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ON THE EXCEEDANCE RANDOM MEASURES
FOR STATIONARY PROCESSES
by
M.R. Leadbetter

University of North Carolina

Summary: Two common approaches to extremal theory for stationary processes
involve (a) consideration of point processes of upcrossings of high levels and
(b) use of the total exceedance time above such levels. The approach (a) yields
a greater variety of interesting results regarding the "global” and local
maxima, but requires more by way of regularity conditions on the sample paths,
than does the approach (b).

In this work we combine both approaches by consideration of the "exceedance
random measure” thereby obtaining general results under weak conditions on the

sample functions. These include previously known results in the case where more

sample function regularity is assumed.
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1. Introduction
Two approaches have been used to obtain theory surrounding the asymptotic

distribution of the maxima
(1.1) M(T) = sup{f,: 0 < t < T}

of a stationary process {ftt t 20}, as T >». The first of these involves

upcrossings of high levels, using the simple connection
{M(T) < u} T {N (T) = 0} C {M(T) < u} U {§(0) > u}

if Nu(T) denotes the number of upcrossings of a level u by Et in0 {t{T. It
may be seen from this (cf. [9] and references therein) that the limiting
distribution of M(T) is intimately connected with the asymptotic Poisson
character of point processes of high level upcrossings. This approach must be
modified when the sample functions are so irregular that upcrossings do not form
a point process and this may be done by use of the so called e-upcrossings of
Pickands [10].

The second approach to extremal theory for M(T), employed by Berman (cf.
[1]) uses the exceedance time LT(u) = Ig l(ft>u)dt' and the immediate

equivalence P{M(T) € u} = P(LT(u) = 0}). VWhile the "upcrossing framework"

th

provides a greater variety of associated results (e.g. concerning k= largest

local maxima), the use of exceedance times requires very little by way of sample
function regularity.

In this paper we explore a simple extension to the notion of exceedanée
time. namely the exceedance times in arbitrary Borel sets, or "exceedance random

measure”. This may be defined under the same minimal conditions as LT(u) but
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2

gives new and more detailed results involving upcrossings when the sample
functions are more regular. In fact in such cases the limiting random measure
represents both the positions of high upcrossing points and the lengths of the
high level exceedances thus initiated.

Specifically it will be convenient to consider the random measure (r.m.) CT

defined for Borel subsets B of (0,1] as the amount of time in TB for which

Et > ur. where {uTt T20} is a given family of constants, viz.

1.2 C.(B) = [1 de. |
(1-2) ) = I Epoup |

For convenience we assume throughout that the underlying probability space is
complete, and that Et has a.s. continuous sample paths (and hence in particular
is a measurable process). Clearly (t((O.l]) = LT(uT)' the previously defined
exceedance time.

Our primary interest concerns distributional limits for the random measure
aTCT as T » o, (for suitable constants aT) when the levels up from a "family of
normalizers for the maximum M(T)”, in the sense that P{M(T) ¢ uT} has a non-zero
limit. To obtain non-trivial results, it is clearly necessary to restrict the
long range dependence in the process to some degree. This will be done by an
assumption "A(uT)" of similar type but significantly weaker than strong mixing.
This will be discussed in Section 2, and sowe basic lemmas proved.

Section 3 contains the main results of the paper-characterizing the
possible random measure limits for aTCT as a class of Lévy Processes of Compound"
Poisson form (with general type of multiplicity distribution), and giving
sufficient conditions for convergence.

Section 4 concerns families of levels uT(r) parametrized by the quantity T

such that P{M(T) ¢ uT) se 7, it being shown that convergence of aT{T for one

W7
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:.':_: such level implies its convergence for all such levels. Finally in Section 5 we
B .Y

’-’
{ : interpret the limiting r.m. in terms of high level upcrossings and exceedance |
I “
-525 times when the sample functions are more regular, and illustrate the theory by |
- .* )
_';:" obtaining explicit results for stationary normal processes.
)

.'.t'). In some respects our development parallels that for high level exceedances
::5 in discrete time considered in [4], and we have made some technical
o
! o simpliciations which could also have been used in the discrete time case. But
3

* the more essential differences arise from the fact that random measures rather
S
:_':: than point processes are considered, with consequent problems of "lack of

.'d

Y tightness”. In particular a case specifically excluded from [4] where
. convergence of the so-called "exceedance point process"” occurs after

S0
:'_:::: multiplication by normalizing factors tending to zero, may be treated using the
\':-.

NN present methods.

e

.

