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19 ABSTRACt (Continued)
p

the field inside a continuous enclosure is a monotonically ]

decreasing function of frequency. At frequencies above cutoff,
the fields in both slotted and continuous enclosures show very
coc•,lex behavior associated with cavity resonances. ,.•

The frequency domain series for the internal magnetic fields

were transformed into time domain expressions which were used to
plot the transient response of the internal magnetic fields at
various locations when one wall or one slot is exposed to time-
varying external fields. It was found that the properties of the
field inside a continuous enclosure are determined to a great
extent by the characteristic diffusion time of the enclosure wall
and the duration of the incident field. The former determines the
rastzst rise time of the internal field and the latter determines
its largest value. The transient field inside an enclosure with an oA

air-filled slot consists of the sum of two parts: the stationary .,

field and the propagating field. The stationary field dominates
close to the slot where it forms a reduced replica of the external
field. Its peak field decreases rapidly with distance frcm the
slot so that at most locations it is negligible compared to the
propagating field. The latter travels at approximately the speed
of light and undergoes repeated reflections from the walls of the P
enclosure. The peak value of the stationary field depends <

principally on the length of the slot, while the peak of the %
propagating field depends on the rise time of the external field.
That is, longer slots produce larger stationary fields and faster
rise times produce larger propagating fields.

Calculations based on the frequency dcmain expressions were
used to compare the theoretical results with two sets of experi-
mental data, and satisfactory agreement was found.
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1. INTRODUCTION

An electromagnetic shield is a structure fabricated from

one or more sheets of electrically conducting material, usually

copper, steel, or aluminum, that is used to reduce the intensity

of electric and magnetic fields entering a designated region (the

shielded volume) from external sources such as antennas, trans-

mission lines, lightning, and electromagnetic pulse (EMP). It

does this by forming a barrier between the shielded volume and

the source that reflects and absorbs most of the electromagnetic

field before it can enter. Shields can be simple open structures

such as a single flat sheet of steel placed between a source and

the shielded volume. Or, they can be much more complicated closed

form structures that approximate continuous metallic shells. The
V.,.

latter are usually circular cylinders or rectangular parallelepi- t

pipeds (boxes). The volume enclosed by such a shield may, or may

not, coincide with the shielded volume. It does if the source of

interest is located outside of the enclosure. However, if the

source is inside, then the shielded volume is the (unlimited)

region outside the enclosure. On the other hand, if there are

sources of interest both inside and outside, then both regions

are shielded volumes with respect to one source or the other.

That is, a closed shield may be used to exclude designated fields

from a limited region, it may confine fields to a limited region,
o-5

or it may separate the effects of two sources by excluding the

9v'.
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fields of one source from the region while confining the fields

of the other source.

Closed-form shields are prefered to open shields for most

applications because of their generally greater efficiency as

measured by the reduction in field intensity at a given location

when that location is included in a shielded volume. The reason

for this is simply that they usually have smaller open (non-

metallic) areas through which fields can reach the shielded vol-

ume without incurring the large reflection and absorption losses

associated with direct penetration of the metal barrier. Open

shields, by their very openness, usually provide relatively large

areas where incoming fields can bypass the metal barrier. For ex-

ample, a shield consisting of a flat, rectangular, steel sheet of l

modest thickness exacts huge losses on the part of the incoming

field that takes a straight line all-metal path to the shielded

volume. If this were the only path to the shielded volume, its

efficiency would be very high. However, this structure also pro- .-.

vides longer but less lossy paths through the (infinite) area at -

and beyond the perimeter of the sheet by which part of the field

can reach the shielded volume through the process of diffraction.

This diffracted field usually dominates the directly transmitted

field and, thus, severely limits the efficiency of the shield.

Without changing the frequency of the source field, the only way

the efficiency can be improved is by increasing the size (area)

of the sheet- an approach that is often impractical.

10
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IV

A simple closed-form shield can be constructed from the

rectangular steel sheet by bending it into a circular cylinder

and joining the adjacent edges with a continuous weld. Since the

diffraction field can now avoid all-metal paths only by entering -"

or leaving the enclosed volume through the finite (circular)

areas at the ends of the cylinder, we can expect the efficiency

of this shield to be significantly greater than that of a flat

sheet with the same composition, thickness, and surface area.

Much greater efficiency can be achieved by welding steel sheets

to both ends. These minimize diffraction effects and insure that

fields enter or leave the enclosure by all-metal paths. In this

way, a closed-form shield can be transformed into a continuous

metal shell.

By a similar process in which six rectangular steel sheets

are welded along their edges, a continuous metal shell can be

constructed in the form of a rectangular parallelepiped. This

enclosure, like the cylindrical enclosure, constitutes an ideal

electromagnetic shield in the sense that its efficiency cannot

be significantly improved without increasing the thickness of the

shell or changing its composition. It does, in fact, realize the

full shielding potential of a given thickness of steel in this

form. This structure is also ideal in the sense that it repre-

sents a limit that can only be approached by practical shields.

*, ,
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In practice, perfect metallic continuity must always be

sacrificed for access areas in the form of doorways, hatches, and

other entry points for people, equipment, or supplies. These

openings or discontinuities inevitably reduce the efficiency of a

practical shield below that of the ideal by allowing fields to

reach the interior by nonmetallic paths just as in the case of an

open shield. Thus, practical closed-form shields must be open to

some extent. To minimize their effect, large openings are usually

provided with metal closures (doors or panels) that are intended

(when in place) to establish continuity by maintaining metal to

metal contact at their boundaries with the rest of the shield.

Unfortunately, perfect contact between two pieces of metal cannot

usually be maintained except by welding or some other type of

permanent connection that would defeat the purpose of the open-

ing. Consequently, closures are almost never completely success-

ful in achieving continuity, although some may approach it. In

general, the effect of the closure is to replace an original

large opening by one or more smaller ones in the form of gaps

arranged along the seams where it meets the body of the shield.

These openings are frequently sufficient to reduce the efficiency

of the structure well below that of a comparable ideal shield,

and, if numerous enough and large enough, are capable of compro-

mising its performance. Consequently, the treatment of seam dis-

continuities is crucial to both the theory and practice of elec-

tromagnetic shielding

12
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This report presents a theoretical investigation of the

rectangular enclosure as an ideal shield and as a shield with one

or more seam discontinuities in the form of narrow rectangular VN

slots. The investigation uses a recently developed shielding

theory for generalized structures composed of flat metal sheets

to obtain general expressions for the electric and magnetic

fields at points inside continuous and discontinuous rectangular

enclosures when an external surface is exposed to fields from an

arbitrary, time harmonic, electromagnetic source. These general

expressions are reduced to explicit expressions when the source
4

field is spatially uniform over the outside surface of the enclo-

sure and for the less restrictive case where the field is uniform

over the discontinuity. The latter are used to calculate and plot

frequency domain fields at selected points inside both continuous

and discontinuous enclosures. Comparison of the calculations

shows the large effect of even small discontinuities on the

shielding effectiveness (efficiency) of the enclosure. Analogous

results are obtained in the time domain by computing and plotting

inverse LaPlace transforms of the frequency domain expressions

for several types of transient source fields. In the case of the

discontinuous enclosure these calculations reveal a very compli-

cated time history for the internal fields due to multiple inter-

nal reflections.

The following section reviews the general shielding theory

based on impedance boundary conditions and summarizes its princi-

pal results. Section 3 uses these results to construct the gen-

13

W N ý0'- N _



7. .777 7...77 .1 .. _,_

eral expressions for internal electric and magnetic fields as

doubly infinite series summed over the TEnm modes for a rectangu-

lar waveguide. Fourier coefficients appearing in the series are

evaluated in section 4 for the cases of interest, and, in section

5, the frequency domain series are transformed to the time domain

using term-by-term inversion . In section 6, calculations are

carried out using some of the expressions obtained in the preced-

ing sections, and these are compared to measurements performed by

two groups of experimental investigators.

141
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2. A SHIELDING THEORY BASED ON IMPEDANCE BOUNDARY CONDITIONS le

10.

In 1985, Monroe described a general theory of electromag-

netic shielding that improved on and extended the classic trans-

mission theory of Schelkunoff.2 The new theory improved on the

old one by replacing its transmission line model and eliminating

certain unnecessary assumptions. The transmission line model was
* ~3,4

replaced by an Impedance Boundary Condition (IBC) which had

not previously been used explicitly to solve shielding problems.

This approximate boundary condition performs the same function as

the transmission line model in that it allows one to represent

the field passing through a wall of the shield as a plane wave

traveling perpendicular to that wall. It also provides a way to

calculate this field in terms of the source field incident on the

outside of the shield. Its advantage over the transmission line

model is that it can be applied to a very much larger class of

R. L. Monroe, A Theory of Electromagnetic Shielding with

Applications to MIL-STD 285, IEEE-299. and EMP Simulation,

Harry Diamond Laboratories, HDL-CR-85-052-1, Adelphi, MD

(February 1985).

2V
S. A. Schelkunoff, Electromagnetic Waves, Van Nostrand, Prince-

ton, NJ (1943).

3 T. B. A. Senior, Appl. Sci. Res., 8 (B) (1960), 418.

4
T. B. A. Senior, IEEE Trans. on Antennas Propagt., AP-29, No. 2

(1981), 826.
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sources and shields, including shields that have been rendered

discontinuous by one or more slot-like apertures. In fact, the

restrictions on applying IBC's are so weak that there is virtual-

ly no electromagnetic shield to which an IBC could not be appli-

ed. Thus, with the aid of IBC's, one can develop a theory of

shielding for a wide range of sources and shields that fall out-

side the scope of Schelkunoff's theory.

2.1 Impedance Boundary Conditions

An IBC is a relationship between an impedance func-

tion and an electromagnetic field at the interface between two

electrically distinct media where the impedance function charac-

terizes one medium and the electromagnetic field is defined in

the other medium. In its most frequently applied form, the IBC

relates tangential field components at the interface to the im-

pedance looking into one of the media. With the two media labeled

M1 and M2 as shown in figure 1, this condition can be written in

vector form as follows:

n x (n x El) q- ,2 (n x HI) (2.1)

where El and HI are t.'i electric and magnetic fields in M1, n is .-.

the unit vector normal to the interface pointing outward from M2,

q2 is the impedance looking into M2, and it is understood that

(2.1) applies only at the interface. Equation (2.1) is an approx-

imation that cannot be used to replace standard boundary condi- j

tions in the general case. However, in many cases of interest, it

16 Ii
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IMPEDANCE BOUNDARY CONDITION

n x x EF) =-r2 (n x FIT)

nxEi

n

-b-

,-5

Boundary M 2,M,

Figure 1. A medium Mi containing a source S and an

electromagnetic field El, HI whose tangential components --

x El and F x HI at the boundary between M1 and a second

medium M2 act as a primary source for the field

E2, H2 in M2. (Reproduced from ref 1.) bS
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has been shown that (2.1) is a valid approximation, and, in these

cases, the IBC can be used to simplify the problem of determining

the fields in MI and M2.

This simplification derives from the fact that (2.1) de-

couples the fields in M1 from those in M2 in a way that does not

introduce spatial derivatives of the fields at the interface.

This means that El and Hi can be computed independently of the

fields (E2,H2) in M2 and that both sets of fields can be obtained

by applying standard techniques to Maxwell's equations. One first

solves Maxwell's Equations for El and Hi using (2.1) to replace

M2 and then solves for E2 and H2 in M2 using E1 and H1 at the

interface to replace MI. Since this two-step process will usually

be much easier than solving Maxwell's equations directly for El,

Hi, E2, and 112, the utility of (2.1) is obvious. Moreover, if one

is interested only in the fields in MI, then E2 and H2 need not

be computed at all. Conversely, if one is primarily interested in

E2 and H2, then it is only necessary to solve for El and Hi at

the interface in order to determine the fields throughout M2. The I

latter describes the usual situation in shielding problems where

the interior of M2 can be identified with the shield, M1 is the

region containing one, or more, electromagnetic sources, and only

the fields transmitted into the shielded volume are of interest.

1 8 
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To take advantage of the IBC, it is necessary to establish

the validity of (2.1) at the interface that defines the problem

of interest. In general, this requires one to show that E2 and H2 p.

4..

propagate into M2 along n as approximate plane waves. One way to

do this is to show that the variation of E2 and H2 along n is

much larger than the variation of El and Hi at the interface in

directions transverse to n. Specifically, one can show that the

norm~al derivatives of E2 anf H2 are much larger in magnitude than

the transverse derivatives of El and Hi at the interface. Since p

electromagnetic shields are intended to produce just such varia- %i

tions, it is not suprising that most of these structures will be

found to satisfy IeC's. Indeed, it can be argued that no struc-

ture can be an effective shield unless it does satify an IBC at

all points on its surface.

The validity of (2.1) has been demonstrated under relative-

ly weak restrictions in the case of a planar interface separating

two homogeneous half-spaces as shown in figure 2, where M1 is

free space and M2 consists of a material with complex permittiviy -

&2 and permeability e2. With this arrangement, equation (2.1) can

be written in scalar form as follows:

El qaee2ia e H El -- 2H1 atnzd, (2.2)
x y y

where

q2 (i2/c2) 1/ (2.3)

19
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Impedance Boundary Condition

Elx -n2 H1 , Ely x

Ei2

"Y Y

SK
E 

-L't

Y H2

M1: L1, eI M2:A2,e C2

[- S

p.f1 < <I 42 f 2

Figure 2. Two half-spaces M1 and M2 with a planar

interface where an impedance boundary condition is

satisfied by virtue of the relation p1 fi1 << Ip2 *21.

(Reproduced from ref 1.)[
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and the fields are referred to a rectangular coordinate system

with its origin at the interface and its z axis directed out of

M2 (n = i z). A condition sufficient to insure the accuracy of

(2.2) is

p2 e2 1 >> pl 61 p 0 eo0 (2.4)

where e2 is given by

2 -j o2/w , 0> 0 (2.5)

and e and p are the permittivity and permeability of free

space. In (2.5), o2 is the conductivity ofthe half-space M2 and a

harmonic time variation of the form exp(jwt) has been assumed.

When (2.4) is satisfied, the fields in M2 are constrained p

to propagate along the z axis (in the -z direction) like plane

waves, and the validity of (2.2) is assured. The components E2

H2 y, E 2 y, and H2x satisfy the one-dimensional, homogeneous wave

equation with solutions of the form

E2x(x,y,z) = E2x(x,y,0) exp(v2 z)

H2y (x,y,z) = H2y (x,y,0) exp(72 z) (2.6)

E2y (x,yz) = E2y (x,y,0) exp(12 z)

H2 (x,y,z) = H2 (x,y,0) exp(72 z)
x x

4 where E2 (xy,0), H2 (x,y,0), E2 (x,y,0), and H2 (x,y,0) are the

the tangential components of the field transmitted into M2 at the 4
interface z = 0 due to the fields in M1 and the propagation con-

stant 12 is given by

1/272 jw(p2 f2)I . (2,7)
When E2 (x,y,0), H2 (x,y,0), E2 (x,y,0), and H2 (x,y,0) are

x y y X
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known, equation (2.6) can be used to compute the fields at any -•

point in M2.

Equation (2.2) is frequently referred to as the Leontovich

Boundary Condition 5 although it was apparently used before Leon-

tovich by Rytov,6 Alpert,7 and Feinberg8 during World War II in

their work on ground wave propagation. Since then, these and 1P

other investigators have shown that (2.2) is not limited in ap- -

plication to half-spaces but can be applied directly to more

complicated structures. For example, if the half-space M2 is re-

placed by a sheet of the same material with a uniform thickness d

as shown in figure 3, then the fields inside the sheet still sat-

isfy the one-dimensional wave equation and propagate like plane

waves parallel to the z axis provided (2.4) remains valid. The

IBC is again applicable at z = 0 in the form given by (2.2) if an

additional condition is satisfied:

s < d (2.8)

where

8s /w j Im(!2e2)I/ 2) i {2.9)

is the skin depth of the sheet (M2.) The skin depth is a measure

M. A. Leontovich, Investigation of Radiowave Propagation, Part

II, Moscow: Academy of Sciences (1948).
S

6 S. M. Rytov, J. Exp. Theor. Phys. USSR, 10 (1940),180.

I. L. Alpert, J. Tech. Phys. USSR, 10 (1940), 1358.

8 E. L. Feinberg, J. Phys. USSR, 8 (1944), 317.
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Figure 3. A planar sheet of uniform thickness d

separating media where an impedance boundary condition

is satisfied at z = 0 by virtue of the relations

MI 61 << Ij2 e21 and a < d. (Reproduced from ref 1.)
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of the rate at which the magnitude of the field decreases as it

propagates in M2. Since fields decrease in amplitude by a factor %.

of e 1 0.37 = 8.5 dB while traveling a distance equal to one

skin depth, condition (2.8) means that fields making a round trip

from z = 0 to z = - d and back to z 0 will be reduced by at

-2least a factor of e = 0.14 = 17 dB. This condition is necessary

to prevent fields reflected at z -d from reaching z = 0 in

sufficient strength to interfere with El and HA at the interface

and render (2.2) inaccurate. This also means that internally re-

flected fields at z = 0 can be neglected and that the fields at z

0 traveling into M2 are again given by (2.6). In other words,

(2.8) eliminates standing waves in the sheet, and a~lows one to

represent the fields propagating into the sheet at z 0 as sim

ple traveling waves just as in the case of the infinite half-

space. Condition (2.8) is easily satisfied by most electromag-

netic shields composed of flat sheets since these structures are

designed to reduce the fields reaching z = -d by far more than

8.5 dB. In fact, it will usually be found that quality shields

satisfy the much more stringent condition 8 << d at most fre-s

quencies of interest.

If a rectangular slot is cut through the uniform, homogen-

eous sheet in figure 3 and the rectangular volume of the slot is

filled by a material with permeability p2l and permittivity c2',

then the sheet is rendered locally inhomogeneous and anisotropic

- inhomogeneous because the effective permeability, permittivity,

24



and impedance of the slot differ from those of the solid sheet

and anisotropic because these quantities depend on the orienta- i

tion of the slot. If the slot is oriented as shown in figure (a),

then El and Hl will see a different impedance looking into the
x

slot than will El and Hi . With these two impedances denoted 72y x H

and 72, a generalized IBC can be written
y

El = - q2 Hl , El j 72 Hl ' at z = 0 (2.10)
x x y y y x ..

where q2 and q2 are functions of x and y, y2' and c2', and the
x y

dimensions of the slot are a and A. A similar IBC can be written

for the vertical slot shown in figure 4.
• •.4

A condition sufficient to insure that the fields in the

slot E2, H2, E2', and H2x propagate parallel to the z axis in

the manner of plane waves is :,e,:

<< Z - • / o 1 2(2.11) ",

Since t72 and 172 can be defined in terms of effective slot
x y

permeabilities and permittivities,

,72x - (p,2/e2x)11/2" '.,..

1/2
(72 = (p2/.2 )...

2 (p/) 11 2 ".,
y y y

where p2 , p2 .> pc Condition (2.10) then implies ..
x y 4'

I "• <• I "",

>> (2.13)
1 P9 2 I -S

which is completely analogous to (2.4). The fields in the slots".,
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(a) Horizontal Slot Y IBO at x=y=O

P 2. f2.17 2 Ely= 72 (O.o)Hlx I
H1y Ely

TaxY) Hix

131- 71 2 (X -y l l

d/2/

,1-

(b) Vertical Slot

IBC at x=.Y=O

I Y

Hl
y

of eria horionta()n vetia (b"sos.(epodcd-

YJ Hl.,

-Elx = /:( ,)H yo
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> 2j<

Fiur 4. Imeacebudrycniiosahecne

of horiontal ()and erticl (bH los (eroue

from ref 1• .
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satisfy separate homogeneous wave equations corresponding to q2 V.
x

and q2. The solutions to these equations give the following
y .

expressions for the slot fields at z 0 propagating in the -z

direction:

E2x(x,y,z) = E2x(x,y,0) exp(72x z)

H2y(x,y,z) = H2y(x,y,0) exp(i2x z)

(2.14)

E2ý(x,y,z) = E2'(x,y,O) exp(-2y z)

H2x(x,y,z) = H2x(x,y,0) exp(12 z))
x x y

where the propagation constants are given by

12= w p~2 / q20x x x

= jw p2 / q2 (2.15) -'

y y y

For air-filled slots with dimensions that are small com-

pared to the wavelength of E1,H1, the slot permeabilities p2 and
x

p2 are real and equal to the permeability of free space p and
y..

the slot impedances are

q a jw L
x x

(2.16)
q2 ajw Ly

y y

where L , L > 0 are inductances. In this case, (2.15) reduces
x y

to Po2 p /L and -t2 M P /L . Equation (2.14) becomes
x 0 x y 0 Y

E2x(x,y,z) = E2x(x,y,0) exp(z Po/LLx

H2ý(x,y,z) = H2'(x,y,0) exp(z po/Lx)

E2'(x,y,z) = E2y(x,y,0) exp(z Po/Ly) (2.17)
y y /y .

