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ABSTRACT

It is shown that the adjoints of a spline based approximation scheme for

delay equations do not converge strongly.
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INTRODUCTION

1.

The primary goal of this paper is to illustrate, by a simple problem, the

necessity of conducting a careful analysis of numerical schemes (that were de-

veloped for open-loop simulation) when these schemes are to be applied to an

optimization based control design problem. It is our feeling that many dis-

tributed parameter control systems (viscoelastic structures, fluid flow con-

trol, etc.) are such that "standard finite element/finite difference" schemes

might lead to numerical difficulties in certain control design methods, 1if

care is not taken to ensure that these approximation schemes have convergence

properties essential for the intended application.

We shall concentrate on a non~convergence result for an optimal control

problem governed by a delay differential equation. Although we feel that the

technical details required to prove non-convergence are interesting, we hope

that this proof is not viewed as the major contribution of the paper. Indeed,

we hope that the reader is motivated to think about similar problems for more

complex distributed parameter systems.

During the past fifteen years considerable attention has been devoted to

the construction of finite dimensional approximations of distributed parameter

systems. Much of this work 1s based on algorithms first developed primarily

for simulation. However, it 1s not clear that finite dimensional models

developed for (open-loop) simulations will also be suitable for certain opti-

mization based control design techniques. Moreover, there may be several

reasons that a numerical scheme developed specifically for simulation does not

perform well when applied to a control design problem.

In this note, we concentrate on the use of the so—called spline scheme

developed by Banks and Kappel [2] as an approximation method for calculating
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optimal feedback gains for control systems governed by functional differential
equations. This problem is simple enough to be addressed in a short paper and
yet it still illustrates how a specific numerical scheme when combined with a
particular control design approach can lead to numerical difficulties.

In order to motivate the paper and to describe the main technical con-
tribution of the paper, we first review some known results.

Let H and U be real Hilbert spaces and S(t): H+ H denote a Co-
semigroup of bounded linear operators with generator A. We assume that
B: U+ H, Q H+H and R: U+ U are bounded linear operators with Q
and R self-adjoint, non-negative and R satisfies R > mI > O. The (LQ)

optimal control problem is to minimize

T

(1.1) J(u) = [ [<Qz(s), z(s)> + <Ru(s),u(s)>lds
0

where z(t) 1s defined by

t
(1.2) z(t) = S(t)z0 + [ S(t-s)Bu(s)ds
0

for 0<Ct<T and given zy€ H. If T = 4o, then one has the linear

quadratic regulator problem.

Assume now that there exists a sequence of Cp-semigroups SN(t) on H

and positive constants M, B such that

(1.3) 1sVeenn < mePt, >0, N> 1

and
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(1.4) SN(t) + S(t) strongly as N+ 4=

and the convergence in (1.4) is uniform in t on bounded intervals. Denote
by AV the generator of SN(t) and also assume the existence of bounded
linear operators BN: U+ H, QN: H+ H with QN self-adjoint and

QN 2 0 satisfying

(1.5) 18V - Bi >0, 1QY - qu » 0.

Note the assumption of uniform convergence (l1.5) is stronger than required by
Gibson (see page 113 in [4]). It is well known that the optimal control (if

it exists) is given by state feedback
* -] % *
(1.6) u(t) = -RIB ()2 (v)
where the bounded self-adjoint operator n(e) satisfies the Riccati

(integral) equation

T &« -1._%
(1.7) n(t)z = S (s - t)[Q - N(s)BR "B N(s)]S(s-t)ds.
t

Let HN(t) be the solution to the "approximating” Riccati equation

T
(1.8) Mtz = [ ¥ (e~t)[Q" - 1¥(s)B"R71BY 1N (s) 15N (e-t)ds
t

and observe that (1.8) would determine the sub-optimal gains 1if one used the

approximating system (AN,BN) with weights QN.
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"’:e',‘.. The following theorem 1s a direct consequent of Gibson”s (more general)
e results (Theorem 6.1 and Theorem 6.2 in [4]).
o™
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N i
U
::fi:. Theorem 1.1: If conditions (1.1) -~ (1.5) hold, then for 0t T,
l.,‘:‘ IIN(t) converges weakly to n(e) and the convergence 1s uniform on
‘Q‘g .
:::'-:; [0,T]. If in addition !
i ]
he'y