4 2. Framework and basic lemmas.

o

!::: ‘ The basic dependence condition to be used throughout is an obvious

N
s

'.\, continuous time version of a weak mixing condition used in discrete time (e.g.
.
‘_,), [4]). Specifically let {uT} be a family of constants and write B: <

‘. ’
;;{ a{(fv$uT). s ¢ v { t} where o(*) denotes the genrated o-field. Write also

4

At
o]
b T T

o ar g = sup{ [P(ANB)-P(A)P(B)|: A € By ¢+ B € By, 1. 820, &4sCT.
Y
a9
_‘:::' Then we say that the stationary process Et satisfies the condition A(uT) if
e

by .
A
.. . © T).
V.. (2.1) a.r.e-»o as T -» ©, for some 8T=o()
P
Lo
ﬁ The condition A is often applied through the following lemma essentially
L) f.
" 4 given in [11].
i3
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Lemn 2.1 Let By , = sup {|¢YZ - evez|: .z B] -, B:+e |~ measurable

respectively, |Y|, |Z| {1, &.s > 0, 2+s¢T}. Then ar o $ Bp o < dap , so that
A(uT) holds iff BT.BT-' O for some e.r:o(T). o
The following result show how the A condition implies approximate

independence of the Laplace transform of (T in appropriately chosen disjoint
intervals. Results of this type have been used in various forms (cf. [7]) and
the present statement corresponds closely to the general discrete time version
by Hsing ([4]). A proof will be given since a slightly more general statement
is given than is covered by a direct transposition of that in [4]. and some
notational simplification is possible in the continuous time context. A
corresponding result for the maxima will be obtained as a corollary. Here and

throughout m(+) will denote Lebesgue measure. Use will be made at various

points of the inequality

k k k
(2.2) |111'Y1-111'xi| Sf. |yi-xi|.0$xi. vy S 1.

Lemma 2.2 Let A(u.r) hold and {k.l.} be integers such that

(2.3) kTBT/l' -0 kr"'r.eT" 0

where 8.1. is as in (2.1). Let .I1 = (JT.i) 1<1¢ kT' be disjoint subintervals

ky

of (0,1} with J(=J(T)) = U Ji' and (a.r} positive constants. Let f be a bounded
1

non-negative measurable function such that f(x) 2 a > O on a non-degenerate

interval I C (0,1] and suppose that Tm(I ﬂJ)/(kTeT) - o, Then

kp

(2.4) =8 exp(-a.lJ'deCT) - III ¢ exp(-a.lJ'Jifd(T) -0 as T = o,

("' ] ' . '{'. """"" In - - q"i’.ff{ f{ {{
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g M Proof: It is sufficient to show that any convergent subsequence (TT: T € S} of

d ‘ (1T) has limit zero. Write

b G () = (1151 S w3y > /)

ﬁ); - H (=Hp) = {1. 1 <1<kt m(Jy) € 2/T)
\
" ,
-
gﬁi. The intervals Ji may be open or closed at either endpoint, but for
3;: definiteness we shall regard them as semiclosed and write J1=(ai'Bi]’ and for

ey
-
5

~
¢
-

(T(I:) has the same distribution as (T(I;) for each i € G.

-

TN
Y

Let A be an upper bound for f and suppose first that

w
o

(a) ¢ exp(-aTA{,r(IS))-vl as T »® through S.

A Taking limits through S, and using stationarity and (2.2),

A el
.'J )§.I»

e

,4{

(2.5) |8 exp(-ap 2 [} fd07) - & exp(-ardfdly)|

P 4 l..l

-y

¢ 3 &(l-exp( fd())
st ""r"'.ljl T

e, 7
DA

P

Eras

< X &{1 - exp(-apAly(19)))

This expression tends to zero by taking logs in assumption (a).

It follows in a very similar way that

(2.6) ¢ exp(-ap écflifdcT) - ¢ exp(-a; izGIJideT) = 0.

Also by an obvious induction from Lemma 2.1,

ieG 14

x .
1 € G define I, = (ai. ﬁi-ei/T], Iy = (O,eT/T]. Note that by stationarity

(2.7) |e& exp(—aTi 3 Sy fd07) - 1gc‘ exp(-a.lJ'IifdfTH < ‘“‘1"T.¢T -0
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T and by (2.2)
!
t
A (2.8) ngcg exp(-a-IJIifd(T) - 12(:‘ exp(-a-IJJideT)

Ny

N $ 3 &(l-exp(-apf ,fd(;)) =0
.

N 1€G a.[II: T
': ..
' exactly as in (2.5). Finally
iz'e" -
)

_“ (2.9) | T & exp(-a S £dl.) - I & exp(-a S, fd{)|
) 1€G aTrJi ™ a aTrJi T

[ TN N

$ 2 &{1 - exp(~ Cr)}

| '\. i€H aTJ.Ji T
5.::3. which again tends to zero as in (2.5).