H2'(x,y,z) H2'(x,y,0) exp(z ),/L )
x x • y
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The latter show that the slot acts like a waveguide below cutoff

resulting in an exponential decay of the slot fields for z < 0.

The rates of decay depend primarily on the dimensions of the slot

a and p. As a and p decrease, L and L also decrease, and the -
x y

rate of decay increases. The air-filled slot is a structure of

considerable importance in shielding theory since Jarva 9 has

shown that it can be used as a working model for the most common

types of defects (discontinuities) that occur in practical

shields

The slotted sheet like the homogeneous sheet must satisfy

an additional condition involving skin depth and sheet thickness

in order to insure that (2.10) is valid at the interface between

MI and the slot. Here there are two skin depths, 8 and a
x

which in the case of the air-filled slot can be written as

follows:

x x 0
(2.19)L /P

y y 0

and the condition (analogous to (2.8) is

< d. (2.20)
6y

This condition insures that the impedance at z =0 is unaffected

by reflections at z = -d. When (2.13) and (2.20) are satisfied,

the IBC (2.10) is a valid local boundary condition at the

interface between M1 and the slot, and the fields in the slot

W. Jarva, IEEE Trans. EMC, EMC-12 (1970), 12.
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traveling away from the interface are plane waves given by

(2.14). If a sheet has more than one slot, then (2.10) can be

applied at each slot provided the appropriate conditions are 60

satisfied and the impedances of the slots can be determined. I

2.2 Shielding by Continuous Structures Composed of Good

Conductors

IBC's were developed originally to simplify external

scattering and propagation problems in which the sole objective

is to compute the fields in Ml:

El= s + Er
(2.21) P%

H1 Hi + Hi

where Es and is are the fields generated by the source and ir 0,

-rand H1 are the reflected and diffracted fields in M1 due to M2.

In most cases, the source fields are known functions of position

in M1 and the external problem reduces to that of determining the

reflected and diffracted fields. An IBC applied at the interface

between M1 and M2 simplifies such a problem by decoupling the

fields in MI from those in M2. This allows one to solve the ex-

ternal problem without the necessity of solving the internal

problem for E2 and H2. However, in many applications, such as

underground communication and electromagnetic shielding, the

internal problem is of equal or greater importance than the II
external problem, and it is natural to ask if an IBC can be used

29
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to simplify the problem of computing E2 and H2. It was shown by

Monroe, that an IBC can indeed be used to obtain appoximate

solutions to certain internal problems by relatively simple means

and that the latter lead naturally to formal solutions to a gen-

eral class of shielding problems.

Monroe considers the problem of computing fields inside the

generalized structure shown in figure 5 when it is illuminated by p

an arbitrary source S. The structure consists of flat sheets ESI,

ES 2 , ... ,ES of uniform composition and thickness d attached con-
2f m

tinuously along their edges. This structure includes both open-

and closed-form shields as special cases where M2 corresponds to

the shield itself and M3 is the shielded volume. By specifying

the number, shape, and dimensions of the sheets, one can generate p

the half-space and the infinite sheet described earlier and the

rectangular parallelepiped among many other useful arrangements

of flat surfaces.

The composition of the sheets is assumed to fall into the

class of materials referred to as good conductors, which is char-

acterized by the relation:

W << o2 (2.22) -

where c is the real part of the complex permittivity (2.5) and -5

A '

IR. L. Monroe, A Theory of Electromagnetic Shielding with

Applications to MIL-STD 285, IEEE-299, and EMP Simulation,

Harry Diamond Laboratories, HDL-CR-85-052-1, Adelphi, MD

(February 1985). 30
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(a) Sideview Y ,

P x-%oM ESf

S,
M23

711

SS

ES3 xoES ,. .r

-Y°.

- I : =. I

.- x.. -.

Figure 5. A generalized electromagnetic shield M2 with

an arbitrary source S. (Reproduced from ref 1.) $
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c2 is the conductivity. For these materials, q2 and -2 reduce to

72 = (jw p2/o2)1/2 (2.23)

7 2 = (j p2o2)1/
12 .

(2.24)

Since all primary materials used in shield contruction satisfy

(2.22) at all frequencies of interest, and since (2.22) is con-

sistent with (2.4), it is clear that Monroe did not impose a se-

rious limitation on the theory by restricting it to structures

composed of good conductors. On the other hand, by accepting this

limitation, one is able to simplify the theory using the well-

10 
6

known fact that the net tangential component of the magnetic '

field at the surface of a good conductor is approximately equal

to twice the corresponding component of the incident (source) p.-

field.

The objective is to obtain formal expressions for the elec-

tric and magnetic fields transmitted into the shielded volume M3 A.

at any point PI(x,y,-d) on the inside surface of ES 1 due to field

from S incident on the outside surface of ES1 (z = 0) where the

fields are referred to a rectangular/cylindrical coordinate sys-

tem that is consistent with the system used to define the IBC.

The origin of this system is located on the outside surface of

ES and the positive z axis points away from M3. For convenience, .

10 R. B. Adler, L. J. Chen, and R. M. Fano, Electromagnetic

Energy Transmission and Radiation, John Wiley and Sons, Inc.

N.Y. (1960) p 432.
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the source is located on the z axis, the origin is located at the ,

geometrical center of ES 1 , and the x and y axes are oriented 1P

parallel to the edges of ES 1 as shown in figure 5. --

The transmitted fields at P'(x,y,-d) are computed in terms

of the tangential components of the source magnetic field inci-

dent on ES 1 by a five-step process: In the first step, the IBC is

used together with standard boundary conditions to show that the

x and y components of the electric and magnetic fields at z =0

in ES1 can be written in terms of the corresponding components of

the magnetic field in M1. That is,

E2x (x,y,0) = - q2 Hiy (X,y,0)

H2 (x,y,0) = Hi (X,y,0)
(2.25)

E2y (x,y,0) =q2 H x(X,y,0)

H2 (x,y,0) = HI (x,y,0) .xx

The second step uses the previously noted property of good con-

ductors to write Hi (x,y,0) and Hy (x,y,0) in terms of the cor-

responding components of the source magnetic field:

H1 (x,y,O) a 2 H1i(xyO)
(2.26)

Hi (X,y,0) 2 2 Hly .x:..,

and subsitutes these expressions in (2.25) to obtain

E2 (x,y,O) = - 2 q2 HI B(xy,0)
x %

H2 ,(xy,0) = 2 HIy (xy,)

E2 (x,y,0) = 2 q2 Hl(x,y,0) (2.27)
y x
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pip.
H2 (x,y,O) =2 Hi ,(x,y,O).xx

The next step is to substitute (2.27) into (2.6) to obtain ex-

pressions for the plane wave fields in M2 traveling toward M3 in 'V

terms of the tangential components of the source magnetic field

incident on ES:

E2 (x,y,z) = - 2 172 HIs (x,y,O) exp(-2 z)
x y

H2 (X,y,z) z 2 H1 s(x,y,0) exp(72 z)
y y

E2 (x,y,z) = 2 q2 H1s(x,y,0) exp(72 z) (2.28)

y x

H2 (x,y,z) 2 s (x,y,0) exp(12 z)
x x

where q2 and 72 are given by (2.23) and (2.24). Next, the plane

wave fields incident normally on the interface between M2 and M3

are obtained by evaluating (2.28) at z - d: -1i*

sE2 (x,y,-d) = - 2 q2 H1 (x,y,0) exp(- 12 d)
x y

H2 (x,y,-d) = 2 Hs (x,y,0) exp(- 72 d)
y y s(2.29)

E2 (x,y,-d) = 2 q2 H72 (xy,0) exp(- 72 d) (2

yx
sH2 (x,y,-d) = 2 q2 Hi (X,y,0) exp(- 72 d).

x x

These generate reflected fields in M2 traveling in the +z direc-

tion and transmitted fields in M3 traveling in the -z direction.

The final step is to compute the transmitted field at z : - d .

from (2.29). This is done by multiplying (2.29) by appropriate

plane wave trnsnsmission coefficients. The result is:

E3 (x,y,-d) = - 2 q2 TE Hi (x,y,0) exp(- 72 d)
x E y

H3y (x,y,-d) = 2 TH H1y(x,y,O) exp(- 72 d) 0

(2.30)
E3 (x,y,-d) = 2 t72 TE Hi (xy,0) exp(- 12 d)

yE
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H3 (x,y,-d) 2 TH 1 (x,y,O) exp(- v2 d)
x H x -

where TE and TH are the transmission coefficients for electric

and magnetic plane wave fields incident normally on a planar sur-

face separating two dissimilar media. These coefficients are

given by: 2

T 2 q31(q2 + q3)
E (2.31) "

T = 2 q2/(q2 + t73)
H

where q2 is as previously defined and t73 is the impedance at

z = -d looking into M3.

The preceding are formal expressions for the principal com-

ponents of the electric and magnetic fields at the surface of the

shielded volume (z = -d) for the generalized structure in figure

5. To obtain explict expressions for a particular shielding prob-

S~xy'
lem, it is necessary to determine the source fields Hi1(xIyO)t

x

HS (x,y,0), and the impedance q3. For example, if S is an antenna
y

-
located a specified distance from ES,, then Hli(x,y,O) and

s

HS (X,y,O) can be computed using standard methods from antenna
y

1
theory. This was done in Monroe for Hertzian dipoles and small

rectangular loop antennas. However, if HI 5 (x,y,O) and HiS(xyO)x y

S. A. Schelkunoff, Electromagnetic Waves, Van Nostrand, Prince-

ton, NJ (1943).

I
R. L. Monroe, A Theory of Electromagnetic Shielding with

Applications to MIL-STD 285, IEEE-299, and EMP Simulation,

Harry Diamond Laboratories, HDL-CR-85-052-1, Adelphi, MD

(February 1985).
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are known functions or can be estimated from measurements, then Ve

these quantities can be used directly in (2.30), and nothing more

need be specified about the source. This will be useful in many8
cases where the source (or sources) generating H1 (x,y,)) and

H s(x,y,0) is partially or completely unknown. Examples of the
y

latter include lightning strokes and NEMP (nuclear electromagnet-

ic pulse). By the same token, it follows that two or more sources

generating the same magnetic field components tangent to ES1 will >

produce the same electric and magnetic fields in M3.

To determine q3, it is necessary to specify the geometry of

the structure. For open structures, q3 can usually be approxi-

mated by the wave impedance of the source. This was done by Mon-

roe for the case of an infinite flat sheet with free space on

either side exposed to Hertzian dipoles. In this case, the ap-

proximation is justified by the evident fact that the structure

of the field must be nearly the same on both surfaces of the

sheet since M1 and M3 are both of infinite extent. However, the

same is not true, in general, if M2 is closed. In this case, the

structure of the fields in M3 usually has no simple relationship

to that of the source field incident on ES Instead, the struc-

ture of the fields in M3 is determined by the geometry of the en-

closure and by its size relative to the free space wavelength of

the source field. If the cross section of M3 transverse to the z

axis is uniform (does not change) from z - d to z -L where L 1
36
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rw.

denotes the surface of the sheet opposite ES 1 , then M3 is equiv-

alent to the interior of a section of waveguide closed at both

ends. In this case, q3 will be determined by one or more of the

doubly infinite set of waveguide modes that this structure can

1support. In Monroe, the principal features of fields transmitted

to the interior of a rectangular enclosure were approximated at

the point z = -d using a single rectangular waveguide mode- the

dominant TE10 mode. In section 3, this approach is extended by

expanding the fields as doubly infinite series over all TEnm

waveguide modes and applying equations (2.29) and (2.30) to each

mode at z : 0.

2.3 Shielding by Discontinuous (Slotted) Stuctures

Composed of Good Conductors.

If the structure in figure 5 is modified by cutting n

narrow rectangular slots through ES at various locations (xiyi i

for i = 1,2,3,....n , where xc ind y are the x and y coordinates

of the center of the i-th slot, then the continuous structure is

transformed into one with multiple discontinuities. Using (2.10),

and (2.14) and a 5 step process analogous to the one used for the

1R. L. Monroe, A Theory of Electromagnetic Shielding with

Applications to MIL-STD 285, IEEE-299, and EMP Simulation,

Harry Diamond Laboratories, HDL-CR-85-052-1, Adelphi, MD

(February 1985).
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continuous structure, Monroe obtained expressions for the fields

at the center of the i-th slot incident on M3 at z - d and the

fields transmitted to M3 at the same point. These expressions

were then used to describe the principal features of the fields

at the center of a slot in one wall of a rectangular enclosure. A

similar process yields the following expressions for the fields

incident on the surface of the i-th slot at z = -d.

E2 (x,y,-d) - 2 4 HI (x,y,O) fe (x,y,-d)
x x y x

x exp(-jwd &I/)

H2 (x,y,-d) 2 Hi (x,y,O) fh (x,y,-d) exp(-jwd pi/q1)
y y y x x

(2.32)

E2I (x,y,-d) 2 4 Hi (x,y,O) fe (x,y,-d)
y y x y

x exp(-jwd d//l) Y Y

H2 (xy,-d) =2 H1i (x~,O) fh (xy,-d) exp(-jwd /j/

where all quantities are as previously defined except the form

factors fe , fh , fe . and fhx which describe the spatial varia-

tion of the incident electric and magnetic field components at z

- d due to the i-th slot. The fields transmitted to M3 from the

i-th slot at z = -d are obtained from (2.32) by applying appro-

priate transmission coefficients. That is,

E3 (x,y,-d) = TE E2 (x,y,-d)
x x x

H3 (x,y,-d) = TH H2y (x,y,-d)

(2.33)
E3 (x,y,-d) = TE E2 (x,y,-d)

y y y

H3 (x,y,-d) = TH H2 (x,y,-d)
x x x

38
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where the transmission coefficients are given by
Ibii

TE 2 q31(qý + q3)

TH1 = 2 qiI(q1 + 3

1( 2.3 4 ) •

TEi = 2 .731/(.y + (43)2.4)
y y

THi :2 &/(q + q3).

These formal expressions, like the corresponding expressions for

continuous structures, require that H1S(x,y,O), H1y(x,y,O), and
* y

q3 be specified for the source and structure of interest. Since

these factors are not usually affected by slots, the same values

of H1S(x,y,O), H1 (x,y,O), and q3 used for a continuous structure
* x y

can also be used for a slotted enclosure of the same size and v.

shape. However, in addition to these, the form factors

fei(x,y,-d), fh (x,y,-d), fe (x,y,-d), and fh (x,y,-d) must alsox Y Y x

be specified. A precise calculation of these factors will not be

attempted in this report. Instead we use approximations based on

the assumption that the slot is equivalent to a waveguide with
walls composed of good conductors These points are discussed '-

goo c.-

further in section 4 where the magnetic field in M3 is evaluated .5.

for a specific case.

%
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3. MODE EXPANSIONS FOR RECTANGULAR ENCLOSURES EXPOSED TO

ARBITRARY, EXTERNAL, TIME HARMONIC, ELECTROMAGNETIC FIELDS

The formal expressions in section 2 can be adapted to give 0

the fields that penetrate a rectangular enclosure by a process

analogous to the classical plane wave expansion technique where

an electromagnetic field is represented as the sum of an infinite
11

series of plane waves Since any source field can be repre-

sented in this way, plane wave expansions have often been used to

simplify external problems (figure 1) by reducing the fields in

M1 to the sum of the source field and a series of plane wave

reflections from M2. Indeed, the same process could be applied to

the shielding problem by computing the plane waves transmitted

from M1 to M2. However, the impedance boundary condition makes

this unnecessary since it gives the plane wave fields in M2

directly in terms of the source fields tangent to the interface .

between MI and M2.

A different expansion is needed for the shielding problem:

one that can be used to relate the plane wave fields incident at

the M2/M3 interface (equations (2.29) and (2.32)) to the trans-

mitted fields at that interface and to the fields in the interior

of M3. Since a rectangular enclosure is equivalent to a section

P. C. Clemmow, The Plane Wave Representation of Electromagnetic

Fields, Pergamon Press, Oxford (1966).

40

51%



" -

of rectangular waveguide, the natural choice here is an expansione

in terms of the mode functions for this structure. Expanding

(2.29) and (2.32) into series composed of mode functions express-

es each of these plane wave fields as the bum of an infinite ser-9

ies of plane waves each of which corresponds to a single wave-

guide mode. In effect, the expansions replace single plane wave

fields by an infinite number of elementary fields that are both

plane waves and mode functions. Each of these elementary fields

is incident normally on the M2/M3 interface and each generates a

reflected field in M2 traveling in the +z direction and a trans-

mitted field in M3 traveling in the -z direction. The transmitted

field at the interface can be computed in terms of the incident

elementary field by using an appropriate plane wave transmission0
coefficient in the same manner that equations (2.30) and (2.33)

were obtained from (2.29) and (2.32). Since the transmitted field

at the interface is also a wavequide mode for the enclosure, it-'
can be used to obtain the field at any point inside M3 due to the

incident elementary field at the interface by representing the".

field in M3 by the same mode and applying boundary conditions at N

the walls and interface. The advantage to this approach is that

the total field at any point in M3 can be obtained by summing the

contributions at that point due to all the elementary fields in

the original expansion. This sum is a complete solution to the

shielding problem since it is the field inside M3 due to the

external source. b
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3.1 Normal Mode Functions for an Enlosure Composed of a

Good Conductor

The shell structure shown in figure 6 is the ideal ver-

sion of the most common practical electromagnetic shield. It is a

special case of the generalized structure (figure 5) in the form

of a rectangular parallelepiped with walls composed of a good

conductor as defined in section 2. The walls enclose a volume of

free space (M3) with arbitrary dimensions A, B, and C. As in a

figure 5, we consider fields from an electromagnetic source S

entering M3 through the front wall of the enclosure, that is,

through the wall directly exposed to the source. (If two or more 4-

of the walls are exposed to the same source, or to a different

source, then the techniques developed here can be applied to each

wall in turn, and the total field at any point in M3 can be ob-

tained by adding contributions from all the walls.) The rectang-

ular/cylindrical coordinate system with origin at the geometric

center of the outside surface of the front wall is oriented with

x and y axes parallel to the edges of the wall. With the +z axis

pointing outward, the inside surface of the front wall lies in

the z = -d plane where d is the wall thickness, the inside sur-

face of the back wall lies in the z = -(d + C) plane, and the

outside surface of the back wall lies in the z = -(2d + C) plane. V

Similarly, the inside surfaces of the side walls lie in the x -

A/2 and y -B/2 planes.
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Figure 6. An arbitrary source S illuminating a :
continuous enclosure in the form of a rectangular

parallelepiped with wall thickness d and inside

dimensions A, B, and C.
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With this arrangement M3 is defined as follows

-A/2 < x < A/2 .