N* *
- (1.9) ST () + S (t) strongly, ]
R |
!.‘
Wt
:::,5'. then IIN(t) converges strongly to  I(t) and the convergence is uniform
:‘.,.- for te(0,T]. ‘
y ‘.! —_— i
;’..I '
L) y
“:"?" -1 % N -1 N* N
:‘. y Corollary 1.2: Let K(t) = R "B (t) and KY(t) = R "B n(t)
o denote the feedback gain operators. Assume that U = B (i.e., is finite '
P i
::5" dimensional). If TNN(t) converges strongly to M(t), then as N + +=, :
‘ H
g
(AN
) (1.10) 1kN(e) - R(E)N » 0 :
‘.":"n * * .
‘l“::i .
i‘.'i
!‘.'1‘
ot
;:; The main point to be emphasized is that if the control space 1is finite
dimensional, then uniform convergence 1s assured provided the numerical scheme
';%’;; is stable and consistent and (1.9) holds. If one is concerned only with simu-
St _—
_':" lation, then stability and consistency 1is sufficient for most numerical prob-
";;. lems. Moreover, it can be shown that many standard numerical schemes de- )
i'. h
ey
;o::: veloped for simulation of self-adjoint partial differential equations do :
o |
2t

My satisfy (1.9). Therefore, it is not surprising that until Gibson "needed"

" (1.9) to establish the uniform convergence of optimal gain operators, the
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question of whether a numerical scheme satisfied (1.9) received little atten-
tion. Indeed, even after Gibson published his result it was still not obvious
that condition (1.9) was anything more than a technical assumption needed in
Gibson”s proof.

In [3] Banks, Ito, and Rosen applied a convergent spline based scheme to
an optimal control problem governed by a delay differential equation. The
numerical results in [3] seemed to show that KN(t) did not converge uniform-
ly to K(t) and these numerical results have often been used as evidence that
(1.9) did not hold for this particular scheme. Moreover, several new schemes
have since been generated specifically to ensure (1.3) - (1.4) and (1.9) are
valid. Still, it was not known if condition (1.9) held for the spline scheme
used in [3]. We shall provide a proof that (1.9) fails for this scheme. We

also show that this spline scheme 1is stable and consistent to A* on a dense

subset of D(A*).

2. SPLINE APPROXIMATIONS OF HEREDITARY SYSTEMS

Consider the delay differential equation

0

(2.1) x(t) = Agx(t) + Ajx(t ~ 1) + [ A(s)x(t + s)ds
-Tr

with initial data

(2.2) x(0) =n; x(s) = ¢(s8), -r < 8 <0,

where  x(t) B and the elements of A(e) are square integrable on
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[-r,0). It is well known that (e.g., [1]) for n € B and

$ € L2(-r,0; R') there exists a unique solution of (2.1) - (2.2)

x: [-r,+) + B such that xewl’z(O,T; B') for all T > 0.

defines the solution map S(t), t 20 on the product space

= B x L2(-r,0; ®) by

S(t)(n,p(«)) = (x(t), x(t+s))

where x 1is the solution to (2.1) - (2.2), then {S(t)}t>0 is a strongly

continuous semigroup (i.e.,

generator A 1is the operator defined on the domain

(2.4) D(A) = {(n,6(-)) €2]¢(+) e Wl2(=r,0; F), ¢(0) =

0
A, () = (A + Ajp(-r) + [ A(s)p(s)ds, $(+)).
-r

The adjoint operator A* generates the adjoint semigroup S*(t)

easy to show that (see [4,7])
(2.6) D(a") = (g, ezlvew 2(-r,0; B), y(-r) = ATe)
and for  (£,4) € D(A")
A*(Ew) = 1C0) + ATE, (ATCE - B
.
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As 1in [2], we define the linear spline based approximation for S(t).
Let {Bb;}t:___o denote the usual linear B-splines defined on the interval
["I',O} by .
N N N N
T (8- T)  selrg,,tyl
Ny _ JN, N _ N _N
(2.8) B,(s) = < (ti_1 s), s € ['l’i, 11_1]
0 , otherwise,
N _ N N
where Ty = -ir/N, i = 0,1,e¢¢ N, Tyep = °F and T, = 0. For each
N =1,2,000 let zZN denote the linear subspace of Z defined by
N N N N
(2.9) 2" ={zezlz = § ak(Bk(O),B (+), akell?} :
k=0 '
and let PV denote the orthogonal projection of Z onto zN. This subspace
can be identified with H(N+1) by the prolongation o @), 4
defined by
N N
(2.10) 1"a = (ag, | 2B ())
k=0
where a = (ag, a'{',...,a;)Tel?(Nﬂ). The space I?(NH) 18 normed with the

