(\int_I f dZ \) can be defined in the usual way and is a SoS random variable with \(\|\int_I f dZ\|_\alpha = \|f\|_{L_\alpha(m)} \).

The stochastic integral map \(f \rightarrow \int_I f dZ \) from \(L_\alpha(m) \) into \(L(Z) \) is an isometry and

\[
(1.3.1) \quad L(Z) = \{f dZ; f \in L_\alpha(m)\}.
\]

The stochastic integral allows for the construction of SoS processes with generally dependent values by means of the spectral representation

\[
(1.3.2) \quad X(t) = \int_I f(t,u)Z(du), \quad t \in I.
\]
where \(\{f(t, \cdot); t \in T\} \subset L_\alpha(m) \). In fact every \(\alpha \)-stable process \(X \) has such a spectral representation in law, in the sense that for some family \(\{f(t, \cdot), t \in T\} \) in some \(L_\alpha(m) \),

\[
(X(t); t \in T) \overset{L}{=} (\int f(t, u)Z(du); t \in T)
\]

(see e.g., Kuelbs (1973) and Hardin (1982)). If \(L(X) \) is separable, e.g. \(X \) is continuous in probability, then \(L_\alpha(I, m) \) can be chosen as \(L_\alpha([0,1], \text{Leb}) \). Specific examples of \(\alpha \)-stable processes will be considered in the following sections.

The covariation \([X, Y]_\alpha\) of two jointly \(\alpha \)-stable random variables \(X \) and \(Y \) with \(1 < \alpha \leq 2 \) is defined by

\[
[X, Y]_\alpha = \frac{E(X^p Y^q)}{|Y|^q},
\]

which holds for all \(0 < p < \alpha \), where \(y^{<p>} = |y|^{q-1} y^{-1} \), \(q > 0 \) (see e.g. Cambanis and Mamee (1985)). It follows that \(||X||_\alpha^\alpha = [X, X]_\alpha \). If \(X \) and \(Y \) have representations

\[
\int f dZ \text{ and } \int g dZ
\]

respectively then \([X, Y]_\alpha = \int f g^{<\alpha-1>} dm\).

In certain cases, such as when working with Fourier transforms, it is more natural and convenient to work with complex valued processes. A complex \(\alpha \)-stable random variable is defined as having jointly \(\alpha \)-stable real and imaginary parts. Except for the representation of the characteristic function, all concepts and results considered in this section for real \(\alpha \)-stable random variables and processes extend to the complex case (see e.g. Cambanis (1982) and Cambanis and Mamee (1985)).
CHAPTER II
ADMISSIBLE AND SINGULAR TRANSLATES

2.1 An upper bound for the set of admissible translates

A space of functions associated with a pth order, 0 \leq p \leq 2, stochastic process will be introduced and seen as a partial extension of the reproducing kernel Hilbert space (RKHS) associated with a second order process. We concentrate only on pth order processes with p < 2 because for those with p \geq 2 the second order theory is applicable.

Recall that for a second order stochastic process X = (X(t); t ∈ T) with arbitrary index set T, zero mean and covariance function R, the RKHS H of X (or of R) consists of all functions s of the form s(t) = E(X(t)Y), t ∈ T, Y ∈ L(X). If s\textsubscript{1}(t) = E(X(t)Y\textsubscript{1}) then \langle s\textsubscript{1}, s\textsubscript{2} \rangle \textsubscript{H} = E(Y\textsubscript{1}Y\textsubscript{2}) defines an inner product and R is a reproducing kernel, i.e. for all t ∈ T, R(·,t) ∈ H and s(t) = \langle s, R(·,t) \rangle \textsubscript{H}. Also s ∈ H if and only if

\[\|s\| \textsubscript{H} = \sup \frac{|\sum_{n=1}^{N} a\textsubscript{n} s(t\textsubscript{n})|}{[E|\sum_{n=1}^{N} a\textsubscript{n} X(t\textsubscript{n})|^{2}]^{1/2}} < \infty, \]

where the supremum is taken over all N ∈ N, a\textsubscript{1},...,a\textsubscript{N} ∈ X and t\textsubscript{1},...,t\textsubscript{N} ∈ T (see e.g. Fortet (1973)).

We now introduce the function space of a pth order process with 0 < p \leq 2 and arbitrary index T, and present its properties.

Definition 2.2.1. The function space F = F(X) of a pth order process X = (X(t); t ∈ T) with 0 < p \leq 2 is the set of all functions s on T such that
\[
\|s\|_F \triangleq \sup \frac{|\sum_{n=1}^{N} a_n s(t_n)|}{[E|\sum_{n=1}^{N} a_n X(t_n)|^p]^{1/p}} < \infty,
\]

where the supremum is taken over all \(N \in \mathbb{N}, a_1, \ldots, a_N \in X \) and \(t_1, \ldots, t_N \in T \).

When \(1 < p \leq 2 \), a representation is known for the bounded linear functionals on the linear space of \(X \), analogous to the Riesz representation for bounded linear functionals on a Hilbert space. This allows us to express the functions in \(F \) in terms of moments of the process \(X \). This and further properties of the function space are collected in the following

Proposition 2.1.2. Let \(X = (X(t); t \in T) \) be a \(p \)th order process with \(1 < p \leq 2 \). Then the following three statements are equivalent:

i) \(s \in F \),

ii) \(s(t) = E(X(t)Y^{<p-1>}) \) for \(Y \in L(X) \),

iii) \(s(t) = E(X(t)W) \) for \(W \in L_p^*(P) \) where \(1/p + 1/p^* = 1 \).

Moreover the following properties hold.

a) \(\|s\|_F = \|Y\|_{L_p(P)}^{p-1} \) if \(s(t) = E(X(t)Y^{<p-1>}), Y \in L(X) \).

b) For each \(s \in F \), with \(s(t) = E(X(t)Y^{<p-1>}), Y \in L(X) \), there exists a unique \(W \in L_p^*(P) \) (namely \(W = Y^{<p-1>} \)) satisfying iii) and \(\|s\|_F = \|W\|_{L_p^*(P)}^{p-1} \).

c) \((F, \|\cdot\|_F) \) is a Banach space isometrically isomorphic to the quotient space \(L_p^*(P)/\mathcal{I}(X) \), where \(\mathcal{I}(X) \) denotes the annihilator of \(\mathcal{I}(X) \).

Proof: i) \(\Rightarrow \) ii) follows by observing that if \(\|s\|_F < \infty \), then

\[\psi_s(\sum_{n=1}^{N} a_n X(t_n)) = \sum_{n=1}^{N} a_n s(t_n) \]

defines a bounded linear functional on \(L(X) \) with norm \(\|s\|_F \). From Cambanis and Miller (1981), Proposition 2.1, there exists a unique \(Y \in L(X) \) such that \(\psi_s(\cdot) = E(\cdot Y^{<p-1>}) \) and \(\|\psi_s\|_{L(X)^*} = \|Y\|_{L_p(P)}^{p-1} \). Thus \(s(t) = \psi_s(X(t)) = E(X(t)Y^{<p-1>}). \)
ii) \(\Rightarrow \) iii) If \(Y \in L(X) \) then \(W = Y^{<p-1>} \in L_{p^*}(P) \) and \(\|W\|_{L_{p^*}(P)} = \|Y\|_{L_p(P)}^{p-1} \). Also \(s(t) = E(X(t)Y^{<p-1>}) = E(X(t)W) \).

iii) \(\Rightarrow \) i) If \(s(t) = E(X(t)\overline{W}) \) then it is clear from its definition that \(\|s\|_F \) is finite.

a) That \(\|s\|_F = \|Y\|_{L_p(P)}^{p-1} \) follows as in the proof of i) \(\Rightarrow \) ii).

b) Let \(s \in F \). By iii) there exist \(Z \in L_{p^*}(P) \) such that \(s(t) = E(X(t)Z) \). Let \(l(X)^\perp \) be the closed linear space

\[\{Z' \in L_{p^*}(\Omega); E(Z'Y) = 0, Y \in l(X)\} \]

and let \(Z_0 \) be the best approximation of \(X \) in \(l(X)^\perp \) i.e.

\[\|Z-Z_0\|_{L_{p^*}(P)} = \inf\{\|Z-Z'\|_{L_{p^*}(P)}; Z' \in l(X)^\perp\} \]

Such a \(Z_0 \in l(X)^\perp \) exists and is unique (Singer (1970), Corollary 3.5 and Theorem 1.11). Set \(W = Z-Z_0 \). Then \(E(Z\overline{Y}) = E(W\overline{Y}) \) for all \(Y \in l(X) \). If \(Z' \) is such that \(E(Z'\overline{Y}) = E(Z\overline{Y}) \) for all \(Y \in l(X) \), then \(Z-Z' \in l(X)^\perp \) and

\[\|W\|_{L_{p^*}(P)} = \|Z-Z_0\|_{L_{p^*}(P)} \leq \|Z-(Z-Z')\|_{L_{p^*}(P)} = \|Z'\|_{L_{p^*}(P)} \]

Thus if \(s(t) = E(X(t)\overline{W}) \), \(W' \in L_{p^*}(P) \), and \(\|s\|_F = \|W'\|_{L_{p^*}(P)} \) we must have \(\|W\|_{L_{p^*}(P)} \leq \|W'\|_{L_{p^*}(P)} \). On the other hand

\[\|W'\|_{L_{p^*}(P)} = \|s\|_F = \sup_{n=1}^N \frac{|E(\sum_{n=1}^N a_n X(t_n)W)|}{\|\sum_{n=1}^N a_n X(t_n)\|_{L_p(P)}} \leq \|W\|_{L_{p^*}(P)} \]

Therefore \(\|W\|_{L_{p^*}(P)} = \|W'\|_{L_{p^*}(P)} = \|s\|_F \). Putting \(V = Z-W' \) we have

\(V \in l(X)^\perp \) and
\[||Z-Z_0||_{L^*_p(P)} = ||W||_{L^*_p(P)} = ||W'||_{L^*_p(P)} = ||Z-V||_{L^*_p(P)}. \]

Thus the uniqueness of \(Z_0 \) implies \(W = W' \). Since \(\gamma < p^{-1} \in L^*_p(P) \) and
\[||s||_F = ||\gamma < p^{-1}||_{L^*_p(P)} \text{ for } s(t) = E(X(t)\gamma < p^{-1}). \]
we must have \(W = \gamma < p^{-1} \).

c) That \((F, ||\cdot||_F) \) is a normed linear space is clear. To show that \(F \) is isometrically isomorphic to \(L^*_p(P)/\ell(X)^\perp \), let \(s_i \in F, i = 1, 2, \)
\begin{align*}
s_i(t) &= E(X(t)W_i), & \text{and } (s_1 + s_2)(t) &= E(X(t)W),
\end{align*}
where \(W_1, W_2 \) and \(W \) are the unique elements in \(L^*_p(P) \) such that
\[||s_i||_F = ||W_i||_{L^*_p(P)} \text{ and } ||s_1 + s_2||_F = ||W||_{L^*_p(P)}. \]

Since
\[E(X(t)W) = (s_1 + s_2)(t) = E(X(t)(W_1 + W_2)) \]
we have \(W - (W_1 + W_2) \in \ell(X)^\perp \text{ i.e. } [W] = [W_1] + [W_2], \) where \([\cdot]\) denotes an equivalence class in \(L^*_p(P)/\ell(X)^\perp \). Similarly if \(s(t) = E(X(t)\bar{W}) \) and \((as)(t) = E(X(t)\bar{W}) \) we have \([\bar{W}] = [aW] = a[W]\). Hence the map \(s \to [W] \) is linear and since
\[||[W]||_{L^*_p(P)/\ell(X)^\perp} = ||W||_{L^*_p(P)} = ||s||_F \]
it is an isometric isomorphism.

To finish the proof of c) we need to show that \(F \) is complete. Let \((s_k; k \in \mathbb{N})\) be a sequence in \(F \) such that \(\sum_{k=1}^{\infty} ||s_k||_F < \infty \) and let \(W_k \in L^*_p(P) \) be such that
\[||W_k||_{L^*_p(P)} = ||s_k||_F. \] Hence \(\sum_{k=1}^{\infty} ||W_k||_{L^*_p(P)} < \infty \) and \(W = \sum_{k=1}^{\infty} W_k \in L^*_p(P) \).
Set \(s(t) = E(X(t)W) \). Thus

\[
|\sum_{n=1}^{N} a_n (\sum_{k=1}^{K} s_k - s)(t_n)| \leq \| \sum_{k=1}^{K} W_k - W \|_{L^p(P)} \| \sum_{n=1}^{N} a_n X(t_n) \|_{L^p(P)}
\]

and

\[
\| \sum_{k=1}^{K} s_k - s \|_F \leq \| \sum_{k=1}^{K} W_k - W \|_{L^p(P)} \to 0 \text{ as } K \to \infty,
\]

i.e. \(\sum_{k=1}^{\infty} s_n \in F \) proving that \(F \) is complete.

Further properties of the function space \(F \) of the process \(X \), for \(1 < p \leq 2 \), analogous to those of a RKHS are the following:

i) If \(T \) is a metric space, functions in \(F \) are as "smooth" as the process \(X \) is in the weak sense, i.e., they are continuous (differentiable) if and only if \(X \) is weakly continuous (differentiable).

ii) Norm convergence in \(F \) implies pointwise convergency, and the convergence is uniform if \(\| X(t) \|_{L^p(P)} \) is uniformly bounded.

If the process \(X \) is \(\SaS \) with \(1 < \alpha < 2 \), then it is of \(p^{th} \) order for each \(p \in (1, \alpha) \) and its function space \(F \) does not depend on \(p \) but only on \(\alpha \) and can be defined by means of moments. Furthermore the functions in \(F \) can be expressed in terms of the spectral representation of the process.

Corollary 2.1.3. Let \(X = (X(t); t \in T) \) be a \(\SaS \) process with \(1 < \alpha < 2 \) and spectral representation

\[
X(t) = \int f(t,u)Z(du), \quad t \in T,
\]

where \(Z \) has control measure \(m \). Then the following three statements are equivalent

i) \(s \in F \),

ii) \(s(t) = [X(t),Y]_\alpha \) for \(Y \in L(X) \),

iii) \(s(t) = \int f(t,u)z(u)m(du) \) for \(z \in L_{1/\alpha^*}(m) \) where \(1/\alpha^* + 1/\alpha = 1 \).
Moreover the following properties hold.

a) \[\|s\|_F = C_{p,\alpha} \sup_{n=1}^{N} \frac{\|\sum_{n=1}^{N} a_n s(t_n)\|_0}{\|\sum_{n=1}^{N} a_n X(t_n)\|_\alpha} = \|Y\|_\alpha^{\alpha-1}. \]

b) For each \(s \in F \) there exists a unique \(z \in L_{\alpha^*}(m) \) satisfying iii) and \(\|s\|_F = \|z\|_{L_{\alpha^*}(m)} \).

c) The map \(s \rightarrow [z] \) from \(F \) into \(L_{\alpha^*}(m)/\|f\| \), where \([\cdot \] \) is an equivalence class in \(L_{\alpha^*}(m)/\|f\| \), \(\|f\| = \text{sp}\{f(t,\cdot); t \in T\} \), is an isometric isomorphism.

Proof: i) \(\Leftrightarrow \) ii). It follows from 1.3.3 that for all \(p \in (1,\alpha) \),

\[[\cdot, Y]_\alpha = E(\cdot, Z^{<p-1>}). \]

where

\[Z = C_{p,\alpha}^{-p/(p-1)} \|Y\|_\alpha^{(\alpha-p)/(p-1)} Y \text{ and } \|Z\|_{L_p(P)} = C_{p,\alpha}^{-1} \|Y\|_\alpha^{\alpha-1}. \]

so that \(s \in F \) if and only if \(s(t) = [X(t), Y]_\alpha \) which does not depend on \(p \).

ii) \(\Leftrightarrow \) iii). If \(Y \in L(X) \) then \(Y = \int f \text{gd}Z \) for some

\(g \in L(f) = \text{sp}\{f(t,\cdot); t \in T\} \), and

\[s(t) = [X(t), Y]_\alpha = [\int f(t) \text{gd}Z, \int g \text{gd}Z]_\alpha = \]

\[= \int f(t)g^{<\alpha-1>} \text{d}m = \int f(t)zd\text{m}, \]

where \(z = g^{<\alpha-1>} \in L_{\alpha^*}(m) \) and \(\|z\|_{L_{\alpha^*}(m)} = \|Y\|_\alpha^{\alpha-1}. \)

The proofs of iii) \(\Rightarrow \) i), the uniqueness of \(z \) and of the isometric isomorphism are identical to those of Proposition 2.1.
Further, the well known dichotomy on the admissible translates of a Gaussian process – namely that the admissible translates of a Gaussian process are precisely the functions in its RKHS, and its translates by functions outside its RKHS are singular – has a partial analog for p^{th} order processes $0 < p \leq 2$, where the RKHS is replaced by the function space F. Our result extends that of Théorème 4.1 in Fortet (1973) to p^{th} order processes with $0 < p < 2$, and when applied to SoS processes with $0 < \alpha < 2$, it generalizes Proposition 10 in Zinn (1975) to any SoS process.

Proposition 2.1.4. Let $X = (X(t); t \in T)$ be a p^{th} order process with $0 < p < 2$. If $s \notin F$ then $\mu_{s+X} \perp \mu_X$. Consequently all admissible translates of X belong to F.

Proof. The proof is adapted from Pang (1973). If $s \in F$, then

$$\sup_{n} \frac{\left| \sum_{n=1}^{N} a_n s(t_n) \right|}{\left\| \sum_{n=1}^{N} a_n X(t_n) \right\|_{L^p(P)}} = \infty.$$

Hence for each $n \in \mathbb{N}$, we can choose N_n, $a_{n,k}$, $t_{n,k}$, $k = 1, ..., N_n$ such that

$$\frac{\left| \sum_{k=1}^{N_n} a_{n,k} s(t_{n,k}) \right|}{\left\| \sum_{k=1}^{N_n} a_{n,k} X(t_{n,k}) \right\|_{L^p(P)}} \geq n^{1/p}.$$

Let $s_n = \sum_{k=1}^{N_n} a_{n,k} s(t_{n,k})$. Without loss of generality we can consider $s_n > 0$ for all n. Consider the random variables defined on $(\mathcal{X}, \mathcal{C}, \mu_\mathcal{X})$ by

$$Y_n(x) = \sum_{k=1}^{N_n} a_{n,k} x(t_{n,k}), \ x \in \mathcal{X}.$$

By the Markov inequality we have

$$\mu_\mathcal{X}(Y_n \geq s_n/2) \leq \mu_\mathcal{X}(\{|Y_n| \geq s_n/2\})$$
\[\leq 2^p \|Y_n\|^p_{L_p(P)} / s_n^p < 2^p / n \rightarrow 0 \quad \text{as } n \rightarrow \infty \]

and

\[
\mu_{s+X}(Y_n \geq s_n/2) = \mu_X(Y_n + s_n \geq s_n/2) \\
= \mu_X(Y_n \geq -s_n/2) \\
\geq \mu_X(|Y_n| < s_n/2) \\
= 1 - \mu_X(|Y_n| \geq s_n/2) \\
\geq 1 - 2^p \|Y_n\|^p_{L_p(P)} / s_n^p \\
\geq 1 - 2^p / n \rightarrow 1 \quad \text{as } n \rightarrow \infty.
\]

Therefore \(\mu_X \perp \mu_{s+X} \).