- (d + C) < z < - d

p

121
termsit hf thse orraligeentd TM3 i einge nction fosrte asofllow

wallsM3 x- / n B/2. Th tw type (3.1)sar ds

aindgitisheseen that fort field travdsaeln into telentrclosure along

paths parallel to the z axis, the M2/M3 region is a rectangular Tvi

waveguide driven at z : - d and loaded at z vt- (d + C) by a r -

sheet with finite conductivity f

The fields in M2/M3 can be represented most conveniently in

terms of the normalized TE and TM mode functions for the equiv-
alent waveguide. These functions are solutions to Maxwell's equa- <

"tions satisfying appropriate boundary conditions at the side

"walls x = + A/2 and y = + B/2. The two types of modes are dis-

tinguished by the fact that TE modes have no electric field com-

ponent in the z direction and TM modes have no magnetic component .

in the z direction. In vector form, the TE mode functions refer- -.

red to the coordinate system in figure 6 are•

444

[ xy nme(x,y) i + enm(x,y) i ](.)"
nm xy nm ex x y y] S

where i and i are unit vectors,"-"
x y ..

enm(x,y) (m•IrB) cos[n,r(x + A/2)/A] sin[m•(y + B/2)BIB

enm(x,y) = - (nit/A) sin[nirlx + A/2)/A] cosllmilY + B/2)/B] i

12.E. Collin, Field Theory of Guided Waves, McGraw-Hill, New

York (1960). ,
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Knm L(n/) (mir/B )2] /2[ on 6om /B / 33

6 and & o are Neuman's factor:

on [ oom/B /

1 when n = 0
on 2 when n > 0

and all other quantities are as defined previously. These func-

tions give the spatial structure of the electric fields associ- 0

ated with the TE modes. The structure of the transverse compon-

ents of the magnetic fields associated with the TE modes is given .y.

by [ nm ~x y i nm(x,y) iy 3 4 ••

nm nm y x x "

where all quantities are as defined previously. Similar expres-

sions for TM modes can be obtained by simple transformations of,.

(3.2) and (3.4).

When F (x,y) and h (x,y) are multiplied by factors of thenm nm

form exp(+ rnmz) where rnm is the propagation constant for the

TE mode, the products are also solutions to Maxwell's equa- .nm A

tions. That is, equations (3.5) and (3.6) 0

e (x,y,z) = •(x,y) exp(+rnmz)
enm nm -( 3.5 ) [[

(x,y,z) = h (x,y) exp(+ rnmz)nm nm ° •

where

O n2o1-1 (3.6)
T (c + jwj ( 0) r

i%
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rimand wc is the cutoff frequency

nm C )2 + (m/B) 2 ]1 (/23.

S o n/A1 3.7)

are solutions to Maxwell's equations at all points in the wave-

guide. When the exponential carries a "+" sign, (3.5) represents

TE mode fields traveling in the -z direction; conversely, a "-of
nm

sign represents fields traveling in the +z direction. Furthermore

since Maxwell's equations are linear, fields in the form

--i F-imrm(
fE3m(x,yz) = E3 nm(x,y) FE (z)

(3.8) .-1nmz .

H3-nm(x,y,z) = H3-nm(x,y) FH (z) ,

where

3n(x,y) m e nm(x,y) i + nm e nm(x,y)
x x x Y y y4y

-l~rn ~nmm nmrim
e3n(x,y) e (x,y) ix + C e (xy) i y

rim rimr(3.9)
FE (z) = C1 exp(+r z) + C2 exp(-Tnz)

nm rm rmFH (z) C3 exp(+r z) + C4 exp(-r z)

nm nm nm nmand ' y ' , y CI, C2, C3, and C4 are constants, arex y x y

also solutions to Maxwell's equations. These expressions repre-

sent waveguide fields as sums of fields traveling in the +z and

-z directions, such as would occur if fields in the waveguide

were reflected between a driver and a termination. By applying

appropriate boundary conditions at the locations of the driver

and the termination, say z = -d and z = -(d + C), the constants

nm nmin (3.9) can be computed. With FE (z) and FH (z) determined,
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(3.8) becomes the correct form for the mode fields in a finite

section of waveguide driven at z -d and terminated at z -d -

C. That is, (3.8) becomes the correct form for the mode fields in

M3.
nm nm

Although a determination of FE (z) and FH (z) is ultimately

based on applying boundary conditions at the specfied locations,

we can obtain these factors directly without the lengthy calcu-

lations required in such a procedure by employing the fact that

the mode functions (3.8) satisfy standard transmission line equa-

tions. This fact establishes an exact mathematical analogy be-

tween the mode functions and solutions to transmission line prob-

lems that allows us to transform the latter into the former using

simple substitutions such as

3-nm x,y,z) _ V(z)

3 nm(x,y,z) -- I(z)

rnm --- . (3.10)

Znm
z0 k

q•2 --- Z1k

where V(z) and I(z) are the voltage and current along the trans-

mission line, ' is the propagation constant of the line, k is its

characteristic impedance, Z is the load impedance, Znm is the10o

characteristic impedance of the TE mode:
nm

Znm (3.11)
0 nm[1 + jWm ]
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and all other quantities are as defined previously. Since the

transmission line analog to the terminated waveguide is a line

driven at z = -d by voltage V(-d) and current I(-d) and termin-

ated at z = -d - C by a load impedance Zl, the solutions to the

transmission line equations for this problem2 :

Vlz) =V(-dl [z cosh[i(c+d+z)]zc s[ C + + k sinh[vcSn[ (C+d+z)]

(3.12)k cosh[i(C+d+z)] + Z sinh[l(C+d+z)]

I(z) = I(-d) [ Zk cosh[iC] + Z sinh[iC]

give the following solutions to the corresponding waveguide prob-

lem using (3.10):

nm
E37-nm(x.y,z) = E3nm(x,y,-d) FE (z)

(3.13)
-nm ninnm

H3nm(x,y,z) 1 W,-3nm(x,y,-d) FH (z)

where

E3n (x,y,-d) = E3 m(x,y)
(3.14)

H3 nm(x,y,-d) = g (x,y) 
(

z)=q2 coshr [ m (C+d+z)] + Z nm sinh~r nm (C+d+z)]

Fnm (Z)"0

E. q2 cosh[r nmC] + Znm sinh[r nmc]
I" 0

nmnm n
nm Zn0cosh [m (C+d+z)] + q2 sinhlmnm(C+d+z)Jr 3.5

FH (Z) = o -
znmcosh[rnmC] + q2 sinh[rnmc]

0

S. A. Schelkunoff, Electromagnetic Waves, Van Nostrand, Prince-

ton, NJ (1943). 1
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nm nm nm nm.

and the amplitude factors nx ' yin H3n(xy) and
0 y x

E3nm(x,y) are determined by the magnitude of the mode fields at z

- -d. The same procedure using the well known expression for the

input impedance of a loaded transmission line of length C:

Z. kFZlcosh('vC) + k sinh(7C)Z. k 11(3.16) .,

k cosh('7C) + Zlsinh(7C) ' /

gives the impedance of the TE mode at z - -d looking into M3:nm

q3nm2 nm t2 cosh(rnm C) + z nmsinh(r nm C)

0 znmcosh(rnmC) + q2 sinh(rnmC) (3.17)

10J
where all quantities are as defined previously. Both (3.13) and

(3.17) will be used in the following sections to obtain the

fields in M3.

Mode functions have many other properties useful in the*€
analysis of waveguide problems. Among these is the fact that they

can be used to expand arbitrary electromagnetic fields as series

summed over an infinite set of discrete modes of a particular .

type. That is, an arbitrary electromagnetic field with no elec-

tric field component in the z direction can be represented by a

series composed of TE mode functions. Similarly, an arbitrary

field with no H component can be expressed as a series composed
z

exclusively of TH mode functions. Since all TE and TH mode func-

tions are trigonometric, both types of expansions will be two

dimensional Fourier series over the waveguide cross section. For

example, if E(x,y) is an arbitrary electric field with no z y

49
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component defined over the waveguide cross section, then it can

be represented as follows;

E(x,y) = • nm enm(x,y) (3.18)

n=O m=O
where the Fourier coefficients c are

nm
A/2 B/2

c (x,y) enm (x,y) dx dy , (3.19)

-A/2 -B/2

The latter can be written in terms of the x and y components of

E(x,y) as follows:

x y (3.20)

nm nm nin

where

A/2 B/2

cnmX: Knm (x,y) enm (x,y) dx dy

-A/2 -B/2 .

(3.21) I
A/2 B/2

cy K f E(xy) enm(x,y) dx dy
nm nm f y

-A/2 -B/2

nm nmand e (x,y) and ey (x,y) are given by (3.3). Similarly, theX y "

transverse components of an arbitrary magnetic field can be

expanded in a Fourier series using h-nm(x,y). I

If the conductivity of the waveguide walls is finite, then

TE and TH modes are coupled at the walls and an expansion of an

arbitrary field in terms of either TE or TH modes alone is not I

possible. Thus, the preceding is not valid in the general case.
%'

However, if the walls are composed of a good conductor as assumed

50

%"

p.'

~ t -



here, it has been shown1 2 ,13 that TE and TH mode expansions are

valid approximations and, with one exception, the other mode

characteristics are the same as those of the perfectly conducting

waveguide. Thus, the characteristic impedance of the TE mode is
nm

still given by (3.11) and the cutoff frequency by (3.7 ). How-

nmever, the propagation constant r is modified by the addition of

an absorption term a nm that depends on the conductivity of the

walls. That is, (3.6) is replaced by

rm [(nm)2 + (iw) 2 ] 1/2 (C) + a (3.22)

where

nm 2 R

+ ,nm/ 2 1/2B q+ 1[ 1J).

(3.23)

B' j[n2B: + m2 A2  (1 + nm. 2

R [w M2/(2 o2)11/2

and M2 and o2 are the permeability and conductivity of the wave-

guide walls. When o2 --- o, a n--, 0, and (3.22) reduces to (3.6).

12R. E. Collin, Field Theory of Guided Waves, McGraw-Hill, New

York (1960).

13V. M. Papadoppoulos, Quart. J. Mech. and Appl.Math., vol.7,

(1954) p 325.•0
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In the following sections, we use mode functions to repre-

sent the fields first at the M2/M3 interface and then in the re- S

mainder of M3. In M3, the mode fields take the form of (3.7) to

account for reflections between the termination at z = -(d + C)

z -(d + C) and the driver (incident field) at z -d.

3.2 Mode Expansions for Fields Inside a Continuous

Enclosure Exposed to Arbitrary, Time Harmonic, S

External Fields.

The first step in computing the fields in M3 is to S

expand the fields incident at the M2/M3 interface in terms of

mode functions. Since the fields in M2 are TE to a good approxi-

mation and since the dominante mode in M3 is also TE, the obvious

"choice for these expansions are the TE mode functions. Expanding

(2.29) using (3.2), (3.3), (3.4), (3.18), and (3.21) gives;

E2x(x,y,-d) = - q2n2 exp(-(2 d) Cnme Ix,y) "
E - n xe

n=O m=1
do 00

H2 (x,y,-d) = 2 exp(-12 d) c xenm (x,y)

n=O m=1 (3.24)

E2 (x,y,-d) 2 q2 exp(-72 d) C e (x.y)C nmey xy

n=1 m=O

y nm

H2 (x,y,-d) 2 exp(-12 d) C e c~n(x,y)
x L.Lnm y

n=1 m=O
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where -

A/2 B/2 -

x K= Hl'lx,y,0) enmlx,y) dx dy--nm ..n. .

-A/2 -B/2 (3.25) -

A/2 B/2

and all other quantities are as defined previously..-.

In this representation, each field in (3.24) is the sum of•

an infinite series of plane wave fields of the form '

E2nm(x,y,-d) = -2 q2 exp(-12 d) cx enm(x,y) ..x 2 x",

C xK nm

H2n(x,y,-d) = 2 exp(-12 d) c en(x,y)

y n m x(32)•.

-A/2-B/2(3.25)

E2nm(x,y,-d) = 2 q2 exp(-x 2 d) cy ( eny (xy)
nm n nm

H2 nm (xy,-d) = 2 exp(-72 d) c enm (x,y)
x nm y

for 0 < n < - and 0 < m < . Each of these fields generates re--

flected fields in M2 traveling in the +z direction and transmit-.'

ted fields in M3 traveling initially in the -z direction and

later in both directions after reflections between the back and .•.

front walls. The transmitted mode fields in M3 at z =-d gener-".-

ated by each incident field in (3.26) are given by -

y nmm y I n

E3nm (x,y,-d) = E2nmxpy-d) TEm (x:y)
x x y

H3 nm(x,y,-d) = H2 nm (x,y,-d) TH n "m

Y Y (3.27)"
E3nmlx,y,-d) = E2nm(x,y,-d) Tm '"'-.

HJ nm (x,y,-d) = H2 nin(x,y,-d) T nm .
x x H,

for 0 nm and T nm are the transmission coefficients for the elec- ,-

fhected field nM rvln nte+ ieto n rnmt
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* tric and magnetic fields of the TE mode•, nm
enm 'mn

TE = 2 q3 nm/(q2 + q3 n,)
(3.28)nml n

TH = 2 q2/(q2 + q3nm)

q2 is the characteristic impedance of the wall as defined previ-

ously and q3nm is the impedance of the TEnm mode at z -d look-

ing into M3 as given by (3.17).

With E-3nm(x,y,-d) and H3nm(x,y,-d) given by (3.27), the

mode fields at all other locations in M3 can be obtained from

(3.13). In component form, the result is
E~nmXYZ) E~fm(X~d) nm

E3nm(xYZ) = E3nm(xy,-d) FE (z)
4nm

H3 nm (x,y,z) = H3nm (x,y,-d) Fnm (Z)3.y yH
nm nm nm3.29)

E3n(x,y,z) = E3n(x,y,-d) FH (z)

H3 nm(x,y,z) = H3 nm (x,y,-d) F n (Z)
x x H

where the fields at z =-d are

E3nm(xy,-d) = nm e nm(x,y)x x x

H3nm(x,y,_d) = tnm enm(xy)
y y x

nm nm nm(3.30)
E3nm(x,y,_d) =nm enm(xy)

y y ynmnm nm
H3nm(xy,-d) = tn e (xy)x x y

the amplitude factors are

nm x nm
-= 2 q2 exp(-12 d) cx TE

x~ nm E
tyn = 2 exp(-12 d) c nm TH

nm y nm3.31)

nm = 2 q2 exp(-1 2 d) cnm TE
x exp(-v2 d) cnm THnmnm nm

Fn (z) and Fn (z) are given by (3.15), and all other quantities
E H

54

d%



are as defined previously.

Since (3.29) gives the fields in M3 due to the nm-th term

in the series expansion of (2.29), the total field at any point

in M3 due to fields from the external source incident at the

M2/M3 interface is equal to the sum of terms computed from (3.29)

for all TE modes in the expansion of (2.29). That is,

00 0E3 x(X'YZ)- E3 x En(x'Y'Z'x•

n=O m=1

H3 (X,y,z) H3 (x,y,z)
y L. Y

n=O m=1
(3.32)

E3 (X,y,z) E3nm (x,y,z)
y

n=1 m0OI

xx

n=1 m=O

Since (3.32) satisfies both Maxwell's equations at all points in

M3 and all boundary conditions at the M2/M3 interface, it repre-

sents a unique solution to the shielding problem for a continuous

rectangular enclosure.

Combining (3.3), (3.6), (3.7), (3.11), (3.15), (3.17),

(3.22), (3.23), (3.25), (3.28), (3.29), (3.30), and (3.31) in -

(3.32) gives the following result:

The fields at any point inside the rectangular enclosure

shown in Figure 6 due to an arbitrary external electromagnetic 5

source illuminating a single wall of the enclosure can be written

55
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in terms of the tangential components of the source magnetic

field, HiS (x,y,0) and HiS (x,y,0), incident on the outside surface

of that wall as follows:

x nm nm nmE3 (x,y,z) - 2 q2 exp(-72 d) cne (xy) TE FEm(z)nx0 m: nm nm

00 00

H3 (x nynmzH3y (x,y,z) :2 exp(-72 d) cn c enm (x,y) TH nFmH

n0O m=1

(3.33) 5.

E3 (x,y,z) = 2 q2 exp(-72 d) mcy enm (xy)n Tnm F nm(z)
n•1 nme7~xY TE FE(zn= 1 m=0Oe

H3 (x,y,z) 2 exp(-72 d) cy enm (x'y) T nm F nm(z)
x n Lnmey TH FH(z

n= 1 m=0

where

1/2q2 = (jw p 2 /o 2 )

72 = (jw P2 02)1/2

A/2 B/2

cx K n H1 yS(x,y,0) enm (x,y) dx dy
-AM/2-B/2
-A/2 -B/2

y 2 ~A/2 B/2 sn
nm nK H1 (x,y,0) e(x,y) xd

K2 n x y

-A/2 -B/2
2 2] --1/21/

K [(nn/A) + (mn/B) 21 1/2nm [ on om/

= 1 when n = 0 (3.34)
on

= 2 when n > 0

enm (x,y) (mn/B) cos[nn(x+A/2)/A] sin[mn(y+B/2)/B]x

e nm(x,y) - (nIT/A) sin[nTn(x+A/2)/A] cos[mn(y+B/2)/B]
y
nm nmnmT E 2 r3 /(q2 + .3')
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... ,'

T =m 2 r?2/(r12 + q 3 ha) n'..*:

3n~mq2 cosh(T nm C) + znm sinh(rnmC) '

Z nmzcosh(rnmC) + q2 sinh(rnmC) .. d.

0 7 J1 0•
'7 jW

Znm 0

/2+m [m] 1/2] _

rm (m) + (W) (CO) + nm

nm UC [(n/A)2 + (m/B)2] 1/2

,nm( +nm. nm
Fq2 cosh[r (C+d+z)] + znmsinh[r (C+d+z)] '.'.FE (0 ,

Eq2 cosh[rnm C] + Znm sinh[r nmC]

zF m cosh[r nm(C+d+z)] + 72 sinh[r nm(C+d+z)]nm
FH(z) nm nm nmC

Z ncoh[rnC] + q2 sinh[rnmC]

and all, other quantities are as defined previously.

3.4 Mode Expansions for Fields Inside a Slotted

Enclosure

If a rectangular slot as shown in figure 7 is cut

through the front wall of the enclosure in figure 6 and the rec-

tangular volume of the slot is filled with a material of perme-

ability l72'and complex permittivity &2', then the latter is

transformed from a continuous to a discontinuous enclosure, If

the conductivity o2' of the new material is significantly less

than that of the replaced material o2, then the fields reaching a

specified point in M3 after passing through the slot will be much
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larger than the fields at the same point before the slot was cut,

provided all other factors are unchanged. If the coordinates of

the center of the slot (xcyc) and its dimensions (a,p) are

known, then the fields in M3 due to the presence of the slot can V

be computed in terms of the products of the tangential compnents

of the source magnetic field incident at z -d and the form.".

factors of the slot. The method used is exactly the same as in

the preceding section except that the first step is to expand the

slot fields incident at z = - d (equation (2.32) rather than
equation (2.29). The final result can be summarized as follows:

The fields at any point inside the rectangular enclosure

shown in figure 6 due to an arbitrary electromagnetic source

illuminating a rectangular slot located in the front wall of the

enclosure as shown in figure 7 can be written in terms of the

tangential components of the source magnetic field, HS (x,y,O)
x

ard H1S(x,y,O), incident on the slot as follows: ..
-Y-

x n nm nmE3 (x,y,z) - 2 72 exp(-Y2 d) L cex enm (x,y) T F (z)
x x x nm x E E

n:O m=1 x .a

H3 (x,y,z) = 2 exp(-i2 d) chx enm(xy) THnm F(z)
y x nm x H H

n n=0 m=1 x

(3.35)

E (X,y,z) = 2 q2 exp(-12 d) cey enm (xy) Tnm Fnm (z)
y Y y 2 nm y E E

n=1 m=O Y

' ~ -2~'¶~ y nm nm nm
H3 x (xy,z) 2 exp(-72 d) 2 chnm e n(xy) TH FH (z)

n=1 m=O I
59U .0
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where q2 and q2 are the slot impedances when it is driven by x

directed and y directed electric fields respectively, 12 and 12

are the propagation constants of the fields in the slot

12 = j p2/q2 .2x x x 'I

(3.36)

12= jw p.2/q2 
(.6

y y y

p2 and p2 are the effective permeabilities of the slot,

B/2 A/2

ce x = K2 . Hls(xy) fe (x,y,-d) enm(x,y) dx dy
em nx x

-B/2 -A/2

B/2 A/2
chX = K2f2 m HlS(xy) fh (xy,-d) enm(xy) dx dyY C

nm n2.37

-B/2 -A/2

(3.37) a

B/2 A/2
cey K2 H2(x~y) fe (x,y,-d) eYn (x,y) dx dy

nm nm x y

-B/2 -A/2

B/2 A/2

chm K2 m Hlx(x,y) fh (x,y,-d) e nm(x,y) dx dynm jx y

-B/2 -A/2

fe (x,y,-d), fh (x,y,-d), fe (x,y,-d), and fhx(x,y) are form
-x y y

factors as defined in section 2.3,
nm 2 nm nm)
E 2 73 /(q72 + j73TE

x
Tnm +riWnT 2 q2 /(q2 + q3nm
H x x

x
(3.38)

Tn =2 173 /(q2 + 73nm)
Ey y

Tnm 2 q2/(q2 + t73)
H 2 y n

Y
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and all other quantities are as defined in the preceding section.

