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1. INTRODUCTION

The primary goal of this paper is to illustrate, by a simple problem, the

necessity of conducting a careful analysis of numerical schemes (that were de-

veloped for open-loop simulation) when these schemes are to be applied to an

optimization based control design problem. It is our feeling that many dis-

tributed parameter control systems (viscoelastic structures, fluid flow con-

trol, etc.) are such that "standard finite element/finite difference" schemes

might lead to numerical difficulties in certain control design methods, if

care is not taken to ensure that these approximation schemes have convergence

properties essential for the intended application.

We shall concentrate on a non-convergence result for an optimal control

problem governed by a delay differential equation. Although we feel that the

technical details required to prove non-convergence are interesting, we hope

that this proof is not viewed as the major contribution of the paper. Indeed,

we hope that the reader is motivated to think about similar problems for more

complex distributed parameter systems.

During the past fifteen years considerable attention has been devoted to

the construction of finite dimensional approximations of distributed parameter

systems. Much of this work is based on algorithms first developed primarily

for simulation. However, it is not clear that finite dimensional models

developed for (open-loop) simulations will also be suitable for certain opti-

mization based control design techniques. Moreover, there may be several

reasons that a numerical scheme developed specifically for simulation does not

perform well when applied to a control design problem.

In this note, we concentrate on the use of the so-called spline scheme

developed by Banks and Kappel [21 as an approximation method for calculating
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optimal feedback gains for control systems governed by functional differential

equations. This problem is simple enough to be addressed in a short paper and

yet it still illustrates how a specific numerical scheme when combined with a

particular control design approach can lead to numerical difficulties.

In order to motivate the paper and to describe the main technical con-

tribution of the paper, we first review some known results.

Let H and U be real Hilbert spaces and S(t): H + H denote a C0 -

semigroup of bounded linear operators with generator A. We assume that

B: U + H, Q: H + H and R: U + U are bounded linear operators with Q

and R self-adjoint, non-negative and R satisfies R > ml > 0. The (LQ)

optimal control problem is to minimize

T
(1.1) J(u) = f [<Qz(s), z(s)> + <Ru(s),u(s)>]ds

0

where z(t) is defined by

t
(1.2) z(t) = S(t)z 0 + f S(t-s)Bu(s)ds

0

for 0 < t < T and given z0 E H. If T - +g, then one has the linear

6 quadratic regulator problem.

Assume now that there exists a sequence of C0-semigroups sNt) on H

and positive constants M, 8 such that

(1.3) IsN(t) < Me , t > 0, N > 1

and
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(1.4) SN(t) * S(t) strongly as N + +co

and the convergence in (1.4) is uniform in t on bounded intervals. Denote

by AN the generator of SN(t) and also assume the existence of bounded

linear operators BN: U + H, QN H + H with QN self-adjoint and

QN > 0 satisfying

(1.5) 1BN - BI + 0, IQN - QI + 0.

Note the assumption of uniform convergence (1.5) is stronger than required by

Gibson (see page 113 in [4]). It is well known that the optimal control (if

it exists) is given by state feedback

(1.6) u *(t) - -R-1B*R(t)z*(t)

where the bounded self-adjoint operator fn(-) satisfies the Riccati

(integral) equation

T
(1.7) 1(t)z f S* (s - t)[Q - UI(s)BR-B *(s)lS(s-t)ds.

t

Let 1iN t) be the solution to the "approximating" Riccati equation

T i

(1.8) 1N (Oz -f s=N* (s-t)[Q N -11 N(s)BNR-I B N* N(s)IS N(s-t)ds
t

and observe that (1.8) would determine the sub-optimal gains if one used the

approximating system (AN,BN) with weights QN.

-
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The following theorem is a direct consequent of Gibson's (more general)

results (Theorem 6.1 and Theorem 6.2 in [4]).

Theorem 1.1: If conditions (1.1) - (1.5) hold, then for 0 < t < T,

N (t) converges weakly to n(t) and the convergence is uniform on

[0,T]. If in addition

(1.9) SN* (t) + S*(t) strongly,

then 1IN(t) converges strongly to 1(t) and the convergence is uniform

for tE [0,T].

