ELECTROCHEMISTRY AT VERY HIGH POTENTIALS: OXIDATION OF THE RARE GASES AND (U) UTAH UNIV SALT LAKE CITY DEPT OF CHEMISTRY S PONS ET AL 30 JUL 86 TR-62
Electrochemistry at Very High Potentials: Oxidation of the Rare Gases and Other Gases in Non-Aqueous Solvents at Ulramicroelectrodes

By

Stanley Pons, T. Dibble, S. Bandyopadhyay, J. Ghoroghchian, J. Smith, F. Sarfarazi, M. Fleischmann

Prepared for Publication in
Journal of Physical Chemistry

University of Utah
Department of Chemistry
Salt Lake City, Utah 84112

July 30, 1986

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale: its distribution is unlimited.
Electrochemistry at Very High Potentials: Oxidation of the Rare Gases and Other Gases in Non-Aqueous Solvents at Ultramicroelectrodes

Stanley Pons, T. Dibble, S. Bandyopadhyay, J. Ghoroghchian, J. Smith, F. Sarfarazi, M. Fleischmann

University of Utah Department of Chemistry Salt Lake City, UT 84112

Office of Naval Research Chemistry Program - Chemistry Code 472 Arlington, Virginia 22217

This document has been approved for public release and sale; its distribution unlimited.

Oxidation of species with very high ionization potentials can be studied; oxidation of some of the rare gases and oxygen is reported in this work.

Ultramicroelectrodes, Rare Gases
ELECTROCHEMISTRY AT VERY HIGH POTENTIALS:
OXIDATION OF THE RARE GASES AND OTHER GASES IN NON-AQUEOUS
SOLVENTS AT ULTRAMICROELECTRODES.

Timothy Dibble, Saibal Bandyopadhyay,
Jamal Ghoroghchian, Jerry J. Smith, Fereshteh Sarfarazi,
Martin Fleischmann** and Stanley Pons*

*Department of Chemistry
University of Utah
Salt Lake City, UT 84112

**Department of Chemistry
The University
Southampton, Hants. SO9 5NH
ENGLAND

*To whom correspondence should be addressed.
ABSTRACT

Ultramicroelectrodes may be used in solvents containing little or no purposely added supporting electrolyte. Under these conditions, the accessible potential range is considerably extended. Oxidation of species with very high ionization potentials can be studied: oxidation of some of the rare gases and oxygen is reported in this work.
INTRODUCTION

The accessible potential region in a conventional electrochemical experiment is limited by the oxidation or reduction of the solvent or supporting electrolyte. Under ideal conditions, at room temperature, this window can range from something over +3V vs. Ag/Ag^- (e.g. acetonitrile, SO_2 solvents), to slightly greater than -3V vs. Ag Ag^- (e.g. acetonitrile, ammonia, tetrahydrofuran solvents). It is thus impossible to study the redox reactions of species with very low electron affinities or high ionization potentials by ordinary electrochemical methods. It has been demonstrated recently, however, that by reducing the electrode dimensions to very small values, the quantity of supporting electrolyte necessary to develop the electrical double layer can be reduced to low levels (1). It has thus been possible to study electrode reactions in highly resistive media: these include the oxidation of ferrocene in acetonitrile without purposely added supporting electrolyte, oxidation of chromium hexacarbonyl in pure dichloromethane, oxidation of aromatic hydrocarbons in pure benzene, oxidation ferrocene in pure acetone down to -95°C (2), and oxidations in low temperature solid-solution eutectic mixtures and glasses of acetonitrile (3), to mention a few. Elimination of the ionic supporting electrolyte can extend the accessible potential range in those cases where it is the limiting redox reaction. One such example is oxidation in acetonitrile. The oxidation of the anion of all tested supporting electrolytes in this solvent will occur at potentials less than about 3V vs. Ag/Ag^-. We have recently demonstrated (4) that voltammetric data can be obtained at much higher oxidation potentials (c.a. 6V vs. Ag/Ag^-). In this high energy region, it was possible to observe steady state voltammetric behavior for compounds with vertical ionization
potentials as high as 12.70. These included n-heptane, cyclopropane, n-pentane, n-butane, and methane. At these high accessible potentials, we have found that it is possible to observe the oxidation of rare gas substrates. Homogeneous electron transfer reactions involving the rare gases and oxygen were first reported by Bartlett et al (5); they have not been investigated by electrochemical methods.