Restricting our attention to \(\alpha \)-S processes we see that in contrast with the Gaussian case, \(\alpha = 2 \), where the set of admissible translates is always the entire space \(\mathcal{F} \), i.e., the RKHS, the set of admissible translates of a \(\alpha \)-S process with \(\alpha < 2 \) may be as large as the entire function space \(\mathcal{F} \) or as small as \(\{0\} \), as is seen by the following examples.

Stable Motion: If \(X = (X(t); t \in [0,1]) \) is a \(\alpha \)-S motion, i.e., \(X \) has stationary independent \(\alpha \)-S increments, it is known (Brockett and Tucker (1977), Gihman and Skorohod (1966), Zinn (1975)), that \(X \) has no nontrivial admissible translates for \(0 < \alpha < 2 \). On the other hand for \(1 < \alpha < 2 \), its function space is the space of absolutely continuous functions with \(s(0) = 0 \) and derivative in \(L^\alpha \text{-Leb} \), i.e.

\[\mathcal{F} = \{ s; s(t) = \int_0^t s'(u)du, t \in [0,1], s' \in L^\alpha \text{-Leb} \} \]

with \(\|s\|_{\mathcal{F}} = \|s'\|_{L^\alpha \text{-Leb}} \).
Sub-Gaussian processes: Let \(X = (X(t); t \in T) \) be an \(\alpha \)-sub-Gaussian process, i.e. its finite dimensional characteristic functions have the form

\[
E\{\exp(i\sum_{n=1}^{N}a_nX(t_n))\} = \exp\{-(\frac{1}{2}\sum_{n,m=1}^{N}a_nR(t_n,t_m)a_m)^{\alpha/2}\},
\]

where \(R \) is a covariance function, or equivalently

\[
(X(t); t \in T) \overset{L}{=} (A^{1/2}G(t); t \in T),
\]

where \(A \) is a normalized positive \((\alpha/2)\)-stable random variable independent of the Gaussian process \(G = (G(t); t \in T) \) which has zero mean and covariance function \(R \). It follows from Huang and Cambanis (1979) that the set of admissible translates of \(X \) coincides with the RKHS of \(G \), once we observe that there the proof depends only on the representation of spherically invariant processes as scale mixtures of Gaussian processes and not on the existence of second moments. Moreover for any \(Y \in L(X), \)

\[
[X(t),Y]_{\alpha} = 2^{\alpha/2}\{E(W^2)\}^{1-\alpha/2}E(G(t)W),
\]

where \(W \in L(G) \) is obtained from \(G \) by the same linear operation \(Y \) is obtained from \(X \) (see Cambanis and Miller (1981)). Therefore the function space \(F \) of \(X \) coincides with the RKHS of \(G \) and is therefore a Hilbert space.

Stable processes as mixtures of Gaussian processes. It has been shown in LePage (1980) that every SoS process \(X \) is conditionally Gaussian with zero mean, i.e. there exists a sub-\(\sigma \)-field \(\mathcal{G} \) of \(\mathcal{F} \) such that given \(\mathcal{G} \), the law of \(X \) is Gaussian with mean zero and covariance function \(R \). Denoting by \(GR \) such a Gaussian process and by \(\mu_{GR} \) its distribution, we have that for every SoS process \(X \) there exists a probability \(\lambda \) on the
space \mathcal{R} of all covariance functions R such that

$$\mu_X(E) = \int_{\mathcal{R}} \mu_{G_R}(E) \lambda(dR)$$

for all $E \in \mathcal{C}$. The SoS process X is thus a Gaussian process with random covariance function R, and it is easily checked that all quadratic forms $\sum_{n,m=1}^{N} a_n R(t_n, t_m) x_m$ are positive $(\alpha/2)$-stable random variables. Likewise we have for all $E \in \mathcal{C}$,

$$\mu_{s+X}(E) = \int_{\mathcal{R}} \mu_{s+G_R}(E) \lambda(dR).$$

It follows that if s is an admissible translate of almost all G_R's, then it is an admissible translate of X too. This gives a lower bound for the set of admissible translates of X, namely

$$\bigcup_{\bigwedge \in \mathcal{R}} \bigcap_{R \in \mathcal{R} \setminus \bigwedge} \text{RKHS}(R) \quad \lambda(\bigwedge) = 0$$

Thus a SoS process will have admissible translates if it is a mixture of Gaussian processes whose RKHS's have a common part, i.e. if $\bigcap_{R \in \mathcal{R} \setminus \bigwedge} \text{RKHS}(R) \neq \{0\}$ for some $\lambda(\bigwedge) = 0$.

The converse does not seem to be necessarily true, i.e. an admissible translate of X may not be an admissible translate of almost all the Gaussian processes whose mixture is X.

It also follows that a singular translate of X is a singular translate of almost all the Gaussian processes whose mixture is X, and furthermore the same event separates them.

This gives an upper bound for the set of singular translates of X, namely
Conversely, if \(s \) is a singular translate of a.e. \(G_R(\lambda) \), it may not be a singular translate of \(X \); but if furthermore the separating set of \(\mu_{s+G_R} \) and \(\mu_{G_R} \) does not depend on \(R \) a.e. (\(\lambda \)), then \(s \) is a singular translate of \(X \).

When a SoS process is a mixture of Gaussian processes having the same RKHS then we show that a dichotomy prevails, with every translate being either admissible or singular.

Proposition 2.1.5. Let the SoS process \(X = (X(t); t \in T) \) be the \(\lambda \)-mixture of Gaussian processes \(G_R = (G_R(t); t \in T) \) such that \(\text{RKHS}(R) = H \) a.e. (\(\lambda \)). Then \(s \) is an admissible translate of \(X \) if and only if \(s \in H \), and \(s \) is a singular translate of \(X \) if and only if \(s \notin H \).

Proof: If \(s \in H \), then \(s \) is an admissible translate of a.e. \(G_R(\lambda) \), and hence of \(X \).

Now assume \(s \notin H \). Let \(\text{RKHS}(R) = H \) for all \(R \in \mathbb{R} \setminus \lambda \), \(\lambda(\lambda) = 0 \), and fix \(R_0 \in \mathbb{R} \setminus \lambda \). Then for each \(n \in \mathbb{N} \), there exist \(N_n, a_{n,1}, \ldots, a_{n,N_n}, t_{n,1}, \ldots, t_{n,N_n} \) such that

\[
\frac{\sum_{k=1}^{N_n} a_{n,k} s(t_{n,k})^2}{\mathbb{E}|\sum_{k=1}^{N_n} a_{n,k} G_{R_0}(t_{n,k})|^2} > n.
\]

Since for every \(R \in \mathbb{R} \setminus \lambda \), \(\text{RKHS}(R) = H \), there exists \(0 < c_R < \infty \) such that

\[
\mathbb{E}|\sum_{k=1}^{N_n} a_{n,k} G_R(t_{n,k})|^2 \leq c_R \mathbb{E}|\sum_{k=1}^{N_n} a_{n,k} G_{R_0}(t_{n,k})|^2.
\]

As in Proposition 2.1.4, let \(s_n = \sum_{k=1}^{N_n} a_{n,k} s(t_{n,k}) \) (and WLOG assume \(s_n > 0 \)) and

\[
Y_n(x) = \sum_{k=1}^{N_n} a_{n,k} x(t_{n,k}), \quad x \in \mathcal{X},
\]

so that
\[
\mu_{G_R}(Y_n \geq s_n/2) \leq 2^{2E}|\sum_{k=1}^{N_n} a_{n,k} G_R(t_n)|^2/s_n^2
\leq 4c_R/E|\sum_{k=1}^{N_n} a_{n,k} G_R(t_n)|^2/s_n^2
\leq 4c_R/n \to 0
\]

and
\[
\mu_{s+G_R}(Y_n \geq s_n/2) \geq 1 - \mu_{G_R}(|Y_n| > s_n/2)
\geq 1 - 4c_R/n \to 1
\]
as \(n \to \infty\).

Hence by the dominated convergence theorem
\[
\mu_X(Y_n \geq s_n/2) = \int_{\mathbb{R}} \mu_{G_R}(Y_n \geq s_n/2)\lambda(dR) \to 0
\]
as \(n \to \infty\).

and
\[
\mu_{s+X}(Y_n \geq s_n/2) = \int_{\mathbb{R}} \mu_{s+G_R}(Y_n \geq s_n/2)\lambda(dR) \to 1
\]
as \(n \to \infty\).

This implies \(\mu_X \perp \mu_{s+X}\). Hence every \(s \not\in \mathbb{H}\) is a singular translate of \(X\), and the proof of the dichotomy is complete. \(\Box\)

The assumptions of Proposition 2.1.5 are satisfied when \(X\) is sub-Gaussian, i.e. \(X\) is the mixture of the mutually singular Gaussian process \(a^{1/2}G\), \(a > 0\), which have identical RKHS; or in the more general case where \(X\) is the mixture of Gaussian processes with random covariance function of the form \(\sum_{n=1}^{N} a_n R_n(t,s)\), where the \(R_n\)'s are fixed (nonrandom) covariance such that \(R_n - c_{nm} R_m\) is nonnegative definite for all \(n,m = 1,...,N\), \(n \neq m\), and some \(0 < c_{nm} < \infty\), and the positive random variables \(a_1,...,a_N\) are jointly \((\alpha/2)\)-stable.

The usefulness of these general remarks is limited by the fact that the only \(\alpha\)S\(\alpha\) mixtures of Gaussian processes, which are currently known explicitly, are the sub-Gaussian processes, and the more general finite sums \(\sum_{n=1}^{N} a_n^{1/2} G_n\), where \(a_1,...,a_N\)
is positive \((\alpha/2)\)-stable and independent of the mutually independent Gaussian processes
\(G_1, \ldots, G_N\).

Further examples where the set of admissible translates is trivial or a proper subset of the function space \(F\) are presented in the next section. It should finally be recalled that the set of admissible translates of a \(\alpha\)-stable process is always a linear space, even if it is not the entire function space \(F\) (Zinn (1975), Corollary 5.1). However, as will be seen in the next section, the restriction of \(||\cdot||_F\) to the set of admissible translates may not be the most natural way to define a topology on it. Also, from the linear structure we have that \(\mu_{s+X} \ll \mu_X \ll \mu_{s+X}\) (see e.g. Thang and Tien (1979)) so that for every admissible translate \(s, \mu_{s+X}\) and \(\mu_X\) are equivalent.

2.2 Translates of invertible processes

In this section we present some general results on the admissible translates of certain \(\alpha\)-stable processes with invertible spectral representation.

Let \(X = (X(t); t \in T)\) be a \(\alpha\)-stable stochastic process with spectral representation as in (1.3.2). It follows from the continuity of the stochastic integral map \(f \mapsto \int f dZ\) and (1.3.1) that the representing functions \(\{(f(t, \cdot); t \in T)\}\) are linearly dense in \(L_\alpha(m)\), i.e. that \(L(f) = L_\alpha(m)\), where \(L(f)\) is the completion of \(\mathcal{L}(f) = \text{sp}\{\{(f(t, \cdot); t \in T)\}\}\) in \(L_\alpha(m)\), if and only if \(L(X) = L(Z)\). Processes satisfying this condition will be said to have an invertible spectral representation or more simply to be invertible.

Every Gaussian process is invertible Cambanis (1975), construction in Theorem 2. This is not generally true for non-Gaussian \(\alpha\)-stable processes as can be seen from the fact that the linear space of a sub-Gaussian process does not contain (nontrivial) independent random variables (Cambanis and Soltani (1982), Lemma 2.1). Necessary and sufficient conditions for a general \(\alpha\)-stable process to have an invertible spectral representation are given in Cambanis (1982), Theorems 5.1 and 5.5. A stronger form of invertibility for a nonanticipating \(\alpha\)-stable moving average is considered in Cambanis and Soltani (1982).
Lemma 3.1. SaS processes with invertible spectral representation in $L_2([0,1], \text{Leb})$, i.e. $L_2(\mathcal{H}^2_t(t); t \in [0,1]) = L_2([0,1], \text{Leb})$, are considered in Zinn (1975); clearly such a process has also invertible spectral representation in $L\alpha([0,1], \text{Leb})$. Examples of invertible SaS processes will be presented in the sequel.

For invertible processes the problem of finding their admissible translates can be reduced to finding the admissible translates of the independently scattered random measure Z, which we now consider first.

The next proposition is essentially based on Gihman and Skorohod (1966). Theorem 7.3. It extends to independently scattered SaS random measures with non-atomic control measure the result in Brockett and Tucker (1977) and Zinn (1975) on admissible translates of independent increments processes in $[0,T]$ which are stochastically continuous and have no Gaussian component. It establishes a dichotomy for the translates of a general independently scattered SaS random measure and it characterizes its admissible translates as those of its atomic component.

The following notation will be used in Proposition 2.2.1. Recall that if a σ-finite measure space $(\mathcal{I}, \sigma(\mathcal{I}), m)$ is such that $\sigma(\mathcal{I})$ contains all single points sets (e.g. \mathcal{I} is a Polish space, $\sigma(\mathcal{I})$ its Borel sets, and \mathcal{I} the \mathcal{I}-ring of Borel sets with finite m-measure) then $m = m_a + m_d$ where m_a is purely atomic and m_d is diffuse (non-atomic) (Kingman and Taylor (1966)), and the set of atoms is at most countable, say $A = \{a_n; n \in \{1,2,..,N\} \cap \mathbb{N}\}$, N the number of atoms. Thus if $Z = (Z(B); B \in \mathcal{I})$ is an independently scattered SaS random measure with control measure m, it can be expressed as

$$Z = Z_a + Z_d,$$

where Z_a and Z_d are independent SaS independently scattered random measures defined for all $B \in \mathcal{I}$ by
\[Z_a(B) = Z(A \cap B) \quad \text{and} \quad Z_d(B) = Z(A^c \cap B), \]

and have control measures \(m_a \) and \(m_d \) respectively. The atomic component has a series expansion

\[Z_a(B) = \sum_{n=1}^{N} 1_B(a_n)Z(\{a_n\}) \]

which can be normalized by using the i.i.d. standard \(\mathcal{S} \alpha S \) random variables

\[Z_n \overset{\Delta}{=} Z(\{a_n\})m^{-1/\alpha}(\{a_n\}) \]

with \(E\{\exp(iuZ_n)\} = \exp(-|u|^\alpha) \), as follows:

\[Z_a(B) = \sum_{n=1}^{N} 1_B(a_n)m^{1/\alpha}(\{a_n\})Z_n. \]

Proposition 2.2.1: Let \(Z = (Z(B); B \in \mathcal{F}) \) be an independently scattered \(\mathcal{S} \alpha S \) random measure with \(0 < \alpha < 2 \) and control measure \(m = m_a + m_d \), and let \(S = (S(B); B \in \mathcal{F}) \) be a set function. Then the following are equivalent:

i) \(S \) is an admissible translate of \(Z \),

ii) \(S \) is an admissible translate of \(Z_a \),

iii) \(S \) is concentrated on \(A \), i.e.

\[S(B) = \sum_{n=1}^{N} S(\{a_n\})1_B(a_n), \]

and

\[\sum_{n=1}^{N} |S(\{a_n\})|^2/m^{2/\alpha}(\{a_n\}) < \infty. \]
Furthermore a translate which is not admissible is singular.

Proof: Let ζ_a and ζ_d be the stochastic processes with parameter set \mathcal{J} defined on the probability space $(\mathbb{X}^3, \mathcal{C}(\mathbb{X}^3), \mu_Z)$ by

$$
\zeta_a(B, x) = \pi(A \cap B), \quad \text{and} \quad \zeta_d(B, x) = \pi(A^c \cap B), \quad x \in \mathbb{X}^3, \ B \in \mathcal{J}.
$$

Clearly

$$(2.2.1) \quad \zeta_a(B, Z(\cdot, \omega)) = Z(A \cap B, \omega) = Z_a(B, \omega), \quad \text{and} \quad \zeta_d(B, Z(\cdot, \omega)) = Z(A^c \cap B, \omega) = Z_d(B, \omega), \quad \text{a.s. (P)},
$$

so that ζ_a and ζ_d are independently scattered $\mathcal{S}\mathcal{N}\mathcal{S}$ random measures with control measures m_a and m_d respectively. Let ζ_a and ζ_d also denote the corresponding linear maps $x \rightarrow \zeta_a(\cdot, x)$ and $x \rightarrow \zeta_d(\cdot, x)$ from \mathbb{X}^3 into \mathbb{X}^3.

i) \Rightarrow ii) Suppose $\mu_{S+Z} \ll \mu_Z$. Hence by Proposition 2.1.4, $S \in \mathcal{F}$ and by definition of \mathcal{F} the map $F: L(Z) \rightarrow \mathbb{X}$ defined by

$$
F(\sum_{k=1}^n a_k Z(A_k)) = \sum_{k=1}^n a_k S(A_k)
$$

is a well defined linear functional so that S is a signed measures on \mathcal{J}. Furthermore since

$$
|S(B)| \leq C_{p, a} \|S\|_{\mathcal{F}} \|Z(B)\|_{\alpha} = C_{p, a} \|S\|_{\mathcal{F}} [m(B)]^{1/\alpha}.
$$

S is absolutely continuous with respect to m, i.e. $S(B) = \int_B z \, dm$ for some z locally in $L_1(m)$: $z 1_B \in L_1(m)$ for all $B \in \mathcal{J}$.