induced inner product
(2.11) <a,b>y = aTQNb,

where a, be BN+ g QY 1s defined by
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::,’ The adjoint operator [1M]*: z s+ B 45 given by '
e A
g v o] :
& oM ;
,‘:l n + ¢0 a:
¥y N ‘.
\ N, * N,-1 ¢ \
‘;:.:; (2.13) (17] (n,0(e)) = {Q] .1 R N
‘!'i| . .
+¥ . ¢
:::}- ¢g :
()
e L .J :
,(:- N _ 0 N .
G where ¢; = / ¢(s)Bi(s)ds. Moreover, it is easy to show that }
e -r H
o, ]
) '
A% * :
R [1N] N =1 the identity on R (N+1) B
" (2.14) :
Q.' Y
(N} * ;
i NpaNp® - PN |
W
v.“ ¢
1‘:?: )
J
KR and for z, wezV K
e i
"ot "
a’w .
Ry Ny Ny* g
'»’Q:. (2015) <z’w>z = <[i ] z! [i ] w >N.
0‘;'
,;';:ﬁ
:’;5, In order to coanstruct the standard Galerkin approximation of A, we note
5
2 that zN C D(A) and define AN by AN = PNAPY, oObserve that AN (and
‘::.‘ hence [AN]*) 1s continuous and although PVNz C D(4), PN does not map all L
?.Q’t k
::;: of 2 into D(A*). It is shown in [2] that
'." )
" .
- * i
% (2.16) AN = 1NN TN N :
o :
‘._A:! [
o) [
o \
};‘ }
A A 1 A AT A 0y A
LNCWANENT) - AR AN : 3 AT AR AR TARNE N P s = R A N i .
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-1, 0
+_l. ¢ 0.0 ) .

2 . 0 -1

0 * -1

0

Ay = Ay + [ A(s)Bi(s)ds

-r
N . fo A(s)BN(s)ds, 1 < k < N-1
Ak = - s K s)ds, Lk <N
N 0 N
Ay = AL+ {r A(s)By(s)ds.

1f sN(t) denotes the Co-semigroup generated by AN, then it is shown in [2]

that for each z€ Z,

(2.18) 1s8(t)z - s(e)zn » 0,

where the convergence is uniform in t on bounded intervals. The convergence
(2.18) was established by proving that the Galerkin approximations aN
satisfy the Trotter-Kato Theorem [6] and hence provided a stable and consis-
tent approximation scheme for A. We shall prove that the above convergence
statement does not hold for the sequence of adjoint semigroups [sN1*(e).
Moreover, this convergence falls ~ven though the adjoint operators [AN]* are
stable and consistent to A* on a dense subset of Z (1.e., there is a dense

set CC D(A*) C Z such that [AN]*z » A*z for all z€C).
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By 3. CONVERGENCE OF THE ADJOINT GENERATORS

We shall follow the approach given in [5] and consider the n(N+l) x n

At matrix

.Qfl:; YE = [QN]_I(O..OOCO,I)T.

A Define the operators G_N'_: B s zN by

N
.\i.‘ii 6+X = (¢x(0), ¢x('))
;.%‘ where
o 8,(+) = (BT, BY()T, +ee, BR(TIV)x.
K It follows that for all (n,$) = z€Z and x€R

. FER IS R FLD I PR Ve ROl P

=
I

*
= % [By(-0)T,ee, By(-0T1[1"] 2,
".',:: and (2.14) - (2.15) implies

(3.1) six,2, = x oV (-0,

;"'?.‘ where Pz = PN(n ) = (4>N(0),¢N(-))€ ZN. Furthermore, if )‘::ln denotes

b the smallest eigenvalue of QV, then (r/6N) ﬁkzin and it follows from

]
-( (2.11) that

2 (3.2) 1M < e/r)? for all .

. R . . i W . Y] O * ) ¢ Ny L
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(3
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Wy !
X! We also need the following representation. '
|:| Ny*, N
A Lemma 3.1: The operators (A7}l : Z +» Z are given by

* °
. 18 ) = 2o + agpto, Tento - iNeon
& + 8NN - YN,
N where  PN(EL¥) = 1(0),"C)).
Proof: Assume that z = (n,s) and w = (E,}) belong to Z and

P
U

*"j let Pz = (¢N(0),¢N(-)) and P = (wN(O) ,wN(-)) denote the orthogonal
fd
«
3

projections of z and w, respectively. The identity (3.1) implies that

-

J*i?ﬁnr

o’
-
-

<) + a3, a0 - e, P,

v + <A - 3 (=T, 2>,

)

‘0" 0 R

R = N1 M) + M0 A N0 - [ GNe) 0 (s)>as
-r

+ NOIT [ A edds + N1 TA 16" 0]

o -r

Iy - o] ls (-n)]
&
z‘."
¢'.“
R ‘:‘
N}
o, Integrating by parts, the boundary terms cancel with the first and last term
8 in the sum. Therefore, it follows that if [AN]* is defined as above, then

|

3

0.0 USKNOOON X l“
“v||l|0‘ |i.| Y
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»‘;‘ oy " &' l l M a\ l" O !’ .“ . .i. ." q’..'..'.'..