Corollary 1.2: Let K(t) = R-B*11(t) and KN(t) = R-lBN*N(t)

denote the feedback gain operators. Assume that U = IF (i.e., is finite

dimensional). If HN(t) converges strongly to 1(t), then as N + ,

(1.10) IKN(t) - K(t)l + 0.

The main point to be emphasized is that if the control space is finite

dimensional, then uniform convergence is assured provided the numerical scheme

is stable and consistent and (1.9) holds. If one is concerned only with simu-

lation, then stability and consistency is sufficient for most numerical prob-

lems. Moreover, it can be shown that many standard numerical schemes de-

veloped for simulation of self-adjoint partial differential equations do

satisfy (1.9). Therefore, it is not surprising that until Gibson "needed"

(1.9) to establish the uniform convergence of optimal gain operators, the

.NI
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question of whether a numerical scheme satisfied (1.9) received little atten-

tion. Indeed, even after Gibson published his result it was still not obvious

that condition (1.9) was anything more than a technical assumption needed in

Gibson's proof.

In [31 Banks, Ito, and Rosen applied a convergent spline based scheme to

an optimal control problem governed by a delay differential equation. The

numerical results in [3] seemed to show that KN(t) did not converge uniform-

ly to K(t) and these numerical results have often been used as evidence that

(1.9) did not hold for this particular scheme. Moreover, several new schemes

have since been generated specifically to ensure (1.3) - (1.4) and (1.9) are

valid. Still, it was not known if condition (1.9) held for the spline scheme

used in (3]. We shall provide a proof that (1.9) fails for this scheme. We

also show that this spline scheme is stable and consistent to on a dense

subset of D(A*).

2. SPLINE APPROXIMATIONS OF HEREDITARY SYSTEMS

Consider the delay differential equation

0
(2.1) i(t) - A0x(t) + A1x(t - r) + f A(s)x(t + s)ds

" . -r

with initial data

(2.2) x(0) - n; x(s) - *(s), -r < s < 0,

where x(t) le and the elements of A(.) are square integrable on

-!1xi OW=
111=
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[-r,01. It is well known that (e.g., [1]) for n E VI~ and

E L 2(-r,O0; I) there exists a unique solution of (2.1) - (2.2)

x: [-,o)+ Vi such that x EW1,2 (0,T; Vt) for all T > 0. If one

defines the solution map S(t), t > 0 on the product space

Z = rit x L2(-r,0;it') by

(2.3) S(t)(riO(')) = (xOt, x(t+.))

where x is the solution to (2.1) - (2.2), then {S(t))}0 is a strongly

continuous semigroup (i.e., C0-semigroup) on Z. The infinitesimal

generator A is the operator defined on the domain

(2.4) D(A) II[ {(,()) E ZI.E W, 2 (-r,0; 3P'), * (0)=

by

0
(2.5) A(n,() (A OP + A 1 *(-r) + f A(s)O(s)ds, $(o)).

-r

The adjoint operator A* generates the adjaint semigroup S*(t) and it is

easy to show that (see [4,7])

(2.6) D(A*) Q {,)E ZI4 E W1,2 (-r,O; IF'), *p(-r) =ATl

and for Q ~E D(A)

(2.7) A * (*j(O) + T6 [
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As in [21, we define the linear spline based approximation for S(t).

Le t {B N } denote the usual linear B-splines defined on the interval

[-r,0J by

(~(s - -r) SE [TNIP
r i~li+ 1

(2.8) B N(S) N! (TN - s)91 s E [T N, I N_

0x 0 otherwise,I

where T -in/N, I 0 ,1,...,N, T Nl= -r and Ti N 0. For each

N = 1,2,... let ZN denote the linear subspace of Z defined by

(2.9) ZN {Z {zI = N (Bk()Bk aEW
k=0

and let PN denote the orthogonal projection of Z onto ZN. This subspace

can be identified with ]Ep(N+l) by the prolongation I. N Vi(N+1) + Z

defined by

N ~N N
(2.10) aN = (a0, I ()

k=0

where a = (a T, a T ***,a T)T4EI(N+1). The space e(N+l) Is normed with the

induced inner product

(2.11) <a,b>N = aT QNb,

where a, bE V(N+l) and QN is defined by
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0 0 3 6.
1 2