It follows that $\mu_{S+Z} \ll \mu_Z$ or equivalently $\zeta_d(\cdot, S)$ is an admissible
translate of the process \(\zeta_d \), since \(\zeta_d \) is linear. Now

\[
\zeta_d(B,S) = S(A^c \cap B) = \int_{A^c \cap B} zdm = \int_B \mathbb{1}_S d \mu_d \triangleq S_d(B).
\]

Since \(m_d \) is nonatomic it follows from a well known results (Halmos (1975), p. 174) that we can find measurable partitions \(\{B_{j,k}(B) : k = 1,2,\ldots,k_j \}, j = 1,2,\ldots \), of \(B \) for which

\[
\max_{1 \leq k \leq K_j} m_d(B_{j,k}(B)) \to 0 \quad \text{as } j \to \infty.
\]

For notational simplicity we will omit in the following the dependence on \(B \). It follows that the triangular system of rowwise independent random variables

\[\{\zeta_d(B_{j,k}) : k = 1,2,\ldots,K_j, j = 1,2,\ldots \} \] is infinitesimal, i.e. for every \(\epsilon > 0 \),

\[
\max_{1 \leq k \leq K_j} \mu_Z(\{|\zeta_d(B_{j,k})| \geq \epsilon\}) \to 0 \quad \text{as } j \to \infty.
\]

Hence, since for every \(j \), \(\zeta_d(B) = \sum_{k=1}^{K_j} \zeta_d(B_{j,k}) \), we have from the central limit theorem for triangular arrays and the fact that \(\zeta_d \) has no Gaussian component that

\[
\liminf_{\epsilon \to 0} \liminf_{j \to \infty} \text{Var}\{\sum_{k=1}^{K_j} \zeta_d(B_{j,k})1_{(-\epsilon,\epsilon)}(\{|\zeta_d(B_{j,k})|\})\} = 0
\]

(see e.g. Araujo and Giné (1980), Theorem 4.7). Thus by Chebyshev's inequality

\[
\sum_{k=1}^{K_j} \zeta_d(B_{j,k})1_{(-\epsilon,\epsilon)}(|\zeta_d(B_{j,k})|) \to 0
\]

in \(\mu_Z \)-probability (in \(L_p(\mu_Z), p \in (0,1) \)) as \(j \to \infty \) and \(\epsilon \to 0 \).

On the other hand, if \(S_d(B) = \int_B \mathbb{1}_S d \mu_d \) and \(m_d(B_{j,k}) \to 0 \) as \(j \to \infty \) then
\[S_d(B_{j,k}) \to 0 \text{ as } j \to \infty, \text{ and hence for } j \text{ large} \]

\[S_d(B) = \sum_{k=1}^{K_j} S_d(B_{j,k}) = \sum_{k=1}^{K_j} S_d(B_{j,k}) I((-\epsilon,\epsilon)(|S_d(B_{j,k})|)). \]

Similarly

\[\sum_{k=1}^{K_j} (S_d(B_{j,k}) + \xi_d(B_{j,k})) I((-\epsilon,\epsilon)(|S_d(B_{j,k})|) + \xi_d(B_{j,k})|) \to S_d(B). \]

in \(\mu_Z \)-probability as \(j \to \infty \) and \(\epsilon \to 0 \).

Define for \(B \in \mathcal{I} \) the map \(\phi(B, \cdot) : X^I \to X^I \) by

\[\phi(B, x) = \liminf_{\epsilon \to 0} \liminf_{j \to \infty} \sum_{k=1}^{K_j} x(B_{j,k}) I((-\epsilon,\epsilon)(|\pi(B_{j,k})|)). \]

Suppose \(S_d \) is not identically zero. Then there exists \(B \in \mathcal{I} \) such that \(S_d(B) \neq 0 \).

It follows from (2.2.3) and (2.2.4) that

\[\phi(B, \xi_d(\cdot, x)) = 0 \text{ and } \phi(B, S_d + \xi_d(\cdot, x)) = S_d(B) \text{ a.e. } (\mu_Z) \]

Thus \(\mu_{S+Z} \phi^{-1}(B, \cdot) \perp \mu_Z \phi^{-1}(B, \cdot) \) and hence \(\mu_{S+Z} \perp \mu_Z \) which is a contradiction.

Therefore \(S_d(B) = \int_B \tilde{z} dm_d = 0 \) for all \(B \in \mathcal{I} \), i.e. \(\tilde{z} = 0 \) a.e. \((m_d) \), so that

\[\phi(B, \zeta_d(\cdot, x)) = 0 \text{ and } \phi(B, S_d + \zeta_d(\cdot, x)) = S_d(B) \text{ a.e. } (\mu_Z) \]

Reasoning as before we have \(\mu_{S+Z} \zeta_a^{-1} \ll \mu_Z \zeta_a^{-1} \), i.e. \(\zeta_a(\cdot, S) \) is an admissible translate of \(\zeta_a \) (or \(Z_a \)), and by (2.2.6)

\[\zeta_a(B, S) = S(A \cap B) = \int_{A \cap B} \tilde{z} dm = \int_B \tilde{z} dm_d = S(B) \]

\[S(A \cap B) = \int_{A \cap B} \tilde{z} dm = \int_B \tilde{z} dm_d = S(B) \]
i.e. $S = \zeta_a(\cdot, S)$ is an admissible translate of Z_a.

ii) \Rightarrow i). Suppose S is an admissible translate of Z_a. Since $Z = Z_a + Z_d$ and Z_a and Z_d are independent we have $\mu_Z = \mu_{Z_a} * \mu_{Z_d}$. Then $\mu_{S+Z_a} \ll \mu_{Z_a}$ implies $\mu_{S+Z} \ll \mu_Z$. Indeed

$$0 = \mu_Z(B) = \int_X \mu_{Z_a}(B-x) \mu_{Z_d}(dx)$$
implies

$$\mu_{Z_a}(B-x) = 0 \text{ a.e. (}\mu_{Z_d}\text{)}$$
hence

$$0 = \mu_{S+Z_a}(B-x) = \mu_{Z_a}(B-x) \text{ a.e. (}\mu_{Z_d}\text{)}$$
and thus

$$\mu_{S+Z}(B) = \mu_Z(B-S) = \int_X \mu_{Z_a}(B-S-x) \mu_{Z_d}(dx) = 0.$$

ii) \Rightarrow iii). Because $S \in F$, S is absolutely continuous with respect to m_d, $S(B) = \sum_{n=1}^N S(\{a_n\})1_B(a_n)$. Let $\psi: \mathbb{R}^3 \rightarrow \mathbb{R}^N$, where $N = \{1, \ldots, N\}$ if $N < \infty$ and $N = \infty$ otherwise, be defined by

$$[\psi(n)][n] = \psi(n,x) = \zeta_a(\{a_n\}, x)/m^{1/\alpha}(\{a_n\}).$$

Thus by (2.2.1), $\psi(n, \cdot)$, $n \in N$, are standard S_{α} i.i.d. random variables.

$$\psi(n,S) = \zeta_a(\{a_n\}, S)/m^{1/\alpha}(\{a_n\}) = S(\{a_n\})/m^{1/\alpha}(\{a_n\})$$
and

$$\psi(n,S+x) = \psi(n,S) + \psi(n,x) = S(\{a_n\})/m^{1/\alpha}(\{a_n\}) + \psi(n,x).$$

Now $\mu_{S+Z_a} \ll \mu_{Z_a}$ implies $\mu_{S+Z_a}^{-1} \ll \mu_{Z_a}^{-1}$, i.e.
\[(S(a_n)/m^{1/\alpha}(\{a_n\}); n \in \mathcal{N})\] is an admissible translate of the random element \((\psi(n,\cdot); n \in \mathcal{N})\) defined on the probability space \((\mathcal{X}^1, \mathcal{C}(%(\mathcal{X}^1), \mu_Z))\). It follows from Shepp (1965) if \(N = \infty\) and trivially if \(N < \infty\) that \(\sum_{n=1}^{N} S^2(\{a_n\})/m^{2/\alpha}(\{a_n\}) < \infty\).

\[iii) \Rightarrow ii).\] Conversely, if \(\sum_{n=1}^{N} S^2(\{a_n\})/m^{2/\alpha}(\{a_n\}) < \infty\) it follows from Shepp (1965) and the fact that stable densities have finite Fisher information (DuMouchel 1973) that \((S(\{a_n\}))/m^{1/\alpha}(\{a_n\}); n \in \mathcal{N})\) is an admissible translate of \((\psi(n,\cdot); n \in \mathcal{N})\) (the result is trivial if \(N < \infty\)). Therefore

\[\sum_{n=1}^{N} S(\{a_n\})1_B(\{a_n\}) = S(B)\]

is an admissible translate of the process

\[\sum_{n=1}^{N} 1_B(\{a_n\})m^{1/\alpha}(\{a_n\})\psi(n,x) = \sum_{n=1}^{N} 1_B(a_n)\zeta(\{a_n\}, x) = \zeta(B, x)\]

and hence of \(Z_a\).

To prove that a translate \(S\) which is not admissible is singular it suffices to consider such a translate in \(\mathcal{F}\), i.e. from the proof of i) \(\Rightarrow ii)\), \(S(B) = \int_B \mathbb{z} dm\). If \(m_d(|z| > 0) > 0\) then \(\mu_{S+Z} \perp \mu_Z\). Thus assume

\[S(B) = \int_B \mathbb{z} dm_a = \sum_{n=1}^{N} S(\{a_n\})1_B(a_n).\]

Since it is not admissible, by iii) \(N = \infty\) and \(\sum_{n=1}^{N} S^2(\{a_n\})/m^{2/\alpha}(\{a_n\}) = \infty\). Hence from Shepp (1965), \((S(\{a_n\}))/m^{1/\alpha}(\{a_n\}); n \in \mathcal{N})\) is a singular translate of \((\psi(n,\cdot); n \in \mathcal{N})\), i.e. \(\mu_{S+Z}^{-1} \perp \mu_Z^{-1}\), which implies \(\mu_{S+Z} \perp \mu_Z\).

\[\square\]

It follows that the admissible translates of a SoS independently scattered random measure are quite different in the Gaussian and non-Gaussian cases. Indeed, for \(Z\)
Gaussian ($\alpha = 2$) every element in its function space (i.e. its RKHS)

$$F_2 = \{ S; S(B) = \int B z dm, \ z \in L_2(m) \}$$

$$= \{ S; S \text{ signed measure on } \sigma(\mathcal{F}), S \ll m, \frac{dS}{dm} \in L_2(m) \}$$

(see, e.g. Chatterji and Mandrekar (1978)) is an admissible translate, while, e.g. for Z

non-Gaussian with $1 < \alpha < 2$ its only admissible translates are $S(B) = \int B z dm,$

$z \in L_{\alpha^*}(m)$, with $z = 0$ a.e. (m_d), and $
\sum_{n=1}^{N}|S(\{a_n\})|^2/m^{2/\alpha}(\{a_n\}) < \infty$. Hence for

$1 < \alpha < 2$ the set of admissible translates is a proper subset of the function space F_α

which is given by

$$F_\alpha = \{ S; S \text{ signed measure on } \sigma(\mathcal{F}), S \ll m, \frac{dS}{dm} \in L_{\alpha^*}(m) \}.$$

In particular, while a diffuse Gaussian random measure has a rich class of admissible

translates, a diffuse non-Gaussian $\alpha S\alpha$ random measure has no admissible translate

whatever. On the other hand, if m (or Z) is atomic ($m_d = 0$), the condition in

Proposition 2.2.1 iii) extends the Gaussian condition. Indeed if $\alpha = 2$ and

$$S(B) = \int B \frac{dS}{dm} dm = \sum_{n=1}^{N} \frac{dS}{dm}(a_n)m(\{a_n\})$$

then $\sum_{n=1}^{N}|S(\{a_n\})|^2/m(\{a_n\})^{2/\alpha} < \infty$ is equivalent to $\frac{dS}{dm} \in L_2(m)$.

The results of Proposition 2.2.1 can now be used to obtain a dichotomy for the

translates of an invertible $\alpha S\alpha$ process, and to characterize its admissible translates as

those of its atomic component. In order to state the result for a $\alpha S\alpha$ process X with

spectral representation $X(t) = \int f(t,u)Z(du)$ and control measure m, we introduce the

independent $\alpha S\alpha$ diffuse and atomic component processes of X:
\[X_d(t) = \int_A f(t,u)Z(du) = \int_1 f(t,u)Z_d(t), \]

\[X_a(t) = X(t) - X_d(t) = \int_A f(t,u)Z(du) = \int_1 f(t,u)Z_a(du). \]

The atomic component \(X_a \) has a series expansion

\[X_a(t) = \sum_{n=1}^{N} f(t,a_n)Z\{a_n\}, \]

which can be normalized by putting

\[Z_n = Z\{a_n\}/m^{1/\alpha}\{a_n\} \text{ and } f_n(t) = f(t,a_n)m^{1/\alpha}\{a_n\}, \]

so that the \(Z_n \)'s are standard \(S_oS \) i.i.d. random variables, for all \(t \in T, \sum_{n=1}^{N}|f_n(t)|^\alpha < \infty \), and

\[X_a(t) = \sum_{n=1}^{N} f_n(t)Z_n. \]

Proposition 2.2.2. Let \(X = (X(t); t \in T) \) be a \(S_oS \) process with \(0 < \alpha < 2 \), invertible spectral representation \(X(t) = \int_A f(t,u)Z(du) \) and control measure \(m \), and let \(s = (s(t); t \in T) \) be a function on \(T \). Then the following are equivalent:

i) \(s \) is an admissible translate of \(X \),

ii) \(s \) is an admissible translate of \(X_a \),

iii) \(s(t) = \sum_{n=1}^{N}s_n f(t,a_n) \) with \(\sum_{n=1}^{N}|s_n|^2/m^{2/\alpha}\{a_n\} < \infty \).

i.e.

\[s(t) = \sum_{n=1}^{N}s_n f_n(t) \text{ with } \sum_{n=1}^{N}|s_n|^2 < \infty. \]
Furthermore a translate which is not admissible is singular.

Proof: i) Since \(1_B \in L_\alpha(m) = L(f) \), for any \(B \in \mathcal{F} \), there exist

\[\phi_n(B, \cdot) \in \text{sp}\{f(t, \cdot); t \in T\}, \quad n = 1, 2, \ldots, \quad \text{i.e.} \]

\[\phi_n(B, \cdot) = \sum_{n=1}^{N(f)} a_{n,k} f(t_{n,k}(B), \cdot), \]

such that

\[\phi_n(B, \cdot) \to 1_B(\cdot) \quad \text{in } L_\alpha(m) \quad \text{as } n \to \infty. \]

Define

\[\phi_n(B, x) = \sum_{k=1}^{N(f)} a_{n,k} f(t_{n,k}(B)), \quad x \in X^T. \]

Thus

\[\phi_n(B, X(\cdot, \omega)) = \sum_{n=1}^{N(f)} a_{n,k} f(t_{n,k}(B), \omega) \]

\[= \int_{X^T} \phi_n(B, u) Z(du, \omega) \to \int_{X^T} 1_B(u) Z(du, \omega) = Z(B, \omega) \]

in \(L_p \) (hence in probability) as \(n \to \infty. \) Thus \((\phi_n(B, \cdot); n \in \mathbb{N}) \) converges in \(\mu_X \)-measure. Let \((\phi_{n_k}(B, \cdot); k \in \mathbb{N}) \) be a subsequence converging a.e. \((\mu_X) \) and define

\[\tilde{Z}(B) = \tilde{Z}(B, \cdot) = \liminf_{k \to \infty} \phi_{n_k}(B, \cdot) 1_{\{x; \phi_{n_k}(B, x) \text{ converges}\}(\cdot)}. \]

\(\tilde{Z}(B, \cdot) \) is a well defined \(\mathcal{C} \)-measurable function on \(X^T \) for each \(B \in \mathcal{F} \). Hence

\[\tilde{Z} = (\tilde{Z}(B); B \in \mathcal{F}) \]

is a stochastic process on the probability space \((X^T, \mathcal{C}, \mu_X)\), and from

\[(2.2.7), \quad \tilde{Z}(B, X(\cdot, \omega)) = Z(B, \omega) \quad \text{a.s., so that } \tilde{Z} \text{ is equal in law to } Z, \quad \text{i.e. } \tilde{Z} \text{ is an} \]

independently scattered \(\text{SSS} \) random measure with control measure \(m \).

i) \(\Rightarrow \) ii) Let \(s \) be an admissible translate of \(X \). From Proposition 2.1.4, \(s \in \mathcal{F} \), i.e.
for \(p \in (0, \alpha) \),

\[
|\sum_{k=1}^{n} a_k s(t_k)| \leq \|s\|_F \|\sum_{k=1}^{n} a_k X(t_k)\|_{L_p(P)}.
\]

Hence as in Proposition 2.2.1, \(F[\sum_{k=1}^{n} a_k X(t_k)] = \sum_{k=1}^{n} a_k s(t_k) \) is a well defined continuous linear functional on \(L(X) \) and \(s(t) = F[X(t)] \). Thus

\[
\phi_n(B, s) = \sum_{k=1}^{N_n(B)} a_{n,k}(B)s(t_{n,k}(B))
\]

\[
= F[\sum_{k=1}^{N_n(B)} a_{n,k}(B)X(t_{n,k}(B))] \rightarrow F[Z(B)] \quad \text{as} \quad n \rightarrow \infty.
\]

Hence for all \(B \in \mathfrak{F} \),

\((2.2.9)\) \[\tilde{Z}(B, s) = F(Z(B)) \]

and

\((2.2.10)\) \[\tilde{Z}(B, s + x) = \tilde{Z}(B, s) + \tilde{Z}(B, x). \]

Now if \(\tilde{Z}_d(B, \cdot) = \tilde{Z}(A^c \cap B, \cdot) \), then \(\tilde{Z}_d = (\tilde{Z}_d(B, \cdot); B \in \mathfrak{F}) \) is an independently scattered \(\mathcal{S} \mathcal{S} \) random measure with control measure \(m_d \) and by (2.2.10) it has \(\tilde{Z}_c(\cdot, s) \) as an admissible translate. But \(m_d \) is non-atomic, thus by Proposition 2.2.1, \(\tilde{Z}_d(\cdot, s) = 0 \), i.e. for all \(B \in \mathfrak{F} \),

\[0 = \tilde{Z}_d(B, s) = \tilde{Z}(A^c \cap B, s) = F(Z(A^c \cap B)) = F(Z_d(B)). \]

and hence

\[s(t) = F[X(t)] = F[X_n(t) + X_d(t)] = F[X_n(t)] \]