T
N'i It thus follows by combining (2.5)-(2.9) that if (a) holds then T 0 as
O_..i

@ T - @ through S.
oy
f.:;.
:::j', (b) If (a) does not hold there is a subsequence S' of S such that
D 8krexp(—a.rA§T(I;)) 2+c<1asT=o through S'.
A L
E 3 We have f(x) > a > O for x € I. Choose 91. such that GT/k.r - @, G,I.a.r.eT -
A0
.k' 0. Tm(IﬂJ)/(GTeT) > o, and write (with [*] denoting integer part)
DAl

"{ GT { = [9'1‘"'(‘]1 N I)/m(J N I)]
AN *
S
s Clearly, since kp = o(67), 36, , ~ 6y and 6, ,(2;)/(Tm(J; N 1)) =
) ~ 1 » [

AL
(\ 22.6./(Tm(I N J)) - O uniformly for all J, intersecting I. Hence 8y , (20)
::::o subintarvals l-:i of (J, N I) may be chosen of length e.lfl'. and mutually
o i 1
o
::o’:'. separated by at least &./T. giving

1,45
A ¢ exp(-aSfdl7) < & exp(-a, 3 J fdf,)

.)‘.'-' i.J Eij

)""u e’]" x

>y - + 46

19 $ & exp(apalr(ly)) + 46007

s :
'.‘:,'::E which, using Holder's Inequality, (noting a/A ¢ 1) does not exceed
Ry

"
'.'.l.
A

0

SN
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0. a/A k.r

610/ (kGA)
¢ " exm(-apAC(Ig)) + o(1) = {4 LA

exp(-aACL(15))) 0

since the inside term tends to c < 1 and GT/kT - @, Hence the first term in Tr
tends to zero. Similarly the second (product) terms does not exceed
2

& Texp(—a.ra(T(I;)) + o(1) which tends to zero as above so that 5 i Oas T » o

through S' and hence through S, as required. a

Remark: The result still holds if the function f changes with T, i.e. f=fT. for
example, provided each f,r is bounded above and the same lower bound constant a

applies to all f,r (though the interval I can depend on T).

Lemma 2.2 is often applied in the following form

Lemma 2.3 Let the assumptions of Lemma 2.2 hold and suppose J = (a. BT) where
BT T B (0<a$B<1). Suppose also that I N (a,B) # ¢ (which guarantees also the

last assumption of Lemma 2.2). Then

kep
¢ exp(-aSPrag) - T exp(—a.lJ'JideT) +0as T »

Proof: By Lemma 2.2 it is sufficient to show that

*p = & exp(-arS; £dly) - 8 exp(—a.!J'zfdfT) >0

as T » @ through a sequence S such that 71'. has a limit as T -» © through S.

. x x
Since O ¢ T $ l—exp(-a.].AfT(J )) by familiar arguments, where J = (BT.B] the
result follows if ¢ eX'p(-a.rA(T(Jx)) -1 as T » o through S. Otherwise there is

a subsequence S' C S such that as T - @ through S',

(2.10) ¢ exp(-aTAcT(J‘)) sc <1

O
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Now since m(I N J) =» m(I N (a.B)) > O, m(Jx)'* o, ZT/T -0 it follows that
m(I N J)/(eT/T + m(J*)) - ® and hence we can find in I N J, GT - ® copies
El...EeT of Jx. mutually separated by at least eT/T. Hence

¢ exp(-apS (fdy) < & exp(-apali(I N J))
)
< & Texp(-agaf(J%)) + Oy g,
ab./A
il exp(-arAC(J)) + o(1)

{(choosing 6. so that &rzr - 0). But this last expression tends to zero by
T .ZT

(2.10) since 6. -» @, Hence the first term of ~., tends to zero as T - ® through
T T

S'. But v, is dominated by this term and hence itself tends to zero, completing

T
the proof. (8]

The following result showing approximate independence of maxima in disjoint
intervals follows simply. In this and throughout, M(E) will denote
sup(Et: t € E) for sets E C (0,T] (so that M((0,T]) = M(T) as previously
defined). Note the slight asymmetry of notation in that M(E) is defined for
subsets of (0,T] whereas (T(B) is defined for subsets B C (0,1], and the

equivalence ((T(I) = 0} = {M(T.I) ¢ uT} for an interval I C (0,1].