(2.12) QN +*:* 2 ***

The adjoint operator [iNI*: Z + Vi(N+1) is given by

+0N"

N

(2.13) [i *N -1

N

N ON

where f j (s)B,(s)ds. Moreover, it is easy to show that
-r

ti N I*iN = I the identity on PNl

(2.14)

(iN[iNl* = PN

and for z, wEZN

(2.15) <z,W>z <[iN,*z [,N > N

In order to construct the standard Galerkin approximation of A, we note

that ZN C D(A) and define AN by AN - pNApN. Observe that AN (and

hence [AN]*) is continuous and although pNZ c D(A), pN does not map all

of Z into D(A*) It is shown in [21 that

(2.16) A N - iN[IQN IH N [i N I
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where

NN N I 00 •

(2.17) H + 2 •A" 0] U .

and

N0
A 0 + f A(s)B0(s)ds

-r

N 0
= A(s)Bk(s)ds, I < k < N-I

-r

" N0N
AN = A1 + f A(s)BN(S)ds.

-r

If SM(t) denotes the C0-semigroup generated by AN, then it is shown in [21

that for each zE Z,

(2.18) isN(t)z - S(t)zK + 0,

where the convergence is uniform in t on bounded intervals. The convergence

(2.18) was established by proving that the Galerkin approximations AN

satisfy the Trotter-Kato Theorem [61 and hence provided a stable and consis-

tent approximation scheme for A. We shall prove that the above convergence

statement does not hold for the sequence of adjoint semigroups [SNI*(t).

Moreover, this convergence fails rven though the adjoint operators [AN]* are

stable and consistent to A* on a dense subset of Z (i.e., there is a dense

set CC D(A*) C Z such that [ANJ*z + A*z for all zEC).



-10-

3. CONVERGENCE OF THE ADJOINT GENERATORS

We shall follow the approach given in [51 and consider the n(N+1) x n

matrix

YN= IQ N 1(O..... 0,I)T

Define the operators 6+N: ii1 + ZN by

N
6 + ( =4x(0), 0x(0)

where

*It follows that for all (n,90) = z EZ and x E IEP

lNl*6Nx QTN [iN*PN _ N T QN iN*z

= x [BO(-r)I,..1.,BN(-r)I1[i I z9

and (2.14) - (2.15) implies

6(3.1) <6N xzz=xT[

where P Nz =PN(i,o) _ (ON (O), O(.)) E ZN. Furthermore, if XN denotes

the smallest eigenvalue of QN t e ( / N) N and i no l ws f o

(2.11) that

(3.2) 16 NI < (6N/r) 12 for all N.



We also need the following representation.

Leuma 3.1: The operators IANI*: Z + Z N are given by

N* N N T N T N(O _-N.,[A I ~')=P (*p (0) + A6* (0), [A (.)*p() ' .1

+ 6 N(A T * (0) N ~ (-r)),

where p N N ON(_)

Proof: Assume that z =(niO and w = ~') belong to Z and

let P NZ 4 N(0),ON(.) and P Nw ('p() *N(.) denote the orthogonal

projections of z and w, respectively. The identity (3.1) implies that

<(N(O T N [T N -N N
(('pA6 (0)+A'(), [A(.) (0) - * (-)]), Pz>Z

+ <6 N (A'p (0) _ '( (-r)),z>z

* ['p(0)] [ON(0)) + [' (0)1 A0 [ N(0)1-_fo ('p (s), N (s)>ds
-r

+ (*N(0)T f
0  A(s)* N (s)ds + ['N (O)TA[10N (-r)]
-r

_ *N (r]T 4N(r)

Integrating by parts, the boundary terms cancel with the first and last term

in the sum. Therefore, it follows that if [A NI* is defined as above, then
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<[A NI*w,z> = <PN w,AP NZ> = <w,A Nz>

and this completes the proof.

It should be noted that [ANI*w = pNA*pNw if and only if

A T *N (0) N ~p(-r) = 0, i.e., if and only if PNw ED(A*). Also, if

D = D(A)G"I D(A*)

and

C Q *(~)E D*EC2(r;R)

then D and C are dense in Z. Moreover, we have the following convergence

result.