(since \(X_d \) is obtained by a linear operation on \(Z_d \) which implies \(F[X_d(t)] = 0 \).
Therefore

\[s(t) = F[X_a(t)] = F[\sum_{n=1}^{N} f_n(t) Z_n] \]
\[= \sum_{n=1}^{N} f_n(t) F[Z_n] = \sum_{n=1}^{N} f_n(t) s_n \]
\[= \sum_{n=1}^{N} f_n(t,a_n) s_n. \]

where \(s_n = F(Z_n) \) and \(s_n = \frac{1}{\alpha} \langle \{a_n\}\rangle \). On the other hand

\[\tilde{X}_a = (\tilde{X}_a(t,x) = \sum_{n=1}^{N} f(t,a_n) \tilde{Z}(\{a_n\},x); t \in \Gamma) \]

has distribution \(\mu_{\tilde{X}_a} \) and by the linearity of the map \(z \rightarrow \tilde{X}_a(\cdot,z) \), the function \(\tilde{X}_a(\cdot,z) \)
is an admissible translate of \(\tilde{X} \) and hence of \(X_a \). But

\[\tilde{X}_a(t,s) = \sum_{n=1}^{N} f(t,a_n) \tilde{Z}(\{a_n\},s) \]
\[= \sum_{n=1}^{N} f(t,a_n) F[Z(\{a_n\})] \]
\[= \sum_{n=1}^{N} f(t,a_n) s_n = \sum_{n=1}^{N} f_n(t) s_n = s(t). \]

i.e. \(s \) is an admissible translate of \(X_a \).

ii) \(\Rightarrow \) i) The proof is identical to that in Proposition 2.2.1.

iii) \(\Rightarrow \) iii) The proof is as in Proposition 2.2.1, with

\[\psi_n(n,x) = \tilde{Z}(\{a_n\})/m^{1/\alpha}(\{a_n\}), \]
so that by (2.2.9)

\[\psi(n,s) = \tilde{Z}(\{a_n\},s)/m^{1/\alpha}(\{a_n\}) \]
\[= F[Z(\{a_n\})]/m^{1/\alpha}(\{a_n\}) \]
\[= s_n/m^{1/\alpha}(\{a_n\}) = s_n. \]

To prove that a translate which is not admissible is singular, it suffices to consider
\[s \in F(X), \text{i.e., } s(t) = F[X(t)], \text{ as by Proposition 2.1.4, } s \notin F \text{ implies singularity.} \]

Suppose \(F[X_d(t)] \neq 0 \). Then there exists \(B \in J \) such that \(F[Z_d(B)] \neq 0 \) and by (2.2.9),

\[\hat{Z}_d(B,s) = \hat{Z}(A^c \cap B, s) = F[Z(A^c \cap B)] = F[Z_d(B)] \neq 0. \]

It follows from Proposition 2.2.1 that \(\mu_{s+X} \hat{Z}_d^{-1} \perp \mu_X \hat{Z}_d^{-1} \) and hence \(\mu_{s+X} \perp \mu_X \).

Therefore \(s(t) = F[X_n(t)] = \sum_{n=1}^{N} f_n(t)s_n \) and as in the proof of proposition 2.2.1,

\[\sum_{n=1}^{N} |s_n|^2 = \infty \text{ implies } \mu_{s+X} \perp \mu_X. \]

It follows from Proposition 2.2.2 that for an invertible \(S_aS \) process with nonatomic control measure every non-zero translate is singular. In particular, this contains Corollary 10.1 of Zinn (1975). Applied to \(S_aS \) processes with purely atomic control measure. Proposition 2.2.2 is a stochastic process version of a result proved in Thang and Tien (1979), Theorem 4, for \(S_aS \) measures with discrete spectral measures on separable Banach spaces. The proposition completes the result in Thang and Tien (1979) providing a dichotomy for the problem of admissible translates.

Proposition 2.2.2 also provides examples where the set of admissible translates is a non-trivial proper subset of the function space \(F \) of the process \(X \). E.g. if

\[X(t) = \sum_{n=1}^{\infty} f_n(t)Z_n, \; t \in T, \text{ where } Z_1, Z_2, \ldots \text{ are i.i.d. standard } S_aS \text{ random variables with } 1 < \alpha \leq 2 \text{ and } L_{\alpha} \text{-sp} \{(f_n(t); n \in \mathbb{N}); t \in T\} = l_\alpha, \text{ then} \]

\[F_\alpha = \{s; s(t) = \sum_{n=1}^{\infty} s_n f_n(t), \; \sum_{n=1}^{\infty} |s_n|^\alpha < \infty\}. \]

while the set of admissible translates is the infinite dimensional subspace (since \(\alpha^* \geq 2 \)) of \(F_\alpha \) for which \(\sum_{n=1}^{\infty} |s_n|^2 < \infty \); hence we have equality only if \(\alpha = 2 \). and proper inclusion if \(1 < \alpha < 2 \). There is a natural identification between the set of admissible translates, which is always a linear space, and the Hilbert space \(l_2 \), namely.
(s_n; n ∈ N) → s(·) = ∑_{n=1}^{∞} s_n f_n(·).

This map is invertible with the inverse map given by the transformation ψ defined in the proof in Proposition 2.2.2 restricted to the set of admissible translates of X (cf. 2.2.12). Thus for every α ∈ (0,2), the linear space of admissible translates can be given a Hilbert space structure by defining the inner product

\[<s_1, s_2> = <(s_1, n), (s_2, n)>_{L^2} = ∑_{n=1}^{∞} s_1,n s_2,n, \]

where \(s_i(t) = ∑_{n=1}^{∞} s_i,n f_n(t), i = 1,2 \). Note that in this case when \(1 < α < 2 \), \(||s||_{L^p} = (∑|s_n|^\alpha)^{1/\alpha} \) and hence \(||·|| \) is not a natural norm on the linear space of admissible translates, in contrast with the case of Gaussian (\(α = 2 \)) and α-sub-Gaussian processes with \(1 < α < 2 \).

Important examples of SαS processes with invertible spectral representation are presented in the following.

Harmonizable SαS processes (and sequences).

Let \(X = (X(t); t ∈ T), T = R^d \) or \(Z^d, d ∈ N \), be a SαS harmonizable process, i.e., \(X \) has the representation

\[X(t) = ∫_I e^{i <t,u>}Z(du), t ∈ T, \]

where \(I = R^d \) and \([-π,π]^d \) for \(T = R^d \) and \(Z^d \) respectively and \(Z \) is a SαS independently scattered random measure with finite control measure \(m \), referred to as the spectral measure of the harmonizable process \(X \). If the spectral measure \(m \) is nonatomic and \(0 < α < 2 \) then it follows from Proposition 2.2.2 that \(X \) has no
nontrivial admissible translate. When the stable distribution of \(Z \) is radially symmetric, i.e. when \(X \) is stationary, this result exhibits a different behavior compared with the stationary Gaussian processes \(\alpha = 2 \), whose admissible translates are precisely the functions

\[
s(t) = \int_{\mathbb{R}} e^{i \langle t, u \rangle} z(u)m(du), \ z \in L_2(m).
\]

In contrast, if \(m \) is purely discrete, i.e. \(X \) has a Fourier series representation

\[
X(t) = \sum_{n=1}^{N} b_n e^{i \langle c_n, t \rangle} Z_n, \ N \leq \infty,
\]

with \(Z_n \)'s i.i.d. standard \(\mathcal{S}\alpha\mathcal{S} \) random variables and \(\sum_{n=1}^{\infty} |b_n|^\alpha < \infty \), the set of admissible translates is

\[
\{ s: s(t) = \sum_{n=1}^{N} s_n e^{i \langle c_n, t \rangle} : \sum_{n=1}^{N} |s_n/b_n|^2 < \infty \},
\]

and depends on \(\alpha, 0 < \alpha \leq 2 \), only via the sequence \((b_n; n \in \mathbb{N}) \in l_\alpha \). In other words for fixed \((b_n; n \in \mathbb{N}) \in l_\beta, \ 1 \leq \beta \leq 2 \), define

\[
X_{\alpha}(t) = \sum_{n=1}^{\infty} b_n \exp(i \langle c_n, t \rangle) Z_{n, \alpha},
\]

where the \(Z_{n, \alpha} \)'s are standard i.i.d. \(\mathcal{S}\alpha\mathcal{S} \) with \(\beta \leq \alpha \leq 2 \) for \(1 < \beta \leq 2 \) and \(1 < \alpha \leq 2 \) for \(\beta = 1 \). Then all these processes \(X_{\alpha} \) have the same set of admissible translates.

Continuous time \(\mathcal{S}\alpha\mathcal{S} \) moving averages.

Another class of \(\mathcal{S}\alpha\mathcal{S} \) processes is the class of real moving averages.
\[X(t) = \int_{\mathbb{R}} f(t-u)Z(du), \quad t \in \mathbb{R}, \]

where \(Z \) has Lebesgue control measure and \(f \in L_\alpha(\text{Leb}) \). When \(f \) vanishes on the negative line, they are called nonanticipating moving averages and they occur as the stationary solutions of \(n \text{th} \) order linear stochastic differential equations with constant coefficients driven by stable motion \(Z \).

In the Gaussian case \(\alpha = 2 \) the admissible translates coincide with the function space (RKHS)

\[
F_2 = \{ s : s(t) = \int_{\mathbb{R}} f(t-u)z(u)\,du, \, z \in L_2(\text{Leb}) \}
\]

\[
= \{ s : s \in L_2(\text{Leb}), \, s/\hat{f} \in L_2(\text{Leb}) \},
\]

where \(\cdot \) denotes Fourier transform.

Examples of moving averages with invertible spectral representation and therefore with no admissible translates, can be obtained by taking

i) \(f \) continuous and equal to zero on \((-\infty,0)\) and at infinity (Atzma (1983), Theorem 2),

ii) \(\alpha \in (1,2) \) and \(f \) the Fourier transform of some function \(F \) in \(L_{\alpha*}(\text{Leb}) \) with \(F \neq 0 \) a.e. \((\text{Leb}) \) (Titchmarsh (1928), Theorem 75).

Case i) includes nonanticipating moving averages with continuous kernel \(f \), while case ii) contains certain nonanticipating moving averages with discontinuous kernels \(f \), namely the stationary solutions of \(n \text{th} \) order linear stochastic differential equations with constant coefficients. There \(f(t) \) is a linear combination of functions of the type \(t^k - 1 \) or \(\frac{1}{\omega} \) with \(k \in \mathbb{N} \) and \(\omega > 0 \), which are Fourier transforms of the \(L_{\alpha*}(\text{Leb}) \) functions \(\Gamma(k)/(2\pi(a+iu)) \). Hence \(f \) is the Fourier transform of an \(L_{\alpha*}(\text{Leb}) \) function which is not zero a.e. \((\text{Leb}) \) so that \(\text{sp}\{f(t-\cdot) ; t \in \mathbb{R} \} = L_\alpha(\text{Leb}) \), i.e. \(X \) is invertible. Thus solutions of \(n \text{th} \) order stochastic differential equations driven by \(\text{SoS} \)
motion have no admissible translate for $1 < \alpha < 2$. This is in sharp contrast with the Gaussian case $\alpha = 2$. E.g., if $n = 1$, $f(t) = e^{-t}1_{(0, \infty)}(t)$ and the stable Ornstein-Uhlenbeck (OU) process

$$X(t) = \int_{-\infty}^{t} e^{-(t-u)}Z(du), \quad t \in \mathbb{R},$$

has no admissible translates for $1 < \alpha < 2$, while for $\alpha = 2$ all translates of the form

$$s(t) = \int_{-\infty}^{t} e^{-(t-u)}z(u)du, \quad z \in L^2(\text{Leb}) \text{ and } t \in \mathbb{R},$$

are admissible for the OU process X.

Discrete time SaS processes (SaS sequences) with invertible spectral representation have similar sets of admissible translates in the Gaussian and non-Gaussian stable case. Of course nonadmissible translates are singular.

Independent sequences and partial sums of independent SaS random variables

The set of admissible translates of a sequence of independent SaS random variables $X = (X_n; n \in \mathbb{N})$ is given by

$$\{s = (s_n; n \in \mathbb{N}); \sum_{n=1}^{\infty} (s_n/\|X_n\|_\alpha)^2 < \infty\}.$$

The set of admissible translates of a sequence $(Y_n = \sum_{k=1}^{n} X_k; n \in \mathbb{N})$ of partial sums of independent SaS random variables X_k is

$$\{s = (s_n; n \in \mathbb{N}); \sum_{n=1}^{\infty} (s_n - s_{n-1})^2/\|X_n\|_\alpha^2 < \infty, s_0 = 0\}.$$

Mixed auto-regressive moving averages of order (p,q) (ARMA (p,q)).
Let \(X = (X_n; n \in \mathbb{N}) \) be defined by the difference equation

\[
X_n - a_1 X_{n-1} - \ldots - a_p X_{n-p} = Z_n + b_1 Z_{n-1} + \ldots + b_q Z_{n-q}
\]

where \(Z = (Z_n; n \in \mathbb{N}) \) is a sequence of i.i.d. standard \(\mathcal{S}\alpha \mathcal{S} \) random variables. If the polynomials \(P(u) = 1 - a_1 u - \ldots - a_p u^p \) and \(Q(u) = 1 + b_2 u + \ldots + b_q u^q \) satisfy the condition \(P(u)Q(u) \neq 0 \) for all \(u \in \mathbb{C} \) with \(|u| \leq 1 \), then the difference equation defining \(X \) has a unique stationary solution of the moving average form

\[
X_n = \sum_{k=-\infty}^{\infty} g_{n-k} Z_k
\]

and in addition

\[
Z_n = X_n - \sum_{j=1}^{\infty} h_j X_{n-j}
\]

(see e.g. Cline and Brockwell (1985)). The coefficients \(\{g_n; n \in \mathbb{N}\} \) and \(\{h_n; n \in \mathbb{N}\} \) are uniquely determined by the power series expansions

\[
\frac{Q(u)}{P(u)} = \sum_{j=0}^{\infty} g_j u^j \quad \text{and} \quad \frac{P(u)}{Q(u)} = 1 - \sum_{j=1}^{\infty} h_j u^j, |u| \leq 1.
\]

Thus \(L(X) = L(Z) \), i.e. \(X \) is invertible, and hence, by Proposition 2.2.2.,

\(s = (s_n; n \in \mathbb{Z}) \) is an admissible translate of \(X \) if and only if it is of the form

\[
s_n = \sum_{k=-\infty}^{\infty} g_{n-k} z_k
\]

where \(\sum_{k=-\infty}^{\infty} z_k^2 < \infty \).

We should note the different behavior of moving averages in continuous and in discrete time. A continuous time moving average may have no admissible translates, whereas a discrete time ARMA sequence has a set of admissible translates identical to
the Gaussian case. The difference will be in the form of the Radon-Nikodym derivatives.

2.3 Comments on the Radon-Nikodym derivatives

Expressions for Radon-Nikodym derivatives in the non-Gaussian stable case are difficult to obtain even in the case of invertible processes since no analytic expression is generally available for the \(\text{SaS densities} \).

As observed in Section 2.2 the measures \(\mu_X \) and \(\mu_{s+X} \) are convolutions of the measures \(\mu_{X_a} \) with \(\mu_{X_d} \) and \(\mu_{s+X_a} \) with \(\mu_{X_d} \) respectively, or in other words if \(\Sigma: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) is the map \(\Sigma(x_1, x_2) = x_1 + x_2 \) then \(\mu_X = (\mu_{X_a} \times \mu_{X_d}) \Sigma^{-1} \) and \(\mu_{s+X} = (\mu_{s+X_a} \times \mu_{X_d}) \Sigma^{-1} \). When \(\mu_{s+X} \ll \mu_X \), we have the following lemma is useful.

Lemma 2.3.1 Let \((\Omega_1, \mathcal{F}_1), i = 1, 2\), be measurable spaces and let the map \(T: \Omega_1 \rightarrow \Omega_2 \) be measurable. If \(\mu_1 \) and \(\mu_2 \) are probability measures on \((\Omega_1, \mathcal{F}_1)\) such that \(\mu_2 \ll \mu_1 \), then

\[
\frac{d\mu_2}{d\mu_1} T^{-1} \circ T = E_{\mu_1} \left(\frac{d\mu_2}{d\mu_1} /T \right) \quad \text{a.e.} \ (\mu_1)
\]

i.e.

\[
\frac{d\mu_2}{d\mu_1} T^{-1} (\omega) = E_{\mu_1} \left(\frac{d\mu_2}{d\mu_1} /T = \omega \right) \quad \text{a.e.} \ (\mu_1 T^{-1})
\]

Proof. Clearly \(\mu_2 T^{-1} \ll \mu_1 T^{-1} \) and for all \(B \in \mathcal{F}_2 \) we have

\[
\int_{T^{-1}(B)} \frac{d\mu_2}{d\mu_1} T^{-1} \circ T d\mu_1 = \int B \frac{d\mu_2}{d\mu_1} T^{-1} d\mu_1 T^{-1}
\]

\[
= \mu_2(T^{-1}B) = \int_{T^{-1}(B)} \frac{d\mu_2}{d\mu_1} d\mu_1. \quad \Box
\]
It follows from Lemma 2.3.1 that if \(\mu_{s+X} \ll \mu_X \) then a.e. \((\mu_X) \)

\[
\frac{d\mu_{s+X}}{d\mu_X}(x) = E_{\mu_X} \left(\frac{d(\mu_{s+X} \times \mu_X)}{d(\mu_X \times \mu_X)} \right)_{\Sigma = x}
\]

\[
= E_{\mu_X} \left(\frac{d\mu_{s+X}}{d\mu_X} \right)_{\Sigma = x}
\]
since

\[
\frac{d\mu_{s+X}}{d\mu_X \times \mu_X}(x_1,x_2) = \frac{d\mu_{s+X}}{d\mu_X}(x_1) \frac{d\mu_X}{d\mu_X}(x_2) = \frac{d\mu_{s+X}}{d\mu_X}(x_1).
\]

The determination of the above conditional expectation is not possible in general.