Lemma 2.4 Let A(uT) hold and (kT} be integers satisfying (2.3). Let Ji

—F

(=JT i)’ 1<i<k,, be disjoint subintervals of [0.1]. J (=J(T)) = Jg- Then

- C

kp

P{M(T.J) ¢ u..l.} = g‘ P(H(T.Ji) < u,r} +0as T oo

Proof: Putting f =1 in Lemma 2.2 gives
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¢ exp(-a{;((0.1])) - 111 ¢ exp(-a;{r(J,)) = 0.

Now write for the d.f. of (((0.,1)]. for that of {..(J,). Clearly
T i T i

constants bT > O may be chosen so that

ky /
Gplby) = G(0) 0. 3 (g y(bp) - Gp () 50 as T e

Further choose ar such that k.rexp(-a.rb.r) - 0. Then

0¢¢ exp(—a.r(T((O.l])) - P{(T((O-I]) =

" ey PP Grlby) - G(0) + exp(-aghy)

which tends to zero. The same inequality holds for CT(Ji) with Gr i replacing

GT' and thus by (2.2),

kp kp K
| T8 ep(-artr) = TP = O] § 36 ()G () + Kyemp(-agdy)

which also tends to zero by choice of a and h.l. The result thus follows by

identifying ((T(B) = 0} with M{(T.B) ¢ uT} for B=J, Ji' o
The following analog of Lemma 2.3 follows simply.

Lemma 2.5 Let the assumptions of Lemma 2.3 hold and J = U Ji C (a,B). 0<a<p<1,

with m(J) - B-a. Then

ky
PN((Ta.T8)) € ur} = T P((T.J;) S ur) +0as T >

Proof: This follows from Lemma 2.3, or may be similarly proved. First note

that the Ji may be replaced by abutting intervals of the same length without

AEAALL WA *?"x)‘ i O -«} ) AN
5. X/ ™
"G b.c"i'::’a W, ('"l'..O'u nl"': s Ol Ve 8 <. l'o \’-‘I"‘l‘o‘ 'lo ‘::"l'-'::::\a' :t:'.':;m v::: ."l l
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affecting either term (using stationarity) so that J becomes an interval (a.BT)

with BT - B.

3. Convergence of (T

It is straightforward to characterize the class of possible limits in
distribution for aTCT where anT is any family of positive constants.
Specifically if aT§T converges in distribution to a random measure {, then { may
be shown to be stationary, to have no fixed atoms and to have independent
increments and hence (along the same lines as Lemma 3.1 of [4]) to have Laplace

Transform L. satisfying
(3.1) ~log L (F) = afofax + 53 15 (1-eV ()ap(y)ax
where a 2 O and the (Lévy) measure v on (0,») satisfies

(3.2) Iy (1-eVydu(y) < Q.

In fact this result may be strengthened to replace weak convergence of the

random measures aT§T by just weak convergence of the random variables aTCT(I)

for one fixed subinterval of (0,1]. Further an elementary proof may be given as

will now be indicated.

Theorem 3.1 Let A(uT) hold for the stationary process (ET}. assumed to have
continuous sample paths and write CT for the exceedance random measure
corresponding to (uT}. Suppose that for some non empty subinterval I C (0,1]

and a family {aT>0) of constants, that anT(I) converges in distribution to a

d
r.v. (0. Then anT - { where { is a random measure with Laplace Transform given

by (3.1).

hd ”

{' -, -"' "t'.'c"l o ‘0 .:“t‘." A MR A ' “:‘u
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::: Proof: It will be notationally convenient to take I = (0,1]. With the notation
(_ of A(u.].). choose integers kp - =, satisfying (2.3). If (o has Laplace Transform
:.“! ¥(s) = gexp(- s(o) we have Y(s) = lim 8exp(-s§,r(0.1]) and it follows from Lemma

2.2 with f(x) = s, and Ji = ((1—1)/k.r. i/kT], that ¢ exp(-s(T(Jl)) - ¥(s).

-.'i Again by Lemma 2.3 by obvious calculations for any interval I = (a,f] C (0.1] it
':Eg follows that 8exp(—s§.r(1)) =& exp(-s(T(Jl))(Ho(l)) where np = [kT(B-a)] from
o which it is simply shown that ‘
s 1‘
b texp(-sCr(1) » w(s)" 1) as T o e
k) »

o\

"
N In particular if I = (0, 1/k] for a fixed integer k it follows that

L J
- W(s)l/k = lim zexp(—sf,r(l)) is a Laplace Tranform so that since
i : T
".' ¥(s) = ((w(s))llk)k. is infinitely divisible and hence
(3.3) -log ¥(s) = as + So(1-e Y)du(y)
o
:\{ for some constant a, and measure v on (0,») satisfying (3.2).
K -'}
“) A further application of Lemma 2.2 shows that if Il' ce 'Ik are disjoint