Le~m 3.2: If C and D are defined as above, then

(a) [ANI w + A *w for all wE C

and

(b) for all A E FR, (XIl-A *)D is not dense in Z.

Proof: Let wE CC D(A)(-) D(A*). Note that w - (*~(),*(-)) where

*(r Tand pNw _ *= ),N.) D(A). It follows from (2.7) and

Lemma 3.1 that

O[A N w - A wi < NP NA w - A wo

N T N T N - N T T EI(O
+ I(*~ (0) + A6*~ (0),[A (.)p (0) (*(0 +)I AQV(/,LQo(/1JIO
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+ 16 N[A4 T (0) - q (-r)III+ 1

FN +FN +FN
1 2 3*

Since w = i(0), E C ) C D(A)r'nD(A*) and iF.E C 0r ; Xeit

follows from standard estimates on interpolating splines (see equations (4.1)

-(4.3) in [1) that

I*N(0) - 'p(O)I < 0(1/N 2

[p (s) _ 0'(s)I < 0(1/N), -r < s < 0

and

NI <* (1)

The first term FN+ 0 since w ED(A )and p Nz + z for all zE Z. The

second term is estimated by

F 2 ,(Q +O AN(0) - *p(0) - A*(0)j + IAT(-)(*N(0) - *(Q))l

+ 4; (.) (I

0 ( + (AOJ + IA(- )K)I*N,(0) - *(0)I + 0(1/N).

Therefore, F N + 0 as N +'~ Applying (3.2), the last term is estimated
2

by

FN(6N/r) 1 A (0) _ *p (-r)I
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< (6N/r) 1/2(A 11 jN(O) - *(0)I + IN(-r) - (-r)I),
N

and hence F3 + 0 which establishes part (a).

Turning to part (b), let w = (*(O),*)E D, , x E IPn  and X E I. A

straightforward calculation yields that

<(Q,e Xx), [XI - A ](,(0),*(.))>

- , T([( - )1 AD + , T(0[ - -0

.. .. (I' A, - f" e A T(s)dslx.

-r

0
If (X - C) '(AO )  and e Xr E a(A + f e (+r)S AT(s)ds), then there

-r
exist * 0 and x * 0 such that

<(E,e 'x),[XI - A J(,(O),,(.))> - 0.

If (X - 1) 1 a(A0 ), let x * 0 and define E by

Efi -[(X - )1 - A01-I(I - e-XrA - eS A T(s)ds)x,
-r

or if eXr 0 (AI + f0 e (+r)sAT(s)ds), let E * 0 and define x by
-r

-[I - e-ArA, f eXSAT(s)ds] -[(A - 1)I - A0 ]C.
-r

In any case, there always exists an element z - ( -,(.)) - (,e Ax) * 0,

such that

<z, (XI - A )w> - 0
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for all w - (*(0), E D. Consequently, (I - A *)D is not dense in

Z.

Since I[SN]*(t)i = ISN(t)n < ew t  for some w independent on N

(see [21), the existence of a set E C D(A*) and a A E R such that

(k *) sdes n Z ad [N* *

(XI - Aw)E is dense in Z and [AN] w+ Aw for w E E would imply

strong convergence of the semigroups [SNI*(t) to S*(t) ([61, III, Th.

4.5). Although [ANI*w + A*w on the dense set C, (Wl - A*)C is not

dense in Z. We shall establish that there does not exist a set E C D(A*)

with the above properties. In fact, we shall show that [SN]*(t) does not

converge strongly to S*(t).

4. CALCULATION OF PNkrANI*rlPN

In this section, we present several technical lemmas that will be needed

in Section 5. The proof of Lemma 4.1 is straightforward and hence omitted.

Lemma 4.3 can be found in [4,71.

Lem 4.1: The operator [AN]* can be decomposed as

(4.1) (AN]* = iNIQNI- (HNIT[iNl*.

Lema 4.2: Assume that HN is invertible. If z =(n,0('))C Z,

then pN([ANI*)-IPNz exists and

(4.2) pN([AN]*)-IpNz = iNaN,

I
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where aN is the solution of

(4.3) [HN ]TaN1

NL N

Proof: Consider the equation AN* = PN for WE ZN . By Lemma 4.1 and

from (2.14)

N (QN)-1HNT iN* W- NtN*z.