If there are two or more slots on the front face with known

dimensions and locations and if the impedances, permeabilities,

and form factors of these slots can be estimated, then the fields

at a given location in M3 due to these slots can be obtained by

using the preceding expressions to compute the fields from each -:

slot and then adding the contribution*s from all slots at that

location.
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4. FIELDS INSIDE ENCLOSURES EXPOSED TO SPATIALLY UNIFORM

EXTERNAL FIELDS GENERATED BY TIME HARMONIC SOURCES -

In this section, the general expressions for the fields in-

side continuous and slotted enclosures are evaluated for the two

simplest cases of interest: a continuous enclosure exposed to

uniform fields over its front surface, and a slotted enclosure -

exposed to uniform fields over the area of the slot. These cases

can be described more precisely as follows:

HIS(x,y,O) a HIS(jW)x x

(4.1)
Hi (x,y,O) a Hiy(jw)

y y

over the following areas:

Continuous Enclosure (fig. 6) .. '

- A/2 < x < A/2

- B/2 < y < B/2 (4.2)

z = 0

Slotted Enclosure (fig. 6 and 7)

xc - a/2 < x < xc + a/2

Y - p/12 < y _ yc + p/2 (4.3)c c

where H1 (jw) and H1 (jw) are functions of the frequency w but

x y *not of the spatial variables x and y.

These cases occur typically when the source is located far

from the enclosure or when the characteristic dimension of the

source is larger than that of the enclosure and also larger than
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the separation distance. However, they can also occur in less ob-,

vious situations. For example, it was shown by Monroe1 that a .

small square loop antenna 10.6 in. on a side operating at 106 Hz

can produce a nearly uniform magnetic field over a significant

plane area oriented perpendicular to the plane of the antenna and

located I m from its center. Furthermore, since the dimensions ofIW

most slots are much smaller than than those of the enclosure, it

is clear that (4.1) will be satisfied in many cases for slotted

enclosures (4.3) when it would not satsfied for continuous enclo-

sures (4.2) of the same size exposed to the same source. Thus, •k

(4.1), (4.2.), and (4.3) can describe many situations of practical ,

importance..

4.1 Continuous Enclosure '

If H1xs satisfies (4.1), then E3ylX,y,z) and-•-

H3 x(,y,z) must be independent of x or y or both x and y. But it..

ep.

is clear from (3.33) and (3.34) that in order for E3y and H3x to"-zl

be independent of x alone or both x and y it is necessary that n..

:0, which implies E3 :H3 a 0. The latter is, of course, the :-
y x

s0

trivial solution that will onyoccur when H1sx = 0. Consequently,

a-.•

a nontrivial solution requires E3v and H3e to be independent of

IR. L. Monroe, A Theory of Electromagnetic Shielding with

Applications to MIL-STD 285, IEEE-299, and EMP Simulation, a10H

Harry Diamond Laboratories, HDL-CR-85-052-1, Adelphi, MD •

(February 1985 )."L'
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y. This implies m = 0. Thus, the solution in this case is obtain-

ed by setting m = 0 in the expressions for E3y and H3x in (3.33).

Similar considerations show that when HI satisfies (4.1)
y

the fields E3x and H3y are independent of x and the appropriate

expressions for these quantities are obtained by setting n = 0

in (3.33).

With these substitutions, (3.33) and (3.34) become

y • mx 0m 0m FE(z)

E3 (y,z) - 2 q2 exp(-72 d) HIS (Ow) cx eO(y) TOm FOm

m=1

s x Om, Om Om -
H3 y(y,z) 2 exp(-12 d) HiyOW) cOMex (y) TH FH (Z)

m=1I
(4.4)

s • y en0 _n0 n0 o
E3 (x,z) z 2 q2 exp(-72 d) H1i (Jx) nO ( (Z)

"yx LE E (z)

n=1

s jw y en0 no nO "-

H3 (x,z) = 2 exp(-72 d) HI nO y e x) T F (Z)
xxno (x TH FH(z

where

B/2

C~m : (2/B) sin[mr(y+B/2)/B] dy

-B/2
A/2

CY (2/A) sin[nn(x+A/2)/A] dx
n J (4.5)

-A/2

"Om (y) = sin[mn(y+B/2)/B]

"e (x) = sin[nn(x+A/2)/A]y

and all other quantities are either as previously defined or are -

b

%* I
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obtained from previously defined quantities by setting either n P %

Om nm nO nmini
or m equal to zero; e.g., T E = T n EIn and F H F -Hj

Carrying out the indicated integrations and redefining T On
TE

mO Om nO Om
TE , TH Tt , FE (z), etc, we obtain the following result:

The fields at any point inside the rectangular enclosure shown

in figure 6 due to an external electromagnetic source that gener-

erates spatially uniform fields on one wall of the enclosure can

be written in terms of the tangential components of the source

magnetic field, H1 (jw) and HlI(jw), incident on the outside sur-

face of that wall as follows:

E3 (y,z) =- 2 q72 exp(-72 d) H1y ) cx e ml(y) Tn FE(z)

c m e TE FE~
m=i

H3 (y ,z) 2 exp(--12 d) H1 s(i ) c x Tm Fp.lz).
y y m e'(y H H~z

(4,6) -

s n ~n n..*
E3 (x,z) = 2 q2 exp(--2 d) Hi lji) c ey(x) T F (z)

y x n y 1E E

y n n n,-
H3 (x,z) 2 exp(-12 d) H1i (jW) c e(x) T F (z)

x x n e-
nzI

where q2 and 12 are given in (3.4),

0-
x cos(mn) -1

c =-2 2i-."

y cos(nn)- I
nn

e (Y) :sin[mnl(y+B/2)/B]

n
e y(x) = sin(nn(x+A/2)/A]

Tm T nm 2 t 3 m/(q 2 + q3m)E E In=O 0
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In nm In
T H =T H 1-0 2 q2/(i'&2 + q3

q3I= 2 q3 ~ (172 + 07 f

H lm-0 0 m

In cosh(rmnC) + Zq2 sinh(rEnC-)

I [q2 coshrC)+2 sinhtr C)]

0 q2 cosh(r nC) + Zq2 sinh (r'C)0f 1

- nmqoj

0 0 ln0= 21/

zn n m nr 170 1/

0 :nn 0 1+ +

r rlm w n[ + (jo) C0
-c n

m nm Im2o

Imo
Fin =F nm =n /

In nm eFH FH =7C
c c lm=O

FmInm

n=I

n 66
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nm nm nm Fnma is given by (3.23) and E and F_ H are given by (3.15).

While the expressions in (4.6) remain moderately complicat-

ed in spite of the simplification afforded by our assumption of

spatially uniform incident fields, these expressions are readily

ammenable to evaluation by computer. Calculations based on (4.6)

indicate that the series converge rapidly and fewer than 10 terms

are required to reduce the error below 10% at most locations in

the enclosure. In general, more terms are required at locations

close to the side walls than near the center line (x = y = 0)

where five terms will usually suffice for 10 % accuracy. Figures

8 and 9 are computer plots of the magnitude of H3 (y,z) versus
y

frequency f &w/2n at locations close to the center of the front

wall (x y = 0, z = -0.05 m), close to the center of the back

wall (x y 0, z = -6.05 m), at the geometrical center of the

enclosure (x : y : 0, z = -3.05 m), and near the center of the

top wall (x = 0, y = 1.75 m) where the enclosure parameters are:

04
A 6.1 m, B = 3.66 m, C 6.1 m, d = 3.8 x 1 m,

a2 4.33 x 106 mhos/m, M2 12.6 x 10 h/m,

and the source magnetic field is harmonic with unit magnitude: N-

Hi (jw) = 1.0 exp(jwt) = 1.0 exp(j2nft) (A/m)
y

These figures show that the general trend at all locations is an

ever more rapidly decreasing magnitude with increasing frequency

reflecting a change from a f-1/2 variation to f-, and from f

to exp(-kf 1 /2. Superimposed on this trend at frequencies above
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10(-2) .

H3 yI (Alit)
MAGNITUDE OF THE MAGIETIC FIELD INSIDE __________

l -I) A CONTIN !US EtICLOSUZF FOR THE tENLOSURE __________

PARAMETE ,LOCATION, AND INCID NT FIELD 6 VIl BELOW:

10(-12) A 6AnB 3.6 nC 6.1 i,d 3.8X18(-4)m ___

0r2 =4.33X18(6) mhos/m, pu2 =12.6X18( 7) h/n ____

18(x1BO m80, y *00n, z .05 mand -6.05u m ______

lS

My 1 .8 exp(j2 ft) Alm _ _ __ _ _ __ _ _ _ _ _ _

10(2) 10(3) 10 ) 10(5) 18(6) 1 ) 18(o)

FREQUENCY f (Hz)

Figure 8. Magnitude of the magnetic field inside

a continuous enclosure versus frequency at locations

near the center of the front (z=-.05 m) and back

walls (z=-6.05 mn).
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1W(-2) :.,

10H--) ____

10(-6)

MAGN'ITUrDE OF 'THE MhItETIC FIELD INSIDEX•,:5,.•.

10(-10) A CONiTIN US E9NCLOSJU E FOR THE 'MCLf1E ""

PARRAIETER , LOCTION AND INCID NT FIELD GIVEN BELOW:

1O(-12) A = 6,1 x, B = 3.ý6 N, C = 6.1 m, d = 3,8X10(-4)m ___:"-

oa2 4.33X18(6) khos/m, P 2K 12.6X1(-) h/m
: ,0 n, z= 3,05pi, y=0B00 m and 1.75m !i

1O(-1 MY 1. = .exp(j21rft) NOn n _____

10(2) 10(3) 10(4) 10(5) 10(6) 18(7) 18(8)
rREQUNCY f (Hz)

Figure 9. Magnitude of the magnetic field inside a

continuous enclosure versus frequency at a location

near the center of a side wall (y=1.75 m) and at the

center of the enclosure (y=0.0 in).
6.
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107 Hz are much more rapid variations corresponding to the reson-

ant and antiresonant frequencies of the enclosure. Noteworthy

among the latter is the pronounced antiresonance at f a 2 x 10 7Hz

seen near the center of the front wall (x = y = 0, z = -0.05 m)

but nowhere else. Figure 8 indicates a spatial variation of just

under one order of magnitude between the front and back walls,

and figure 9 shows a variation of just over one order of magni-

tude between the center of the enclosure and a point (x = 0, y =

1.75 m, z = -3.05 m) 0.08 m from the center of the side wall. The

former is a reflection of the hyperbolic variation of the inter-

nal field with z, and the latter is a reflection of the sinusoid-

al variation of the internal field with y satisfying the boundary

condition H3 = 0 at y = +1.83 m.

4.2 Enclosure with an Inductive Slot

If the material filling the slot in figure 7 is free

space and the dimensions of the slot are small compared to the

"wavelength A of the fields in M1, then the permeability of the

slot is equal to the permeability of free space p and the slot

impedances are pure inductances. That is, for air-filled slots

" where

a and p << A (4.7)

the slot permeabilities are given by

y2 M2 p o (4.8)x y 0

5 70
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and the slot impedances are

qx2 = jwLxv
(4 .9 )-.. .

q72 = j,,Lb

where Ux is the inductance of the slot when driven by an electric.•.

•,.

X0

field in the x direction and L y is the inductance of the slot %

Swhen driven by an electric field in the y direction. The propaga- .•

tion constants for the fields in the slot are derived from (4.8)

and (4.9) as follows: •.

72 =j px2/t7x = Po/L •

(4.10)

72= jw 2j7L P/

•2x x

: wlq2:P ( 4. 0)

y_ y y

Thus, the general expressions for the fields inside a slottedtr

enclosure can be specialized to the case of an inductive slot by

substituting (4.9) and (4.10) into (3.35). JP

If the dimensions a and e t satisfy the relation . << a, theng

figure 7 describes a narrow rectangular slot with its long axis -•-

parallel to the x axis For this "horizontal" air-filled slot,

the inductances satisfy the relation L << L and similarly
ya y

(4.11) .-/ 2

-Y2 << Y,2 ...

Ya x

by virtue of (4.9) and (4.10). Applying (4.11) to (3.35) gives

JEaxj << {E3y ,,.

(4.12) ,,_.
JH3yI << JH3 {-3_,

y xi_provided IHIxm e sin a a sa t and H3 are the dominanthe

field components inside an enclosure with a narrow horizontalar l o

71•
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slot provided JH1 I is not very much larger than IH1SI.

Similarly, if the slot dimensions satisfy a << p, then fig-

ure 7 describes a narrow vertical slot with its long axis paral-

lel to the y axis. In this case, the slot inductances satisfy

L << L and (4.11) becomesy x

q72 << q72
y x

(4.13)
72 << 12 .x y

The dominant fields inside the enclosure are now E3 and H3
x y

That is,
JE3 I << JE3x.

(4.14)
JH3xj < < JH3y I

y

provided IjH1 , IH~1 .1. x ,

The preceding shows that, in general, the fields inside an

enclosure with a single narrow, air-filled, horizontal or verti-

cal slot will be dominated by a single electric field component

and a single magnetic field component and that the remaining com-

ponents will be negligible by comparison. In the following, we P

conr'ider the horizontal slot and obtain explicit expressions for

E3 and H3 . The reader will then be able to transform these into
y x

the corresponding expressions for E3 and H3 inside an enclosure
x y

with a vertical slot.

Substituting for q2 from (4.9) and for 12 from (4.10) into
y y

(3.35) and separating the mi 0 terms in the sum, we obtain
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n=1

y nm nm nm
+n: cerim e (x, y)n E (Z)FE (z)E E

n=1 m=1 Y /
~( 4.1!5 ) Ile

H3 (x,y,z) 2 exp(-podlL chY el(x) Tn Fn

n=1J

+ y rinmi nm nm
+ ch e (x,y) TH FH (z)

n=1 m=1

where

B/2 A/2

e = Kn H1S(j)x fe (x,y,-d) ernm (x,y) dx dy
nm rim x f v

-B/2 -A/2
B/2 A/2

chY = 2 HIS (j) fh (x,y,-d) enm(xy) dx dy
rm nm x y y

-B/2 -A/2
nm

e (x,y) - (nn//A) sin[nn(x+A/2)/A] cos[mn(y+B/2)/B]
y

Tm 2q3nm/(jwL + 3 m) (4. 16)E y
ynm +qnm )[:.

Tr H 2 jwL y/(jwL y + 73
yy "0

ce = ce
n rIm=O

chy chy~

eni(x) e enm ( IYi erim x,y) ~m:0O•-
y y I=

Kn 0 =Knmm 0

and all other quantities are defined in section 3.

To determine E3 and H3 from the preceding expressions, •y x

it is necessary first to specify the form factors fe (x,y,-d) and
y <'
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fh (x,y,-d) which describe the spatial variation of the incident
y

fields at z = -d for - A/2 < x • A/2 and -B/2 < y B/2 and 'a

then to use these factors to evaluate the Fourier coefficients

cey and chy by carrying out the indicated integrations. How- •'tnm nm
ever, exact expressions for fe and fh are unknown, and there-

y y

fore in order to proceed, we must resort to approximations. In

making these approximations, we will be guided by the fact that

the incident fields at z = -d are determined by the fields inside

the slot (x - a/2 < x < xc + a/2, yc - A12 ( y y c + A12)

and by the boundary conditions over the remainder of the z -d

surface. Since the slot, like the enclosure, is equivalent to a

section of rectangular wavegude where TE fields dominate, it a'

follows from the results quoted in section 3 that the spatial

variation of the slot fields can be written as sums using TE mode

functions appropriate to the slot. That is,

e2 (x,y) X tsr (x,y)
y s

s=l r:O
0 G (4.17)

h2 (x,y) = xy)xsr y

s=l r=O S

where KY and &Y are the Fourier coefficients of the expansion
sr sr

and

X r(x,y) v sin[sr(x-x + a/2)/a] cos[rr(y-y + p/2)/p] (4.18)
y c c

with

V - is/a .

However, there are no propagating modes in this expansion due to
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our assumption that the dimensions of the slot are small compared
,0

to the wavelength of the source field, and consequently the field

in the slot will be determined by relatively few low-order TE -.

modes with the TE 1 0 mode playing a dominant role. Thus, a first

order approximation to the structure of the fields in the slot

can be obtained from (4.17):
10

e2 (x,y) h2 (x,y) a X l (x,y)-"y xy

-sinfn(x-x c+a/2)/a] (4.19)

V.
Of course, this is just equivalent to approximating e2 and h2 .e

y x

by the first terms in their mode expansions. It implies that the

fields in the slot have the structure of a half-sine wave in the

x direction and are uniform in the y direction. This appears to

be a reasonable assumption for the fields in a narrow slot excit-

ed by a uniform external field. Thus the structure of the inci-

dent field at z = -d can be approximated by combining the struc-

ture of the slot field from (4.19) with continuous extensions of

the incident slot field from the slot to the remainder of the z .

-d plane. In the case of the electric field, there are no contin-

uous extensions beyond the vicinity of the slot since the remain-

der of the z = -d plane is composed of a good conductor. Thus,

fe can be approximated by
y

fe (x,y,-d) = p(x) q (y) (4.20)
ye

where %

sinln(x - x + a/2)/a] for x - a/2 < x < x + a/2 "<-

p(x) c - c
0 for -A/2 < x < x- a/2 and x + a/2 x < A/2c c
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1 for yc - p/2 < y S yc + p/2

[ 0 for -B/2 < y <y c - p/2 and yc + p/2 < y < B/2

In the case of the magnetic field, there are continuous exten-

sions of the incident field beyond the slot in the +y directions

since the slot field at (x,+p/2,-d) will drive currents in these

directions on the z = -d plane. These currents will be reflected

at the side walls with a reflection coefficient of nearly +1 re-

sulting in an increase in H2 (x,y,-d) in the vicinity of y +X

B/2. A precise determination of fh (x,y,-d) would model the z -

d plane in the y direction as an asymmetrically driven transmis-

sion line with appropriate loads at y + B/2. Here, however, we

will approximate fh analytically as follows:
y

fhy (x,y,-d) = p(x) qh(y) (4.21)

where p(x) is the same sinusoidal function used in (4.19), qh(y)

is defined by

s y + q, for - B/2 < y < y - p/2

q(y) 1 for Y - p/2 < y 5 y + p12 (4.22)

h2y + q2  for y + p/2 < y S B /2

and

= - I/(yc - 8/2 + B/2)

s - 1/(y + )/2 - B/2)
c

(4.23)
q, = + (y - p/2)/(yc - p/2 + B/2)

q2  1 + (yc + p/2)/(yc + p/2 - B/2)
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Figure 10 shows plots of p(x) and qhlY) for A 10, B 8, a 6,

p=0 .5, x +1 and y = -2 where the units are arbitrary.