However if the process is invertible and has only atomic component, the invertibility of the process allows the representation of the Radon-Nikodym derivation in terms of a standard SöS density as shown in the following

Proposition 2.3.2. Let \(X = (X(t); t \in T) \) be a SöS process with \(\alpha \in (0,2) \), invertible spectral representation and discrete control measure. If \(s \) is an admissible translate of \(X \), then a.e. \((\mu_X) \)

\[
\frac{d\mu_{s+X}}{d\mu_X}(x) = \prod_{n=1}^{N} \left(f(\frac{\Psi(n,x) - \Psi(n,s))}{f(\Psi(n,x))} \right), \quad x \in \mathcal{X}^T.
\]

where \(\Psi \) is defined in (2.2.12) and \(f \) is the standard SöS density.

Proof. Let \(\Psi: \mathcal{X}^T \to \mathcal{X}^{\{1,2,\ldots,n\}\wedge N} \) be the map defined in (2.2.12), i.e.

\[
\Psi(x) = (\Psi(n,x) = \tilde{z}(\{a_n\},x)/m^{1/2}(\{a_n\}); \ m \in \{1,2,\ldots,n\}\wedge N).
\]
By lemma 2.3.1.,

\[\frac{d\mu_{s+X}}{d\mu_X} \psi^{-1} \circ \psi = E \mu_X \left(\frac{d\mu_{s+X}}{d\mu_X} / \psi \right). \]

Since

\[\mu_X(\{x; x(t) = \sum_{n=1}^{N} f_n(t) \psi(n,x)\}) \]

\[= P(\{\omega; X(t,\omega) = \sum_{n=1}^{N} f_n(t) \psi(n,X(\cdot,\omega))\}) \]

\[= P(\{\omega; X(t,\omega) = \sum_{n=1}^{N} f_n(t) Z_n(\omega)\}) = 1 \]

we have \(\bar{C} = \sigma(\psi) \) (where \(\bar{\cdot} \) denotes the completion with respect to \(\mu_X(\mu_{s+X}) \)), so that

\[E \left(\frac{d\mu_{s+X}}{d\mu_X} / \psi \right) = \frac{d\mu_{s+X}}{d\mu_X}. \]

On the other hand by Kakutani's Theorem (or trivially if \(N < \infty \)),

\[\frac{d\mu_{s+X}}{d\mu_X} \psi^{-1} (y) = \prod_{n=1}^{N} \frac{f(y_n - \psi(n,s))}{f(y_n)}, \]

\(y = (y_n; n \in \{1,\ldots,n\} \cap \mathbb{N}) \). Therefore

\[\frac{d\mu_{s+X}}{d\mu_X} (x) = \prod_{n=1}^{N} \frac{f(\psi(n,x) - \psi(n,s))}{f(\psi(n,x))}, \quad x \in \mathbb{X}^T. \]

\[\square \]
For \(x = X(\cdot, \omega) \) the Radon-Nikodym derivative can be expressed as

\[
\frac{d\mu_{s+X}}{d\mu_X}(X(\cdot, \omega)) = \prod_{n=1}^{N} f \left(\frac{Z(\{a_n\}, \omega) - s_n}{m^{1/\alpha} \{a_n\}} \right) \left/ \frac{Z(\{a_n\}, \omega)}{m^{1/\alpha} \{a_n\}} \right.
\]

a.e. (P), where \(s_n = m^{1/\alpha}(\{a_n\})\Psi(n, s) \).

When \(\alpha = 2 \), \(f(x+s)/f(x) = \exp(sx - s^2/2) \) and thus we have the well known expression

\[
\frac{d\mu_{s+X}}{d\mu_X}(x) = \exp \left[\sum_{n=1}^{\infty} (s_n x_n - s_n^2/2) \right]
\]

where for \(\{\phi_n; n \in \mathbb{N}\} \) a complete orthonormal system of eigenvectors of the covariance operator of \(X \) and \(\{\lambda_n; n \in \mathbb{N}\} \) the corresponding eigenvalues

\[
x_n = \Psi(n, x) = \lambda_n^{-1/2} \int_{\Omega} x(t) \phi_n(t) dt,
\]

\[
s_n = \Psi(n, s) = \lambda_n^{-1/2} \int_{\Omega} s(t) \phi_n(t) dt,
\]

or equivalently

\[
x(t) = \sum_{n=1}^{\infty} \lambda_n^{-1/2} \phi_n(t) x_n,
\]

\[
s(t) = \sum_{n=1}^{\infty} \lambda_n^{-1/2} \phi_n(t) s_n, \quad \sum |s_n|^2 < \infty.
\]

For non-Gaussian stable processes explicit expressions for \(\Psi \) are not available in general. One example where this is possible is when \(X \) is a Fourier series, i.e.
\[X(t) = \sum_{n=1}^{\infty} b_n e^{ic_n t} z_n, \quad \sum |b_n| < \infty, \quad t \in T. \]

Using arguments identical to the inversion theorem for Fourier transform, one can show that

\[x_n \triangleq \Psi(n, x) = b_n^{-1} \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} e^{-ic_n t} x(t) dt, \]

where the limit is in \(\mu_X (\mu_{s+X}) \) measure and for \(s \) an admissible translate, i.e.

\[s(t) = \sum_{n=1}^{\infty} b_n e^{ic_n t} s_n, \quad \sum_{n=1}^{\infty} |s_n|^2 < \infty, \]

we have

\[s_n = b_n^{-1} \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} e^{ic_n t} x(t) dt. \]

Thus

\[\frac{d\mu_{s+X}}{d\mu_X} (x) = \prod_{n=1}^{\infty} \frac{f(x_n - s_n)}{f(x_n)} \quad \text{a.e.} \ (\mu_X), \]

i.e.

\[\frac{d\mu_{s+X}}{d\mu_X} (X(\cdot, \omega)) = \prod_{n=1}^{\infty} \frac{f \left(\lim_{T \to \infty} \frac{1}{2\pi b_n} \int_{-T}^{T} e^{-ic_n t} [X(t, \omega) - s(t)] dt \right)}{f \left(\lim_{T \to \infty} \frac{1}{2\pi b_n} \int_{-T}^{T} e^{ic_n t} X(t, \omega) dt \right)} \]

a.e. (P).

Other cases where the map \(\Psi \) can be determined are the discrete time \(SaS \) processes we discussed in Section 2.3, e.g. in the invertible ARMA(p,q) we have

\[\Psi(n, x) = x_n - \sum_{j=1}^{\infty} n_j x_{n-j}. \]
so that

\[Z_n(\omega) = X_n(\omega) - \sum_{j=1}^{\infty} h_j X_{n-j}(\omega), \]

and

\[z_n = s_n - \sum_{j=1}^{\infty} h_j s_{n-j}, \]

where \(z_n \) is as in example in Section 2.

It is well known that the likelihood-ratio test is a decision rule that is optimum with respect to either a Neyman-Pearson or Bayes criterion, i.e. if we observe \(Y \) and we want to test

\[H_0: Y = X \quad \text{versus} \quad H_A: Y = s + X, \]

the optimal procedure is to reject \(H_0 \) if

\[\frac{d\mu_{s+X}(Y)}{d\mu_X}(Y) > L \]

for some appropriately determine threshold (dependent on the criterion used).

In the Gaussian case (\(\alpha = 2 \)) this procedures reduces to

\[\sum_{n=1}^{\infty} s_n x_n > L'. \]

In the non-Gaussian case, the likelihood ratio is difficult to implement even when it is expressed in the form \(\prod_{n=1}^{\infty} f(x_n - s_n)/f(x_n) \).

The log of the ratio \(f(x-s)/f(x) \) has been studied in Stuck (1976); using series expansions of the density \(f \). Plots for \(\log\{f(x-s)/f(x)\} = t(x) \) were presented for some
fixed values of s. Stuck (1976) also investigated the performance of the likelihood
(optimal) test versus the linear (Gaussian) decision rule for a finite number of terms and
fixed s, i.e. the case where the Radon-Nikodym derivative is given by the finite product
\[
\prod_{n=1}^{N} \frac{f(x_n-s)}{f(x_n)},
\]
and the plots showed that the likelihood procedure has in general a much smaller
probability of error than the linear rule, even for values of α close to 2, such as $\alpha = 1.95$.

All invertible SoS processes with nonatomic control measure have no (nontrivial)
admissible translates when $0 < \alpha < 2$, whereas in the Gaussian case $\alpha = 2$, their set of
admissible translates coincides with their RKHS, which is a quite large class of functions.
Thus the detection of a nonrandom signal in additive SoS noise satisfying these
assumptions can in principle always be achieved with probability one even for signals of
comparable smoothness with the noise, i.e. the detection is singular (even though
practical detectors achieving this remain to be found). In contrast in the Gaussian case
($\alpha = 2$) the additive signal detection problem is regular for signals with comparable
smoothness with the noise (signals in the RKHS), i.e. a Neyman-Pearson test can be
constructed having a specified probability of false alarm which maximizes the probability
of detection (which is of course always less than 1).
3.1 On the equivalence and singularity of certain product measures

The Lebesgue decomposition of product measures was first studied and completely solved in Kakutani (1948). His criterion is given in terms of the Hellinger integrals of the marginal measures, which may be difficult to compute, e.g. for stable measures.

The more special problem of translates of product measures with identical one dimensional marginals was settled in Shepp (1965) in the ease of finite Fisher information. It was observed in LeCam (1970) that under LeCam’s "I" condition the sufficient condition for equivalence in Shepp (1965) can be extended to a more general scenario.

Here we show that under a condition closely related to LeCam’s condition, a nearly complete extension of Shepp’s theorem holds. As an application the result on equivalence and singularity between a sequence of i.i.d. random variables and an affine transformation of itself extends to a large class of nonGaussian distributions, which includes in particular all stable distributions. Our result also contains that of Steele (1986) on the extension of Shepp’s theorem to rigid Euclidean motions (i.e., rotations, translations, and their compositions) of an \mathbb{R}^k vector.

In Section 3.3 these results will be used to study the Lebesgue decomposition between certain SoS processes (e.g., independent increments, harmonizable).

Before stating the main results we need to introduce some concepts for which we refer to Strasser (1985) Chapter 1, Section 2 and Chapter 12 Sections 75 and 78.
3.1.1 Preliminaries

Given two probability measures P and Q on a measurable space (Ω, \mathcal{F}) their normalized Hellinger distance d and integral H are defined by

\[
 d^2(P, Q) = \frac{1}{2} \int_{\Omega} \left(\frac{dP}{d\nu} \right)^{1/2} - \left(\frac{dQ}{d\nu} \right)^{1/2} \, d\nu,
\]

\[
 H(P, Q) = \int_{\Omega} \left(\frac{dP}{d\nu} \right)^{1/2} \left(\frac{dQ}{d\nu} \right)^{1/2} \, d\nu,
\]

where ν is any σ-finite measure dominating $P + Q$, i.e. $P + Q \ll \nu$ (e.g. $\nu = P + Q$). They do not depend on ν and satisfy

\[
 0 \leq H(P, Q) \leq 1 \quad \text{and} \quad 1 - H(P, Q) = d^2(P, Q).
\]

Kakutani's theorem states that if $(\mu_n; n \in \mathbb{N})$ and $(\lambda_n, n \in \mathbb{N})$ are sequences of probability measures and $\mu = \prod_{n=1}^{\infty} \mu_n$ and $\lambda = \prod_{n=1}^{\infty} \lambda_n$ are their product measures, then

\[
 (3.1.1) \quad \mu \perp \lambda \iff \sum_{n=1}^{\infty} d^2(\mu_n, \lambda_n) = 0 \iff \sum_{n=1}^{\infty} d^2(\mu_n, \lambda_n) = \infty
\]

and if $\mu_n \sim \lambda_n$ for all n, then

\[
 (3.1.2) \quad \mu \sim \lambda \iff \sum_{n=1}^{\infty} H(\mu_n, \lambda_n) > 0 \iff \sum_{n=1}^{\infty} d^2(\mu_n, \lambda_n) < \infty
\]

(see Kakutani (1948)).

We consider the following setting. $(\Omega, \mathcal{F}, \nu)$ is a σ-finite measure space, and $(P_\theta; \theta \in \Theta)$ a family of probability measures on (Ω, \mathcal{F}) which are absolutely continuous with respect to ν, where Θ is an open subset of \mathbb{R}^k. Define $F: \Theta \to L^2(\Omega, \mathcal{F}, \nu) = L^2(\nu)$
by

\[F(\theta) = 2 \left(\frac{dP_\theta}{d\nu} \right)^{1/2}. \]

F is said to be differentiable at \(\theta \), if there exists a map

\[DF(., \theta) = DF(\theta): \Omega \to \mathbb{R}^k \]

such that

\[\|DF(\theta)\|_{L_2(\Omega, \mathcal{F}, \nu; \mathbb{R}^k)}^2 = \int_{\Omega} \|DF(\omega, \theta)\|_{\mathbb{R}^k}^2 \nu(d\omega) < \infty, \]

i.e. \(DF(\theta) \in L_2(\Omega, \mathcal{F}, \nu; \mathbb{R}^k) \), and

\[\int_{\Omega} \|F(\theta + h) - F(\theta) - <DF(\theta), h>_{\mathbb{R}^k}\|^2 d\nu + o(\|h\|_{\mathbb{R}^k}^2) \quad \text{as } \|h\|_{\mathbb{R}^k} \to 0. \]

As usual F is said to be differentiable (on \(\Theta \)) if it is differentiable at each \(\theta \in \Theta \). The Fisher’s information matrix is defined by

\[I(\theta) = \int_{\Omega} DF(\theta) DF(\theta)^T d\nu \]

(where \(DF(\theta)^T \) is the transpose of the column vector \(DF(\theta) \)). It is non negative definite, as \(a^TI(\theta)a = \int_{\Omega} (a^TDF(\theta))^2 d\nu \), and is positive definite if and only if the components of \(DF(\theta) \) are linearly independent functions in \(L_2(\nu) \).

3.1.2 Main result

As in LeCam (1970), our purpose is to consider product measures.
\[(3.1.3) \quad \mu = \sum_{n=1}^{\infty} \mu_n \quad \text{and} \quad \lambda = \sum_{n=1}^{\infty} \lambda_n,\]

where

\[\mu_n = P_{\theta} \quad \text{and} \quad \lambda_n = P_{\theta + h_n},\]

\(\theta \in \Theta\) is fixed and \(\theta + h_n \in \Theta, n = 1,2,\ldots\) Under the condition

\[\Gamma: \limsup_{\|h\| \to 0} \frac{H(P_{\theta + h}, P_{\theta})}{\|h\|} < \infty,\]

LeCam (1970), Proposition 2, proved that \(\sum_{n=1}^{\infty} \|h_n\|_{R^k}^2 < \infty\) implies \(\mu \sim \lambda\). Here, under the conditions that \(F\) is differentiable at \(\theta\), \(l(\theta)\) is positive definite and the probability measures \(\{P_{\theta}; \theta \in \Theta\}\) are sufficiently separated, we obtain necessary and sufficient conditions for equivalence and singularity.

The separation type condition that we assume is

\[(3.1.4) \quad "\text{for all sufficiently small} \ \delta > 0, \inf_{\|h\| > \delta} d^2(P_{\theta + h}, P_{\theta}) > 0."\]

Note that if (3.1.4) does not hold then there exists \(\delta > 0\) and a sequence \((h_n; n \in N)\) in \(R^k\) with \(\|h_n\|_{R^k} > \delta\) such that \(d^2(P_{\theta + h_n}, P_{\theta}) \to 0\) as \(n \to \infty\), i.e. for any \(\epsilon > 0\) and for \(n\) large, \(d(P_{\theta + h_n}, P_{\theta}) < \epsilon\), and using a well known relation between Hellinger distance and total variation distance (see e.g. Strasser (1985)) we have

\[d_\psi(P_{\theta + h_n}, P_{\theta}) = \sup_{E \in \mathcal{F}} |P_{\theta + h_n}(E) - P_{\theta}(E)| \leq 2^{1/2} d(P_{\theta + h_n}, P_{\theta}) < 2^{1/2} \epsilon.\]

Hence if condition (3.1.4) is violated, for \(\epsilon\) arbitrarily small there exists
h ∈ ℝ^k with ‖h‖_ℝ^k < δ such that

$$\sup_{E \in \mathcal{F}} |P_{\theta+h}(E) - P_{\theta}(E)| < \epsilon.$$

Thus in this sense (3.1.4) is a separation type condition.

We should also mention that the proof of the sufficient condition for equivalence can be obtained directly from LeCam (1970), Proposition 2, since L_2-differentiability is clearly stronger than condition "L", but we choose to include a complete simple proof here.

Proposition 3.1.1. Let μ and λ be as in (3.1.3), F be differentiable at θ ∈ Θ and I(θ) be positive definite.

i) If 0 < ‖h_n‖_ℝ^k → 0 as n → ∞, then

$$\mu \perp \lambda \iff \sum_{n=1}^{\infty} ‖h_n‖_ℝ^k = \infty$$

and

$$\mu \sim \lambda \iff \sum_{n=1}^{\infty} ‖h_n‖_ℝ^k < \infty.$$

ii) If condition (3.1.4) is satisfied then i) holds for any sequence (h_n; n ∈ ℕ).