Multiplying with iN *  and from (2.13) and (2.14)

n +0 N

N
HNT i N*w

N
ON

The lemma now follows from the fact that w = pNw = iNiN*w f iNaN.

0*

Lea 4.3: If A =A 0 + A1 + f A(s)ds, then 0Ep(A*) if and
-r * *

only if A is invertible and (q(.)) = (A ) 0( , (.))E D(A*) is given

m" by

(4.4) J [AT]-(n + f *(s)ds)
-r

(4.5) *(s) - (AT + f A T()de)g - f *(e)de.
-r -r

Consider equation (4.3). It follows from (2.17) that (4.3) is equivalent

to the system
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(4.6) *.(a'~ - ak N + [IT a N = N 1 < k < N-i

(4.7) - (a N + a N ) + (A N IT aN N
T N N-1 N 0 N

1 N N N TN N(4.8) -T. (a 0 + a1I) + [A 01a 0  + r +

A straightforward induction argument yields

N N k N T N _N(4.9) a 2k a0 - 2 ([A 2 1 -1 1 a 0 - 02i-), if 2k (N

and

N N k if N_(4.10) a 2k+1 a, 2 1 ([A 20Ta~ - 02 ,i 2k + 1 < N.

Thus, it follows from (4.7) that

(4.11) 1 N _N N NT NN N
T (a 0  a I+ I [AV a0 =I k

k-i k-i

Moreover, (4.8) and (4.11) imply that

N NTNN 0
r 1A Iao - + IO = Y + f *(s)ds

k=0 j.0 J-r

where

N~ [J T - [A +A, + f-rT
K-0 ) A(s)ds] -

If one assumes that 0 Cp (A*), then by Lemma 4.3 it follows that A T is

IMN
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invertible and

(4.12) a N -A(n + f *(sds).
0 -r

Observe that (4.12) implies that aN is independent of N and by (4.4) it

follows that a N where [~4() A 1 n~e) Equation (4.8)

yields the identity

N N N NTN N
(4.13) a= -a 0 + 2 1 ([A kI a - )

k= 1

and hence it now follows from (4.10) that

N N N N T N N k NTN N
a 2k+1 - -a 0+ 2 1 ([K] ao - *k) - 2 1 ([A 21 a~ 0-2

0 k-i i-i

(4.14)

N~a +2 N [~Ta N~ +2 k N TN N
=~~~ ~ ~ Na 0 [ ([A21-1 a~ 0 f2i-d-

J-2k+l i-i

Note that for 1 <k < N- 1

N

k tk *() s)dsI - 3N ) f *s) Nds

Tk+ 1

and similarly

IN2< (.L_) f0 #*(s)12 ds

T I

N

io~i2< (r N-1 (9)12 ds.
N TO f r
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Therefore, (4.9) and (4.10) imply

a Ia2k < jaN (1 + 21A 11) + 21 r-3 (IAIL a0N + eL 2 )

and
N N N NL+

Ia2k+l1 < Ia I + 21AII Iao + 2/'73- (IANLz a I + L 2

respectively. The identity (4.12) yields the estimate

IaNI < IA-TI (1 + V-

and (4.13) leads to the bound

IaNt I-(1 + 2[A 0 T)a0 + 2(n + *N),

< IaNI + 21nt + 2Vr7N (,AIL I 1 + 12
0 2 0L2

Combining these estimates one has that for 0 < k < N

IakNI < Ml (,n ,("))l,

where M > 0 is independent of N. An application of Lemma 4.2 yields the

estimate

IP N[AN*] I P IiN a NI < (/Tr)M Iz.Z

for all zE Z. We summarize these results in the following theorem.

_.*1



-20-

Theorem 4.4: If OEp(A), then

NNT N TN... N TN

where a N=col([a 0T,f[a 1T, e,L[a NT) is given by

a N A- (n + f 0 (s)ds),
0 -r

and for 0(<2k <N

N N k N TN N
a 2k = a0 2 (A2- a 0- 2-

while for I1<2k+1 <N

N aN +2N ([ Ta N N k N TN N

0 j=2k+I -

Moreover, P N [AN*F I P NIL is uniformly bounded in N.