:1 semiclosed subintervals of (0,1] (and f(x) = s, on I, then {(I.)...0.(I, ) have

o 3 j T Tk
' E: the joint Laplace Transform

X5

® k k m(Ii)
.'. | exp(- f’if'r“i” -vllr ¥(s,)

¥ so that
W d
]
Ay (96 35 TN ¢ ) ) IR { SRR o)
"
) 2 ©
A where (i are independent and -log 8exp(-s§1) = m(Ii)[as + J(1-e sy)dv(y)] may

0

K
’::"' thus be recognized as having the distribution of (C(Il).. . ..((Ik)) where ( is a
'::'gs random measure with Laplace Transform (3.1) so that f,r =+ (e.g. [6]. Theorem
D |
" J
0"
M |
° |

R e R S, R

lv
:"‘ NH ) 1'\ K '
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4.2). o

d
Corollary 3.2 If the convergence of aTCT(I) - (O in the above statement is

replaced by convergence in distribution of a.r(.r to a random measure {, then (

has Laplace Transform given by (3.1).

The stationarity of fT may be used to show that { has no fixed atoms and

d
=0 a.s. giving fT((O.l]) = {((0.1]) so that the theorem

Proof:

hence {({0}) = C({1})

applies. o

A random measure { satisfying (3.1) also has the "cluster” representation

1
C(+) =am(s) + [ I y6 (+)dn(x.y)
x=0 y=0

(3.4)

where 6x denotes unit mass at x and ) is a Poisson Process on (0,1]x(0,») with

intensity m x v. Thus { has a uniform mass on (0,1] together with a sequence of

point masses y; at points X, where (xi.yi) are the points of . In general

there may be infinitely many of the atoms Xy in (0,1] (though their total mass

is finite) so that this component is then an atomic random measure which is not

a point process. However if v is finite the Xy do form a point process - indeed

a stationary Poisson Process on (0,1] with intensity parameter v(0.»). In any

case the points X, for which yi)a form a Poisson Process with intensity

parameter v(a,®), for any a>0. It is also readily seen that P{{(0,1) =0} >0

if and only 1f a = 0 and v(0.®) < @ so that if a or v(0,®) = ® the interval

(0.1] (and in fact every interval) contains {-mass with probability one.

In the case when a=0 and v(0,®) < @, w(*)=v(*)/v(0,*) is a probability

distribution on (0,») with Laplace Transform ¢(s) = .l':; e-sxdr(x). Then from

(3.1), writing v(0,») =

'o» k)

et OMD A ) N 1
() . .l...l aN ~ 1 -.gl'l ]
[.'Q 0..’00 .'. ‘." l|.’ ‘. I‘..-‘.. ) "l . 0 L 0.0‘. ': ‘t'

“t i " . '

c‘ s‘
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(3.5) ~log Le(£) = nfgl1 - #(£(x))Jax

which shows that { is a Compound Poisson Process (with not necessarily integer
valued multiplicities) based on a Poisson Process with rate v, and multiplicity
distribution w.

As might be anticipated, the case where every interval contains {-mass with
probability one arises when the level ur is low in comparison with the values of
the process i.e. when P{M(T) ¢ u.r) is small. Specifically the following result

holds.

Theorem 3.3 Suppose that the conditions of Theorem 3.1 hold and that
P{M(T) < u.r} ~»0as T +», Then a=0 and v(0,») < @ in (3.1).

Proof: If P{M(T) ¢ u.l.} —-» 0, lim sup P{M(T) ¢ uT) > 0 so that since
d

a-rCT(O-l) - (0'
P(co = 0} 2 lim sup P(BTCT(O.I) = 0)
= lim sup P{M(T) ¢ u.l.} > 0.

But from (3.3). P((o = 0} = lim 8exp(-s(o) = 0 if either a > O or v(0,®) = =, so
S=-0

that a = 0 and v(0,®) < ® both follow, as required. o]

It will be convenient to refer to the set of points (if any) i{n an interval
Ji = ((i—l)/k.r. i/k.r] for which Et > u; as an excurstion of Et above ur. An
excursion may consist of disconnected segments within one Ji' and points in
successive intervals at which Et > up are regarded as belonging to different
excursions. The conditional distributions Lt of anT(Jt) given CT(J1)>O will be
termed excurston length distributions. It will be seen below that these

distributions (on (0,®)) converge weakly to a probability distribution » on

Q .‘. .I ' ll ] 'I .
B -~'-~:.--:- R ..;.--".
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>
:* [0.2) under the conditions of Theorem 3.1, though the limit may have mass at
! zero. A more definitive result is possible if it is assumed that the

j:ﬁ. distribution w, are tight at zero in the sense that lim lim inf wT((O.e)) = 0.
e T-m