Proof. If since F is differentiable at θ, as 0 < ‖h‖_ℝ^k → 0 we have

$$\left\| \frac{F(\theta+h) - F(\theta)}{‖h‖_ℝ^k} - \frac{<DF(\theta), h> ℝ^k}{‖h‖_ℝ^k} \right\|_{L_2(\nu)} = o(1).$$

hence

$$\left| \frac{‖F(\theta+h) - F(\theta)‖_{L_2(\nu)}}{‖h‖_ℝ^k} - \frac{<DF(\theta), h> ℝ^k}{‖h‖_ℝ^k} \right| = o(1).$$
Thus for any $\epsilon > 0$, there exists $\delta = \delta(\epsilon) > 0$ such that if $0 < \|h\|_{\mathbb{R}^k} < \delta$,

$$\frac{\|<DF(\theta),h>\|_{L^2(\nu)}}{\|h\|_{\mathbb{R}^k}} - \epsilon < \frac{\|F(\theta + h) - F(\theta)\|_{L^2(\nu)}}{\|h\|_{\mathbb{R}^k}} < \frac{\|<DF(\theta),h>\|_{L^2(\nu)}}{\|h\|_{\mathbb{R}^k}} + \epsilon.$$

Now

$$\|<DF(\theta),h>\|_{L^2(\nu)}^2 = \int_{\Omega} |<DF(\theta),h>\|_{L^2(\nu)}^2\,dv = \text{h}^T I(\theta) \text{h},$$

hence for all $h \in \mathbb{R}^k$, $h \neq 0$,

$$k(\theta) \leq \frac{\|<DF(\theta),h>\|_{L^2(\nu)}}{\|h\|_{\mathbb{R}^k}} \leq K(\theta)$$

where $k(\theta)$ and $K(\theta)$ are the smallest and the largest eigenvalues of $I(\theta)$. Since $I(\theta)$ is positive definite $k(\theta) > 0$ and we can choose $\epsilon > 0$ with $0 < k(\theta) - \epsilon$ so that for all

$0 < \|h\|_{\mathbb{R}^k} < \delta$,

$$0 < L(\theta) < \frac{\|F(\theta + h) - F(\theta)\|_{L^2(\nu)}}{\|h\|_{\mathbb{R}^k}} < U(\theta)$$

where $L(\theta) = k(\theta) - \epsilon$ and $U(\theta) = K(\theta) + \epsilon$. Thus since $d^2(P_{\theta}, P_{\theta'}) = \|F(\theta) - F(\theta')\|_{L^2(\nu)}^2/8$ we have for n large

$$0 < \frac{L^2(\theta) \|h_n\|_{\mathbb{R}^k}^2}{8} < d^2(\mu_n, \lambda_n) < \frac{U^2(\theta) \|h_n\|_{\mathbb{R}^k}^2}{8}$$

and the result follows from (3.1.1.) and (3.1.2).

ii) If (3.1.4) is satisfied and $\|h_n\|_{\mathbb{R}^k} \neq 0$, then there exist $\delta > 0$ and a
subsequence \((n_j; j \in \mathbb{N})\) with \(\|h_{n_j}\|_{\mathbb{R}^k} > \delta\) such that

\[
\sum_{n=1}^{\infty} d^2(\mu_n,\lambda_n) \geq \sum_{j=1}^{\infty} d^2(\mu_{n_j},\lambda_{n_j}) \geq \sum_{j=1}^{\infty} \inf_{\theta} d^2(P_{\theta+h}, P_{\theta}) = \infty,
\]

and from (3.1.1), \(\mu \perp \lambda\). This combined with i) gives the result.

It should be mentioned that the differentiability of \(F(\theta)\) is generally difficult to verify, but it can be shown that it is implied by the classical regularity conditions, usually called Cramer-Wald and Hajek's conditions, which play an important role in statistical estimation theory and are in principle easy to check (see e.g. Strasser (1985), §77). However, \(L_2\)-differentiability is weaker than any of these classical conditions, and the definition of Fisher information presented here extends the classical one, namely

\[
I(\theta) = -E\left(\frac{\partial^2}{\partial \theta^2} \ln \left(\frac{dP_{\theta}}{d\nu} \right) \right)
\]

under the usual conditions on \(\frac{dP_{\theta}}{d\nu}\).

3.1.3 Examples

3.1.3.1 Affine Transformation in \(\mathbb{R}^k\).

Suppose \((X_n; n \in \mathbb{N})\) is a sequence of i.i.d. random vectors in \(\mathbb{R}^k\), \((A_n; n \in \mathbb{N})\) a sequence of \(k \times k\) matrices and \((b_n; n \in \mathbb{N})\) a sequence of vectors. If we want to compare the sequence of random vectors \((X_n; n \in \mathbb{N})\) with \((A_nX_n + b_n; n \in \mathbb{N})\) we can take as parameter space \(\Theta\) any open subset of
\{(\theta = (A,b); A=(a_{ij}); k \times k \text{ matrix}, b=(b_i) \in \mathbb{R}^k) \equiv \\
\equiv \{\theta; \theta = (a_{11},...,a_{1k},...,a_{kk},b_1,...,b_k)\} \equiv \\
\equiv \mathbb{R}^{k^2+k} \equiv \mathbb{R}^{k^2} \times \mathbb{R}^k
\\
\text{containing the point } (1,0), \text{ with}
\\
\|A\|_\mathbb{R}^{k \times k}^2 = \sum_{i,j=1}^{k} a_{ij}^2, \quad \|b\|_\mathbb{R}^k = \sum_{i=1}^{k} b_i^2,
\\
\text{and}
\\
\|\theta\|_\mathbb{R}^{(k \times k)+k}^2 = \|A\|_\mathbb{R}^{k \times k}^2 + \|b\|_\mathbb{R}^k^2.
\\
\text{With } P \text{ the common distribution of the i.i.d. random vectors } X_n \text{ and } \theta = (A,b) \text{ we define}
\\
\text{(3.1.5) } P_\theta(B) = P_{(A,b)}(B) = P(\{AX_n + b \in B\})
\\
\text{and note that } P = P_{(1,0)}. \text{ From proposition 3.1.1 we have the following}
\\
\textbf{Corollary 3.1.2.} \text{ Let the probability measures } P_\theta \text{ defined as in (3.1.5) be such that for an open set } \Theta \subset \mathbb{R}^{k^2+k} \equiv \mathbb{R}^{k^2} \times \mathbb{R}^k \text{ with } (1,0) \in \Theta, \text{ the family } \{P_\theta; \theta \in \Theta\} \text{ is dominated by } \nu. \text{ } F(\theta) \text{ is differentiable at } (1,0) \text{ and } F(1,0) \text{ is positive definite. If } A_n \to I \text{ and } b_n \to 0 \text{ as } n \to \infty \text{ then}
\\
(X_n) \sim (A_n X_n + b_n) \Leftrightarrow \sum_{n=1}^{\infty} \|b_n\|_\mathbb{R}^k^2 < \infty \quad \text{and}
\[\sum_{n=1}^{\infty} \|I - A_n\|_{R^{k \times k}}^2 < \infty, \]

\[(X_n) \perp (A_n X_n + b_n) \iff \sum_{n=1}^{\infty} \|b_n\|_{R^k}^2 = \infty \text{ or } \sum_{n=1}^{\infty} \|I - A_n\|_{R^{k \times k}}^2 = \infty. \]

Furthermore if \(\{P_\theta; \theta \in \Theta\} \) satisfies condition (3.1.4) the above conclusions hold for all sequence \((A_n, b_n)\) in \(\Theta\).

Proof. Putting \(\theta = (1,0) \) and \((A_n, b_n) = \theta + h_n \) we have \(h_n = (A_n - I, b_n) \) and

\[\sum_{n=1}^{\infty} \|h_n\|^2_{R^{(k \times k)+k}} = \sum_{n=1}^{\infty} \|A_n - I\|^2_{R^{k \times k}} + \sum_{n=1}^{\infty} \|b_n\|^2_{R^k}. \]

The conclusion then follows from Proposition 3.1.1.

Remarks:

a) Since the space of \(k \times k\) matrices is finite dimensional, any norm can be used in place of \(\|\cdot\|_{R^{k \times k}}\).

b) When \(A_n = I\) for all \(n\), Corollary 3.1.2 extends the result in Shepp (1965) on translates from sequences of random variables (in \(R^1\)) to sequences of random vectors (in \(R^k\)).

c) Corollary 3.1.2 contains the results in Steele (1986), Theorems 1 and 2, who considers the case where \(A_n\) is a rotation, i.e. \(A_n x + b_n\) is a rigid motion of \(x \in R^k\).

d) When the \(X_n\)'s are Gaussian random variables with mean zero and variance one, the result of Corollary 3.1.1 can be checked directly through the computation of the Hellinger integrals \(H(P_{(1,0)}, P_{(a_n, b_n)})\). However, even for Gaussian random vectors the computation of Hellinger integrals is not simple in higher dimensions.
3.1.3.2 Stable Sequences.

Here we consider general (skewed, not necessarily symmetric) stable densities. We denote by \(f(\alpha, \beta, a, b) \) the general univariate stable density whose characteristic function is of the form

\[
\int_{-\infty}^{\infty} \exp(\text{iux}) f(\alpha, \beta, a, b)(x) \, dx = \begin{cases}
\exp\left\{-|a|^\alpha \exp\left\{-|x\beta| \text{sgn}(u)/2\right\} \text{i} bu \right\}, & \text{if } \alpha \neq 1 \\
\exp\left\{-|a| - \text{i}(2\beta/\pi) a \ln(|a|) + \text{i} bu \right\}, & \text{if } \alpha = 1
\end{cases}
\]

where \(0 < \alpha \leq 2 \), \(|\beta| \leq \alpha \wedge (2 - \alpha) \), \(a > 0 \) and \(-\infty < b < \infty \).

Corollary 3.1.3. Let \((X_n; n \in \mathbb{N})\) be a sequence of i.i.d. stable random variables with density \(f(\alpha_0, \beta_0, a_0, b_0) \) and let \((Y_n; n \in \mathbb{N})\) be a sequence of independent stable random variables where the density of each \(Y_n \) is \(f(\alpha_n, \beta_n, a_n, b_n) \) with \((\alpha_n, \beta_n, a_n, b_n) \rightarrow (\alpha_0, \beta_0, a_0, b_0)\). Then

\[
(X_n) \sim (Y_n) \Leftrightarrow \begin{cases}
\sum_{n=1}^{\infty} (\alpha_n - \alpha_0)^2 < \infty, \sum_{n=1}^{\infty} (\beta_n - \beta_0)^2 < \infty, \\
\sum_{n=1}^{\infty} (a_n - a_0)^2 < \infty, \text{ and } \sum_{n=1}^{\infty} (b_n - b_0)^2 < \infty.
\end{cases}
\]

and

\[
(X_n) \perp (Y_n) \Leftrightarrow \begin{cases}
\sum_{n=1}^{\infty} (\alpha_n - \alpha_0)^2 = \infty, \text{ or } \sum_{n=1}^{\infty} (\beta_n - \beta_0)^2 = \infty, \text{ or } \\
\sum_{n=1}^{\infty} (a_n - a_0)^2 = \infty, \text{ or } \sum_{n=1}^{\infty} (b_n - b_0)^2 = \infty.
\end{cases}
\]

Proof: Let \(\Theta \) be any open subset of

\[
\{\theta = (\alpha, \beta, a, b); \alpha \in (0, 1) \cup (1, 2), |\beta| < \alpha \wedge (2 - \alpha), a > 0, -\infty < b < \infty\}
\]
containing the point $\theta_0 = (a_0, b_0, a_0 b_0)$. It is known that the densities \(\{f_\theta; \theta \in \Theta\} \) satisfy the usual regularity conditions of Cramer-Wald (DuMouchel (1973), page 952); hence \(\frac{1}{2} \rho, \theta \in \Theta, \) are \(L_2(\text{Leb}) \)-differentiable (see e.g. Strasser (1985), §77). Moreover the Fisher information matrix \(I(\theta_0) \) is positive definite (DuMouchel (1973), page 954). Therefore the assumptions of Proposition 3.1.1 hold at \(\theta_0 = (a_0, b_0, a_0 b_0) \). Hence for \(h_n = (a_n - a_0, b_n - b_0, a_n - a_0, b_n - b_0) \) we have

\[
\|h_n\|_{\mathbb{R}^4}^2 = (a_n - a_0)^2 + (b_n - b_0)^2 + (a_n - a_0)^2 + (b_n - b_0)^2
\]

and the result follows.

Corollary 3.1.4. Let \((X_n; n \in \mathbb{N})\) be a sequence of i.i.d. stable random variables with density \(f_{(a_0, b_0)} \) and \(\alpha \in (0, 1) \cup (1, 2) \), i.e. \(X_n \) are standard SαS random variables, and let \((a_n, b_n)\) and \((a_n', b_n')\) be two sequences in \((-\infty, 0) \cup (0, \infty) \times (-\infty, 0) \cup (0, \infty)\) with \(a_n / a_n' \rightarrow 1 \) and \((b_n - b_n') / a_n' \rightarrow 0 \). Then

\[
(a_n Y_n + b_n) \sim (a_n' Y_n + b_n') \quad \Leftrightarrow \quad (X_n) \sim \left(\frac{a_n}{a_n'} X_n + \frac{b_n - b_n'}{a_n'} \right)
\]

\[
\Leftrightarrow \quad \sum_{n=1}^{\infty} \left(1 - \frac{|a_n|}{|a_n'|} \right)^2 < \infty \quad \text{and} \quad \sum_{n=1}^{\infty} \left(\frac{b_n - b_n'}{a_n'} \right)^2 < \infty,
\]

and

\[
(a_n Y_n + b_n) \perp (a_n' Y_n + b_n') \quad \Leftrightarrow \quad (X_n) \perp \left(\frac{a_n}{a_n'} Y_n + \frac{b_n - b_n'}{a_n'} \right)
\]

\[
\Leftrightarrow \quad \sum_{n=1}^{\infty} \left(1 - \frac{|a_n|}{|a_n'|} \right)^2 = \infty \quad \text{or} \quad \sum_{n=1}^{\infty} \left(\frac{b_n - b_n'}{a_n'} \right)^2 = \infty.
\]

Proof: The equivalence of i) and ii) follows since the map \((x_n) \sim ((x_n - b_n') / a_n')\) is invertible. The equivalence of ii) and iii) follows from Corollary 3.1.1. (putting as parameters \(\alpha_n = \alpha \), \(J_n = 0 \), \(a_0 = 1 \) and \(b_0 = 0 \), \(\frac{a_n}{a_n'}, \frac{b_n - b_n'}{a_n'}; \ n = 1, 2, \ldots \) for
The separation condition (3.1.4) for the case where all the parameters but translation (a) are kept fixed in a stable probability density follows from the inequality in Ibragimov and Has'minski (1981), Example 3, Page 57; and when \(\beta = 0 \) and \(\alpha \) is fixed it has been proved by Kanter (1975). Condition (3.1.4) is not known to be true for the case where all the parameters vary jointly. Hence singularity does not follow for all sequences \(h_n = (\alpha_n, \beta_n, a_n, b_n), n=1,2,... \) with \(\sum_{n=1}^{\infty} \|h_n\|^2 = \infty \) (cf Proposition 3.1.1).

In the next proposition we explore the tail behavior of a stable distribution to show that two infinite sequences of independent symmetric stable random variables with different indexes of stability are singular.

Proposition 3.1.5 Let \(X=(X_n; n \in \mathbb{N}) \) and \(Y=(Y_n; n \in \mathbb{N}) \) be two sequences of independent (nondegenerate) symmetric stable random variables with indexes of stability \(\alpha \) and \(\beta \) respectively. If \(\alpha \neq \beta \) then \(\mu_X \) and \(\mu_Y \) are singular.

Proof: Assume \(\alpha < \beta \). For each \(\gamma \in (0,2) \) let \(Z_\gamma \) denote a S\(\gamma \)S r.v. with \(\|Z_\gamma\|_\gamma = 1 \). Thus

\[
\mu_n(B) \triangleq P(X_n \in B) = P(\|X_n\|_\alpha Z_\alpha \in B),
\]

\[
\lambda_n(B) \triangleq P(Y_n \in B) = P(\|Y_n\|_\beta Z_\beta \in B).
\]

Since

\[
a^\gamma P(\|Z_\gamma\| > a) \rightarrow C_\gamma \quad \text{as } a \rightarrow \infty
\]
(where \(C_\gamma \) is a positive constant), given any \(\epsilon > 0 \), there exist \(M_{\gamma, \epsilon} \) such that for
\[
a > M_{\gamma, \epsilon},
\]
\[
\frac{C_\gamma - \epsilon}{a_\gamma} < P(|Z_{\gamma}| > a) < \frac{C_\gamma + \epsilon}{a_\gamma}
\]
(see e.g. Feller (1966)).

From now on fix \(\epsilon \) such that \(0 < \epsilon < \min (C_\alpha, C_\beta) \).

Case 1. Assume
\[
\sigma_n \overset{\Delta}{=} \frac{\|X_n\|_\alpha}{\|Y_n\|_\beta} \to 0,
\]

as \(n \to \infty \).

Define \(\Psi : \mathcal{X}^N \to \mathcal{X}^N \) by
\[
\Psi(x) = (\Psi_n(x) = x_n/\|Y_n\|_\beta; \ n \in \mathbb{N}).
\]

It follows that \(\Psi \) is an i.i.d. sequence of standard \(\mathbb{S}\mathbb{S} \) r.v.'s under \(\mu_Y \) and under \(\mu_X \) an independent sequence of \(\mathbb{S}\mathbb{S} \) r.v.'s with
\[
\|\Psi_n\|_\alpha = \|X_n\|_\alpha/\|Y_n\|_\beta = \sigma_n.
\]

As before let \(d_v \) denote the total variation distance between probability measures.

For \(a > \max (M, M \sup_n \sigma_n) \) we have
\[
d_v (\lambda_n \Psi_n^{-1}, \mu_n \Psi_n^{-1}) \geq P(|Z_\beta| > a) - (|\sigma_n Z_\alpha| > a)
\]
\[
> \frac{C_\beta - \epsilon}{a_\beta} - \sigma_n^\alpha \frac{C_\alpha + \epsilon}{a_\alpha^\alpha}.
\]
Thus

$$\liminf_{n \to \infty} d_\nu (\lambda_n \Psi_n^{-1}, \mu_n \Psi_n^{-1}) \geq \frac{C_\nu \beta^{-\varepsilon}}{\alpha \beta} > 0.$$

Since $d_\nu \left(\cdot, \cdot \right) \leq \sqrt{2} d \left(\cdot, \cdot \right)$ where d denotes the Hellinger distance (see e.g. Strasser (1985)) we have

$$\sum_{n=1}^{\infty} d \left(\mu_n \Psi_n^{-1}, \lambda_n \Psi_n^{-1} \right) = \infty$$

and therefore by Kakutani’s Theorem (see Page 47) $\mu_X \Psi^{-1} \perp \mu_Y \Psi^{-1}$, which implies $\mu_X \perp \mu_Y$.

Case 2. Assume $\sigma_n \neq 0$. Thus there exist $\delta > 0$ and a sequence $(n_k; k \in \mathbb{N})$ such that $\sigma_{n_k} \geq \delta$, i.e. $\sigma_{n_k}^{-1} \leq \delta^{-1}$.