When (4.20) and (4.21) are substituted into (4.16), the

integrals can be evaluated in closed form to give explicit ex-

pressions for the Fourier coefficients cenm and chy. These can
nm nm

then be combined with (4.15) in the following statement:

The principal components of the field at any point inside

the enclosure shown in figure 6 due to a uniform electromagnetic

source illuminating a narrow, horizontal, air-filled slot with

center coordinates x and y and dimensions a and A, as shown in

figure 7, can written in terms of the horizontal component of the

source magnetic field H1 (jiw) incident on the slot as follows:

E3 (x,y,z) 2jwL exp(-M d/Ly)[ cey en(x) Tny FE(z)

n=1 y
y nm nm nm

ce e (x,y) TE FE (z)

n (4.24)

H3x(x,y,z) : 2 exp(-Pod/L) chyn en(x) THn F (z)
n:1 Y " "•

'3 chY enm(xy) nm nm
Lh e xy z)]nm y TH FH ( z)

n=1 m=l y[

where L is the slot inductance when driven by a y-directed

electric field

cey = - HIs(jw) p P K nw/A
n x n n

ch= - Hls(jw) Q P K2 ni/A (4.25)
n x o n n
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-X x

-5 -4 -3 -2 -1 2 3 4 5

L A/2 A/2q h(Y1

Figure 10. Plots of p(x) and q for A 10.

B =8, a 6, .5, 1, and y -2.

(Arbitrary units)..
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cey~~~~~~. = lS.')PQeK2 i

run x n m n

y a 2
ch = Hil (jw) P Qe K nit/A

nm xn mnm

1rsin[1T(A-na)(x +a/2)I(aA)] - r(x -a/2)/a -nir/2]

n 2n A -na

sin[n(A+na)(x +ci/2)/(czA)J - ir(x -a/2)Ia + nir/2]
A + na

(4.26)

sin~n(A-na)(x -e(I2)/(aA)] - i(x -a/2)/a -nir/2)

C

A - na

sinln(A+na)(x -a/2)/(aA)] ir(x -a/2)Ia +nrr/2

A + na]

p rovided A na

Q =p +(y /2 +B/2)[sj(yc- p/2 -B/2)/2 + q1 ]

(4.27)

-(yc + p/12 - B/2)[s 2 (Y0 + p12 + B/2)/2 + q2]

sin[mir(y + p/2 + B/2)/BJ sinfmtr(y - 12 + B/2)/BJ
Qe ~ c C

(4.28)

[s,(Y 0  A 12) + q1 ) Bin[Inh(y 0 - A12 +B/2)IB]

Qh m Qe m + _ __ _ __ _ __ _ __ _ __ _
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s,[cosfmin(y - p/2 + B12)IB] 1] -

(nit/B) 
2

(4.29) 4

[s,(yc + 0/2) + q2] sinfmir(y c+ p/2 + B/2)/B]

Mir/B

S2 [cos(mlr) - cos[mrr(yC + 0/2 + B/2)/B]

(mir/B)2

all s 2, q,, and q, are given by (4.23) aad all other quantities

are as defined previously.

Although the preceding are much more complicated than the

corresponding expressions for a continuous enclosure, they are

just as amenable to evaluation as the latter with the aid of a

computer. Figures 11 and 12 are computer plots of JH3 (x'y'z)J

versus frequency at several locations inside an enclosure with a

narrow horizontal slot at the center of one wall (x =y 0)c C

exposed to a uniform harmonic source of unit magnitude

(exp(j2irft)). The enclosure and slot paramreters used in these

plots are

A =B C =2.7 m, d =6.4xl0 m

6 -7c2 =4.33X10 mhos/m, p2 12.6x10 h/rn

a 0.5 m, p=1.6XI0-3 m, L =3.2x10- h
y

where the slot inductance L is computed from the relation
y

L 6.4 a x10 h (4.29)
y
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PARRIlETERý, LOCATIONI_ AND INCID INT FIELD 6 UVEI BELOW:,_,_'___

(A = 2P7 , B = 2. n, C z 2. , d = 6. XIB(-3)m

o'2 4.33X10(6) phos/pi, u2 = 12.6X08(-7) h/n
X-C = .0,yr =0.. 0, n•r, 13= '.6Xl8(-3) •,ly= 1.2M1(-8) h."."-
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10(2) 10(3) 10(4) I0(5) 10(6) 10(7) 10(8)
FREQUENCY f (Hz)

V %
Z%'

Figure 11. Magnitude of the magnetic field inside

an enclosure with a narrow air-filled slot at

points near the center of the slot (z - .05 m)

and the center of the back wall (z - 2.65 m).
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NAGNITUD OF THE MIAG [TIC FIELD INSIDE

- A SLOTTED ENCLOSURE tOR THE ENC OSURE _10(-10) -

PARAtIETER-, LOCATION, AND INCIDENT FIELD GIVEM BELOW: _ _

A 2,7 2 , B= 27,7 n, C= 2, n, d = 6.AX1(-3)m

o,2 4,33X18(6) hos/m, u 21,= 12,6Xl8,-7? h/n _ _ _ ____

10(-14) = 0, a= .5n, 0= t .6Han-3) , Ly= 3.2}IB(-8) h

=0.00 rn, z 1.35 r, x f 0.00 M x 1.30__A
Hiy= ,B. exp(j2 ft) A/n I _

10(2) 10(3) 10(4) 10(5) 10(6) 10(7) I1(8)
FREQUENCY f (Hz) V

-. 
,.

"Figure 12. Magnitude of the magnetic field inside an

enclosure wi+h a narrow air-filled slot at a point

near the center Lf one side (x 1.30 m) Rnd at the

center of the enclosure (x 0.00 m).
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14which is derived from figure 7 of Monroe (1973)4. A total of 156

terms were used in the calculations by truncating the series at n

: m = 12. Plots obtained using more terms were found to be indis-

tinguishable from the ones in figures 11 and 12. Plots using

fewer than 156 terms were found to differ from those in figures

11 and 12 by scale factors that are only weakly dependent on

frequency. For example, the lower of the two closely spaced

curves in figure 13 is a replot of the curve labeled z - 0.05 m

in figure 11 where 156 terms were used consisting of 144 terms in V

the double sum over n and m plus 12 terms from the single sum

over n. This curve is nearly identical in form to the upper curve

which was obtained using only the 12 terms in the sum over n.

The figures suggest that magnetic fields at all locations

are virtually independent of frequency below the lowest cutoff

frequency of the slotted enclosure. This contrasts with the con-

tinuous enclosure where the field is a monotonically decreasing

function of frequency below cutoff. The fields in the slotted en-

closure also show a significantly greater variation with position

than was seen in the continuous enclosure. Thus,in figure 11, the

front to back change is two orders of magnitude compared to just

under one order of magnitude change in figure 8 in spite of the

fact that the slotted enclosure is much smaller. Evidently fields

' 4 R. L. Monroe, EMP Shielding Effectiveness and MIL-STD 285,

Harry Diamond Laboratories, HDL-TR-1336, Adelphi, MD. (July

1973).
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Approximate 
'

Exact
M2(-2) _ "_

10(-4)

10 (-6)

IH~xI (Ai'"). ,,

IO(-H) I__,,_ H s THE ,%...._

MflGNITUDE OF THE NflG1ETIC FIELD INSIDE _ _._

10(-O) A SLOTTE ENCLOSURE FOR THE ENC OSURE"_""
PARAIEIEE , LOCATIONOI AND INiCID NT FIELD GiVEI BELOW:,

1A(-12) A=2,7, B=2,2 i, C=2, nd=6.0X10(-3)
0"2 4,33M1O(6) ihos/M, U2 = 12,6X1-(r7) h/n

M14) xc= -.00, yc =0...8, a= . a I, !1= .6X10(-3) r, Ls 3.2S18(-8)h h

x0, 0 , y .80 n~ .05 N _______

HI 1,8 exn(RU ft) A/ _

18(2) 10(3) 18(4) 10(5) 10(6) 10(?) 1I(8)
FREQUENCY F (Hz)

Figure 13. Plots of lH3 (x,yz;jw)I computed from equation

(4.24) using both the single and double sums (lower curve)

and the single sum alone (upper curve) where the series are m

truncated at n = m = 12.
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in the slotted enclosure, besides being much larger in magnitude, '

are more localized than in the continuous enclosure. .

Above the cutoff frequency, the magnetic field shows basic- ,'

ally the same resonant behavior as in the continuous enclosure ._

but with vastly larger magnitudes. In fact, the figures indicate

that the interior field can exceed the exterior field at resonant .

frequencies. This suggests that a 0.5 m slot makes this enclosure •',

p

worse than useless as an electromagnetic shield at these frequen-

cies. -S%

'p°.
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5. TIME DOMAIN MAGNETIC FIELDS INSIDE ENCLOSURES DUE TO

SPATIALLY UNIFORM, EXTERNAL, TRANSIENT SOURCES

If an external source generates transient magnetic field

components that are known functions hi (t) and his(t) of the time
x y

t with LaPlace transforms:

SS L[hl (t)] a exp(jwt) hlS (t) dt

(5.1)

Hl1 (jw) = L[hl (t)] a exp(jwt) hiS t) dt
y y tooP yt

that are spatially uniform over the areas defined by (4.2) for -

continuous enclosures and by (4.3) for slotted enclosures, then

expressions for the transient fields inside continuous and slot-

ted enclosures exposed to this source can be obtained by substi-

tuting (5.1) into (4.6) and (4.24) and computing the inverse La-

"Place transform of the resulting expression. Since (4.6) and

(4.24) are infinite series each term of which is a function of jw

, this process will consist of a term-by-term application of the

inverse LaPlace transform to the series. If the inverse transform

of each term in the series can be evaluated, then the result will

be new series each term of which is a function of t as well as

the internal spatial variables.

In the following sections, we use this procedure to compute

magnetic fields inside enclosures exposed to transient fields in

86
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the form of decaying exponentials, damped sinusoids, and ration- -

alized exponentials- a group of functions that alone or in corn-

bination can be used to approximate the waveforms of most natural

and man-made sources. Although a rigorous mathematical justifica-

tion of term-by-term inversion of infinite series iq n difficult

1.5
and important problem as Doetsch has emphasized, we will not

attempt such a justification here. Our justification will rest on

the fact that the time domain series show rapid convergence and

produce waveforms that are physically plausible and consistent

with measurements.

5.1 Continuous Enclosure

If H3 (x,z) and H3 (y,z) from (4.6) are rewritten in
x y

the following form

H3 (x,y;iw) S ~S(x,z;jw)

It x

n= 1
(5.2)

H3 (yZ;jt) S ~ (yZ;jw)

m= 1

where the frequency is displayed explicitly as an independent

variable through the factor iw

S n(x,z;jw) 2exp[-r1 /2 (jW) 1/2 1 His(jw)c ye n (xTn( F n(z;jW)
xx n y H)T( Hw

(5.3)

1 5nG. Doetsch, Guide to the Application of LaPlace Transforms, D.

Van Nostrand and Company Ltd., London (1961).
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))

S (y,z;jw) 2exp[-T"(jW) Hls(jw)cxelYy)Tm(jw) F (z:jw)
y y m x HH

and

r = d o2p2 = 4Tc (T : characteristic diffusion time) (5.4)I c
then the inverse LaPlace transforms of H3x (x,z;jw) and

H3 (yz;jw) are
y

h3x (x,z;t) = L [H3 x(x,z;jw)] = h3 (x,z;t)

n=1
S~(5.5)

h3 (y,z;t) = L-I1[H3 (y,z;jw)] = h3 m(y,z;t)
y y

m=1

where

h3 (xz;t) L [sn(xz;j )]

(5.6)
h3m(y,z;t) L-lsm(y,z;jw)]

y y
and the inverse transform is defined as follows:

U-1 i

L l[G(x,y,z;s)] = •J exp(ts) G(x,y,z;s) ds (5.7)

u-jia

where jw is replaced by the complex variable s u + jv.

Thus the problem of computing time domain magnetic fields inside

this enclosure reduces to an evaluation of a sequence of inverse

an m
LaPlace transforms (5.6) where sn(xz;jw) and Sm(y,z;jw) are

given by (5.3).

Since Sn(x,z;jw) and Sn(y,z;jw) are both complicated functions
x y

of jw, for all n and m, we shall not attempt an exact evaluation

of these transforms. Instead, we shall use approximations to re-

xduce Sn(xz;jw) and Sm(y,z;jw) to the product of a pair of
x y
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functions each of which has an exact transform. This will allow

us to express h3x (x,z;t) and h 3 (y,z;t) as sequences of convolu-

tion integrals in the time domain which can readily be computed

to give h3x (x,z;t) and h3 y(y,z;t).

The approximation is based on the fact that the exponential

factor in (5.3) effectively prevents frequencies above a critical

value F = 1/(nr) from reaching the interior of the enclosure I
c

Since calculations show that F is well below the lowest cutoff
c

frequencies for all room sized shielded enclosures

F n /(2n) In=1 Co/(2A)F l(nr) < < (5.8) •

Wc m I2n)Im = Col(2B) 'S.

it follows that only frequencies satisfying

n '---.Owl
c

and (5.9)

.122_1 <<
m
c .

n -'.
can affect the interior magnetic fields in this case. Thus, Zo

Zo0, rn, and rm from (4.6) can be replaced by the following ap- .-. S'.

proximations:
n n%

0 7 jW/W n.
mZo= qow•••:

IR. L. Monroe, A Theory of Electromagnetic Shielding with

Applications to MIL-STD 285, IEEE-299, and EMP Simulation,

Harry Diamond Laboratories, HDL-CR-85-052-1, Adelphi, MD

(February 1985).

89

8,: .
.,-*.*.*.-p.*.~ 5.*' ~ .~ -. '--> ~ w.'. ,



n n (5.10) %d"
nc -0_

rM =wM/C
c 0

where

W n =C n/AIc 0

m (5.11) _."

W= nC m/B
C 0

and the absorption terms in rn and rm have been neglected. With

these approximations, calculations show that

q 3 n Zn tanh (rnC)0
m 15.12)

q3m a Zo tanh(rmC)
0

and

2(M2/02) 1/2n %

TH'j)" 1/2 1/2 n n
Ip 2 /o 2 ) + (jw) ( ow /W) tanh[rnC]

2 (p2/a2) 1/2+ W-07,

T/2 /2 m m1/
(p 2 /o 2 ) + (jw) (qp/o/) tanhrmC]-.
Ho c

(5.13)
FH(z;jw) = cosh[rn(C+d+z)]/cosh[rnC]H

Fm(z;jw) = cosh[rm(C+d+z)]/cosh[rnC]
H

Substituting (5.13) into (5.3) and the latter into (5.6), we ob-

tain
n 1n n

h3n(x,z;t) L- 1Rl(x,z;jw) R2 (jw)]

S1 m (5.14)
h 3  (y,z;t) = L- [Rl(y,z;jw) R2(Jw)]

y12

where
Rnlxz;jw) 2 HI (iw) cyen (x) cosh[rn dz,,co5 nC]