EXPERIMENTAL

Ring ultramicroelectrodes (Figure 1) are conveniently prepared by (a) coating the inner surface of fine capillaries with metal by vapor deposition or reduction of metal screen printing inks applied to those surfaces, followed by controlled collapsing of the capillary around a glass fiber; or conversely. (b) using the same procedures to deposit the metal on a fine glass or quartz fiber, and collapsing a glass tube around it; or mounting the fiber in a glass tube with epoxy resin. The gold ring electrode used in this work was 20μm in diameter and had an average thickness of 7500Å. The platinum microdisk electrode was constructed by sealing a 0.6μm diameter wire in a glass tube, and then cutting perpendicular to the axis of the tube to expose the disk. The auxiliary pseudo-reference electrode was a silver/silver ion assembly mounted in a glass tube which contained a solvent wetted stopcock and a Luggin capillary arrangement. The tip of the Luggin was placed about 1 mm from the tip of the ultramicroelectrode. The cell was a small flask designed to hold 5mL of solution. The electrodes were mounted through ground glass joints to their working positions. The cell was cleaned in hot acid solution (sulfuric nitric 1/1 V/V), rinsed in triply distilled water, and vacuum dried at 110°C.
The acetonitrile solvent was used as received (Burdick and Jackson, Distilled in Glass, 0.005% nominal water content). Oxygen, methane, and nitrogen were obtained from Matheson (research grade) and were used as received. The other gases used were from Ideal Gas Products (research grade), and were also used as received. These included xenon, carbon monoxide, krypton, and argon.

The cell assembly was mounted on steel clamps inside a 2 ft³ 3.8” thick aluminum Faraday cage. Connection through the cage was made with triaxial bulkhead connectors. All cables used were triaxial, and were rigidly mounted to prevent noise current generation by mechanical friction between the insulator and conductors in the cable.

The electrode potential difference was maintained by waveform generator (Hi Tek Instruments PPR1) added to a battery. Currents were measured on a Keithley 619 picoammeter, and the polarization curves were plotted manually or on a Hewlett Packard 7015 x-y recorder.

RESULTS AND DISCUSSION

Polarization curves for compounds with very high ionization potentials were obtained by the methods described. A polarization for one example, krypton, is shown in Figure 2. In all cases studied, the height of the limiting current plateau is dependent on the partial pressure of the electroactive gas (see also Table I). Currents observed then are not due to discharge ionization or corona discharge into the dielectric solvent system used in the experiments. This clearly indicates that conventional electrochemical reactions may be carried out at very high potentials in dielectric solvent media and that the current is due solely to the electron transfer reaction. In addition, the E₁/₂ values are
dependent on the **type** of species present. Previous work (3) showed that at very high potentials, a surface polymeric film is formed on the electrode which passivates the electrode; the bulk electrolysis of the solvent is therefore prevented. This insulating film is, however, permeable to small molecules including the those investigated in this work.

Figure 3 is a plot of $E_{1/2}$ vs. I_p for a number of simple compounds which have high vertical ionization potentials. The seven compounds on the right side of the Figure were analyzed in this work, while the hydrocarbon data on the left side represents previous work (6). It is noticed that for these molecules with very high ionization potentials, the effect of increases in I_p on $E_{1/2}$ is much smaller than for the compounds with smaller ionization potentials.

In the absence of secondary effects, such as large differences in the solvation energies of an oxidized and reduced form of a redox couple, a linear relation between the oxidation potential and the vertical ionization potential of an electroactive species is to be expected. For a simple redox process

$$
0 \to n e^- \to R
$$

we have

$$
E_{\text{rev}}^\theta = -\frac{1}{nF} \left(\Delta G_R^\theta (\text{SOLVATION}) - \Delta G_0^\theta (\text{SOLVATION}) \right) - \frac{I_p}{nF} - E_{\text{ref}}^\theta
$$

where the term in brackets represents the change in free energy of solvation between the reduced and oxidized forms of the couple, n is the number of electrons exchanged per mole of reactant, F is the Faraday constant, I_p is the ionization potential, and E_{ref}^θ is the standard potential of the reference electrode, which we will assume to be a constant value here. The same type of
relation will exist in non-standard states if the activities of the species are taken into account:

$$E_{\text{rev}} = E^\theta_{\text{rev}} - \frac{RT}{nF} \ln \frac{a^0}{a^R}$$

where a^0 and a^R are the activities of the oxidized and reduced forms at the electrode surface, respectively. If the difference between the solvation energies of the reduced and oxidized forms is large, then $E_{1/2}$ will be smaller than when the standard free energies of the two species are equal. One fact is immediately evident from Figure 3: the linear relation is obeyed quite well for the larger electroactive species: those which are on the order of, or larger than, the solvent molecule. Solvation of the larger species can only occur after there is solvent structure rearrangement or breaking: an endothermic process which ultimately reduces the total effect of the magnitude of the difference in the standard free energy of solvation of the two species. Smaller ions, however, show a considerable departure from linear behavior of $E_{1/2}$ and I_p with slope unity: very small ions, having therefore a high charge density, are as expected more efficiently solvated into the solvent cage structure. The difference in the solvation energies of the neutral and oxidized species is large, reflecting the large change in size of the two species, and the half wave potential is greatly decreased.

Chemical reaction of the electrogenerated ion is most likely fast in the bulk solution, and in the case of the rare gases results in a regeneration of the starting material, at least to an appreciable extent. At a normal macroelectrode, this reaction would give rise to a catalytic current that is
higher than the expected uncomplicated diffusion limited current. At an ultramicroelectrode, mass transport is very high so that it is likely that most of the regeneration of starting material will take place at distances suitably distant from the working electrode so that the catalytic current will be minimized. This point was demonstrated by comparing the measured limiting current for a solution saturated with krypton with the value calculated from the relations derived previously (4) for the ring ultramicroelectrode. The values were found to be the same within estimated experimental error.

CONCLUSIONS

It is clear that a variety of new and interesting chemical systems may be investigated by taking advantage of the unusual properties of ultramicroelectrodes. High rates of mass transport, reduction of ohmic losses in solution, and low capacitive currents allow measurements to be made under conditions that heretofore have been considered futile. Highly energetic species exhibiting large size changes upon electron transfer may be studied electrochemically due to the great difference in solvation energies of the conjugate redox pair.
ACKNOWLEDGEMENTS

We thank the Office of Naval Research for support of this work.
LITERATURE REFERENCES

<table>
<thead>
<tr>
<th>Reactant</th>
<th>Partial Pressure/atm</th>
<th>Limiting Current/nA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krypton</td>
<td>1.09</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>1.22</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>1.78</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>2.91</td>
<td>3.2</td>
</tr>
<tr>
<td>Oxygen</td>
<td>1.10</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>1.90</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>3.12</td>
<td>3.1</td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>1.23</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>2.64</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>2.98</td>
<td>2.8</td>
</tr>
<tr>
<td>Xenon</td>
<td>1.00</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>2.23</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>3.13</td>
<td>3.4</td>
</tr>
</tbody>
</table>
LEGENDS FOR THE FIGURES

1. **Ltramicroelectrode (gold ring) gas phase detector assembly.** The microelectrode assembly (3A) in this case is constructed of a thin gold film (1) on a glass fiber (4A). The tip cross section (3) consists of the assembly (3A) sealed in a glass tube (4) coated with a thick metal film (5) with epoxy resin (6). (2) details the side view of the tip. A fine copper wire (9) is soldered to the metal film for external contact to the auxiliary/reference electrode with lead solder (8A), while a similar connection is made to the microelectrode with another copper wire (7) with silver epoxy (8).

2. **Polarization curve for the oxidation of krypton in acetonitrile solution containing no purposely added supporting electrolyte.** Potential sweep rate was 25 mV-s⁻¹.

3. **Plot of the vertical ionization potential for several small molecules vs. the measured half wave oxidation potential in acetonitrile solution at an ultramicroelectrode.**
<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Name and Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Bernard Duda</td>
</tr>
<tr>
<td>1</td>
<td>Commander, Naval Air Systems</td>
</tr>
<tr>
<td>1</td>
<td>Naval Weapons Support Center</td>
</tr>
<tr>
<td>1</td>
<td>Naval Civil Engineering Laboratory</td>
</tr>
<tr>
<td>12</td>
<td>Defense Technical Information Center</td>
</tr>
<tr>
<td>1</td>
<td>DTNSRDC</td>
</tr>
<tr>
<td>1</td>
<td>Dr. William Tolles</td>
</tr>
<tr>
<td>1</td>
<td>Dr. David Young</td>
</tr>
<tr>
<td>1</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td>1</td>
<td>Scientific Advisor</td>
</tr>
<tr>
<td>1</td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td>1</td>
<td>Mr. John Boyle</td>
</tr>
<tr>
<td>1</td>
<td>Naval Ocean Systems Center</td>
</tr>
</tbody>
</table>