Let P N denote the "averaging" orthogonal projection on Z definedAVE

by

N

N N N iTI )
P (f *(s)ds)XNAVE i-I r N [T N, Ni

where Xi denotes the characteristic function for the interval I (see [11

for details).
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Corollary 4.5: There exist a costant K > 0 (independent of N )

such that for all z E Z

HPN (P NtA N*F PN z) - [A I zil< ( K izu.AVE f

Proof: A direct application of Theorem 4.4 yields the identities

1 N N N N T N
T(a 2k+l + a 2k I ([A~9 - 0 <2 (<N-i

i=k+ 1
and

1 N N N NT N
2 (a2k-1 + a 2k) I ([AIT - 2 < 2k < N.

i=2

On the other hand, since (,())= (A *Vln~. Lemma 4.3 implies that

N -T 0
a~ a 0 = I i+ f *(s)ds)

and

4i(s) (A T + f A T(6 )de) - f *(e )de .
I -r -r

Therefore, if SN (T~ N + TN )/2, then

I(a N+ + a Nk)/2 -( N )

N

-I f s kI(B N (s) - 1)(A T(s)t - *(s))ds

N 2k+1

N

+ f T k (B 2k1(s)(A T(9)t - *(s))dsl
N 2+
s2k+ I
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TN N
'2k T2k

< (r/- N) ((f IA(s)12ds)I /21C, + (f io(s)I2ds) 1/21,

N N
2k+1 2k+1

and similarly,

1(ak N+ a2k )12 - *(S N) I

N N'2k-1 2 12d /2 '2k-i

< (r/T N) {( f IA(s)2 ds) 1 i + ( f 2 1(s)12 ds) 1 1 2}.
N N

T 2k T 2k

It follows that

N N N
IPAVE J j [N N

< (r/IT2N) (lALki +1IL

Since *E W 1,2(-r,O; n) and

(S) a AT(s) - O(s) . AT(s)A-T(n + f 0 (e)de) - #(9)9

-r

there exists a constant K such that

N 
N

- * (s Ix N N L < (K/N)I(1n,(- ))Iz

jai [lT i _)L2 -

This estimate combined with the previous inequality establishes the proof.

We turn now to providing a proof that the approximating adjoint semi-

groups constructed above do not converge strongly to the adjoint semigroup

generated by A*.

4r
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5. NON-STRONG CONVERGENCE

Let A, A*, AN, and AN* be defined by (2.4) - (2.5), (2.6) - (2.7),

(2.16) and (4.1), respectively. The corresponding semigroups will be denoted

by S(t), S*(t), sN(t), and sN*(t). Recall that for zEZ (see [21)

(5.1) <ANz,z> = <APNz'PNz> < WIPN z 2 < WIZ 2

where w = (1 + 21A 01 + 1A,1 2 + 2IAIL )/2 and for t > 0

(5.2) IsN(t) < eWt , isN*(t)l < ew t .

4The following result is a special case of Theorem 4.2 of Chapter 3 in [6].

Theorem 5.1: The following are equivalent:

(a) For every zEZ and AEC with Re A >

(XI - AN*)-lz + (XI - A ) z, as N +

(b) For every zEZ and t > 0

sN* (t)z + S *tz, as N +

the convergence being uniform in t on bounded intervals.

We shall also need the following technical lemmas.
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and 5 2T: :A Suppose the condition (b) of Theorem 5.1 holds,X E p(A*)

and up (X - N*)- P N R is uiomybounded in N.ThnfreryzZ

P N(AIl A *)- 1 P + (AI - A*)- Z.

*Proof: From Theorem 5.1, for x A w and zE Z

P (X 01 _ N) lP + (X 01 -A )z, as N + -

Note that for z E Z

P N (I-AN* )-1 N z-PN (x01 AN* -1 PN

= (X 0 - A)P (At - N)-I Pl(x 0 1 -A *)- IP NZ

and similarly

(XIl- A (I + (x - x 0)M 01 - A ))-(A 01 I A)

Hence, if w = z + (X - x )(A0 I - A *)-l , then

(A 0 - A0P N(XI _ AN*)-lN(( 0 1 N*)-lNzX - A- Z

+ P N(X 01 - A N*)- P Nz - (x 01 - A )z.
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This implies that for all z E Z

P N(XI A )* PNw + (Wr-A) w.