Define $\Phi: X^N \to X^N$ by

$$\Phi(x) = (\Phi_k(x) = x_k/\|X_{n_k}\|_\alpha; k \in \mathbb{N}).$$

Thus Φ is an i.i.d. sequence of standard \mathcal{N} r.v.'s under μ_X and under μ_Y an independent sequence of \mathcal{N} r.v.'s with

$$\|\Phi_k\|_\beta = \|Y_{n_k}\|_\beta/\|X_{n_k}\|_\alpha = \sigma_{n_k}^{-1}.$$

For $a > \max (M, \delta^{-1} M) \geq \max (M, \sigma_{n_k}^{-1} M)$ we have

$$d_\nu (\mu_k \Phi_k^{-1}, \lambda_k \Phi_k^{-1}) \geq P(|Z_\alpha| > a) - P(|\sigma_{n_k}^{-1} Z_\beta| > a).$$
\[\frac{C_{\alpha} - \epsilon}{a^\alpha} - \frac{1}{\sigma_n^{\beta}} \frac{C_{\beta} + \epsilon}{a^\beta} > \frac{C_{\alpha} - \epsilon}{a^\alpha} - \delta^{-1} \frac{C_{\beta} + \epsilon}{a^\beta} \triangleq \delta'(a). \]

Since \(\alpha < \beta \), we have \(\delta'(a) > 0 \) if and only if \(a^{\beta - \alpha} > \delta^{-1}(C_{\beta} + \epsilon)/(C_{\alpha} - \epsilon) \). Thus, fixing \(a > \max \{ M, \delta^{-1}M, [M(C_{\beta} + \epsilon)/(C_{\alpha} - \epsilon)]^{1/(\beta-\alpha)} \} \) we obtain

\[\limsup_{n \to \infty} d_\nu(\mu_n \Phi_n^{-1}, \lambda_n \Phi_n^{-1}) > \delta'(a) > 0 \]

and the conclusion follows as in case 1. \(\square \)

Remark: If \(\beta = 2 \), Proposition 3.1.5 remains true with minor modifications in its proof.

3.2. **Remarks on singularity and absolute continuity of \(p \)-th order and SaS processes**

A necessary condition for equivalence of two Gaussian processes is the setwise equality of their RKHS (or the equivalence of their RKHS norms). We show that this result remains true for SaS processes with the function space \(\mathcal{F} \) replacing the RKHS's.

Further for \(p \)-th order processes with \(1 < p < 2 \), a necessary condition for absolute continuity and a sufficient condition for singularity are presented analogous to those of Fortet (1973) for second order processes.

Let \(X_i = (X_i(t); t \in \mathcal{T}), i = 1,2 \), be two \(p \)-th order processes. We say that \(X_1 \) dominates \(X_2 \) if there exists \(0 < K < \infty \) such that for all \(N \in \mathbb{N}, a_1 \ldots a_N \in \mathbb{N} \) and \(t_1 \ldots t_N \in \mathcal{T} \).

\[\| \sum_{n=1}^N a_n X_2(t_n) \|_{L^p(P)} \leq K \| \sum_{n=1}^N a_n X_1(t_n) \|_{L^p(P)}. \]

Proposition 3.2.1. Let \(F_i = F(X_i), i = 1,2 \).
i) If X_1 dominates X_2, then $F_2 \subset F_1$.

ii) X_1 dominates X_2 if and only if there exists a bounded linear transformation

$\Theta: L(X_1) \rightarrow L(X_2)$, satisfying $\Theta(X_1(t)) = X_2(t), t \in T$. Consequently, if X_1
dominates X_2 and vice versa, then $F_1 \cong F_2$ (setwise), $\| \cdot \|_{F_1}$ and $\| \cdot \|_{F_2}$ are equivalent,
and the transformation Θ has bounded inverse.

Proof. i) Suppose X_1 dominates X_2. Then for all functions s,

$$\frac{1}{K} \| \sum_{n=1}^{N} a_n s(t_n) \|_{L_p(P)} \leq \frac{\| \sum_{n=1}^{N} a_n s(t_n) \|_{L_p(P)}}{\| \sum_{n=1}^{N} a_n X_1(t_n) \|_{L_p(P)}} \leq \frac{\| \sum_{n=1}^{N} a_n s(t_n) \|_{L_p(P)}}{\| \sum_{n=1}^{N} a_n X_2(t_n) \|_{L_p(P)}}$$

and by taking supremum over $N, a_1, \ldots, a_N, t_1, \ldots, t_N$,

$$\frac{1}{K} \| s \|_{F_1} \leq \| s \|_{F_2}.$$

Thus if $s \in F_2$, it follows that $s \in F_1$, which proves i).

ii) Let $\Theta: L(X_1) \rightarrow L(X_2)$ be defined by

$$\Theta(\sum_{n=1}^{N} a_n X_1(t_n)) = \sum_{n=1}^{N} a_n X_2(t_n).$$

It is clear that Θ is a well defined bounded linear transformation and as such it can be
extended to $L(X_1)$ if and only if X_1 dominates X_2. \qed

For SdS processes, the next Proposition shows that mutual domination is a
necessary condition for absolute continuity, i.e. non domination is a sufficient condition
for singularity. This Proposition is a stochastic process version of Proposition 7 in Zinn
(1975).
Proposition 3.2.2. Let $X_i = (X_i(t); t \in T)$, $i = 1, 2$, be two SaaS processes. If μ_{X_1} and μ_{X_2} are not singular, then X_1 dominates X_2, X_2 dominates X_1, and $F_1 = F_2$.

Equivalently if $F_1 \neq F_2$ then either X_1 does not dominate X_2 or X_2 does not dominate X_1 and $\mu_{X_1} \perp \mu_{X_2}$.

Proof: Since $\|\cdot\|_{L_p(P)} = C_p, \alpha_i \|\cdot\|_{\alpha_i}$, X_1 dominates X_2 if and only if

$$\|\sum_{n=1}^{N} a_n X_2(t_n)\|_{\alpha_2} \leq K \|\sum_{n=1}^{N} a_n X_1(t_n)\|_{\alpha_1}.$$

Assume X_1 does not dominate X_2. Then for any positive sequence $K_n \to \infty$, as $n \to \infty$, there exist

$$Y_n^{(i)} = \sum_{k=1}^{N} a_{n,k} X_i(t_{n,k}), \quad i = 1, 2, ...$$

such that

$$\|Y_n^{(2)}\|_{\alpha_2} \geq K_n \|Y_n^{(1)}\|_{\alpha_1}, \quad n = 1, 2, ...$$

Without loss of generality we can assume $\|Y_n^{(2)}\|_{\alpha_2} = 1$ for all n. Thus

$$\|Y_n^{(1)}\|_{\alpha_2} \leq \frac{1}{K_n} \to 0$$

as $n \to \infty$.

Now consider the sequence of random variables $(Y_n; n \in \mathbb{N})$ defined on (X^T, \mathcal{F}) by

$$Y_n(x) = \sum_{k=1}^{N} a_{n,k} x(t_{n,k}), \quad x \in X^T.$$

It follows that

$$\int_{X^T} \exp \left(i u Y_n \right) d\mu_{X_1} = \exp(-\|Y_n^{(1)}\|_{\alpha_1} | u |^{\alpha_1}) = 1$$
as \(n \to \infty \). Hence a subsequence \((Y_{nk}; k \in \mathbb{N})\) can be chosen such that if

\[
C_0 = \{ x: Y_{nk}(x) \to 0, \text{ as } k \to \infty \},
\]

then \(\mu_{X_1}(C_0) = 1 \). Clearly \(C_0 \) is a measurable linear subspace of \(X^T \) and, since \(\mu_{X_2} \) is a \(\mathcal{S}_{\alpha_2} \) measure on \((X^T, \mathcal{C})\), it follows by the zero-one law for stable measures (Dudley and Kanter (1974)) that \(\mu_2(C_0) = 0 \) or 1.

On the other hand,

\[
\int_{X^T} \exp(\text{i}uY_{nk}) \, d\mu_{X_2} = \exp(-\|Y_{nk}\|_{\alpha_2}^{\alpha_2}|u|^{\alpha_2}) = \exp(-|u|^{\alpha_2})
\]

which implies that \(\mu_2(C_0) = 0 \) and thus \(X_1 \perp X_2 \).

The crucial result used in the proof of Proposition 3.2.2 is the zero-one law. This result is not available for general \(p^{th} \) order processes but the proposition has some partial analogs for certain \(p^{th} \) order processes.

As in Fortet (1973) we call a \(p^{th} \) order process \(X = (X(t); t \in T) \) non-reduced if there exists some \(\epsilon \in (0,1] \) such that for all countable subsets \(T_0 \) of \(T \),

\[
P(\{ \omega: X(t, \omega) = 0, t \in T_0 \}) \geq \epsilon ; \text{ otherwise } X \text{ is called reduced.}
\]

Nontrivial \(\mathcal{S}_{\alpha_2} \) processes are reduced. When \(X \) is separable and \(T \) an interval of the real line Fortet (1973) showed that \(X \) is reduced if and only if \(\mu(X(t) = 0, t \in T) = 0 \) and nonreduced if and only if \(\mu(X(t) = 0, t \in T) > \epsilon \) for some \(\epsilon \in (0,1] \).

Next we generalize to \(p^{th} \) processes with \(1 < p < 2 \) the results in Fortet (1973), Théorèmes (3.2) and (3.3.2). The proof is identical to Fortet's and is presented in a shorter form.

Proposition 3.2.3. Let \(X_i = (X_i(t); t \in T), i = 1,2 \), be \(p^{th} \) order processes with \(1 < p < 2 \) and \(F_i = F(X_i) \)

i) If \(\mu_{X_2} \ll \mu_{X_1} \) then \(F_1 \cap F_2 \) is dense in \(F_2 \).
ii) If either X_1 or X_2 is reduced, and $F_1 \cap F_2 = \{0\}$, then $\mu_{X_1} \perp \mu_{X_2}$.

Proof. i) Fix $s \in F_2$. By Proposition 2.1.2 we have

$$s(t) = E(X_2(t)Y^{<p-1>}) = \int_{\mathcal{X}} x(t) a(x)^{<p-1>} \mu_{X_2}(dx)$$

where $Y \in \mathcal{L}(X_2)$ and $a(x)$ is a representation of Y in $L_p(\mu_{X_1}) \cap \mathcal{P}\{x(t); t \in T\} \subset \mathcal{X}^T$.

$Y(\omega) = a(X(\cdot, \omega))$. Let

$$\mu_{X_2}(E) = \int_E g d\mu_{X_1} + \mu_{X_2}(E \cap \mathcal{N})$$

be the Lebesgue decomposition of μ_{X_2} with respect to μ_{X_1}. Define

$$E_n = \{x: 0 < g(x) \leq n\} \cap \mathcal{N}^c$$

and

$$s_n(t) = \int_{\mathcal{X}} x(t) a(x)^{<p-1>} E_n(x) \mu_{X_2}(dx) \leq \int_{\mathcal{X}} x(t) a(x)^{<p-1>} g(x) 1_{E_n}(x) \mu_{X_1}(dx).$$

Since $a^{<p-1>} 1_{E_n} \in L_{p^*}(\mu_{X_2})$ and $a^{<p-1>} 1_{E_n} \in L_{p^*}(\mu_{X_1})$ we have $s_n \in F_1 \cap F_2$.

Also

$$|\sum_{k=1}^{K} c_k (s_n(t_k))| = |\int_{\mathcal{X}} \sum_{k=1}^{K} c_k x(t_k)a(x)^{<p-1>} 1_{E_n}(x) \mu_{X_2}(dx)|$$

$$\leq \left[\int_{\mathcal{X}} \left| \sum_{k=1}^{K} c_k x(t_k) \right|^p \mu_{X_2}(dx) \right]^{1/p} \left[\int_{\mathcal{X}} a^{<p-1>} 1_{E_n} \mu_{X_1} \right]^{1/p^*}.$$
as $n \to \infty$, i.e. $F_1 \cap F_2$ is dense in F_2.

ii) For a fixed $t_0 \in T$, let $a_0(x) = x(t_0)$ and define

$$s_n(t_0) = \int x(t)a_0(x)^{p-1}\mu_{X^2}(dx).$$

By Proposition 2.1.2., $s_n(t_0) \in F_2$, since $a_0(x) \in L^{p'}(\mu_{X^2})$. Let

$$s_n(t_0) = \int x(t)a_0(x)^{p-1}1_{E_n}(x)\mu_{X^2}(dx)$$

and hence

$$\int \{|x(t_0)|^p g(x)\mu_{X^1}(dx) = 0 \text{ for } n = 1, 2, \ldots,$$

Consequently, since $t_0 \in T$ is arbitrary, we have $x(t) = 0$ a.e. (μ_{X^1}) on $\{0 < g < \infty\}$ for each $t \in T$. But this implies that X^1 is non-reduced if

$$\mu_{X^1}\{x; x(t) = 0, t \in T\} \geq \mu_{X^1}\{x; 0 < g(x) < \infty\}.$$
On the other hand if \(\mu_{X_1}(\{x; 0 < g(x) < \infty\}) > 0 \) then \(x(t) = 0 \) a.e. \((g\mu_{X_1}) \) for each \(t \) and \(\int_{0<g<\infty} gd\mu_{X_1} > 0 \). Hence

\[
\mu_{X_2}(\{x; x(t) = 0, t \in T_0\}) \geq \int_{0<g<\infty} gd\mu_{X_1} > 0,
\]

i.e. \(X_2 \) is nonreduced. Since either \(X_1 \) or \(X_2 \) is reduced we must have

\(\mu_{X_1}(\{x; 0 < g(x) < \infty\}) = 0 \), i.e. \(\mu_{X_1} \perp \mu_{X_2} \).

\[\square\]

3.3 Dichotomies for certain \(\mathcal{S} \alpha \mathcal{S} \) processes

In the study of Lebesgue decomposition of probability measures in infinite dimensional spaces the following dichotomy "two measures are either mutually absolutely continuous or singular", has been proved for product measures (Kakutani (1948)), for Gaussian measures (Feldman (1958) and Hajek (1958)), certain ergodic measures (Kanter (1977)), etc. In Section 2, Chapter II we showed that this dichotomy prevails for admissible translates of certain \(\mathcal{S} \alpha \mathcal{S} \) processes. A dichotomy for general \(\mathcal{S} \alpha \mathcal{S} \) measures has been conjectured by Chatterji and Ramaswamy (1982) but the problem seems to remain open.

In this section we show that a dichotomy holds for certain \(\mathcal{S} \alpha \mathcal{S} \) processes, e.g. independently scattered \(\mathcal{S} \alpha \mathcal{S} \) random measures and harmonizable \(\mathcal{S} \alpha \mathcal{S} \) processes.

Necessary and sufficient conditions for equivalence and singularity are given and hold for all \(\alpha \in (0,2) \).

We continue to use the notation introduced in Section 2, Chapter II. Through this section we make the assumption that the control measures are not purely atomic with a finite number of atoms. This is equivalent to the infinite dimensionality of the linear space of the processes. When they are finite dimensional we always have equivalence since stable densities are everywhere positive. We start by proving a dichotomy for
independently scattered symmetric stable random measures.

Proposition 3.3.1. For i=1,2, let \(Z_i = (Z_i(B); B \in \mathcal{F}) \) be an independently scattered symmetric stable random measure with index of stability \(\alpha_i \in (0,2) \) and control measure \(m_i \) which is not purely discrete with a finite number of atoms. Then \(\mu_{Z_1} \) and \(\mu_{Z_2} \) are mutually absolute continuous if and only if the following conditions are satisfied

i) \(\alpha_1 = \alpha_2 = \alpha \),

ii) \(m_{1,d} = m_{2,d} \),

iii) \(m_1 \) and \(m_2 \) have the same set of atoms \(A = \{ a_n; n \in \mathbb{N} \} \) and

\[
\sum_{n=1}^{\infty} \left(1 - \frac{m_1(\{a_n\})}{m_2(\{a_n\})} \right)^{1/\alpha} < \infty.
\]

Furthermore if any of these conditions fail, \(\mu_{Z_1} \) and \(\mu_{Z_2} \) are singular.

(Note that condition iii) is symmetric in \(m_1 \) and \(m_2 \) and independent of \(\alpha \) as \(\sum_n (1 - x_n)^2 < \infty \) if and only if \(\sum_n (1 - x_n^2)^2 < \infty \).

Proof. First suppose that \(m_1 \) and \(m_2 \) are not equivalent, e.g. \(m_2 \not\ll m_1 \). Then there exists \(B \in \sigma(\mathcal{F}) \) such that

\[
\|Z_1(B)\|_{\alpha_1} = m_1(B) = 0, \quad \text{and} \quad \|Z_2(B)\|_{\alpha_2} = m_2(B) > 0.
\]

It follows that \(Z_1 \) does not dominate \(Z_2 \) and by Proposition 3.2.2 we have singularity.

From now on we assume \(m_1 \sim m_2 \).

Suppose \(\alpha_1 \neq \alpha_2 \). Since \(m_1 \) and \(m_2 \) are not purely atomic with a finite number of atoms, we can choose an infinite sequence \((B_n; n \in \mathbb{N}) \) of disjoint sets in \(\mathcal{F} \) such that \(m_i(B_n) > 0, i=1,2 \). Define \(\Psi: X^5 \to X^N \) by
\[\Psi(x) = (\Psi_n(x) = x(B_n); \, n \in \mathbb{N}). \]

Thus, for \(i = 1, 2 \), under \(\mu_{Z_i} \), \(\Psi \) is a sequence of independent \(S_{\alpha_i} \) random variables with \(\| \Psi_n \|_{\alpha_i} = m_i(B_n) \). It follows from Proposition 3.1.5 that if \(\alpha_1 \neq \alpha_2 \), then

\[\mu_{Z_1} \Psi^{-1} \perp \mu_{Z_2} \Psi^{-1}, \]

so that \(\mu_{Z_1} \perp \mu_{Z_2} \). From now on we assume \(\alpha_1 = \alpha_2 = \alpha \).