R1 ' x n y .r(C+d+z1 hr

90

~~~~~~~ " .- . .. .'. . -.



1/2 1/2n/2(4/Io2) exp[-r(jw) I2-
R2 jw) - 2o2) +nOW) 0 ) tanh[rnC]

(5.15)

RIm(y,z;jw) 2 HiS (jW) cXe m(y) cosh[rm(C+d+z)]/cosh[rmC]
y m x

21/.1o2) exp[-r(jw) /2]m
1R/2)/ + jwI/ m)2 ( p / a 2 ) 1/ 2 ( j W 1 / 2( 17o / w c ) t a n h [r m c ]

SinceL [Rl(x,z;jw)] and L [Rl(y,z;jw)] can be written in terms P
of the incident time domain source fields (5.1) •

and "

-H S(jw)]= L [L[hl (t)]] = hl(t)
y y y

which are assumed to be known functions of t for t > 0 and since

L-[R 2 (jw)] and L- [R 2 (jw)] are also known [Campbell and Foster,

No. 809]16

L I[R 2 (jw)]: 2 rn (t)2(5.16) 
''

L I[Rm(j.)] = 2 rmlt) .,

where
n t-12r 1 [rt

r (t) t/ 2  exp(- 2 - exp +
7 b(b ) b (bn

1 6 G. A. Campbell and R.M. Foster, Fourier Integrals for

Practical Applications, D. Van Nostrand Company, Inc.

Princeton, N.J. (1948).
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x erfc - +Ft 1 J
12t bn

(5.17)
.. 1/2 2

r I2(t) b exp(- r _ exp + Ii b (b b" (b)) I

x erfc + 1/

b tanh[rnc]C
b n 7/20

w1• (p2/o2)

(5.18)

bm =17 tanh[rmC]
m 777w (p2/o2)
C

and erfc[f(t)] is the complementary error function

erfc[f(t)] - 2T [ exp(-v dv (5.19)
J77J

f(t) ¢[

15it follows from the convolution theorem [Doetsch, No. 23] that

the inverse transforms in (5.4) can be written in terms of

hlS(t), hlS(t), rn(t) and rm(t). That is,x y

h3n(x,z;t) = 4 cYen(x) Init) cosh[rn(C+d+z)]/cosh[rnc]x~n y

(5.20)

h3m (y,z;t) =4 c em(y) Im(t) cosh[rm(C+d+z)]/cosh[r C]y 'DX :•-

5 G. Doet-ch, Guide to the Application of LaPlace Transforms, D.

Van Nostrand and Company Ltd., London (1961).
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n0

where the convolution integrals In(t) and Im(t) are

I(t) = h (t-g) rn(g) dg -

( 5.21 ) 7-

it
Im(t)J 0ohi (t-g) rm(g) dg . ;:.

Substituting (5.20) into (5.5) gives the desired expressions for

h3 (x,z;t) and h3 (y,z;t). The complete statement is as follows:
x y

Approximate expressions for the time domain magnetic fields

at any point inside a continuous enclosure due to a transient

external electromagnetic source generating spatially uniform

fields on one wall of the enclosure can be written in terms of

the tangential components of the source magnetic field hx(t) and.x

hlS(t) incident on the outside surface of that wall as follows

OD

h3(xz;t) n4 y e (t) cosh[r (C+d+z)]/cosh[rnc] .

n 1

(5.22)

h3y(y,z;t) 4 cXe m(y) ImMt) cosh[rm(C+d+z)]/cosh[rm .)

m =1

where

hi (t-g) r (g) dgx
i0

Sto
I(t) = hiy (t-'r () d

n m n m0r (g) and r (g) are given by (5.17), r and r by (5.10), and the

remaining quantities are as defined in section 4.1. -,
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I

When hlS (t) and hlS (t) are specified, the convolution int-
x y

egrals can be evaluated for each n and m, and h3 (x,z;t) andx -

h3 (y,z;t) can be computed using a truncated version of (5.22).
y

However, the integrals cannot usually be reduced to closed-form

expressions, and, therefore, must be evaluated using a numerical

integration technique. Since these techniques replace integrals

with sums over the time interval of interest (0,t) for each term

in the series, the single sums in (5.22) become double sums.

Calculations based on (5.22) where the integrals have been eval-

uated using the trapezoidal rule with 40 points per interval and

the series are truncated at n = m = 10 show excellent convergence

for most locations and time intervals. This approach was used to

obtain the waveforms in figures 14, 15, 16, and 17, where the in-

ternal fields h3 (solid curves) are multiplied by a scale factor

of 104 and the incident fields hls (dotted curves) are given by
Y

the following:

Double exponential hls (t) = exp(-4xlO6 t) - exp(-4x10 8 t)
y

s9 7Rationalized exponential hlS (t) = 1/[exp(-3xl0 ) + exp(2.3xl0 t)]
y

Damped sinusoid (1.59 MHz) hlS(t) exp(-4xl0 6 t) sin(1x107 t)
y

Damped sinusoid (6.37 MHz) hlS(t) )exp(-2.5×1O sin(4x10 t)y

the enclosure is characterized by
-4 -

A = 6.1 m B = 3.66 m C = 6.1 m d = 3.8X10 m

6 -7
o2 4.33xi0 mhos/m p2 = 12.6x10 h/m

and the location is the center of the enclosure

x = y = 0.00 m , z = - 3.05 m
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.- _ITE_ AL M ETIC F ELD (h3y) It MAPS/M TIMES 10(4)

FOR EICLOSURE PAiNTERS ANDI IIDEIT FIELD SHO-W0B1ELM

.8 - .. _ ,.'
h3yX 1M(4)

.2-
-H- -H-. ............. .... '

-.2

-. A B= .1 -366, C=6. Pi, d 3.82 X 10(-4) .

oa2 4.33 X 10NS) nos/n, 2 = 12.6X 10(-7) h/m
An nf. t-nr.p '

x = . r, y= X.B fl, z= 3,t5, P' 01.

hl 1 EXP(-4X10(r) t) - EXP(4.76X10(8) A/n

-1 .R, -___ ____ __"

200 400 600 800 1000 1200
t (Nanoseconds) S

Figure 14. Transient magnetic field h3 x 104 A/m (solid

curve) at the center (x = y = 0.00, z -3.05) of a

continuous enclosure with one wall exposed to hl

(dotted curve) with a double exponential •

waveform.
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4
Figure 15. Transient magnetic field h3 x 10 A/& (solid

y

curve) at the center of a continuous enclosure with one

wall exposed to hi8 (dotted curve) with a rationalized

exponential waveform.
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4Figure. 16 Transient magnetic field h3 x 10 A/m (solid."

curve) at the center of a continuous enclosure with one wall
exposed to hi9 (dotted curve) with an exponentially damped,

y

6.37 MHz sinusoidal waveform.
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.8- I
h3y X 18(4)
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-. 8- I

h1 EXP(-.B4X 8(8) t) SIN 1.8 18(7) ,) 0 A/-1 oI I _

208 400 608 8Go 1800 1200
t (Nlanoseconds)

4
Figure. 17 Transient magnetic field h3 x 10 A/m (solid

curve) at the center of a continuous enclosure with one wall .'

exposed to hl5 (dotted curve) with an exponentially damped,
y N

1.59 MHz sinusoidal waveform.
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These waveforms agree with earlier results of Monroel who

S..

based his calculations on a one-term approximation to the trans- 'V.

ient field at z = -d. They show that T3 , the time required for ""b
h3 to reach its maximum, is greater than the characteristic dif-

y %

fusion time of the enclosure Tc, where

ccT C r/4 = c2 p2 d 2/4 (5.23) P

2 200 ns, (I ns = I x 10- s)

for all four incident waveforms and is independent of Ti, the

time reqiured for his to reach its peak. For these cases, T 3

depends primarily on the duration of hls with a longer pulse pro-
y

ducing larger value of T3 , that is, a slower "rise" time. This is

seen most clearly in figures 14 and 15 where the double-exponen-

tial pulse with a duration of 1000 ns produces an internal field

with T3 a 820 ns while the rationalized exponential with a dura-

tion of 200 ns produces T3 = 420 ns. These figures also confirm

Monroe's calculations showing that the maximum value of h3y de-

pends strongly on the pulse duration with long incident pulses

generating much larger internal fields than comparable short pul-

ses. Thus, the double exponential with a maximum value (1 A/m)

equal to that of rationalized exponential generates an internal "5

field with a maximum value nearly five times larger. This is due

to the fact that longer pulses carry more energy at low frequen-

cies which, as shown by figures 8 and 9, are generally less at-

tenuated in passing through the wall of a continuous enclosure.

IR. L. Monroe, A Theory of Electromagnetic Shielding with

Applications to MIL-STD 285, IEEE-299, and EMP Simulation, %

Harry Diamond Laboratories, HDL-CR-85-052-1, Adelphi, MD

(February 1985). .5'*
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The importance of the frequency content of the incident pulse in

determining the magnitude of the internal field is strikingly

illustrated by figures 16 and 17 where in both figures the inci-

dent pulse is an exponentially damped sine wave. Here, the 1.59

MHz sine wave (Figure 17) generates an internal field three times

larger than the field generated by the 6.37 MHz sine wave despite

the fact that its amplitude is smaller and its damping greater.

The accuracy of the approximations used to obtain (5.22)
m9

can be gauged by computing IH3 y(Yz;jw)l from (5.2) with T (jW)

and F( z:jw) determined by (5.13) and comparing the result with

JH3y(y,z;jw)l computed with the original expressions (4.6). This
y

is done in figure 18, where the upper curve is obtained from 9

.(4.6) and the lower curve is the approximation. For the scale

used here, the two curves are indistinguishable at frequencies

below 20 MHz. Above 20 MHz, the curves diverge with the approxi-

mation falling farther below the exact curve until the first en-

closure resonance at approximately 70 MHz is reached. At frequen-

cies above the resonance, the curves partially converge but then

diverge again in the vicinity of the second resonance. This al-

ternating divergence and convergence occurs at every resonance

and is superimposed on a general downward trend that is virtually

the same for both curves. Clearly, the principal difference be-

tween the exact and approximate expressions is that the former

accounts for the effects of enclosure resonances while the latter

does not. However, for the case shown in figure 18 and for most
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10H)

10(-H)

MAGNITUDE. OF THE MAG iETIC FIELD INSIDE ____

1(1) A CONHTIH US E]MCLBSU E FOR THE MCLOSURE _________

PAMRAtIETE, , LOCATION, AND INCID NT FIELD GIVENI BELOW:

18(12) A = 6.1 m, B = 3.66, it, C = 6.1 mi, d = 3. 8 8H8-) n _ ___

o'2 = 4, 3X19(6) onbs/rn, 42 = 12.001(-T h/rn____

20(2 10(3) 10(4) IO(N 10(6) 10(M 10(a)
FREQUEIICY f (Hz)

Figure 18. Plots of JH3 y(X3 Y~z;jw)l computed from equation

(4.6) using exact expressions for Tm(jw) and F (z;jw) (upper

curve) and using approximate expressions (5.13) for T 0w~)

and F m(z;jw.) (lower curve). _

HV
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cases of intcrest, the lowest enclosure resonance occurs at a

frequency where the field is highly attenuated with respect to

the external field, and higher frequency fields are attenuated

even more. Thus, enclosure resonances are likely to have little

effect on the transient internal field inside most continuous

enclosures, and the fact that the approximation fails to account

for resonances will have little effect on the accuracy of the

transient responses computed with this approximation. Significant

errors may occur in the case of a relatively large, thin-walled

enclosure where condition (5.8) is violated. When (5.8) is vio- &
lated, the field at resonance will be less attenuated than the

fields at most lower frequencies, and the transient reponse of

the enclosure may be dominated by energy coupled into the higher

frequencies. This is most likely to occur when the incident field

is a narrow-banded pulse centered on, or near, a resonant fre-

quency. In such a case, one should not expect the approximation

to yield an accurate transient reponse.

For the enclosure used to obtain figures 14, 15, 16, and

17, the critical frequency F equals 0.4 MHz and Co/(2B) 41
c0

MHz. Hence, (5.8) is easily satisfied, and the approximation used

to compute h3 in these figures is valid. The same approximation
y

could also be used to compute h3 for this enclosure since
x

Co/(2A) : 25 MHz also satisfies (5.8). -
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5.1 Slotted Enclosure

As in the preceding section, we begin calculating the e

transient response of a slotted enclosure by rewriting the gener-

al frequency domain expression for the internal magnetic field

(4.24) in a form that is convenient for term-by-term application

of the inverse Laplace transform. That is, we rewrite H3 (X,y,z)

from (4.24) as follows

n nmH3x(XYz;jw) = (x'z'Jw) + S (xyz'Jw) (5.24)

n:1 n=1 m=1

where

n S ~y n nnSn (xz;jw) , 2 HiS (jW) cn e (x) T (jw) Fl(z;jw)x x ny HH

(5.25)nms y nm nm nm..
snm (x,y,z;jw) = 2 HIS (jW) cy e (x,y) T (jw) FH (z;jw)

x x nm y H H

cy : - exp(-p d/Ly) oP 2K nn/A
(5.26) " 'n o2on

c exp(-p d/Ly) P QhK n/A(5.26
nm o y n mnnm

and apply the inverse transform to this expression to obtLain the

transient magnetic field:

h3x(x,yz;t) L lH3x(X,y,z;jw).

00 CO CO (5.27)

h n 3xz;t) + h3 nm (Xyz;t)

n=1 n=l m=1

where

h3n(x,z;t) L-i fnS(xzjw)x 
(5.28z; 

L ]
h3 nm(x,y,z;t) = L- i(snm(x,y,z'jw)] •€

x x

Thus, to compute the transient internal field, it is necessary to

e-alat• the sequence of inverse LaPlace transforms (5.28) where
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Sn(x,z;jw) and Snmn(xyz;jw) are given by (5.25) and (5.26).

As in the case of the continuous enclosure, it will be nec-

essary to introduce approximations in order to reduce Sn (x,z;jw)x

and Snm (x,y,z;jw) to expressions that will allow us to evaluate
x

their inverse transforms in terms of convolution integrals for

all n and m. Since figures 11 and 12 show that enclosure reson- '

ances can play an important role in determining the largest field -

inside a slotted enclosure over a wide range of locations and -

frequencies, it is clear that approximations (5.9) cannot be ex-
n nm n nm'

tended to the slotted enclosure. Thus, Zo, In, n, and can-
0 0'

not be replaced by approximations based on (5.9). Instead, we

must use

n nZn R njw/•n(jw)

Znm nm jw)
0 5

(5.29)
rn : n(jW)/C + an

0

Tnm ~nm + mrnm n(jW)/C 0+ an
o

where nn 2 2 .I/.

n (jW) : [(W ) + (jW) ]

nm [nm 2 2 1/2 (5.30)
UW) (W c + (3W) IC

and

Wn=C n/A
c o

(5.31)
21/2

cnm = 1TC[(/) 2  (m/ B) 2]
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These are the original expressions rewritten in a form that emph-

asizes their frequency dependence through the factors C (jw) and

SWith Z, , and rnm given by the preceding, the

remaining approximations used for the continuous enclosure can be

applied to the slotted enclosure without any additional loss of

accuracy. Thus, we can again replace 3 n, t73 nm F(z;jw), and

F FH (z;jw) by

173 n a Z n tanh[rnc]
0

.3nm az nm tanh[rnmC]
0 V

(5.32) -z
HFH(z;jw) a cosh[r n(C+d+z)]/cosh[rnC]

nm nmFH (z'jw), • cosh[rnm(c+d+z)]/cosh[rnmc] "

With these approximations for 73n and 173 nm we obtain

n ri 2jwLTH(jW) =

jwL + Zntanh[rnC] %
y 0

(5.33)
nm 2jwL 5

TH (jW ) + Yim C
SjwL + Z tanh[r c]0y o

from (4.16). Combining (5.33) with FnlZ'jw) and Fnm (z'jw) from

(5.32) gives a'"

n2jwL cosh[rn (C+d+z)]
Tl(jW) F(z;jiw)

H H jwL cosh[r nC] + Zn sinh[rn C]
y o

rim (5.34)

Tnm (i) rim (z~ j )2jwL cosh [r nm (C+d+z)) ]3

FH jwL cosh[rnmC] + Znmrinh[rnmC]

y o

Substituting (5.34) into (5.25) and the latter into (5.28), we

obtain

h3 n(x'z't) - L-[Rn(x;jw) R n(z;jw)]
x '' -1 2 -
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(5.35)

h 3nm(xyz;t) = L 1 [Rnm(x,y;j.) Rnm (z 'w)]

where

R lnl(x;jw) - 2 cy e n(x) His(jW) 
6

n 2 L yn (jw) cosh[sn (jw)(C+d+z)/C 0]
R= 0! rn2' (jw)cosh[r(jý)CCo] + osinh[n(jt)C/C]

R 1 (x,y;jw) 2 c nmeny(xy) Hi (W5.36)

nmm xIm
2 L 'nm(jw) cosh[n (jw)(C+d+z)/C 1 7.nm y 0

R2 (z;jW) m rim
L yn(jw)cosh[ý (jw)C/Co] + qosinh[knm(jw)C/C I
y 00

and Zn n rn and rm have been replaced by (5.29) and (5.30)
O0 0

after dropping the absorption terms an and anm from the latter.

Following the same approach used for the continuous enclo-

sure, we will compute the inverse transforms of R¶n(x;jw),
n nm nm •

R2 (z;jw), R (x,y;jw), and R2 (z;jw) and use these quantities to

write h3 n(x,z;t) and h3 nm(x,y,z;jw) in terms of sequences of con-
x x

volution integrals by applying the convolution theorem to (5.35).

Since hlS (t) is the inverse transform of Hl (jw), we obtain the
x xn nm .-

inverse transforms ofand R (x,y;jw) immediately; ,n -~~j) y n-s
r*(x;t) - L [R (x'jw)] = 2 cYen (x) hl S(t)

(5.37)
nm xymt -1 nmlx y nm s5."7(xy;t) [ ,; 2 ce x,y) hl (t)

n nm
However, the inverse transforms of R 2 (z;jw) and R2 (z;jw) are not

as readily available. These transforms do not appear in any of

the standard collections, and, therefore. they must be calculated

directly without recourse to tabulated functions. The most
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straightforward way to do this is by carrying out partial frac-
n nm

tion expansions of R 2 (z;jw) and R2 (z;jw) and applying the in-

verse transform to each term in the expansions. Since R2(z;s) and

nm (z;s) are meromorphic functions17 of the complex variable s,

these expansions and their inverse transforms will be infinite

series. The derivation in appendix A. gives

n ____ [Fn)2 (.21 Wk(Z)

S2(z;jw) + + (jWn2 2 ()2

Ik (l wc) + (Wk) + (jW

Rnm (_; ) 2 + 2[( nm)2 + (jW)2] (5.38)
02 z ) + +2jc

Wk (Z)

k (nm + (Wk) + (jw)
nm n

where wnm and w are given by (5.31),o c

LCSyo

0

W (z) 2 P cos[pk(C+d+z)/Co] (539)
' [cos(pk) - Pksin(Pk)] + cos(pk)

Wk = PkCo/C

* and P k = 1,2,3 .... are roots of the equation

P p cos(p) + sin(p) = 0 (5.40)

Applying the inverse transform to (5.38) and using transform

1 7 E. C. Titchmarsh, The Theory of Functions, 2d Ed., Oxford

University Press (1939).
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pairs 33 and 38 in Doetsch15 gives
00 1 n (Wk) 2 W (z) sinlw nt)

rn(z;t) = L- [R2(z;j.)] = 8 8(t) - 2 2knk

k=1 k
(5.41)S2

- r)m(z;jw) 0 (t Wk(z) sin(wknm t)

mnm
k=1 k

where 6(t) is the delta function and

n [(kn)2 + (wk) 2 ]1/2

2 1/2 (5.42)
nm (W [ f m ) 2 + ( 21)I2

wk - [ + (k

We can now apply the convolution theorem to (5.35) using

(5.37) and (5.40) to obtain

h3 n(x,z;t) = 2 c Yen (x) In (z;t)x n y
(5.43)

h 3 nm(x,y,z;t) = 2 cy enm(xy) Inm(z;t)
x nm y

where

nt ) n
(nlz;t) = (t-g) r lz;g) dg

j 0

(5.44)t
I nm (z;t) : 0hl s(t-g) r nm( z;g) dg

"These expressions can now be substituted into (5.27) to determine

h3 (x,y,z;t). The final result can be stated as follows:

15G. Doetsch, Guide to the Applicati-n of LaPlace Transforms, D.

Van Nostrand and Company Ltd., London (1961).
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An approximate expression for the time domain magnetic

field at any point inside an enclosure with a narrow, horizontal,

air-filled slot, as shown in figure 7, due to a transient exter-

nal source generating a spatially uniform field over the surface

of the slot can be written in terms of the tangential component

of the source magnetic field hS(t) incident on the slot as fol- %
x

lows

h3x(x,y,z;t) 2 cYen(x) I n(z;t)

n=l (5.45)

cy enm(x,yl Inm(z't)
nm y ',•

n=1 m=1

where

t
I n (z;t) h s(t-s) rn(z;g) dg

n nm
I m(z;t) h x (t-g) (z;g) dg

JOs

Cy and cy are given by (5.26), rn(z;t) and rTm- ar- given by
nm 2____2_

n nm
(5.41), and e (x) and e (x,y) are as defined previously.

y y
n~zt n nm

Since (z;t) and r (z;t) are infinite series for each n

*n nmand m, I (z;t) and I (z;t) will also be infinite series for each

n and m. Consequently, the single sum in (5.45) is actually a

double sum, and the double sum is a triple sum. When the func-

*s n Inm
tional form of hi (t) is specified, I (z;t) and In(z;t) can be

X

computed and h3 (x,y,z;t) can be written explicitly in terms of . "
x

these sums. For example, if hl x (t) can be written in the form of
*x
the difference between two decaying exponentials:

hls : ho[exp(-'it) - exp(-7 2 t)] (5.46)
x 02
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then

h3 (x,y,z;t) =2 C y ce n(x) In(z;t)x n yn; k
n=1 k=0

O a G (5.47)

+ 2 cy eenm (x,y) Inm (z;t)nm yk
n=1 m=1 k=O

where

I1(z;t) = I0 (z;t) ? hlx (t) = 1 ho[exp(-7it) - exp(- 2 t)]-

In(z;t) - 2(w ) 2 Wk(Z) Jk(t)/wk
Sk k knm nm

I (z;t) : - 2(w ) 2W (Z) Jk (t)/,k

(5.48)
k k n k

t f k exp(--1t) + Y Isin(wkt) - tk cos( k t)
Jk~t 0 hn z

)- + (Wk
Wk exp(-'2t) + 2sin(w k k cos(kt)

+ ( kn)n 
J

nm nm nm nm
Jnm M h wk exp(- 1 t) + '11sin(wk t) - kk k(t)

Jk I) z + (Wk nm1n k
nm nmt Wnmco nm"-

W exp(-7 2 t) + - 2 sin(wk t) - WkIcos(wk t) -
nm 2'•

2) + (W•k) Jkp
Similar expressions can be obtained when hlS (t) assumes other

x

functional forms, such as the damped sinusoid. However, when the

convolution integrals cannot be evaluated in closed form, one
S

must resort to numerical integration. This has the effect of

replacing double sums with triple sums and triple sums with quad- ',

ruple sums and can greatly complicate the process of computing

h3 x(X,y,z;t).

1 10 •
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The solid curves in figures 19, 20, 21, 22, 23, 24, 25, and

26 are plots of h3 (x,y,z,;t) computed with (5.47) and (5.48) forx

the same enclosure used to obtain figures 11, 12, and 13 where SN.

the center of the slot coincides with the center line of the

enclosure (xc yc = 0). These curves represent time histories of

the magnetic field at points on the center line of the enclosure

ranging from the center of the back surface of the slot (x = y

0, z = -6.44x10-3 m) to the center of the back wall (x = y = 0, z

= -2.7 m). The incident field (5.46) is characterized by h 1.1
7118 1="A/m, •I 1 1 x 10 -1 28-1 ?:

s , and 5 x 10 s . These parameters
2S '.

produce a pulse (dotted curve) with a peak field of 1 A/m at t

8 ns. It should be noted that h3 (x,y,z;t) and hlS(t) are plottedxx

to the same vertical scale in figures 19 and 20, but h3 x(X,y,z;t) -"'x@

is multiplied by a factor of 10 in the remaining figures. The

time scale is in nanoseconds (ns) where 1 na = 1 x 10- s, and t :

0 ns corresponds to the arrival of the incident field at z = 0.

The computer time required to complete the calculations for Ž5•

these figures was significantly reduced by including only the sum

over n and k in (5.47), that is, by dropping the triple sum over

n, m, and k. The approximation is justified in this case by ¶

figure 13, which shows that the difference between the exact and

approximate expressions is relatively small and virtually inde-

pendent of frequency at. a location (x y 0, z = - 0.05 m)

% %..%111 ,,
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INTERNAL MAGNETIC FIELD (h3j AMPS/METER
FOR EN.CLOSRE PARAM TERS AND I IDENT FIELD SHOWN BEL_

h3x B = back-wall reflection

.6 -- Static Field ........... . F = front-wall reflection -

S = side-wall reflection

.2-

-.L -.2 i-'-

A ,7,B 2,7 ,C . m, d 6.4 X 18(-3) m