But since I + (X - x0)0 1 - A*) is onto, the above statement holds for

all w EZ.

We turn now to a special case where 0X = A 0+ cLI, a E

1(s) ~ =-0 r<s<0 = 10+ A I and denote by x~ *,N* an

S t), gN*(t) the corresponding infinitesimal generators and semigroups.

*Leum 5.3: If statement (b) of Theorem 5.1 holds for S N*(t), then it

-. holds for ~N(t).

Proof: Note that

A = A *+ E and AN = A *+ PEPN

where E: Z + Z is the bounded linear operator defined by

4T

It follows from (5.2) that uSN (09u < e Zt where w=w + jai + NA L 2

Consequently, if A > ~, then

(5.3) (A, - XN* fi (XI A N)l + (XI - AN*) lpN EpN(XI - N*-

M!1
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and

(5.4) (XI - **)-1 = (XI - A*) - ' + (XI - A*)-IE(XI - 'X )

Theorem 5.1 implies that for all zEZ

(XI - A N*)-lz + (XI - A *)-z

and since the ranks of E and E* are finite it follows that

lpNPN _ Eli + 0.

It now follows from (5.3) - (5.4) that
-I~pNp - E! -1

(XI A AN*)-lz + (XI - A )- z

for all zEZ and this completes the proof.

By Lemma 5.3, without loss of generality, one can assume that A(.) 0

and A = A0 + A1  is invertible in what follows. We will show that there

exists an element z E Z such that pN(AN*)-IpNz does not converge to

(A*)-Iz. First we consider the case when A1  is not the indentity. From

Lemma 4.3, if (,0(.)) - [A*]- 1 (n,0) where 0 * n E Vn, then

1-T and *(s) AT, -r < s < 0.

RS
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Applying Theorem 4.4 we obtain

P N[A N*I P N(O,0) = iN aN

where
N

a =, 0 < 2k < N

N k T

a2k+l -& + 2A 1 , 0 < 2k + 1 < N.

For illustration, we have the following picture for the case N = 4 and n I

A I

\ \ I

A1

\ / \ /
, \ , / ,- 4. /

-r a

v v -C + 2A1C

N N
where the solid line stands for (A*) 1(n,0) and the dashed line for i a

Since aN T - AT - aN - AT E IRn (independent of N), it is
2k A1 1 2k+l 1&

easy to show that

N*-IN 1 r/2N 2N r 2

(5.5) 1P (A* P (n,0) - (A )-(nO)II M 2N N I i7 d C 12 d
0

Next we consider the case A1 - I. Let *(s) = x * 0 (constant vector in

Rn). Then, from Lemma 4.3 (, *(-)) - (A*)-(0,,(.)) is given by

(5.6) = r-Tx and *(s) =  - (s + r)x, -r < x< 0.

-PI1i IimilTr"T " '
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And, from Theorem 4.4, PN(AN*)-1pN(0,0(.)) = iNaN , where

Na0 ffi

(5.7) ak= + ( )x + 2k rx, 0 < 2k < N
j odd
1 <_j2k-1

N 2N-1 (r2N-2k- 1
a 2 k+l rx + 2 j ()x fi -( N )rx, 0 < 2k < N.

j even

2<j<2k

Since (aN + aN )/2 *(( N + TN )/2) and (a N + aNk)/2
n 2k 2k+1 2 2k+1 2k-1 A

((TNk_ + TNk)/2), it follows from (5.6) and (5.7) that
2- 2k

r

(5.8) Ip N(A*)-IpN(0,0(.)) A *)-1(0,0(.))Iz 2N f 2Nsx 2ds " x- T 2 0.
0

Now we may state the main theorem.

Theorem 5.4: There exists an element zE Z and t > 0 such that

sN*(t)z does not converge to S* (t)z.

Proof: If for every z E Z and t > 0, sN*(t)z converges to S*(t)z,

then it follows from Theorem 4.4 and Lemma 5.2 that for every zE Z

pN(AN*)- pNz + (A *)- z, where by Lemma 5.3 one can assume that A(-) - 0

and A - A0 + A1  is invertible. This contradicts the facts (5.5) and

(5.8).
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