Na Theorem 3.4 Let the conditions of Theorem 3.1 hold and suppose P{M(T) < uT}
-p
Sy -» 0. Then the representation (3.5) holds, and if P{M(T) ¢ u.r} e %0 gvo { ®»

as T -» ®» through some sequence S, then Yo 2 v and

w
8 (3.6) Lf W (l—v/vo)éo + (v/vo)r

as T -» » through S, Bo being unit mass at zero. In particular if P{M(T) ¢ u.r}

® -v
:;:; has a limit » 0 as T -+ @ then (3.6) holds as T -» »,

Proof: By Theorem 3.3 it follows that a = 0 and »(0,®) < », giving the

representation (3.5). Writing Jl = (O.IIkT] again and rp = T/kT. we have by

..l',

Py
»

AN

Lemma 2.2,

)

Rt d
I SN

-

¢ exp(-sa{ ((0.1])) = :kTexp(-saTcTul)) + o(1)

N

- [PN(ep) € ugd + POACrg) > upd S5 & eng(0] T + o)

=[1 - P{H(r.].) > uT} fg (1-e ) (x)]kT + of1).

-I.
-

’I

EXX

so that

K P{M(T) < up} f: (l-e-sx)dr.r(x) - -log ge~3C((0.11)

= v J§ (1-e F)an(y)

[
Pt
‘- F‘.JE'}‘%

O

“:.'D;n 'vo
i by (3.5). If P(M(T) S uy} »e O¢vy$®asT o

" through a sequence S, then Lemma 2.4 shows that k.rP{l((r.r) > “T} = v, ({ =) and

hence

v, W l‘ () | \y _! %) (OO0 A A \ 0 -
o t:\o' ,.'n..'h,..c‘. .' ‘. .\.b.‘,"‘ ‘.‘ﬂ" ‘ ‘l..'..o,:'h\.r‘l"‘ i.:.::'.‘o "':'I‘. “ ) ' .»:.::' ‘t,“‘ Ny :..y:... 9 .:..‘t :‘.,0 l.[".g ,:. .o“:\p‘..' ‘.v.'.c
“ N ,o;c.lzu.o % ‘,‘ ", '“ ..-’u'w. R ."n‘.‘.: N
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T (1-e™)dmy(x) = (v/v,) fg (1-e")an(y) (2 0).
That is, as T - ® through S,
J'g e-sxdw,r(x) - (l—v/uo) + (v/vo) fg e-sydw(y)

from which (3.6) follows by the continuity theorem for Laplace Transforms.

Finally by (3.6),
= lim inf wT(O.w) 2 {(1-1:/1:0)6o + (v/vo)w}(o.w) = v/vo
so that v v, as required. a

Theorem 3.5. Suppose that the conditions of Theorem 3.1 hold and that the
family {wT) of excursion distributions is tight as zero in the sense defined

above. Assume that P{M(T) ¢ uT) —» 0 as T -+ ®. Then the representation (3.5)
w

-v
holds, P{M(T) < uT} - e and Lf
Proof: The representation (3.5) holds by Theorem 3.4. Let S be a sequence

-v
through which P(M(T) < uT) converges to some limit e 0 0¢ % ¢ ®. Then from

(3.6) for e > O,

lim inf = ([O e)) 2 —1([0 e)) +1 - —2 0
Tes Yo

But by tightness at zero the left hand side has zero limit as ¢ = 0. This rules

out the case Vo = ® and further shows that Vo = V- Thus P{M(T) < u.r} has the
limit e Pas T »» through any sequence S for which there is convergence so that

w
P{M(T) < uT) +e” as T+, Hence also (3.6) gives Tt vas T + », completing

the proof. a ;

The final result of this section gives sufficient conditions for !

.l}!;l\l‘i . ’ 0' '

'- ERM MM KOO0 h
ht.ulﬂ HH»'HHH-NH ORI MR XML (]
0ll ltolullo tll!l‘i| ..hlt t ll ety
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convergence of anT. The same notation as above will be used - in particular

kr* © will be chosen to satisfy (2.3), and rr = T/kT'

v

Theorem 3.6 Let (uT) be a family of constants such that P{M(T) ¢ uT} + e for

some O { v < ®» and such that A(uT) holds. Suppose that for some family (aT) of R

positive constants, the excursion length distributions ¥y converge weakly to a

d
probability distribution v on (0,®). Then aTCT~* (. where { is a r.m. with

Laplace Transform satisfying (3.5).