-Ly= 3.2918(-8) , a• = .5 1 j3 = 1.60 1 10(-3) m

_6-- x = ).0B M, y = . N, z= 6.4 X 18(-)

hl- .1.1(EXP(-1 01(7) t) - (-5.80X18 8) t)) (A/ ,

-Iso,.,::.
20 40 60 B 0 2

t (Nanoseconds) 88 100 120

Figure 19. Transient magnetic field h3x (A/m) inside Z
slotted enclosure at the point (x:y:O,z:-6.4X1O 3m).
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a.,

,= ]~~INTERNPAL MCKl'ITIC F] EL1) (h3 It I:PS!METER ... •''-;
1 ,, ...... ""-. FOR ENCLOSURE PARPAMITERS ANDi] INU::DENT FIELD SHOWNI B]EL%••'

S.........." ......... B = back-wail rel e t o? 3.

h3X ...................... .1F = front-wall reflection-...

.6-b

8' -.... S = side-wall reflection

Initial Pulse

.2.. .

_ _ _ _ _ _ _ I -a-a

A= 2. 7 ,B 2.7 C =2. d 6.4 X 18(-3) m

Ly 3.2IN(-8) h, C= = .5 N, 1O = 1.68 X 10(-3) m.
x = 0.80 , y = t.80 m, z .169 m_.-_.

hl 1.1(E0P(-118(7) t) - P(-5.01X 8) t)) (RA!)-'
-18t (Nanoseconds)28 40 68l~ ons 88 108 128

Figure 20. Transient magnetic field h3 (A/m) inside
x

a slotted enclosure at the point (x:y:O,z:-.169 m).
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INTERNAL MAGNETIC F EL (h34 10(1) AMPSYMETER

1I.nii Plse.. FOR EBICLOSURE PARAM TERS AND IN [DEHT FIELD SHOWN BELOj

h3x X 18(1) F B = back-wall reflection C

.6 - = ______ front-wall reflection

S =side-wall reflection.- ............,.....
Static Field

-,B
SC

S-.2-

'0:• ll ~~= :.7n,B =2.7 m, C=2. m , d= 6.4X418(-3)Rp
i .4Ly= 3.2X110(-8) l, a = .5 N l? = 1.68 18(-3) n. -

:"-.6- x= t.80 i, y - .!tftlz = .338,1____
';,,'.hl1 : 1,1(E•(N-1 18(7) t) - EP(-5,8(0X18 8) t)) (Al )

-1.0- ,
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Figure 22. Transient magnetic field h3x X 10 (A/rn)

x *x

inside a slotted enclosure at the point b

(x~y=O,z:-.675 m) 115 •
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Figure 23. Transient magnetic field h3 X 10 (A/m)
x

inside a slotted enclosure at the point

(x=y=O,z=-1.35 m).

116 %5

,9

S".-



W. .

0'%.

io-. ________ INTERNAL -MAGNET IC F ELD (h3j) X100) AMPS METER __

FOR ENCLOSURE PARAME TERS AMiD IMMIEMT FIELD SHOWN BELM

8 U B =back-wall reflection %

[,3x X 10(1) ............ F front-wall reflection

.6-Initial Pulse'B
S .akide-wall reflection

,4 . B......... .

.4-

-.2- %- 4..

s 11~ !.7N,B=2 R, C=2 m, d=6.4X1!8(-3) m

-.4 Ly- 3.2810(-8) h, Ci = .5 , 1.68 X10(-3) N.

-. 6 x :__.8_ m, y BO m.88, z 2.083 m

hl' I.(EXP(-1 10(7) 0) - P(-5,1X18 8) t)) (A/,)

-1 0-
2- 48 68 88 i01

t (Nanoseconds) 120

t 

.a

Figure 24. Transient magnetic field h3x X 10 (A/m)

inside a slotted enclosure at the point

(x=y:O,z:-2.03 m).
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Figure 25. Transient magnetic field h3 X 10 (A/rn)• -

inside a slotted enclosure at the point "

(x~y:0,z:-2.7_in). ,
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Figure 26. Transient magnetic field h3 X 10 (A/m)

inside a slotted enclosure where C = 5.4 m at the

point (x=y:Oz=-2.7 m)
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close to the slot. Moreover, other calculations for this case

show that the difference becomes even smaller as the field point

moves farther away from the slot. Thus, we can expect figures 19 S.

to 26 to accurately represent the wave form of the transient

field while somewhat overestimating its magnitude at locations

close to the slot. These curves were generated by truncating the

series at n = 12 and k =72 and calculating h3 at time intervals
x

of .5 ns using a PC-XT operating at 4.77 MHz. A 70 ns record re-

quired a running time of approximately 11 hours.

The field at the slot as shown in figure 19 is consistent AJ

with the one term approximation of Monroe in that it consists

of a unipolar (dc) pulse carrying a smaller bipolar (ac) pulse

that recurs with certain variations at a fixed interval (18+ ns)
S

corresponding to the time required by a signal moving at approxi-
',

mately the speed of light to reflect from the back wall and re-

turn to the front. Since the same features are seen at other 4.

points in the enclosure, we will follow Monroe and refer to these

as the static or stationary field and the propagating field. As

shown in figure 19, the form of the static field is close to that

of the incident field and, like the latter, it approaches zero

exponentially as t . •. On the other hand, the propagating field

has a much more complicated structure that changes with each

R. L. Monroe, A Theory of Electromagnetic Shielding with

Applications to MIL-STD 285, IEEE-299, and EMP Simulation,

Harry Diamond Laboratories, HDL-CR-85-052-1, Adelphi, MD

(February 1985).
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reflection and bears no obvious resemblance to the incident

field. Clearly, the static field is derived mainly from those

frequencies in, the incident pulse that are below the lowest TE

cutoff frequency for the enclosure (flat portion of the curves in

fig. 11), while the propagating field is derived from frequencies

above the cutoff. Thus the propagating field will be continually

reflected between the front and back walls and will continue to

propagate after the static field has decayed to insignificance.

Since the static field is composed of frequencies below TE

cutoff, we would expect it to decay rapidly with distance from

the slot. This expectation is borne out by figures 21, 22, and

23 where it is seen that the peak static field at z = -0.68 m is

only 1/20th of the peak field at the surface of the slot. When

the field point moves an additional 0.65 m from the slot to the

center of the enclosure as in figure 24, the static field is re-

duced to a barely visible level. Thus the static field is large

compared to the propagating field only at points very close to

the slot. At most locations in the enclosure, the propagating

field dominates as shown by figures 24, 25 and 26.

The rapid decay of the static field with distance f-om the

slot as shown by figures 20, 21, and 22 reveals the origin of the

propagating field as an initial pulse that is formed from the

earliest and most rapidly increasing part of the internal field.

This pulse which is obscured by the static field in figure 19 is
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*• seen first in figure 20 as a spike that peels away from the front

of the static field and arrives at the observation point (z =

-0.169 m) with a time delay of less than 1 ns. However, the full

complexity of the initial pulse and the reflected fields it gen-

erates can be seen only at observation points where the static

field is reduced to a level that allows the use of an expanded

vertical scale as in figures 21 to 26. Figure 21 shows clearly

the basic sequence of events that is repeated at every point in-

side the enclosure. First the initial pulse arrives at z = -0.338

m after a time delay relative to the external tield equal to

twice the time delay seen at z = -0.169. Approximately 2 to 3 ns

later, the initial pulse is interrupted by the greatly reduced

static field which is interrupted in turn at t ; 16 ns by the

arrival of the reflected pulse generated by the initial pulse at

the back wall. Since the reflection coefficent at the back wall

is +1 , the amplitude and polarity of this reflected pulse are at

first identical to that seen in the initial pulse. However, at

later times (t = 18+ ns and t = 22 ns) pulses of opposite polar-

ity appear giving the propagating field its characteristic bipo-

lar appearance.

The presence of negative pulses is puzzling at first since

- they are obviously part of the field reflected from the back wall

but cannot be created by such a reflection. The explanation pro-

. vided by a study of the remaining figures in this series (espe-

-. cially fig. 24, 25, and 26) is that the initial pulse is already
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bipolar by the time it reaches the back wall. This bipolarity is

the result of oblique reflections from the side walls where the
"p-

boundary condition requiring that h3 0 at x = +A/2 produces a

reflection coefficient of -1. Thus, an initial pulse generated

with positive polarity (same polarity as the external field) at

the slot z z -6.4 x 10- m becomes a bipolar pulse due to inter-

actions with the sides of the enclosure and is further modified

by reflections from the front, back, and side walls as it prop-

agates in the enclosure. The negative sections or phases of the

propagating field are labeled "side-wall" reflections in the fig-
4

ures; however, most of these are produced by a series of reflec-

tions involving the side wall together with the back and/ or iv

front walls.

The earliest evidence of a negative phase in the initial

pulse is the ripple that occurs in figure 21 just before the

static field reaches its peak at t a 10 ns. This negative phase

reappears at t = 18+ ns after reflection from the back wall, at t

- 22 ns after reflection from the front wall, and at later times

corresponding to the arrival of additional reflections from the

back and front walls. The amplitude of the negative phase arriv-

ing from the back wall at t = 18 ns is sufficient to cancel most

of the positive phase reflected from the front wall which arrives

simultaneously at this location.
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The principal features of the transient response are seen

even more clearly in figure 22 where z - 0.675 m. At this loca-

ation, the initial pulse arrives after a time delay equal to

twice the delay seen in figure 21, and its negative phase pro-

duces a more pronounced ripple as it rides on the rising portion

of the static field. Since the location is now closer to the back

wall and farther from the front wall, the back-wall reflection -

S
arrives earlier and the front-wall reflection later than in

figure 21. This difference in arrival times effectively separates

the front-wall reflection from the back-wall reflection allowing

positive and negative phases of each reflection to be seen

without interference.

The time delay of the initial pulse and the separation of

the front- and back-wall reflections increase still more when the

location moves to the center of the enclosure (z = -1.35 m). As

shown in figure 23, the positive phase of the initial pulse ar-

rives after a delay of 4+ ns, and the first back-wall reflection

arrives 9+ ns later. All subsequent reflections of the positive

phase are also spaced 9+ ns apart. This is exactly what one would

expect at this location for a pulse traveling at a constant

velocity. Furthermore, since the static field is small, the

negative phase of the initial pulse is clearly visible for the

first time at t = I0 ns. Subsequent reflections of the negative

phase are indicated on the figure; however, these, unlike posi-
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tive phase reflections, do not appear at completely regular

intervals.

At the point z = -2.03 m midway between the center of the

enclosure and the center of the back wall (fig. 24), the delay of

the initial pulse increases to 7+ ns, and the separation between

the initial pulse and its reflection from the back wall is small

enough so that its negative phase partially cancels the positive

phase of the reflection at t = 12 ns.

Figure 25 shows the initial pulse arriving at the center of

the back wall (z = -2.7 m) with a delay of 9+ ns and combining

with the reflected field to give a net field with the same form - -

as the incident field, The initial pulse is interrupted at t = 27

ns by the return of its positive phase after reflection from the

front wall. Succeeding reflections from the front wall arrive at

intervals of 18+ ns corresponding to the time required for the N

pulse to travel from the back wall to the front wall and return.

The 18 ns interval between the arrival of the initial pulse and

the return of its positive phase, combined with the absence of

the static field, provides the clearest picture of the initial

pulse to be seen in these figures. It shows that the pulse in-

cludes not just a single cycle of positive and negative phases

but also a second cycle with reduced magnitudes beginning at t

20 ns. Evidently, the initial pulse consists of a train .f such

cycles generated by side-wall reflections. The folding of this

train back onto itself at each reflection from the front and back
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walls accounts for the increasing complexity with time of the

transient waveform. I

Since the reflection coefficient of the back wall is +1, we

should expect the initial pulse to be doubled in magnitude when

it combines with its reflection at z = -2.7 m in figure 25. One

way to verify this result is to recompute the field at z = -2.7 m IN .

for the same enclosure with the back wall removed. This has been

done in figure 26 by setting C = 5.4 m, that is, by analytically *

moving the the back wall to z = -5.4 m. Comparing figure 25 to

26, we see that the peak magnitude of the initial field in figure

25 is indeed much larger than it is in figure 26, although it

falls somewhat short of being twice as large. This discrepancy

may be due to plotting inaccuracies associated with our choice of

a 0.5 ns time interval for these calculations. -

1.2

V.:.

2o'.

1 2 6'.4.,
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6. COMPARISON BETWEEN COMPUTED AND MEASURED FIELDS INSIDE

SHIELDED ENCLOSURES

Although rectangular enclosures have been used for at least

sixty years as electromagnetic shields, there is surprisingly

little experimental data in the avaliable literature that is

directly relevant to this type of shield. Most published data

relates to shields with simpler geometry, such as the plane sheet

and the sphere. This is probably due to a desire to avoid the

complexity of the rectangular geometry by using more amenable%

structures that might be expected to approximate the rectangular

enclosure for certain ranges of frequency, for example, the sheet %

for very high frequencies and the sphere for very low frequen- j.%

cies. Moreover, those reports that do provide data on rectangular S

enclosures frequently fail to disclose all the relevant informa-

tion. Examples of commonly omitted information are the enclosure .

dimensions, the location of the internal field sensor, and the

locations and orientation of slots and seams.

In this section, we reproduce two of the most complete sets

of experimental shielding data for rectangular enclosures and S

compare this data to calculations based on the theoretical expes-

sions we have developed in the preceding sections. Both sets are

frequency domain data and, as is the usual practice for measure- •

ments of this type, are expressed in terms of the shielding

J .0
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effectiveness (or shielding efficiency) SE of the enclosure. SE

is defined as follows:

SE = - 20 log JH° (dB) (6.1)
Ip

where H is the pth component of the magnetic field measured at
p

a specified location inside the enclosure generated by a specifi-

ed source outside the enclosure and H is the same component gen-
p

erated by the same source at the same location when the enclosure

walls and ceiling have been removed. That is, H is the shielded

0field at a location, H is the unshielded field at the same loca-
p

tion due to the same source, and the logarithmic difference be-

tween the magnitudes of these quantities in dB is defined as the

shielding effectiveness of the enclosure at that location. This

definition is intended to characterize the shielding properties

of the enclosure in a way that is independent of the source ex-

cept for its frequency. If SE can be measured in a way that is

independent of the source, then it can be used to predict the

shielding performance of the enclosure against the magnetic field

from any source, provided that the frequency of source is known.

However, in general, it is not possible to measure SE at any

point inside an enclosure in a way that is independent of the

source. This is due to the fact that two different sources S and
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01 o2,%S2 will produce unshielded fields, say H and H , that vary in e..
2p p J.

different ways throughout the volume such that in general at any

location 01

1 1 2 o2 (6.2),H p/ H I* I/I (6.2

where H1 and H2 are the shielded fields corresponding to S and
p pI

S2 respectively. Nevertheless, there are classes of sources for

which

IH i/IHOl H2 IHO2 1 (6.3), p I pl p (6 )•

for any sources Sl and S2 belonging to such a class. In this

case, when SE is obtained from (6.1) using measurements made with

one source belonging to this class, it characterizes the shield-

ing of the enclosure with respect to all sources in that class.

That is, once SE is determined in this way, it can be used to

predict the shielding properties of the enclosure against magnet- S

ic fields from any source belonging to this class. An example of

a class of sources for which (6.3) holds is the class of all

sources that generate spatially uniform unshielded fields
.-- '..•

throughout the region of interest. For any two sources S1 and S2

belonging to this class

01 o2H A (jw) H (6.4)p o p

at each point where A (jw) may be a constant or a function of

frequency but is independent of the spatial variables. In this

case, the shielded fields will obey the same relationship:

H A (jw) 112 (6.5)
p 0 p

at each point and (6.3) will be satisfied. Consequently, SE as
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defined by (6.1) completely characterizes the shielding proper-

ties of the enclosure with respect to the class of sources that

expose the enclosure to spatially uniform fields.

We can use our expression for the field inside a continuous
-S

enclosure exposed to uniform fields on one wall to compute the

theoretical shielding effectiveness of these structures against

the class of uniform sources by substituting H3p (x,y,z;jw) from

(4.6) for the shielded field H and Hil (jw) for the unshielded
p p

field H° in (6.1):
p

I H3p(''; ) (6.y)z"jw)

SE(x,y,z;w) = -20 log H ( jw) (6.6)[ IH1-'(jw) I

(When more than one wall is exposed to the field the contributios

from all must be added at the specified location to determine the

total unshielded field H3 (x,y,z;jw)). Calculations using (6.6)
p

can then be compared with measurements based on (6.1) to deter-

mine whether or not the theory is supported by experiment. It

should be noted from (6.6) that SE is a function of the spatial

variables even though the unshielded field is not. ,"
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6.1 Continous Copper Enclosure with Soldered Joints

In 1964, J. B. Hays' 8 published the results of shield- %.1

19 %/
ing measurements that had been carried out by E. D. Sunde on an

8 x 8 x 8 ft. cubical structure constructed from 10 mil copper

sheets soldered together along their edges. The experimental set-

up used in these measurements is represented schematically in

part A) of figure 27. It consists of a signal generator driving a

circular coil 80 ft. in diameter surrounding the copper cube

which contains a smaller coil used as a magnetic field detector.

The purpose of the large coil and generator is to produce an

unshielded magnetic field with a single spatially uniform compon-

nent H° over the volume occupied by the enclosure. This allows
y

0
easy determination of H° ,which can then be combined with the

shielded field H measured by the loop detector to give SE using
y

(6.1). With this setup, Sunde was able to measure the shielding

effectiveness of the copper cube over a frequency range from less

than 100 Hz to 40 kHz. His data (reproduced from curve d of fig.

1 in reference 18) is shown as the broken line in part B) of fig-

ure 27.

The solid curve in part B) is the computed shielding

effectiveness obtained with the aid of H3 (y,z;jw) from equation
y •

J. B. Hays, IEEE Spectrum, Vol 1 , May (1964).

1 9 E. D. Sunde, Switching Center Shielding Against Atmospheric

Induction, Bell Telephone Laboratories (unpublished memorandum).
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(a) experimental setup A -

generator ,.I.

a- feet rJ

-80 feet'-
.p

-_

(b) comparison of measured and computed shielding effectivenness

SE IS I iE

140 SHIELDIHM EFFECTIVEI *SS IN d Ml A CONTItU US1

EICLOSURE AGIRST MrETIC FIEf S FOR THE OLLD 113

ENCLOSU•r PANDHETERS :__ LOCATI, !:
120

A - - 2.439 n d - 2.54 Mc-4)n

a-2 - 5, X0(7) riho In, p2 - 12.6X108-7/- h

Kcomputed

60 _

40 - 0. ___, z-- ._..

c0 measured
20 ".

10(2) 10(3) 10(4) 10(5) 10(6) 10(7)

FREQUEHiCY F (Hz)

Figure 27. Shielding effectiveness (SE) of a cubical copper ,p

enclosure with soldered joints: experimental setup and comparison

of measured and computed shielding effectiveness.
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4.6). In applying this expression to the setup shown in part B),

it was assumed that the detector was located at the center of the

cube which in our standard coordinate system is given by x = y

0, z = -1.219 m. (The actual location was not mentioned by Hays,

but it appears highly likely that a desire to preserve symmetry

would have dictated this choice). Since the total field at the

center of a uniformly illuminated cube is the sum of equal con-

tributions from fields entering through each of the cube's four

vertical walls, the theoretical expression for the shielded field

at this location is 4 H3y (0,-l.219;jw) and the computed shielding

effectiveness is obtained by evaluating

S4 IH3 y(0,-1.219;jW)j

SE(0,0,-1.219;w) -20 log (6.7)i'I

y

as a function of f: 1/2r for

A : B = C = 2.438 m, d 2.54x0- m

7 -7a2 : 5.8x10 mhos/m, P2 : 12.6xlO h/m. -

Comparison of the two curves shows good agreement at the

higher frequencies. There is, however, a divergence below 4 kHz

that causes the measured values of SE to fall below the computed

values. This divergence may be due to the fact that condition