Since \(m_1 \sim m_2 \) we have \(m_{1,d} \sim m_{2,d} \). Suppose \(m_{1,d} \neq m_{2,d} \), so that

\[m_{i,d}(\{\text{dm}_{2,d}/\text{dm}_{1,d} \neq 1\}) > 0, \quad i = 1, 2, \]

hence

\[m_{i,d}(\{0 < \text{dm}_{2,d}/\text{dm}_{1,d} < 1\}) > 0 \quad \text{or} \quad m_{i,d}(\{\text{dm}_{2,d}/\text{dm}_{1,d} > 1\}) > 0. \]

Assume \(m_{i,d}(\{\text{dm}_{2,d}/\text{dm}_{1,d} > 1\}) > 0 \); then there exists \(\delta > 1 \) such that

\[m_{i,d}(\{\text{dm}_{2,d}/\text{dm}_{1,d} > \delta\}) > 0. \]

Since \(m_{i,d} \) is nonatomic, we can find a sequence \(\{B_n; \, n \in \mathbb{N}\} \) of disjoint subsets of \(\{\text{dm}_{i,d}/\text{dm}_{1,d} > \delta\} \) such that \(m_{i,d}(B_n) > 0 \). Let

\[\Phi: \mathbb{X}^d \rightarrow \mathbb{X}^N \]

be the map defined by

\[\Phi(x) = (\Phi_n(x) = x(A^c \cap B_n)/m_{1,d}(B_n)^{1/\alpha}; \, n \in \mathbb{N}). \]

Under \(\mu_{Z_1} \), \(\Phi \) is an i.i.d. sequence of standard \(S_{\alpha} \) r.v.'s, and under \(\mu_{Z_2} \), \(\Phi \) is an independent sequence of \(S_{\alpha} \) r.v.'s with

\[\|\Phi_n\|_{\alpha}^\alpha = m_{2,d}(B_n)/m_{1,d}(B_n). \]

It follows from Corollary 3.1.4 and Kanter (1975) that \(\mu_{Z_1} \Sigma^{-1} \) and \(\mu_{Z_2} \Sigma^{-1} \) are either equivalent or singular, and they are singular if and only if
(3.3.1) \[\sum_{n=1}^{\infty} \left[1 - \left(\frac{m_{2,d}(B_n)}{m_{1,d}(B_n)} \right)^{1/\alpha} \right]^2 = \infty. \]

Now by construction

\[m_{2,d}(B_n) = \int_{B_n} \frac{dm_{2,d}}{dm_{1,d}} dm_{1,d} > \delta m_{1,d}(B_n). \]

Hence \(1 < \delta < m_{2,d}(B_n)/m_{1,d}(B_n) \), so that (3.3.1) holds. Thus \(\mu_{Z_1} \Xi^{-1} \perp \mu_{Z_2} \Xi^{-1} \) which implies \(\mu_{Z_1} \perp \mu_{Z_i} \).

If \(m_{i,d}(\{dm_{2,d}/dm_{1,d} > 1\}) = 0 \) we have \(m_{i,d}(\{dm_{1,d}/dm_{2,d} > 1\}) > 0 \) and an identical argument applies. Therefore \(m_1 \sim m_2 \) and \(m_{1,d} \neq m_{2,d} \) implies \(\mu_{Z_1} \perp \mu_{Z_2} \).

Now assume \(m_{1,d} = m_{2,d} \). Since \(m_1 \sim m_2 \), they have the same set of atoms \(A = \{a_n; n \in \mathbb{N}\} \). Suppose \(\mu_{Z_2} \ll \mu_{Z_1} \) and let \(\Xi: \mathbb{X}^3 \to \mathbb{X}^N \) be defined by

\[\Xi(x) = (\Xi_0(x) = (x(a_n))/m_1(\{a_n\})^{1/\alpha}; n \in \mathbb{N}). \]

Thus \(\mu_{Z_2}(\Xi)^{-1} \ll \mu_{Z_1}(\Xi)^{-1} \) and \(\Xi \) is an i.i.d. sequence of standard SoS r.v.'s under \(\mu_{Z_1} \) and under \(\mu_{Z_2} \) an independent sequence of SoS r.v.'s with

\[\|\Xi\|^2_\alpha = m_2(\{a_n\})/m_1(\{a_n\}). \]

Hence by Corollary 3.1.4 and Kanter (1975),

(3.3.2) \[\sum_{n=1}^{\infty} \left[1 - \left(\frac{m_2(\{a_n\})}{m_1(\{a_n\})} \right)^{1/\alpha} \right] < \infty. \]

Also, if (3.3.2) does not hold, again Corollary 3.1.4 and Kanter (1975) imply

\[\mu_{Z_1,\Xi^{-1}} \perp \mu_{Z_2,\Xi^{-1}} \] so that \(\mu_{Z_1} \perp \mu_{Z_2} \).

Conversely, suppose that i), ii) and iii) hold. Since \(m_{1,d} = m_{2,d} \) we have

\[Z_i \overset{d}{=} Z_{i,a} + Z_d, \quad i=1,2. \]
where $Z_{i,a}$ and Z_d are independent, independently scattered SaS random measures with control measures $m_{i,a}$ and $m_d = m_{1,d} = m_{2,d}$ respectively. Let $\Phi: \mathcal{X}^N \rightarrow \mathcal{X}^3$ be defined by

$$[\Phi(y)](B) = \Phi(y, B) = \sum_{n=1}^{\infty} 1_B(a_n)m_1(\{a_n\})^{1/\alpha} y_n, \ y = (y_n) \in \mathcal{X}^N.$$

Thus $(\Phi \circ \Xi)(Z_i) \overset{d}{=} Z_{i,a}$, so that $\mu_{Z_{i,a}} = (\mu_{Z_i}^{-1})\phi^{-1}$, $i=1,2$. Now by Corollary 3.1.4, iii) implies $\mu_{Z_1} \overset{d}{=} \mu_{Z_2} \overset{d}{=} \mu_{Z_{2,a}}$. Therefore, since

$$\mu_{Z_i} = \mu_{Z_{i,a}} \ast \mu_{Z_d}, \ i=1,2,$$

it follows that $\mu_{Z_1} \overset{d}{=} \mu_{Z_2}$. \hfill \Box

Remark: It also follows from the proof of Proposition 3.3.1 that if only one of the control measures has a finite number of atoms μ_{X_1} and μ_{X_2} are singular.

As in the case of admissible translates the results on equivalence and singularity of independently scattered SaS random measures can be extended to certain invertible SaS processes.

Let $X_i = (X_i(t); t \in T), i=1,2$, be two invertible SaS processes with spectral representations $X_i(t) = \int f(t, u) Z_i(du)$ and control measures m_i where

$f \in L_{\alpha_i}(m_1) \cap L_{\alpha_2}(m_2)$ and the independently scattered random measures have the same δ-ring I of subsets of I as parameter space, i.e., m_1 and m_2 have the same sets of finite measure. X_1 and X_2 will be said to be **simultaneously invertible** if for each $B \subset I$ there exist $N_n(B), a_{n,1}(B), \ldots, a_{n,N_n(B)}(B), t_{n,1}(B), \ldots, t_{n,N_n(B)}(B)$ such that

$$\sum_{k=1}^{N_n(B)} a_{n,k}(B) f(t_{n,k}(B), \cdot) \rightarrow 1_B(\cdot)$$

as $n \rightarrow \infty$.

in $L_{\alpha_i}(m_i)$ for both $i=1,2$. E.g., X_1 and X_2 are simultaneously invertible if they are invertible, $\alpha_1 = \alpha_2$ and dm_1/dm_2 is bounded above or below. In particular X_1 and X_2
are simultaneous invertible if they are invertible and their associated random measures Z_1 and Z_2 are equivalent, as $\mu_{Z_1} \sim \mu_{Z_2}$ implies $a_1 = a_2$, $m_{1,d} = m_{2,d}$ and
\[\sum_{n=1}^{\infty} \left(1 - \frac{dm_1}{dm_2}(a_n) \right)^{1/\alpha/j} < \infty. \]

The simultaneous invertibility of X_1 and X_2 allows for the study of the Lebesgue decomposition of μ_{X_i} with respect to μ_{X_i} in terms of the decomposition of μ_{Z_i} with respect to μ_{Z_i}. Indeed $X_i(t) = \int f(t,u) Z_i(du)$ is roughly speaking $X_i = L(Z_i)$, where L is a linear map from $L(Z)$ into $L(X)$, so we expect the singularity of X_1 and X_2 to imply the singularity of Z_1 and Z_2, and conversely the equivalence of Z_1 and Z_2 to imply the equivalence of X_1 and X_2. Simultaneous invertibility is like having $Z_i = L^{-1}(X_i)$, so we should have the singularity of Z_1 and Z_2 implying the singularity of X_1 and X_2, and conversely the equivalence of X_1 and X_2 implying that of Z_1 and Z_2. Hence with both we expect to have the above implications in both directions. The next proposition makes this precise.

Proposition 3.3.2. Let $X_i = (X_i(t); t \in \mathbb{T})$ be two simultaneously invertible S\&S processes with spectral representations $Y_i(t) = \int f(t,u) Z_i(du)$ and control measures m_i which are not purely discrete with a finite number of atoms. Then μ_{X_1} and μ_{X_2} are either equivalent or singular, and

\[i) \quad \mu_{X_1} \sim \mu_{X_2} \Leftrightarrow \mu_{Z_1} \sim \mu_{Z_2}, \]
\[ii) \quad \mu_{X_1} \perp \mu_{X_2} \Leftrightarrow \mu_{Z_1} \perp \mu_{Z_2}, \]

i.e. $\mu_{X_1} \sim \mu_{X_2}$ if and only if conditions i), ii) and iii) of Proposition 3.3.1 are satisfied, and $\mu_{X_1} \perp \mu_{X_2}$ if and only if at least one of these conditions fail.

Proof: As in Proposition 2.2.3 for $B \in \mathcal{S}$ we can define

\[\Phi_n(B, x) = \sum_{k=1}^{N_n(B)} a_{n,k}(B) x(t_{n,k}(B)), \quad x \in X^\mathbb{T}, \]
so that
\[\Phi_n(B,X_i(\cdot, \omega)) \to Z_i(B,\omega), \quad i=1,2. \]

in probability as \(n \to \infty \). Let \((\Phi_{n_k}(B,\cdot); k \in \mathbb{N}) \) be a subsequence converging \(\text{a.e.} \) \((\mu_{X_i}), i=1,2, \) and put

\[\tilde{Z}(B) = \tilde{Z}(B,\cdot) = \liminf_{k \to \infty} \Phi_{n_k}(B, \cdot)^{1\{x; \Phi_{n_k}(x) \text{ converges}\}}. \]

Hence

\[\tilde{Z}(B, X_i(\cdot, \omega)) = Z_i(B, \omega) \text{ a.s., } i=1,2. \]

The stochastic process \(\tilde{Z}=(\tilde{Z}(B), B \in \mathbb{I}) \) defined on \((X^\mathbb{I}, \mathcal{C})\) is an independently scattered \(\text{SoS} \) random measure with control measure \(m_1 \) under \(\mu_{X_1} \) and \(m_2 \) under \(\mu_{X_2} \). If we also denote by \(\tilde{Z} \) the map \(x \to \tilde{Z}(\cdot, x) \) then

\[\mu_{X_1} \sim \mu_{X_2} \Rightarrow \mu_{X_1} \tilde{Z}^{-1} \sim \mu_{X_2} \tilde{Z}^{-1} \quad (\text{i.e.} \; \mu_{Z_1} \sim \mu_{Z_2}) \]

and

\[\mu_{Z_1} \perp \mu_{Z_2} \quad (\text{i.e.} \; \mu_{X_1} \tilde{Z}^{-1} \perp \mu_{X_2} \tilde{Z}^{-1}) \Rightarrow \mu_{X_1} \perp \mu_{X_2}. \]

On the other hand if \(\mu_{Z_1} \sim \mu_{Z_2} \), i.e. \(\mu_{X_1} \tilde{Z}^{-1} \sim \mu_{X_2} \tilde{Z}^{-1} \), it follows that i), ii) and iii) of Proposition 3.3.1 hold. Thus, we can construct independent processes \(\tilde{X}_d \) and \(\tilde{X}_{i,a} \) on \((X^\mathbb{I}, \mathcal{C}(X^\mathbb{I}), \mu_{Z_1})\) such that

\[X_i \overset{d}{=} \tilde{X}_d + \tilde{X}_{i,a}, \quad i=1,2, \]

with \(\mu_{X_{1,a}} \sim \mu_{X_{2,a}} \). Since \(\mu_{X_1} = \mu_{X_{1,a}} \ast \mu_{X_{1,a}} \) we have \(\mu_{X_1} \sim \mu_{X_2} \).

Now if \(\mu_{X_1} \) and \(\mu_{X_2} \) are not equivalent it follows that \(\mu_{Z_1} \perp \mu_{Z_2} \) (since otherwise \(\mu_{Z_1} \sim \mu_{Z_2} \), which implies \(\mu_{X_1} \sim \mu_{X_2} \), i.e. a contradiction) and this was shown to imply \(\mu_{X_1} \perp \mu_{X_2} \). \(\Box \)
It follows from Proposition 3.3.2 that simultaneously invertible processes are singular whenever their indexes of stability are different. This is not generally true for symmetric stable processes with different indexes of stability. Indeed, let $G = (G(t); t \in \mathbf{T})$ be a Gaussian process, and for $i = 1, 2$, A_i a standard positive $(\alpha_i/2)$-stable random variable with $\alpha_1 \neq \alpha_2$, and consider the sub-Gaussian \mathcal{S}_α processes

$$X_i = (X_i(t) = \frac{1}{\nu_i} A_i^{1/2} G(t); t \in \mathbf{T}).$$

We have that

$$\mu_{X_i}(B) = \int_{\mathbf{R}^+} \mu_{XG}(B) \mu_{A_i}(dx).$$

Since the distribution μ_{A_i} of A_i has positive density in \mathbf{R}^+ we have $\mu_{A_1} \sim \mu_{A_2}$, so that by the Corollary of Theorem 18.1 in Skorohod (1974), $\mu_{X_1} \sim \mu_{X_2}$. Since the linear space of sub-Gaussian processes does not contain (nondegenerate) independent random variables, sub-Gaussian processes are not invertible (nor simultaneously invertible).

Further examples of symmetric stable processes with different indexes of stability which are equivalent are

$$X_i = (X_i(t) = \sum_{n=1}^{N} \frac{1}{\nu_1} A_i^{1/2} G_n(t); t \in \mathbf{T})$$

where for each $i = 1, 2$, the vector $(A_{i,1}, \ldots, A_{i,N})$ is positive $(\alpha_i/2)$-stable, independent of the mutually independent Gaussian processes $G_n = (G_n(t); t \in \mathbf{T})$, $n = 1, \ldots, N$.

Next Proposition 3.3.2 is applied to describe the Lebesgue decomposition between two $\mathcal{S}_\alpha \mathcal{S}$ harmonizable processes, and to show that multiples of invertible processes are singular.
Corollary 3.3.3. Let \(X_i = (X_i(t); t \in T) \) be two harmonizable \(\mathcal{S}_a \mathcal{S} \) processes, i.e.

\[
X_i(t) = \int_1 \exp(i<t, u>)Z_i(du), \quad t \in T,
\]

where \(1 = \mathbb{R}^d \) and \([-\pi, \pi]^d \) for \(T = \mathbb{R}^d \) and \(Z^d \) respectively, with spectral measures \(m_i \) not purely discrete with a finite number of atoms, \(i = 1, 2 \). Then \(\mu_{X_1} \) and \(\mu_{X_2} \) are equivalent if and only if

i) \(\alpha_1 = \alpha_2 = \alpha \),

ii) \(m_{1,d} = m_{2,d} \),

iii) \(m_1 \) and \(m_2 \) have the same atoms \(\{a_n; n \in \mathbb{N}\} \) with

\[
\sum_{n=1}^{\infty} (1-m_1(\{a_n\})/m_2(\{a_n\}))^2 < \infty.
\]

and they are singular otherwise.

Proof: Clearly \(X_1 \) and \(X_2 \) are simultaneously invertible, since indicator functions can be approximated uniformly by linear combinations of the functions \(f(t, u) = \exp(i<t, u>) \).

Hence the result follows from Proposition 3.3.2.

Corollary 3.3.4. Let \(X=(X(t); t \in T) \) be an invertible \(\mathcal{S}_a \mathcal{S} \) process with control measure \(m \) which is not purely atomic with a finite number of atoms. Then \(\mu_X \) and \(\mu_{bX} \) are singular wherever \(|b| \neq 1 \).

Proof. If \(X(t) = \int_1 f(t, u)Z(du) \), where \(Z \) has control measure \(m \), then

\[
(bX)(t) = bX(t) = \int bf(t, u)Z(du) = \int f(t, u)Z_b(du)
\]
where Z_b has control measure $|b|^\alpha m$. Clearly X and bX are simultaneously invertible and since m is not purely atomic with a finite number of atoms, the result follows from Proposition 3.3.2.

The result in Corollary 3.3.4 is known to hold for every Gaussian processes with infinite dimensional linear space. Here again the class of SoS sub-Gaussian processes provides an example to show that the result is not true for all infinite dimensional SoS processes. In fact, if $G=(G(t); t \in T)$ is Gaussian, A is a standard positive $(\alpha/2)$-stable random variable and $X(t) = (A^{1/2}G(t), t \in T)$, reasoning as in page 73 we have for each $b > 0$.

$$
\mu_{bX}(B) = \int_{\mathbb{R}^+} \mu_{XG}(B) \mu_b(dx).
$$

The distributions μ_A and μ_{bA} are equivalent for all $b > 0$ so that $\mu_X \sim \mu_{bX}$.

BIBLIOGRAPHY

220. R. Huijka, Stochastic filtering solutions for ill-posed linear problems and their extension to measurable transformations, Mar. 87.

221. G. Samorodnitsky, Maxima of symmetric stable processes, Mar. 87.

222. H.L. Hurv, Representation of harmonizable periodically correlated processes and their covariance, Apr. 87.

223. H.L. Hurv, Nonparametric time series analysis for periodically correlated processes, Apr. 87.

227. O. Kallenberg, Decoupling identities and predictable transformations in exchangeability, June 87.

229. G. Samorodnitsky, Extremes of skewed stable processes, June 87.

231. F. Avram and N. Taqcu, Weak convergence of sums of moving averages in the α-stable domain of attraction, June 87.

238. T. Hsing, On the extreme order statistics for a stationary sequence, July 87.

239. T. Hsing, On the characterization of certain point processes, Aug. 87.

242. O. Kallenberg, One-dimensional uniqueness and convergence results for exchangeable processes, Aug. 87.

244. C. Kallianpur and V. Perez-Abreu, Stochastic evolution equations driven by nuclear space valued martingales, Sept. 87.

246. E. Willekens, Estimation of convolution tails, Sept. 87.

248. M. Kaczeluj, Computation of filters by sampling and quantization, Sept. 87.

249. J. Bather, Stopping rules and observed significance levels, Sept. 87.

250. S.T. Rachev and J.E. Yukich, Convolution metrics and rates of convergence in the central limit theorem, Sept. 87.

254. C. Houdré, A note on vector bimeasures, Nov. 87.

255. M.R. Leadbetter, On the exceedance random measures for stationary processes, Nov. 87.

256. M. Marques, A study on Lebesgue decomposition of measures induced by stable processes, Nov. 87.
END
DATE
FILMED
6-1988
DTIC