Proof: It follows as in the proof of Theorem 3.4 that

texp(-sa{1((0.11)) = {1-P{M(ry) > ur} Jp (l—e"")drT(x))k’ + o(1)

which converges to exp{-v é(l-e-sx)dr(x)) as T » @ sfnce P(l(rT) > uT) ~ v/kT by

w

Lemma 2.4 and .. = v. This shows that aT(T(O.l) converges in distribution so '

T
that the conditions of Theorem 3.1 hold. Since the assumed weak convergence of

¥ clearly implies its "tightness at zero” the conditions of Theorem 3.5 thus

T
hold, so that (3.5) holds with the given v,¥. 0

4. Families of levels.

Suppose that For each v > O there exists uT(T) such that
(4.1) PM(T) S up(r)) »e "

This will be the case (cf. [3]) if there are normalizing functions (not

necessarily linear) uT(x) for the maximum such that P{M(T) ¢ vT(x))-a G(x) where
G is a continuous d.f. (For if 7 > O, choose x such that G(x) = e ' and UT(T) =
vT(x)). If A(uT) holds for each T > O then it may be shown (cf. [3]) from Lemma
2.2 that P{(T) < ur, (1)} = e’ so that (4.1) still holds if u(7) is replaced

I ¥ Ll S O
O D MO O KA IO N XS
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by uT/T(l). That is uT(T) may be replaced by a new version satisfying (4.1) and |

such that

(4.2) uaT(aT) = uT(T)

for each 0 > 0. For simplicity we assume in what follows that UT(T) satisfies
(4.2) as well as (4.1). The exceedance random measures for the levels uT(T)
will be denoted by (%T). The first result shows that convergence in
distribution of (a normalized version of) (%T) for some T > O implies such

convergence for all v > O.

Theorem 4.1 Suppose A(uT(T)) holds for each T > O where levels uT(T) are

defined as above satisfying (4.1) and (4.2). Suppose that for some L > 0 and
(r,)

some constants aT>0. aT(T 1 converges in distribution to a random measure f(T).
Then

d
9-%1)(%7) - I(T)

where a%T) = aTTl/T and C(T) has Laplace Transform given by

~feac(™)
~tog T 2 1 g1 - a(r(x)))ex

in which ¢(s) = fz e_sxdr(x) is the Laplace Transform of a distribution v on

(0.») which is independent of T.
Proof: Fix v > O, choose € > O such that eT/Tl <1and write I = (0,e). Then

T
SUORE AR

(Trl/T)(Te/rl)
=% /10 HE, > uTTl/T(Tl”dt

OQORMN ! X ¥ OAG0NAN
Y \?"ﬁ“v:":‘,“::"’:\ whahhGiatehy Tt gl gle "“A':‘:"':‘
AN MODTANONAY : “ﬂfﬂfffﬂ)d‘ﬁ mudné\
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(rp) . 4 (7))
aTT /T cT'rl/'r('r 1) = ( (-—I)

Hence the convergence of a%T)(§T) toar.m. ((T) with the desired Laplace .
Transform follows from Theorem 3.1. The fact that v does not depend on T

follows since with the above notation,

(r

texp(-saf (D (D) + te(-sr D)

exp(-rlc-};)mm(l-o(s)))

exp(-Tm(I)(1 - ¢(s)))
so that ¢(s) (and hence 7) is the same for all values of T. o]

If T, < To uT(T2) will typically be less than uT(Tl) (and indeed may be

(r,) T
assumed so if desired) giving CT 1 (B) € CT 2 (B) for Borel subsets B of (0.1],

(1)) (75) (r))
so that (T is a "thinned version” of (T . Thus one expects { to be a

(ry)
thinned version of ( 2 . While the thinning process may be complicated it is

()
readily seen that the probability that an event in { 2 is totally eliminated

(ry)
in { with probability 1-7r /T

1”72 and, if not eliminated, retains the same

(75)
marginal multiplicity distribution (v) as for { 2 . A detailed discussion of

these and "multilevel™” cases is planned for [5].

5. "Regular” sample functions and stationary normal processes.