(A USRS
N o ) 'I‘! 0: 't‘\ OO0 o'.iu'o'|
ey ‘ L e hy, 3 MR AN "" . '.;0. ‘O.d "‘ "“ ‘l |'.“ \C.A l‘q ‘| l:' :. I" t ‘ ::1 I..' L ‘i. . ' ' 'A -



-12_

*
,..::: <[AN] w,z> = <PNw,APNz> = <w,ANz>

i and this completes the proof.
*
o It should be noted that [AN]*w = PA"PNw  if and only if

e A'fsz(O) - ¥(-r) = 0, 1i.e., if and only if PNweD(A®). Also, if

=

s D = D(A)/M D(A%)

and

C = {(€,p)€ D|y € C?(-r,0; 1)}

A then D and C are dense in Z. Moreover, we have the following convergence

A
o result.

A Lemma 3.2: If C and D are defined as above, then
‘

(a) [AN)*w » A"w  for all wecC

e and

) (b) for all A € R (AL - A")D 1is not dense in Z,

g Proof: Let weCC D(A) M D(A*). Note that w = (y(0),y(+)) where

?:M;} y(-r) = A'fw(O) and PVy = (wN(O),wN(-))G D(A). It follows from (2.7) and

iy Lemma 3.1 that

* * * *
b u[AN] w-Awl glPNAw-Awn

o + 1670 + Al (0, 14T 0 - $N1) = (W0) + A(0), (AT IN(0) = $()])

Sy o .
IRMICOMGDOM NN AN

BN N MR R O .
" ““!.'!‘.4’!'»‘\9»‘l?v‘!fa'l’a'lh'"»' M R At

. iy DTN
= BRGS0 ) AN AN AN S I RN A A TR I R LN
Q0000 u.‘n“‘ RN I N M AR o o i P A S Mt B A I A MO A I DR A M RSO OO MM
DO \ DU IO . OSSO UL OOV ISLORA MO N 3 NSRS M LD JOEID
LR '.’:}:’5‘:".:‘ :" .:'l.:"h'f:'mﬂ § “:«ﬂ"\"' b, S e N e o I Y D M e gt et T
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AT + nsN[A'fan(O) -y ( r) i

: *
Since w= ($(0), y(+))eCcC D(AYMIDA) and v()eci(-r,0; B), 1t
:' follows from standard estimates on interpolating splines (see equations (4.1)
B0 - (4.3) in [2]) that

o W0y - v} < o)

e loN(s) - w(s)] < O(1/N), =t < 5 < O
and

o 1) = $0o) < 0(1/N).

A The first term FT + 0 since weD(A*) and PNz s+ z for all z€Z. The

KN second term is estimated by

K Fy < oY o) + Ang(O) w(0) - A ¢(0)| + AT GNO) = $(0))
Ar F 0N = B

X <A+ (Al + 1A N0 - v + 0a/m).

::::‘: Therefore, Fg +0 as N+ o, Applying (3.2), the last term is estimated
Yy 4

\ by

.t“ N 1/2
(1% F3

< (6v/0) 2Ty 0y - v

»lq

AT RN (]
; "' ‘t"‘ " -' et '4‘ IO ‘l'l-\ ‘\" l'q.l’».b u’.‘l‘ .O'o‘h‘.' 's‘ Y ‘a' '\‘
..( : I N

—— o - n ’
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1/2

ol < (68/7) " 7(]a | 167€0) = w(0)| + lve-p) - ¥ -0y,

" N
ﬁ; and hence F3

. Turning to part (b), let w= (p(0),p)€ED, £, x € B and A€ R A

+ 0 which establishes part (a).

straightforward calculation yields that

R |'| Ae *
oy <(,e” x), AT - A T@WO),p())>

AS

0
B = yTOIO - DI - agle + 971 - A - [ °AT(s)ds)x.
-r

Y A 0 e(A+r)s

1 1f (O - 1e o(AO) and e fe q(Al + f AT(s)ds), then there

y -r
”& exist E+0 and x+ 0 such that
Ao *
4 <(E,e" x),[AT = A 1 (0),¥(+))> = 0.
%k If (A -1)¢ o(AO), let x# 0 and define ¢ by

0
aeh £ =-[(x - DI - AO]-I(I - e-ArAl -f eAsAT(s)ds)x,

i
LN -r

0
or if M ¢ o(Al + [ e(x+r)sAT(s)ds), let £ # 0 and define x by
-r

28, Tisyas) i - 11 - Ayl

. -Ar 0
o x = =-[1 - e A - {r e

In any case, there always exists an element z = (E,p(e)) = (E,el.x) + 0,
M such that

*
¥, <z, AI - A)w> =0

e LY

Vot e T B R ) e T gt L R S B T Sy g AT RO GO OO OO NGHCNC Y OSONN
N A N L AL IR AN A N SR U L I L e MU UL IR P
R SR WS . R DS T N B AL I T it ; . ‘ ST

[)
Q.‘:'!?ft.‘_t.f v

‘. 1
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for all w= (p(0), p(=))eD. Consequently, (Al - A*)D is not dense in
Z.