Attn: Code 413
800 N. Quincy Street
Arlington, Virginia 22217

Attn: Dr. Ron Atkins
Attn: Dr. S. Yamamoto

Code 334
NORDA
NSTL, Mississippi 39529
Attn: Code 5042
Crane, Indiana 47522
Attn: Code 310C (H. Rosenwasser)
Washington, D.C. 20360
Attn: Dr. R. W. Drisko
Port Hueneme, California 93401
Attn: CRD-AA-IP
P.O. Box 12211
Research Triangle Park, NC 27709
Attn: Dr. G. Bosmajian
Applied Chemistry Division
Annapolis, Maryland 21401
Attn: Code 6100
Naval Research Laboratory
Washington, D.C. 20375

Attn: Dr. Ron Atkins
Chemistry Division
China Lake, California 93555
Commandant of the Marine Corps
Code RD-1
Washington, D.C. 20380
U.S. Army Research Office
Mr. John Boyle
Materials Branch
Naval Ship Engineering Center
Philadelphia, Pennsylvania 19112
Naval Ocean Systems Center
Attn: Dr. S. Yamamoto
Marine Sciences Division
San Diego, California 91232
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Paul Delahay
Department of Chemistry
New York University
New York, New York 10003

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 44106

Dr. P. J. Hendra
Department of Chemistry
University of Southampton
Southampton SO9 5NH
United Kingdom

Dr. C. E. Mueller
The Electrochemistry Branch
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, Maryland 20910

Dr. J. Driscoll
Lockheed Palo Alto Research Laboratory
3251 Hanover Street
Palo Alto, California 94304

Dr. Sam Perone
Chemistry & Materials Science Department
Lawrence Livermore National Laboratory
Livermore, California 94550

Dr. D. N. Bennion
Department of Chemical Engineering
Brigham Young University
Provo, Utah 84602

Dr. Royce W. Murray
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. R. A. Marcus
Department of Chemistry
California Institute of Technology
Pasadena, California 91125

Dr. B. Brummer
EIC Incorporated
111 Downey Street
Norwood, Massachusetts 02062

Dr. J. J. Auborn
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Joseph Singer, Code 302-1
NASA-Lewis
21000 Brookpark Road
Cleveland, Ohio 44135

Dr. A. B. Ellis
Chemistry Department
University of Wisconsin
Madison, Wisconsin 53706

Dr. P. P. Schmidt
Department of Chemistry
Oakland University
Rochester, Michigan 48063

Library
Duracell, Inc.
Burlington, Massachusetts 01803

Dr. Manfred Breiter
Institut fur Technische Elektrochemie
Technischen Universitat Wien
Getreidemarkt, 1160 Wien
AUSTRIA

Electrochimica Corporation
20 Kelly Court
Menlo Park, California 94025-1418
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. M. Wrighton
Chemistry Department
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. B. Stanley Pons
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112

Donald E. Mains
Naval Weapons Support Center
Electrochemical Power Sources Division
Crane, Indiana 47522

S. Ruby
DOE (STOR)
Room 5E036 Forrestal Bldg., CE-14
Washington, D.C. 20595

Dr. A. J. Bard
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. Janet Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. Donald W. Ernst
Naval Surface Weapons Center
Code R-33
White Oak Laboratory
Silver Spring, Maryland 20910

Mr. James R. Moden
Naval Underwater Systems Center
Code 3632
Newport, Rhode Island 02840

Dr. Bernard Spielvogel
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709

Dr. Aaron Fletcher
Naval Weapons Center
Code 3852
China Lake, California 93555

Dr. M. M. Nicholson
Electronics Research Center
Rockwell International
3370 Miraloma Avenue
Anaheim, California

Dr. Michael J. Weaver
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Dr. R. David Rauh
ETC Laboratories, Inc.
111 Downey Street
Norwood, Massachusetts 02062

Dr. Aaron Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02192

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton S09 5NH ENGLAND

Dr. R. A. Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. John Wilkes
Air Force Office of Scientific Research
Bolling AFB
Washington, D.C. 20332

Dr. R. Nowak
Naval Research Laboratory
Code 6171
Washington, D.C. 20375

Dr. D. F. Shriver
Department of Chemistry
Northwestern University
Evanston, Illinois 60201
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Hector D. Abruna
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. A. B. P. Lever
Chemistry Department
York University
Downsview, Ontario M3J1P3

Dr. Stanislaw Szpak
Naval Ocean Systems Center
Code 633, Bayside
San Diego, California 95152