Suppose now that Et is stationary with continuous sample functions and that
the mean number pu{u) of upcrossings (cf. [9. Chapter 7]) of u per unit time is
finite for each u. Suppose also that A(uT) holds where {uT) is a family of
levels such that TH(UT)'* v. Then it may be shown under natural further

conditions (cf. the Condition C' of [9] Section 13.2) that P{M(T) € uf} - e’
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3
19 ~
:::: (In the following it will be simply assumed that this limit holds.) Write NT
LA
( N for the point process of upcrossings of ur. defined on the unit interval by
‘}:j writing NT(B) to be the number of upcrossings of up by Et for t € T.B, for each |
oy
X Eg Borel subset of (0,1]. The following result is then readily proved.
\
Dy Theorem 5.1 Suppose that ft satisfies the above general conditions and
o . d
::%: P{M(T) ¢ uT) -+ e ”, where Tu(uT)A* v. Then NT-# N. a Poisson Process on (0,1]
o,
W with intensity v.
-
::: Proof: This follows simply by standard arguments from a theorem of Kallenberg
0%
_{tj ([6]. Theorem 4.7). o
. ~ 4
;s{? This result and Theorem 3.5 suggest that one may regard the upcrossings
o
Lo
:aj asymptotically as forming the underlying Poisson Process in the Compound Poisson
:eﬁ limit for the normalized exceedance r.m. aT(T. A further natural question is
“ﬁb whether the excursion length distribution mp as defined prior to Theorem 3.4 is
',-\'
:: equivalent to the distribution of time from an upcrossing to the next
:E“f downcrossing, after normalization. The affirmative answer to this question
) ~
A stated below is obtained from Prop. 4.5 of [8]. Specifically we write LEY for
’-J':
::: the conditional distribution of the time to the first downcrossing of ur after
>,
-
: ’2 t = 0, given an upcrossing occurred at t = O (in the Palm or "horizontal window"
I sense). ¥ may be evaluated by
-":::
n_";: ~ _
7 wr(x) = pu (up)/p(ur)
L ]
7 where ux(u) is the mean number of upcrossing of u per unit time such that the
I:&: next downcrossing occurs within a further time x.
[ ‘-,‘\
) If A(uT) holds write r% for the conditional distribution of (T(Jl) given
i | -1 )
;ﬂ" (T(Jl) > 0 and Jy = (O.kr ] with kT satisfying (2.3). (Thus 1T(x) is the
!:'.
’0'.“
' ".
|:‘:|'
, ‘ '
@
t'.'
1

£}

i,! .- .
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non-normalized excursion length distribution and = (x) = .I'.(a.rx). Proposition

4.5 of [8] then gives

Theorem 5.2 Let A(u.r) hold where Tu(u.r) - v and P{M(T) ¢ uT) -+ e ” for some

v 2 0, and 7., 7. be defined as above. Then 1r (x) - ,i.(x) - 0 uniformly in x as

T T
T = o, o

It thus follows from this result that . (aT x) may be used to replace T(x)
to give the multiplicity distribution » in the Compound Poisson limit (e.g.
Theorem 3.6).

In these results we see that the underlying Poisson event for the limiting
Compound Poisson process for aT(T may be identified with high level upcrossings
and the event multiplicities with lengths of excursions above the level
following upcrossings. A closer identification may be obtained by showing that
the point process of upcrossings "marked” with the immediately following
excursion lengths, has the same compound Poisson limit as does the exceedance
r.m., but the details of this will not be pursed here.

As a specific case consider a stationary normal process Et with zero mean,
unit variance and covariance function r(t) which is twice differentiable at

T =0, -r"(0) = 1. Then Rice's Formila gives the upcrossing intensity u(u) =

2
(2)7'e™ 2. It 1s knon ([2]. Section 12.5) that 1f 6 =(i(ur)) 'P{E(0) > ur}

where Tu(uT) - v (hence OT ~ {®/log T)1/2) then
;T(e.rx) -1 - exp(—(r/4)x2) ags T oo

' A convenient non-degenerate limit for LEY is thus obtained by taking

— ~  _ 2
=//0. ~ (log 'l‘)U2 so that w.( 1x) -+ 1-e ¥ /4. The condition A(u.)
2r T T\%T Y1

certainly holds under reasonable conditions (e.g. strong mixing and it seems

L)
ot
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likely to hold even under the weaker condition r(t)logt = O as t - =, though we
have not attempted to verify this). Hence for such processes the limiting

Compound Poisson Process for aTIT has underlying Poisson intensity v = lim

2
Tu(uT) and multiplicity distribution function 1-e * /4.

Finally we note that similar results will app'y under appropriately
modified mixing conditions to other functionals associated with high level
exceedances, or excursions into other "rare sets”. Indeed a discussion could be
carried out as a study of a class of random measures on the real line without
reference to a real valued process Et at all. Here we prefer to use the more

specific framework within the context of extremal theory.
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