(2.8) is not satisfied at these frequencies for 10 mil copper

sheets. That is, the thickness of the sheet is not larger than
-a,.

the skin depth of the field in the sheet at these frequencies as

assumed by the theory. This means that multiple reflections can
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occur inside the sheet which may result in a larger internal

field and a smaller shielding effectiveness than can be accounted

for by the theory in its present form.

i

6.2 Slotted Steel Enclosure

The effect of slot length a on the shielding effec-

tiveness of a cubical steel enclosure was investigated by E. M.

Honig, Jr.20 using the experimental setup shown in part (a) of

figure 28. Unlike the arrangement employed by Sunde for the

continuous enclosure, this setup is not designed to generate a

spatially uniform source field. Instead, a small loop source is

used to generate a strongly nonuniform field throughout the vol- S

ume occupied by the enclosure. The advantages of Honig's setup

are that it can be used at higher frequencies and generally pro-

duces a greater dynamic range for measurements on enclosures of

this size than does Sunde's. Its disadvantage is that measure-

ments of SE made in this way using (6.1) depend on the location

of the source. That is, the same source located at a different

position with respect to the enclosure and the detector would

produce a different value of SE. Similarly, a larger or smaller

source at the same position might produce a different value of

SE. To mitigate this limitation, Honig has chosen the setup

S~20E
""E. M. Honig, IEEE Trans. Electromagn. Compat., Vol EMC-19, No.4

(Nov. 1977). p 377.
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(a) experimental setup
* Yy

A A

I-Loop i

I i

I 0' -• - Io•1K• o- >

Front View Side View
(Cross Section)

(b) comparison of measured and computed shielding effectivenness

SLOT LENGTH (cm)

measured: Honig (1977) Axford et al (1cEZ

U I5-
4. , - . k\z

4e I IN
.0

25• computed

%l SLOT LEfIGTII (Inchs)

Figure 28. Shielding effectiveness (SE) of a slotted steel

cube: experimental setup and comparison of measured and comput

shielding effectiveness.
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called for by two widely used standards for shielding measure-

21 2ments: MIL-STD 285 and IEEE 29922 which specify that the

source and the detector shall be identical circular loop antennas

12 in. in diameter lying in the same plane (coplanar

arrangement) with centers 18 in. from the enclosure wall. With

this set-up, Honig's measurements can be compared directly to

other measurements made using these same standards, even though

they would not in general be comparable to measurements made on

the same enclosure using a different source such as Sunde's large

loop. In accordance with these standards, Honig orients the plane

of his loops perpendicular to the long axis of the slot. This

orientation produces the most efficient coupling through slots of

any size and insures that his measured values of shielding

effectiveness will be the smallest possible for this setup. It

allows him to measure the shielding effectiveness of slots

ranging from 1 to 30.5 cm in length at frequencies of 10 kHz, 40

kHz, 200 kHz, and 1 MHz for each slot. The procedure is to remove

the enclosure wall containing the slot and measure the unshielded

field H at the detector loop due to the source loop and then to
x

replace the wall and measure the shielded field H at the
x

21Dept of Defense, MIL-STD-285, Method of Attenuation

Measurements for Enclosures, Electromagnetic Shielding, for

"Electronic Test Purposes (25 June 1956).

"22
IEEE, Proposed IEEE Recommended Practices for Measurement of

Shielding Effectiveness of High Performance Shielding Enclosures,

IEEE 299, IEEE Inc. NY (June 1969).
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detector without changing the arrangement of the loops from that

shown in the figure. The latter step is then repeated as the slot

length is increased in specified increments. The measured

shielding effectivness for each length is determined by (6.1).

Honig's data from figure 8 in his report is plotted versus

slot length in part (b) of figure 28 along with a data point ob-

tained by Axford et al. 23 who measured the shielding effecetive-

ness of a cubical steel enclosure with a 50 cm slot using a very

similar setup. The data shows a strong general trend in the di-

rection of decreasing shielding effectiveness with increasing

slot length. However, there is a notable subset of the data (a

7.5 , 10, and 13.5 cm) where this trend is reversed. The plot

also shows that, with the exception of one point (a = 7.5 cm),

the data for each slot is closely grouped indicating that the

shielding effectiveness is virtually independent of the source

frequencies used in these measurements.

Although Honig's loop source generates a nonuniform un-

shielded field H°(x,y,z;jw) throughout most of the volume occu-

pied by the slotted enclosure, it will produce a nearly uniform

23R. Axford, R. McCormack, and R. Mittra, Evaluation of the

Applicability of Standard CW EMI/RFI Shielding Effectiveness Test

Techniques to Assessment of EMP Hardness of Tactical Shelters,

Construction Engineering Research Laboratories, CERL-TM-M-307 -"

Urbana, IL (March 1982).

13'13 7

.'.•.i-.-''• -:•.-'• -'-•,•', ,-••:-•,•- ,•'v•';v," • -'-:..v~• :\ • • •- ,," •• :-•' 54-



I

field over a slot positioned like the one shown in the figure

provided the slot is not too long. For such a slot, we can calc- N

culate the field H3x (x,y,z;jw) at any point inside the enclosure

in terms of the tangential compnent of the unshielded loop field

H°(0,0,0;jw) incident on the slot by setting H (0,0,0;jw)
x x

H S(jw) in equation (4.24). With this substitution, the shieldedx

field at the center of the detector loop (0,0,-0.49 m) due to the

source loop is H3 x(0,0,-0.49 m;jw), and the theoretical expres-

sion for the shielding effectivness that would be measured at

that location using Honig's set-up is
J H3 x (e o'-'49m;jw)jl-.'

SE(0,0,-.49m;w) -20 log (6.8)IH (0,0,- '49m;jW)1 "

where H°10,0,-0. 4 9 m;jw) is the unshielded source field at the
x

center of the detector loop. Since H3 (0,0,-0.49 m;jw) is comput-

ed in terms of H (0,0,0,;jw), it is also convenient to write the

field H°(0,0,-0.49 m;jw) in terms of Hg(0,0,0;jw). This is easi-
x x

ly done using the fact that points (0,0,0) and (0,0,-0.49 m) are

both in the near field of the source loop where the magnitude of

the field is inversely proportional to the cube of the distance
1 '

to the center of the loop . In this case, since (0,0,-0.49 m) is

twice as far from the center of the source loop as (0,0,0), the

R. L. Monroe, A Theory of Electromagnetic Shielding with

Applications to MIL-STD 285, IEEE-299, and EMP Simulation,

Harry Diamond Laboratories, HDL-CR-85-052-1, Adelphi, MD

(February 1985).
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magnitude of H0 (0,0,-0.49 m;jw) will be equal to 1/8 that of

H°(0,0,0;jw). Thus (6.8) can be rewritten "x

0
8 JH3 (0,0,-.49m;jw)[ ••;:

SE(0,0,-.49m;w) - 20 log 0. (6.9)
lg IH3x(0,0,0;J4)I

Since H3 (0,0,-0.49 m;jW) is directly proportional to
x

H0 (0,0,0;jw), this term drops out when (6.9) is evaluated; and SE

is seen to depend on the source only through the factor 8.

The calculated shielding effectivness for Honig's setup is

denoted by the solid triangles at a = 1.56, 3.13, 6.25, 12.5, 25,

and 50 cm in part (b) of figure 28. This plot was obtained by

evaluating (6.9) for each a (expressed in meters) at a frequency

of 10 kHz. Only a single frequency was required because previous

calculations (fig. 11 and 12) based on equation (4.24) demonstra-

ted that H3 (x,y,z;jw) is independent of frequency for frequen- 10
x

V
cies below the cutoff frequency of the enclosure. The enclosure

parameters used in these calculations are ii

-3A B = C = 2.7 m , d = 6.4x10 mi"

Is6 5
o2 : 4x10 mhos/m, M2 = 12.6x10 h

and the slot inductance for each slot length a (meters) was

computed with equation (4,29):

L : 6.4 x 108 a (henries)

y A
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14which was derived from figure 7 of Monroe4. Since Honig did not

specify the location of the slots, it was assuned that they are

centered at the center of the wall where xc Yc O.

Comparison of the measured and computed shielding effec-

tiveness curves shows good agreement for slots less than 6 cm in l

length. A divergence occurs at a = 7.5 cm, where the measured

shielding effectiveness is larger than the preceding measurments -

at 5.5 and 6.5 cm rather than smaller as shown by the computed

curve. Similar divergences occur at a = 10 and 13.5 cm. These

data points run counter to the general trend of both measured and

computed curves and are difficult to explain on physical grounds

since they would require a type of antiresonant behavior that

appears to be ruled out at the frquencies used in the measure-

ments. Consequently, the validity of these three points appears

to be open to question. If they were eliminated, the measured

curve like the computed curve would show SE as a monotonically

decreasing function of a, and the overall agreement would be

noticeably improved. For very small slots (< 1 cm), SE exceeds

the dynamic range of Honig's measurements (100 to 125 dB), and, J

therefore, valid comparisons cannot be made. However, the figure

suggests that SE will continue to increase monotonically as slot

1414R. L. Monroe, EMP Shielding Effectiveness and MIL-STD 285,

Harry Diamond Laboratories, HDL-TR-1336, Adelphi, MD. (July

1973).
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length decreases, until it approches the shielding effectiveness .q•

of an enclosure with no slot, that is, until it approaches the ">

shielding effectiveness of a continuous steel enclosure. To calc- "•

! ~ulate this limit, it would be necessary to use a modified version

of (6.9) where h3x(0,0,-0.49 mn;jw) is computed with an expression

similar to (4.6).

4

..9%
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7. CONCLUSIONS
V

S%

In the preceding pages, we have used a theory of electro-

magnetic shielding based on impedance boundary conditions to ob-

tain general expressions for the fields at any point inside slot-

ted and continuous rectangular enclosures exposed on one side to

arbitrary external source fields. These expressions consist of

infinite series summed over the TE waveguide modes where each

term is the product of one or more mode functions and a Fourier

coefficient. In the case of the slotted enclosure, the Fourier

coefficients are determined by the spatial distribution of the

magnetic field incident on the inside surface of the wall due to
5,5

the slot, and for the continuous enclosure they are determined by

the spatial distribution of the magnetic field incident on the

outside surface of the wall. These coefficients were evaluated in

closed form for the case where the outside surface of the slot is

exposed to a spatially uniform magnetic field and for the case

where the entire outside surface of the continuous enclosure is

exposed to a spatially uniform magnetic field. Frequency domain

calculations based on these expressions showed that the series

converge rapidly. This allowed easy plotting of the internal

magnetic fields as functions of frequency with the aid of a A

microcomputer. The plots show that at frequencies below the cut-

off frequency the field inside a typical slotted enclosure is

independent of frequency and the field inside a continuous
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enclosure is a monotonicelly decreasing function of frequency. At

frequencies above cutoff, the fields in both slotted and contin- *1-

uous enclosures show very complex behavior associated with cav-

ity resonances. The spatial variation of the internal fields is

determined by the boundary conditions at the inside surfaces of .

the walls. The field reaches its maximum at the exposed wall and

decreases monotonically as one moves to the opposite wall.

The frequency domain expressions were replaced by series

approximations and transformed into the time domain using a term

by term application of the inverse LaPlace transform. The trans-

formed series were found to converge, and they were used to com- ..N.,

pute and plot the transient response of the internal magnetic

fields when one wall of the enclosure is exposed to time-varying

external fields in the form of decaying exponentials, damped

sinusoids, or rationalized exponentials. These plots showed quite

different responses for the continuous and slotted enclosure in

agreement with the results of Monroe who computed the transient

fields at one point on the inside surface of the exposed wall

using one-term approximations. It was found that the character-

istics of the field inside a continuous enclosure are determined

to a great extent by the diffusion time factor r (eq 5.4) and by

1R. L. Monroe, A Theory of Electromagnetic Shielding with

Applications to MIL-STD 285, IEEE-299, and EMP Simulation,

Harry Diamond Laboratories, HDL-CR-85-052-1, Adelphi, MD
S9

(February 1985).

143



the duration of the incident field. The former determines the

shortest, that is, fastest, rise time possible by the internal

field, and the latter determines its largest value. Plots of the

fields inside slotted enclosures showed a transient response con-

sisting of the sum of stationary and propagating fields. The sta-

tionary field dominates close to the slot where it forms a reduc-

ed replica of the external field. However, its peak field de-

creases rapidly with distance from the slot so that at most loca-

tions in the interior it is negligible compared to the propagat-

ing field. The latter travels at approximately the speed of light

and undergoes repeated reflections from the front, back, and

sides of the enclosure. These reflections produce a waveform that

becomes increasingly complex with time. The separation of the

internal field into these two constituents corresponds to a sep-

aration of the incident field into the sum of frequencies lying

above and below the cutoff frequency with the propagating field

formed from frequencies above cutoff and the stationary field

formed from those below. The peak value of the stationary field

depends principally on the length of the slot, while the peak of

the propagating field depends on the rise time of the external

field. That is, longer slots produce larger stationary fields and

faster rise times produce larger propagating fields.
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Finnlly. o]culations based on the frequency dnmain 9Ypr4--

sions were used to compare the theoretical results with two sets

of experimental data: one set by E. D. Sunde 1 8 , for a contin- P.

uous cubical enclosure formed from soldered copper sheets and the

other by E. M. Honig for a cubical steel enclosure with one

wall penetrated by single slot wit'h a variable length. Since the

data was presented in terms of the measured shielding effective-

ness SE of each enclosure, it was necessary to construct thecret-

ical expressions for SE corresponding to the experimental setups

of both Sunde and Honig using H3 (y,z;jw) from equation (4.6) and
* ~y

H3x (x,y,z;jw) from equation (4.24). Computed values of SE were

then plotted together with the experimental values for easy

comparison. In the case of the copper enclosure, good agreement

is found for frequencies above 4 kHz, but a significant diverg-

ence occurs at extremely low frequencies. For the slotted enclo-

sure, there is good agreement for slots less than 6 cm in length,

but a divergence is seen for longer slots where some of the

experimental data points show longer slots providing greater

shielding than some shorter slots. Since good agreement is seen

1 8 J. B. Hays, IEEE Spectrum, Vol 1 , May (1964).

19
*9E. D. Sunde, Switching Center Shielding Against Atmospheric

Induction, Bell Telephone Laboratories (unpublished memorandum).

20E. M. Honig, IEEE Trans. Electromagn. Compat., Vol EMC-19, No.4

6 (Nov. 1977). p 377.
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where the theory is expected to be most accurate (high frequen-

cies for continuous enclosures and short slot lengths for slotted

enclosures), the overall comparison provides a satisfactory veri-

fication of the theory within its present limits.

These results establish a theoretical basis for the princi-

pal features of electromagnetic shields formed from rectangular

enclosures. However, they do not exhaust the subject. There re-

main many areas open for further investigation relating to both

the general shielding theory and its application to practical

shielded enclosures.

One area for possible future development is an extension

of the general shielding theory to include thin-walld structures .

where conditions (2.8) and (2.20) ar not satisfied. Such an ex-

tension might eliminate the divergence between measured and com-

puted SE for the thin-walled copper enclosure at extremely low

frequencies and clear the way for accurate calculations at still

lower frequencies. It might also close the gap between theory

and measurement for enclosures with long slots and lead to cor-

responding results for an enclosure with a resonant slot.

(Although the effect of a resonant slot can be partially account-

ed for simply by replacing q2 or q2 in (3.35) with a general
x y

14

146 4.,
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14exnression for the slot impedance , this would not change the# -S
fact that condition (2.20) would not be satisfied, and conse- V

quently the accuracy of the resulting expression could not be

guaranteed). To make this extersicn with assurance, it would be

necessary to replace the simple impedance boundary conditions

(2.2) and (2.10) with more general forms that account for multi-

ple reflections inside the walls and slots of the enclosure. If

these boundary conditions can be developed, then there appears to

be no reason why the remainder of the extension cannot be carried

out in nearly the same manner as the original. The extension

would, of course, be more complicated than the original, but its

likely advantage would compensate for the added complexity

An extension of the theory to enclosures with slots filled

with lossy dielectrics could also be very useful. This extension

would include both the inductive (air filled) and resistive slots

as special cases and would be a natural model for the radio fre-

quency gasket- a device that is often used in practical enclo-

sures to reduce the magnitude of unwanted fields in open seams.

It could also be used to model the effect of paints and metal

oxides that tcnd to build up in any unintended opening. These

results could be incorporated directly into the theory in its

present form by regarding the slot as a rectangular waveguide

14"

R. L. Monroe, EMP Shielding Effectiveness and MIL-STD 285,

Harry Diamond Laboratories, HDL-TR-1336, Adelphi, MD. (July

1973).
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filled with a lossy dielectric and adapting the existing theory 1 2

of these structures to the shielding problem.
'..

A reader who has followed the development to this point

will no doubt be able to suggest many other areas for further

research on this interesting subject.

2

p

%'I

1484 SI

1RE. Collin, Field Theory of Guided Waves, McGraw-Hill, New "

York ( 1960 ). •e
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APPENDIX A-PARTIAL FRACTION EXPANSIONS OF R2 (z;jw) AND R2 (z;W) A

Our objective here is to obtain partial fraction expansions

of Rn(z;jw) and R2m (z;jw) which are defined by equation (5.36) on

page 106. This procedure can be shortened by noting that both of

these quantities can be written ir thp form:

2 1 • cosh[L(C+d+z)/C] 5
R(z;ý) (A-1)

'• cosh(C) + sinh(C)

where • is a complex variable and * is a real parameter. To
recover R2(z;jw) and Rnm (z;jw) from (A-i), it is only necessary

to replace . by -.

(C/C )[(w,)2 c (jw) 2 ] (A-2) 9. J.

t by
L yC 0:•

-yo (A-3)

'7 C
0 L n nm

and w by W and W respectively.
c c c

Since R(z;ý) is a single valued function of i whose only

singularities are simple poles, it satisfies the definition of a

meromorphic function and can be expanded as a series of partial

fractions in the form

R(z;ý) R(z;0) + W + (A-4)
SkýSk • k k

IE. C. Titchmarsh, The Theory of Functions, 2d Ed., Oxford

University Press (1939).
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where •k is the kth pole of R(z;ý), Wk is its residue, the sum is

taken over all poles, and

R(z;O) = 2 -P/(1+) (A-5)

Now the poles of R(z;ý) are the nonzero roots of

F(t) = . cosh(c) + sinh(C) (A-6)

and it can easily be shown that these form a doubly infinite

sequence of paired imaginary numbers

=k +jk k = 1,2,3,. . ... 4 (A-7)

where Pk satisfy

Sp cos(p) + sin(p) = 0 . (A-8)

Thus (A-4) becomes

r+ 1 1]~
R(z;c) = R(z;0) + Wk + +

k=1 I - J~k J k
(A-9)

+ W ~ ~
k=l + JPk Pk

+

where W are the residues for the +JPk poles and W are the S

residues for the -JPk poles. Evaluating the residues, we find

+ Wk z) 2 tJPk cos[Pk(C+d+z)/C] ( -Wk(z) = (z)= (A-10)
k [cos(Pk)-Pksin(Pk)] + cos(Pk)

-, Using the first equation in (A-10), we can combine the two sums

in (A.9) as follows

R(z;C) R(z;O) + Wk(Z) , + 2

k=1 I - jPk C + j3 k JPk

(A-1i)

00 ~+
R(z,O) + 2 2 )k(Z)

k=1 JPk(Z -(JPk)Z
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The latter can be rewritten using (A-2), (A-3), and (A-10), as

follows

2'Wk(Z)
R(z;jw) 2 + + 2 (W 2 + (jW) k

+ c ( z

46 1 1i= W ) + ( ) + (W

where

Wk~ k~z/jk

W k = Pk Co0/C

and the partial fraction expansions of Rn(z;jw) and R2m (z;jw) can

L n nm
be obtained from the preceding by replacing W c with w c and w c

N.

1'5

1,
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