Dr. Gregory Farrington
Department of Materials Science and Engineering
University of Pennsylvania
Philadelphia, Pennsylvania 19104

M. L. Robertson
Manager, Electrochemical and Power Sources Division
Naval Weapons Support Center
Crane, Indiana 47522

Dr. T. Marks
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. Micha Tomkiewicz
Department of Physics
Brooklyn College
Brooklyn, New York 11210

Dr. Lesser Blum
Department of Physics
University of Puerto Rico
Rio Piedras, Puerto Rico 00931

Dr. Joseph Gordon, II
IBM Corporation
5600 Cottle Road
San Jose, California 95193

Dr. Nathan Lewis
Department of Chemistry
Stanford University
Stanford, California 94305

Dr. D. H. Whitmore
Department of Materials Science
Northwestern University
Evanston, Illinois 60201

Dr. Alan Bewick
Department of Chemistry
The University of Southampton
Southampton, S09 5NH ENGLAND

Dr. E. Anderson
NAVSEA-56Z33 NC #4
2541 Jefferson Davis Highway
Arlington, Virginia 20362

Dr. Bruce Dunn
Department of Engineering & Applied Science
University of California
Los Angeles, California 90024

Dr. Elton Cairns
Energy & Environment Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Dr. Richard Pollard
Department of Chemical Engineering
University of Houston
Houston, Texas 77004

Dr. M. Philpott
IBM Corporation
5600 Cottle Road
San Jose, California 95193

Dr. Donald Sandstrom
Boeing Aerospace Co.
P.O. Box 3999
Seattle, Washington 98124

Dr. Carl Kannewurf
Department of Electrical Engineering and Computer Science
Northwestern University
Evanston, Illinois 60201

Dr. Joel Harris
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Robert Somoano
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103

Dr. Johann A. Joebstl
USA Mobility Equipment R&D Command
DRDME-EC
Fort Belvoir, Virginia 22060

Dr. Judith H. Ambru
NASA Headquarters
M.S. RTS-6
Washington, D.C. 20546

Dr. Albert R. Landgrebe
U.S. Department of Energy
M.S. 6B025 Forrestal Building
Washington, D.C. 20595

Dr. J. J. Brophy
Department of Physics
University of Utah
Salt Lake City, Utah 84112

Dr. Charles Martin
Department of Chemistry
Texas A&M University
College Station, Texas 77843

Dr. H. Tachikawa
Department of Chemistry
Jackson State University
Jackson, Mississippi 39217

Dr. Theodore Beck
Electrochemical Technology Corp.
3935 Leary Way N.W.
Seattle, Washington 98107

Dr. Farrell Lytle
Boeing Engineering and Construction Engineers
P.O. Box 3707
Seattle, Washington 98124

Dr. Robert Gotscholl
U.S. Department of Energy
MS G-226
Washington, D.C. 20545

Dr. Edward Fletcher
Department of Mechanical Engineering
University of Minnesota
Minneapolis, Minnesota 55455

Dr. John Fontanella
Department of Physics
U.S. Naval Academy
Annapolis, Maryland 21402

Dr. Martha Greenblatt
Department of Chemistry
Rutgers University
New Brunswick, New Jersey 08903

Dr. John Wasson
Syntheco, Inc.
Rte 6 - Industrial Pike Road
Gastonia, North Carolina 28052

Dr. Walter Roth
Department of Physics
State University of New York
Albany, New York 12222

Dr. Anthony Sammells
Eltron Research Inc.
4260 Westbrook Drive, Suite 111
Aurora, Illinois 60505

Dr. C. A. Angell
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Dr. Thomas Davis
Polymer Science and Standards Division
National Bureau of Standards
Washington, D.C. 20234

Ms. Wendy Parkhurst
Naval Surface Weapons Center R-33
R-33
Silver Spring, Maryland 20910
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. John Owen
Department of Chemistry and
Applied Chemistry
University of Salford
Salford M5 4WT ENGLAND

Dr. O. Stafsudd
Department of Electrical Engineering
University of California
Los Angeles, California 90024

Dr. Boone Owens
Department of Chemical Engineering
and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. S. G. Greenbaum
Department of Physics
Hunter College of CUNY
New York, New York 10021

Dr. J. O. Thomas
University of Uppsala
Institute of Chemistry
Box 531
S-751 21 Uppsala, Sweden

Dr. Menahem Anderman
W.R. Grace & Co.
Columbia, Maryland 20144
END
DATE
FILMED
DTIC
6-88