Since I[SN]*(t)l = lSN(t)I.S vt for some w independent on N
(see [2]), the existence of a set E C D(A*) and a A € R such that
(A1 - A*)E is dense in 72 and [AN]*w +> A*w for we€E would imply
strong convergence of the semigroups [SN]*(t) to S¥(t) ([6], III, Th.
4.5). Although [AN]*w +> A*w on the dense set C, (Al - A*)C is not
dense in Z. We shall establish that there does not exist a set E g;D(A*)
with the above properties. In fact, we shall show that [sN1*(t) does not

converge strongly to s*(t).

4. CALCULATION OF PN({AN]*)-1pN
In this section, we present several technical lemmas that will be needed
in Section 5. The proof of Lemma 4.1 is straightforward and hence omitted.

Lemma 4.3 can be found in [4,7].

Lemma 4.1: The operator [AN]* can be decomposed as

(4.1) (AN = 1NN TN,

Lewmma 4.2: Assume that HN is fanvertible. If z = (n,¢(+))€e 2,

then PN([AN]*)'IPNz exists and

(4.2) PN([AN]*)~1pNz = {NaN,

AR

U ‘yl

.\ ‘.v .; !;. NS

- - e . ™ O

e
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. .
y .
X
s "
o where al 1is the solution of o
F 3
*. 9 :
- - ‘
‘jg" N R
o Nt 3
;‘;: ¢N :
1E .
4. COLARN I e
R °N ‘\?,
b ¢ 0
::: L N J i}
it &
o N* N N Y
v Proof: Consider the equation A = P2z for w€Z". By Lemma 4.1 and
X from (2.14) N
;'Q. - & * P
) 1NN TN My < 1NV,
g :
b
A N#*
iﬂé Multiplying with i and from (2.13) and (2.14) ;
A} o
Wy _ - ‘:
e N "
R "* %
Y N [}
NT N *
‘!' H i w= ¢ .
\et' .
ﬁﬁ N '
g RN
. * R
] The lemma now follows from the fact that w = PMw = 1NNy = 1NaW, .
g’:‘ b
R .;
g‘:‘ 0 * ‘\
";: Lewma 4.3: If A= AO + A1 + [ A(s)ds, then Oep(Aa) if and :
0 “r T . T .
) only if A 1is invertible and  (§,4()) = (A7) "(n,4(+))€D(A) is given
‘.
A by
T -1 0 .
o (4.4) E=1[a"]1 "(n+ [ ¢(s8)ds) i
“l -r R
* "
L] i
s T 5 s \
" (4.5) y(s) = (A + [ A(8)d8) - [ ¢(8)de. K
-r -r ;
g
vﬂ Consider equation (4.3). It follows from (2.17) that (4.3) is equivalent

to the system

2 1

[

g LML U AN RIS RN AN RSB IORAK AN
Cr W“g"'r-“,- "‘A;"-» L T TR A S e ‘,‘.‘i‘ Pt
- . LI . w v . LR ‘ - P

PN
‘i ',‘a“,.g_i‘.‘h
' L I
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1 , N N N,T.N _ .N _

(4.6) 7 (8, - a )+ (A, ag = ¢, 1 <k < N-1
1 N N N,T N _ N
1, N, N N,T N _ N
(4.8) 7'(30 + al) + [AO ag =n +¢4.

A straightforward induction argument yields

k

N _ N N TN _ N
(4.9) ag, = ay = 2 121 ([AZi_ll ag - ¢21—1)’ if 2k <N
and
(4.10) ay o= al -2 f (a¥ TN - Ny, 1f w1 <N
y kel T Fp T L Gyl B9 T g0 A

Thus, it follows from (4.7) that

N N
1 N N N,T N N
(4.11) -x(ay, -a)+ §J [Ala = 7 4.
7% "3 L thTeg T L %
Moreover, (4.8) and (4.11) imply that
N N 0
N
D MTaN = 4 Y ¢, =n + [ ¢(a)ds
o e % j=0 3 -
where
¥ooNT 0 T T
I [A) =[A)+A + [ As)ds) =» .
k=0 -r

*
If one assumes that Oep(A ), then by Lemma 4.3 it follows that AT is

,'lbgklw
l. - ‘.0 tﬁ

ORI

N

z:":",r"".
A



Y1¥ -1 8-

Ly invertible and

A\l Q" - 0 :
4:5‘ (4.12) ag =2 T(n + [ ¢(s)ds). :
i -

W T

e Observe that (4.12) implies that ag is independent of N and by (4.4) it

ﬁdﬁ follows that ag =g where (E,p(s)) = [A*]-l(n,¢(-)). Equation (4.8)

A yields the identity

0“."". N '
N N N,T N
- feben § - :

e k=1
s and hence 1t now follows from (4.10) that

e
) N
Hhg N N N,T
.' P ——

i dkel T T3 * 2 k§1 (1A ]
. (4.14)

e N k

“&ﬁ - _aN +2 2 ([AN]TaN _ ¢N) +2 Z ([AN ]TaN - ¢N )
t - -1
2t 07 % e 3 7Y Ly et o T f21m

k
N N N T N N i

Note that for 1 S_k <{N-1
0
i N

0 Tk
N;2 N 2 2
fﬁ: |°kl = I{r ¢(8)Bk(8)d5| S_(g%) IN

1
lo(s) | %ds
x T+l

e and similarly

0
N;2 2
logl® < G | lets)|ds
R0 1

A N
O T

N
y N2
log!® < G [
-r

1
|¢(s)|2ds.

T IR N R X TR U UIGEULOCOOOSAGAGHG G AN AAONIACOIC B LR
SRR T Tt TR RN T I e
et e e TR L, [ ST . a o

.
¥
LA
N
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Therefore, (4.9) and (4.10) imply

- nmnwwe > LK

N N N
laZkl S.Iaol (1 + 2|Al|) + 2t/3 ('AILZIaOI + I¢lL2)
and
N N N N
EV S_]all +2|a;] |ag| + 2/273 (IAanlaol + I¢IL2),

respectively. The identity (4.12) ylelds the estimate
N ~T
|a0| <A77+ Onm,e o,
and (4.13) leads to the bound

N N,T, N N
laj] = |-(1 + 2[A51 ay + 2(n + 4]

o}

N N
< |a0| + 2|n| + 2/T/3N (mL2 |¢0| + |¢|L2).
Combining these estimates one has that for 0<{k<N

lay| < MG 8¢,

where M>0 is independent of N. An application of Lemma 4.2 yields the

estimate

“LeNo = Ve

IPN[AN*] z 1 < (VTHDM zt,

for all z€Z, We summarize these results in the following theorem.
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I e

Wy Theorem 4.4: If 0O€p(A), then

kS PN LAY ) 1o (n L (o)) = 1NN .

g]T ?]T,°".[aS]T) is given by

N where al = col(la,] ", [a

'O'o - 0
2R ag =A7"(n + [ ¢(s)ds),

-r

il
=

s
o
3
a.
m
o
H
o
I
N
=~
[P
2

k

N TN __.N
-2 121 (TAy31173g ~ 455 )

-‘,-‘..-’.’.
e
[

N2
=~
i
[

o=
gt L)

AL

D

Chif
s

while for 1 < 2k+1 < N

() N
. +2
0 22k+1 j=3cH]
“

K
N,T N N N TN N
I (a1 ay - ey +2 121 (a5 11 3p = ¢34+

-

e

o Moreover, ]
L}

is uniformly bounded in N.

L(2)

"~
- b
- e T

,
-
-
B =
o
.

W Let N

' PAVE denote the "averaging" orthogonal projection on 2 defined

Nl by

N N N i-1
i PAVE(n,M'))'(n, ) -r-(f ¢(s)ds)y N N ),

) 1=1 r? (ryt4))

where X1 denotes the characteristic function for the interval 1 (see [1]

for details).

PR T LWL P/ L
it PEARAY “'4.1* ' - “x,

AR XN
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Corollary 4.5: There exist a costant K>0 (independent of N )

such that for all z€Z

TR CAl TN L N P\l

AVE zl < (%) fzh.

Proof: A direct application of Theorem 4.4 ylelds the identities

N
1, N N N,T N
= (a +ay,)= Y (A )€ -¢,), 0< 2k < N-1
A U S N 17» VR 2
and
1, N N N N,T N
-i-(aZk_1 + a2k) =3 ([Ail E - ¢i)’ 2 <2k <N,

1=2k

On the other hand, since () = [A*]'l(n,¢(o)). Lemma 4.3 implies that

_ 0
£ = ag =27 T(n + {r ¢(s)ds)
and

s S
v(s) = (Af + [ AT(e)dedE - [ ¢(9)de.
-r -r

Therefore, if s, = N + r?_l)/z, then

N
h| h|

N N N
[ (agier * 89072 = ¥log )l

N
S2k+1 N T
"1 By (®) - DR - ela))ds

Tok+1

N
k

2
* (Bypyy (9)AT(8)E - 9(s))ds]

Sok+1

T

-~ 4 ..-—-...

Ty ) e e

e
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e TN TN .

. _ 2k 2k

e <N m Ao 2e) + T ety 3
N N

T 2k+1 Tok+1

i and similarly,

D%

: N N N
o |Cagy + g _1)/2 = ¥(s,)|
"'Vl: TN TN ¢
B _ 2k-1 2k-1 |
< GNTI N ((f lacs) [2a8) 2 1e ] + ( f [6(s)[2as) /3y, |
N

Tk T2k

BB It follows that

0
e e

N
(2 NN N
WPavg 120 6y Iovlex oy

;':.I' j-l j [T T )l
: 17731

)

T e o

< (e/V12N) (IAIL2|5| + 140, ).
2
oy Since y€ wl’z(-r,o; ') and .

_ 0
e ¥(e) = AT(s)E - 4(s) = AT(8)a ™ T(n + [ ¢(8)d8) - ¢(s), ;

o -r [
< there exists a constant K such that

. N
3 w1 we)

4 =1 N N 'L S(K/N)l(ﬂ.O('))lz.

T U

[t

;'s:I This estimate combined with the previous inequality establishes the proof.
Tt We turn now to providing a proof that the approximating adjoint semi- '
groups constructed above do not converge strongly to the adjoint semigroup

generated by A*.

Fd
¢
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5. NON-STRONG CONVERGENCE
* N N*
Let A, A", AV, and A be defined by (2.4) - (2.5), (2.6) - (2.7),
(2.16) and (4.1), respectively. The corresponding semigroups will be denoted

by S(t), s*(t), sN(t), and sN*(t). Recall that for z€z (see [2])

N 2

(5.1) <ANz,z> = <APNz,PNz> £ wiP zl2 L whzl
where o = (1 +2|a] + [a |2+ 214 )/2 and for €0
\ 2
]
(5.2) sNeon < e, asMien < et

The following result is a special case of Theorem 4.2 of Chapter 3 in [6].

Theorem 5.1: The following are equivalent:

(a) For every z€Z and A€f with Re i >
x o * -
(A1 - AN ) lz + (AT - A) 1z, as N+ =,
(b) For every z€Z and t>0

* *
SN (t)z + S (t)z, as N + 4=,

the convergence beiqg;uniform in t on bounded intervals.

We shall also need the following technical lemmas.

EEOANLINOAS DA RR WD . AN PPN ML A AN .- N LR A T
e AR AR L W 10.“_‘09“6%‘! L AUACA RN p_,',»”,,.j ‘1‘:.0‘:“"1?(“‘ AR »,ﬁ‘.-.",wv’,v‘f,q.i.vv"‘s_:“ vt
. e B O JE L R RS L AT [

A}
7:‘;“%‘ R
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Lemma 5.2: Suppose the condition (b) of Theorem 5.1 holds, Aefp(A*)
~1pN,

*
N and nPN(AI - AV ) is uniformly bounded in N. Then for every z€ 2

X - K -
R phar - a¥) Y 5 o1 - A%,

N Proof: From Theorem 5.1, for A > w and z€1Z

* *x -
’ PN(AOI - AN ) 1PNz +> (AOI - A) 1z, as N+ =,

P aT il o

Note that for =z€Z

5 576

= & PN g5,

“ R - * -
ﬁi Plar - AT - G T - Al
"
R - R -
e = O, - veNar - A IPN(AOI - AN*yTLpN,
j and similarly
L I % - R -
e A1 - a7+ 0 -G - aHTh - (ol - AN
* -1
7 Hence, if w=12z + (A - AO)(AOI - A) "z, then
LI X -
s plar - AV N - o - a7l -

k- R - *
e = (g - vPNa1 - AT - AT - g - AY)

-1 z)

d R - R -
» + Mot - A% - ot - AN,

5 Y A My 8 T . REGACA0 4 [N ROGAGE!
BN :{.‘P,.b;'b,"s e v e LR A Y ix’,,"t‘f,';‘ LRI ,‘c‘.h,.‘~‘g"'.s‘,‘0',°o“ oA
AN i | - . \ ey S NN Ao’ L
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This implies that for all z€2

N*

)-1 N

* -
PN()\I-A Pw+ (AT - A) 'w

But since I+ (x -~ AO)(AOI - A*)_1 is onto, the above statement holds for
all welZ.

We turn now to a special case where 10 = A0 +al, o € ]é,
A(s) = 0, -r {s <0, A=A +A and denote by K*, ZN* and

0 1

~ N*
s (t), S (t) the corresponding infinitesimal generators and semigroups.

*
Lemma 5.3: If statement (b) of Theorem 5.1 holds for SN (t), then it

holds for §N*(t).

Proof: Note that
* * ~N* * N
A =A +E and A =A" + PEP
where E: Z + Z is the bounded linear operator defined by
T
E(n,$()) = (an,-A"(+)n).

~N* @ ~
It follows from (5.2) that 15N () £ et where & =uw + |a| + AN, .
2

Consequently, 1if A >w, then

(5.3) 01 - TV 2 o1 - AM™)7 s o1 - AV eNeeNar - xV)7!

ARXAN

!

RO g
g"_,’n.‘.:r.'t:t:zg'y: XX s" 'l‘» \" ’r‘ :q'h’ s ”4* R ‘|. 4‘ ‘l' o'.'il 'n‘ ‘o’.'ﬂ ‘c' S 'o' ’l‘. W
PR R "

AN R
’ l‘ U‘T‘I..

PO X Ry

- - - .o - i

4

M o et
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and

(5.4) o1 -%5H7 = o1 - a1+ o1 - a5 e - 157

Theorem 5.1 implies that for all =z €2

o1 - A4 a1 - a5,

and since the ranks of E and E* are finite it follows that

1 PVEPY - Ep » O.

It now follows from (5.3) - (5.4) that

o1 - AV s o1 - 197

for all z€Z and this completes the proof.

By Lemma 5.3, without loss of generality, one can assume that A(s) =0

and A=A, +A i{s invertible in what follows. We will show that there

0 1

%~
exists an element =z €7 such that PN(AN ) 1PNz

does not converge to
* —
(A7) L. First we consider the case when A; 1s not the indentity.

Lemma 4.3, if (&,¢(*)) = [A*]-l(n,O) where 0 # n € ', then

E = A_Tn and yY(8) = Afg, -t {s<0.

oy

1

From

i v ' g 3, e (A W TR 0Ty 8 g BTy g ATy Ty Ty oy 00 Ty AR IORICA]
AN U O R R LN R D I ';'.'n'.f:*ﬁt',\e'n'g“,’» RO OO N UL LN ) “L"'if LA RSIWICLNIN
oL . : . Lot LA SN e ,”l‘,’l_u >h'\"‘|" B P PO " T FAT RN Fig o E S

. e : . K i B RN ¥ . P B . . ! : .

Nt My
Lt
ol ol v
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Applying Theorem 4.4 we obtain

R -
P aV 1 1e%n 0y = NP

where

N T
Ay = 6t 288, 0 < 2k + 1 KN

For illustration, we have the following picture for the case N = 4 and n =1

v v {<+ zA'{s

where the solid line stands for (A*)-l(n,o) and the dashed line for iV N,

N

N
)

Since AjE AE - a5 £ - AE =¢c€ B! (independent of N), it is

easy to show that

r/2N

5.5y 1N 10,0 - aH o v [ B s el?as = g el? ¢+ 0.
0

Next we consider the case A} = I. Let ¢(s) =x2# 0 (constant vector in

R%), Then, from Lemma 4.3 (£, ¢(¢)) = (A*)-1(0,¢(-)) is given by
(5.6) £=1r0"Tx and y(s) =€ - (s + r)x, =r < x < 0.

ALY
v SL

- -

.

W e ar -

cAR o gt S
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et And, from Theorem 4.4, PN(AN*)-IPN(O,¢(~)) = iNaN, where

e (5.7) a =g+ 3 (Px=t+ 3, 0< k<N

'Q? jodd
l‘ P
s 1<j<2k~1

(Px = £ - (ﬂ"_ﬁ-k'—l)rx, 0 < 2k < N.

. N 2N-1
’ﬁ"§ Geey 6T Rt 2 ]
el jeven
et 2<3<2k
. 2 N o, N N LN N Ny o
o Since (ap + 8y 4)/2 = ¥((ty + 154))/2)  and (ay ) + ap)/2
e \p((rN + N )/2), it follows from (5.6) and (5.7) that

2k-1 ¥ Tk
b2 r

s (5.8) 1PN RY(0,0 (0 - ()M (0,0¢)02= 2N {)WIZNsxlzds - ;f x| 2 o.
IR Now we may state the main theorem.

Wi Theorem 5.4: There exists an element z€Z and t > 0 such that

KIS sN*(t)z does not converge to s*(t)z.

"y Proof: 1If for every z€Z and t > O, sN*(t)z converges to S§*(t)z,
oy then it follows from Theorem 4.4 and Lemma 5.2 that for every z€2

"t PN(AN*)_IPNZ +> (A*)-lz, where by Lemma 5.3 one can assume that A(«) =0
At and A= AO + A1 is invertible. This contradicts the facts (5.5) and
u (5.8).
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